JP2009288231A - Pump flow measuring device - Google Patents

Pump flow measuring device Download PDF

Info

Publication number
JP2009288231A
JP2009288231A JP2008167913A JP2008167913A JP2009288231A JP 2009288231 A JP2009288231 A JP 2009288231A JP 2008167913 A JP2008167913 A JP 2008167913A JP 2008167913 A JP2008167913 A JP 2008167913A JP 2009288231 A JP2009288231 A JP 2009288231A
Authority
JP
Japan
Prior art keywords
pump
flow rate
head
curve
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008167913A
Other languages
Japanese (ja)
Inventor
Satoru Kitazawa
哲 北澤
So Hato
創 羽籐
Tatsuo Motono
達雄 本野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008167913A priority Critical patent/JP2009288231A/en
Publication of JP2009288231A publication Critical patent/JP2009288231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein there is a method of indirectly measuring a flow from total head curve as a pump intrinsic characteristic and actual head and pipe loss determined by a pump installation condition without using an electromagnetic flowmeter, an ultrasonic flowmeter, or the like, but this method requires compensation of delivery flow passage loss when the loss resistance on the delivery side varies, and requires total head curve for each rotation speed when the rotation speed is controlled, and it is difficult to directly determine the delivery flow by formula operation. <P>SOLUTION: Measured values such as delivery pressure of the pump, water level of water absorption tank, the pump rotation speed, and the like are input to a pump flow measuring device. Meanwhile, the mathematized total head curve of the pump, the loss coefficient of a suction side from the water absorption tank to the pump, and the pump center height are input previously, and the pump flow is measured directly by formula operation using these values regardless of the delivery flow passage loss. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は流量計を用いず、計測したポンプ吐出圧力、吸水槽水位、ポンプ回転数およびあらかじめ回転数と吐出流量の関数式化した全揚程曲線、吸込み側の管路損失係数と吸込み損失係数、ポンプ中心の高さを用いてポンプ吐出流量を直接計算により求める流量計測装置を提供するものである。ポンプ吐出側管路の損失係数、吐出実揚程に関わらず、正確な吐出流量の計測が可能である。農業用の揚水ポンプなど末端バルブの開閉に伴い用水量が変動する場合、回転数制御の並列運転ポンプなどの流量計測に適用できる。The present invention does not use a flow meter, measured pump discharge pressure, water tank level, pump rotation speed and total head curve that is a function formula of the rotation speed and discharge flow rate in advance, pipe side loss coefficient and suction loss coefficient on the suction side, The present invention provides a flow rate measuring device that determines the pump discharge flow rate by directly calculating the height of the pump center. Regardless of the loss factor of the pump discharge side pipe line and the actual discharge head, it is possible to accurately measure the discharge flow rate. When the amount of water fluctuates with the opening and closing of the end valve, such as an agricultural pump, it can be applied to flow measurement of a parallel operation pump with rotational speed control.

流量計によらず、ポンプ固有の全揚程曲線、管路の損失係数、実揚程、ポンプ吐出圧などからポンプ吐出流量を間接的に求める方法は、回転数変化時の全揚程曲線の数式化、管路損失、実揚程が流量の関数としての数式化が困難のために普及していない。Regardless of the flow meter, the method of indirectly determining the pump discharge flow rate from the pump-specific total head curve, pipe loss factor, actual head length, pump discharge pressure, etc., formulates the total head curve when the rotational speed changes, Pipe loss and actual head are not popular due to difficulty in formulating as a function of flow rate.

ポンプ吐出流量を間接的に計測する方法として、ポンプ吐出圧力、吸水槽水位の計測値およびあらかじめ与えられた全揚程曲線、吸込み側の損失係数から求める方法は理論的によく知られている。
すなわち、エネルギーを水頭表示したときの揚程方程式は
全揚程=吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
となる。このうち、吸込み実揚程はポンプの中心と吸水槽水位のレベル差であり、吸水槽水位の計測値によって求められる。
ポンプ出口圧力水頭はポンプの出口圧の計測値によって求められる。
吸込み水頭損失、吸込み側管路損失は共に吸込み管の物理的な形状、寸法、材質などにより定まり、管内の流速の2乗に比例した値となる。管径を同一としたとき、流量の2乗に比例した値となる。
全揚程曲線は縦軸にポンプが水に与える全エネルギー水頭、横軸にポンプの吐出流量をとった場合の特性曲線であり、ポンプ固有の曲線である。
上記の全揚程方程式で、吸込み実揚程、ポンプ出口圧力水頭は計測によって決まる。
吸込み水頭損失と吸込み側管路損失は管路の物理的条件と流量により求めることができる。
よって、
吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
の値と全揚程曲線との交点の値が一致する点を探索することによって、一致点の流量をポンプ吐出流量として求めることができる。
従来技術では全揚程曲線との値が一致する点を探索する手段が具体的に示されていない技術は公知となっている。(たとえば特許文献1参照)
また、上記の
吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
の値と全揚程の値が一致する点を探索する方法として、全揚程曲線を離散データとして入力し関数発生器により曲線を作成する。また、
吸込み水頭損失+吸込み側管路損失+速度水頭の損失特性曲線を離散データとして入力し関数発生器により曲線を作成する。この損失特性曲線に計測したポンプ出口圧力水頭を加えて補正した曲線と全揚程曲線との交点の吐出流量を読み出す技術は公知となっている。(たとえば特許文献2参照)
ただし、この場合、吸込み実揚程は考慮されていない。また、全揚程曲線、損失特性曲線はテーブル等で記憶されている。
以上のポンプ吐出流量を間接的にポンプ吐出圧力、吸水槽水位および全揚程曲線から求める方法は全揚程曲線と吸込み水頭+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭の値の交点は数式演算によらず、全揚程曲線と損失特性曲線との交点を求めるのは図式的な方法または離散数値テーブル間のマッチングによっており、探索手段が複雑なためにポンプ吐出流量計としての使用例は少ない。
As a method for indirectly measuring the pump discharge flow rate, a method for obtaining from the pump discharge pressure, the measured value of the water tank level, the total head curve given in advance, and the loss factor on the suction side is theoretically well known.
That is, the head equation when the energy is displayed as a head is the total head = suction head loss + suction side pipe loss + suction actual head + pump outlet pressure head + speed head. Of these, the actual suction head is the level difference between the center of the pump and the water level in the water tank, and is obtained from the measured value of the water level in the water tank.
The pump outlet pressure head is determined by the measured value of the pump outlet pressure.
Both the suction head loss and the suction side pipe loss are determined by the physical shape, dimensions, material, etc. of the suction pipe, and are values proportional to the square of the flow velocity in the pipe. When the tube diameter is the same, the value is proportional to the square of the flow rate.
The total head curve is a characteristic curve when the vertical axis indicates the total energy head given to the water by the pump and the horizontal axis indicates the discharge flow rate of the pump, and is a characteristic curve of the pump.
In the above total head equation, the actual suction head and pump outlet pressure head are determined by measurement.
The suction head loss and suction side pipe loss can be obtained from the physical conditions and flow rate of the pipe.
Therefore,
By searching for the point where the value of the intersection of the suction head loss + suction side pipe loss + suction head lift + pump outlet pressure head + speed head and the total head curve match, the flow rate at the point of coincidence is determined. Can be obtained as
In the prior art, a technique that does not specifically show a means for searching for a point whose value matches the total head curve is known. (For example, see Patent Document 1)
Also, as a method to search for the point where the above suction head loss + suction side pipe loss + suction actual head length + pump outlet pressure head + speed head value matches the total head value, the total head curve is input as discrete data A curve is created by a function generator. Also,
The loss characteristic curve of suction head loss + suction side pipe loss + speed head is input as discrete data and a curve is created by a function generator. A technique for reading out the discharge flow rate at the intersection of the curve corrected by adding the pump outlet pressure head measured to the loss characteristic curve and the total head curve is known. (For example, see Patent Document 2)
In this case, however, the actual suction head is not considered. The total head curve and loss characteristic curve are stored in a table or the like.
The method for obtaining the above pump discharge flow rate indirectly from pump discharge pressure, water tank level and total head curve is the value of total head curve and suction head + suction side pipe loss + actual suction head + pump outlet pressure head + speed head. The intersection of the total lift curve and the loss characteristic curve is determined by a graphical method or matching between discrete numerical tables, and the search means is complicated, so that the intersection of There are few examples of use.

ポンプ吐出流量を間接的に計測する方法として、ポンプ吐出圧力を用いないで、吸水槽水位および全揚程曲線から求める方法についても理論的によく知られている。この場合
全揚程=吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
の式でポンプ出口圧力水頭は吐出し実揚程と吐出側管路損失の和となる。
すなわち
全揚程=吸込み水頭損失+吸込み側管路損失+吐出側管路損失+吸込み実揚程+吐出し実揚程+速度水頭
において、吸込み実揚程+吐出し実揚程は実用程と呼ばれており、吸込み実揚程は吸水槽水位で決まり、吐出し実揚程は吐水槽水位で決まる。
残りの吸込み水頭損失、吸込み側管路損失、吐出側管路損失、速度水頭はいずれも管内の流速の2乗に比例した値となる。換言すれば流量の2乗に比例した値となる。吐出流量は全揚程を縦軸とし、吐出流量を横軸にとり、全揚程曲線と実揚程、吸込み水頭損失、吸込み側管路損失、吐出側管路損失、速度水頭の和の曲線を描いたときの両曲線の交点として求めることができる。
従来技術でこの方法は公知となっている。(たとえば特許文献3参照)
この方法は吐水槽に揚水する場合などに適用できる。
しかし、ポンプの吐出管に設けた吐出バルブ、末端バルブなどで流量調整する場合はバルブ開度によって吐出側管路損失が変化するため、これに応じて吐出側管路損失を変更する必要があることおよび[0004]示したと同様に、探索手段が複雑なために、吐出流量の測定には適さない。
As a method for indirectly measuring the pump discharge flow rate, a method for obtaining from the water tank level and the total head curve without using the pump discharge pressure is theoretically well known. In this case, the total head = suction head loss + suction side pipe loss + suction actual head height + pump outlet pressure head + speed head, and the pump outlet pressure head is the sum of the actual discharge head and the discharge side pipe loss.
That is, the total head = suction head loss + suction side pipe loss + discharge side pipe loss + suction actual head lift + actual discharge head + speed head, the actual suction head + discharge actual head is called the practical level, The actual suction head is determined by the water tank level, and the actual discharge head is determined by the water tank level.
The remaining suction head loss, suction side pipe loss, discharge side pipe loss, and speed head are all values proportional to the square of the flow velocity in the pipe. In other words, the value is proportional to the square of the flow rate. When the discharge flow rate is taken with the vertical axis representing the total head and the horizontal axis representing the discharge flow rate, the total head curve and actual head, suction head loss, suction side pipe loss, discharge side pipe loss, and velocity head sum curve are drawn. It can be obtained as the intersection of both curves.
This method is known in the prior art. (For example, see Patent Document 3)
This method can be applied when pumping water into a water discharge tank.
However, when adjusting the flow rate with a discharge valve, terminal valve, etc. provided in the discharge pipe of the pump, the discharge side pipe loss changes depending on the valve opening, so it is necessary to change the discharge side pipe loss accordingly. As indicated above and [0004], the search means is complicated and is not suitable for measuring the discharge flow rate.

回転数制御するポンプ吐出流量を間接的に計測する方法として、幾つかの回転数毎に全揚程曲線を描いて、これらの間の回転数については隣接する2つの全揚程曲線間での補間により補償する方法が公知となっている。(たとえば特許文献3参照)
この方法は離散した複数の回転数の全揚程曲線を描く必要があり、また補間のために図式的方法が必要となる。
運転する回転数の全揚程曲線が定まれば[0004]、[0005]で示した方法でポンプの吐出流量を求めることができる。
As a method of indirectly measuring the pump discharge flow rate for controlling the rotation speed, draw a total lift curve for each of several rotation speeds, and the rotation speed between them is determined by interpolation between two adjacent total lift curves. Compensation methods are known. (For example, see Patent Document 3)
This method needs to draw a total head curve at a plurality of discrete rotational speeds, and requires a graphical method for interpolation.
If the total head curve of the number of revolutions to be operated is determined, the pump discharge flow rate can be obtained by the method shown in [0004] and [0005].

特許公開平6−66287Patent Publication 6-66287 実用新案公開平5−78997Utility model publication 5-78997 特許公開平5−290100Patent Publication 5-290100

発明が解決しようとする課題Problems to be solved by the invention

ポンプ吐出流量を直接計測する流量計として、電磁流量計、超音波流量計が使用されている場合が多い。いずれもポンプから揚水は乱流となって吐き出される。このためにポンプと流量計間の距離は直管部として相当離す必要がある。このためポンプ室を大きくしたり、ポンプ室の外部に流量計ボックスを設けて流量計を設置する必要がある。電磁流量計、超音波流量計は高価であること、同時に建物などの土木構造物を小さくして経済化することが課題となっている。
また、流量を直接測定する流量計を使用しない方法として、ポンプ固有の特性である全揚程曲線、ポンプ設置条件で決まる実揚程と配管損失などから流量を間接的に計測する方法がある。間接的に計測する方法は吐出側にバルブなど設置されている場合は吐出管路損失の補正を必要とする課題を有している。また、全揚程曲線は揚程と吐出流量のテーブルまたは折れ線グラフなどで記憶しているために、回転数制御している場合など回転数毎に曲線が必要とし、全揚程曲線と測定流量値の全揚程との交点は直接、数式演算で求めることが困難である課題を有している。
As a flow meter that directly measures the pump discharge flow rate, an electromagnetic flow meter and an ultrasonic flow meter are often used. In both cases, the pumped water is discharged from the pump as a turbulent flow. For this reason, the distance between the pump and the flowmeter needs to be considerably separated as a straight pipe portion. For this reason, it is necessary to enlarge the pump chamber, or to install a flow meter by providing a flow meter box outside the pump chamber. Electromagnetic flowmeters and ultrasonic flowmeters are expensive, and at the same time, it is an issue to make civil engineering structures such as buildings small and economical.
Further, as a method that does not use a flow meter for directly measuring the flow rate, there is a method of indirectly measuring the flow rate from the total head curve, which is a characteristic of the pump, the actual head determined by the pump installation conditions, and the pipe loss. The indirect measurement method has a problem that it is necessary to correct the discharge line loss when a valve or the like is installed on the discharge side. In addition, since the total lift curve is stored in a table of lift and discharge flow rate or a line graph, a curve is required for each rotation speed, such as when the rotation speed is controlled. The intersection with the head has a problem that it is difficult to obtain directly by mathematical calculation.

間接的にポンプ吐出流量を計測する従来方式では第1にポンプ固有の全揚程曲線は折れ線近似などのグラフ曲線またはテーブルとして与えられている。このために全揚程曲線は数式として直接、関数演算操作に適していない。In the conventional method of indirectly measuring the pump discharge flow rate, first, the total head curve specific to the pump is given as a graph curve or table such as a polygonal line approximation. For this reason, the total head curve is not directly suitable for a function calculation operation as a mathematical formula.

間接的にポンプ吐出流量を計測する従来方式では第2に
全揚程=吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
の式において、全揚程曲線との交点を簡易な方法で求めるために、
吸込み損失水頭+吸込み側管路損失+速度水頭
は吸込み実揚程+ポンプ出口圧力水頭に比較して小さな値として無視し、
全揚程=吸込み実揚程+ポンプ出口圧力水頭 として求めか
または、
全揚程=吐出側管路損失+吸込み実揚程+吐出し実揚程 として求めている。
吸込み水頭損失+吸込み側管路損失+速度水頭
を無視した場合、低揚程のポンプ流量の計測で大きな誤差を発生する。
In the conventional method of indirectly measuring the pump discharge flow rate, secondly, the total head = suction head loss + suction side pipe loss + suction head lift + pump outlet pressure head + speed head, the intersection with the total head curve To find it in a simple way,
Suction loss head + suction side pipe loss + speed head is neglected as a small value compared to actual suction head + pump outlet pressure head,
Obtained as total head = actual suction head + pump outlet pressure head, or
Total lift = Discharge side pipe loss + Suction actual lift + Discharge actual lift.
If the suction head loss + suction side pipe loss + speed head is ignored, a large error will occur in the measurement of the pump flow at the low head.

間接的にポンプ吐出流量を計測する従来方式では第3にポンプ出口圧力水頭を用いない方法として
全揚程=吸込み水頭損失+吸込み側管路損失+吐出側管路損失+吸込み実揚程+吐出し実揚程+速度水頭
として求める場合、吐出側が吐水槽に揚水するのではなく、ポンプ吐出管が管網に接続されており、管網には、流量制御バルブが設けられている場合は、吐出側管路損失および吐出し実揚程が変化するために、これらの変化に対応して管路抵抗曲線を変化させて、全揚程曲線との交点を動作点とする必要がある。
管路抵抗曲線を制御バルブの開閉に応じて、変化させることは一般に困難のために、管網に、流量制御バルブが設けられている場合は適用が困難である。
Third, in the conventional method of indirectly measuring the pump discharge flow rate, the total head = suction head loss + suction side pipe loss + discharge side pipe loss + actual suction head + discharge actual as a method not using the pump outlet pressure head When calculating as head + speed head, if the discharge side does not pump water into the water discharge tank, the pump discharge pipe is connected to the pipe network, and if the pipe network is provided with a flow control valve, the discharge side pipe In order to change the path loss and the actual discharge head, it is necessary to change the pipeline resistance curve in response to these changes and to set the intersection with the total lift curve as the operating point.
Since it is generally difficult to change the pipe line resistance curve according to the opening / closing of the control valve, it is difficult to apply when the flow rate control valve is provided in the pipe network.

間接的にポンプ吐出流量を計測する従来方式では第4に回転数制御するポンプの場合、回転数に対応した全揚程曲線を描く必要がある。
この場合、離散的な回転数に対して、全揚程曲線を描き隣接する2つの曲線間の回転数に対しては補間によって補償することになる。
この場合、補間のための処理が複雑化する。
In the conventional method of indirectly measuring the pump discharge flow rate, fourthly, in the case of a pump whose rotational speed is controlled, it is necessary to draw a total head curve corresponding to the rotational speed.
In this case, the total lift curve is drawn for the discrete rotational speed, and the rotational speed between two adjacent curves is compensated by interpolation.
In this case, the process for interpolation is complicated.

本発明は、上記の第1から第4までの問題点を解決するためになされたものである。The present invention has been made to solve the above first to fourth problems.

課題を解決するための手段Means for solving the problem

本発明は前記の課題を解決するために、第1にポンプ固有の全揚程曲線を吐出流量の関数として数式化し直接、関数演算操作に使用する。
第2に、
吸込み水頭損失+吸込み側管路損失+速度水頭
の値を無視することなく、吸込み側の管路の物理的な構造にもとづいて吸込み水頭損失、吸込み側管路損失を流量の関数として数式化する。
第3にポンプ出口圧力計測値を用いることにより、吐出側の管路抵抗の変化、吐水槽の有無に関係なく吐出側の水頭を求めることができる。換言すれば、吐出側管路損失、吐出し実揚程等のポンプ吐出側の条件を使用せず流量を求めることができる。
第4に回転数制御するポンプ流量を求める場合に、まず、ポンプ固有の全揚程曲線(N回転数の曲線)を吐出流量の関数として数式化する。N回転数の全揚程曲線の関数式を流量と任意のN1回転数の関数に変換することで任意回転数の全揚程曲線を数式化する。
以上、第1から第4の手段により、回転数制御しているポンプ流量をポンプ出口圧力、吸水槽の水位、ポンプ回転数を装置に入力することで数式計算のみで求めることができる。
In order to solve the above-mentioned problems, the present invention first formulates a pump-specific total head curve as a function of the discharge flow rate and directly uses it for a function calculation operation.
Second,
Without ignoring the values of suction head loss + suction side pipe loss + speed head, formula the suction head loss and suction side loss as a function of flow rate based on the physical structure of the suction side pipe. .
Third, by using the pump outlet pressure measurement value, the discharge-side head can be obtained regardless of the change in the discharge-side pipe resistance and the presence or absence of the water discharge tank. In other words, the flow rate can be obtained without using the conditions on the pump discharge side such as the discharge side pipe loss and the actual discharge head.
Fourth, when determining the pump flow rate for controlling the rotational speed, first, the pump-specific total head curve (N 0 rotational speed curve) is mathematically expressed as a function of the discharge flow rate. By converting the function formula of the total lift curve of N 0 rpm into a function of the flow rate and an arbitrary N1 rpm, the total lift curve at an arbitrary rpm is formulated.
As described above, the pump flow rate whose rotation speed is controlled by the first to fourth means can be obtained only by mathematical calculation by inputting the pump outlet pressure, the water level of the water absorption tank, and the pump rotation speed into the apparatus.

発明の効果The invention's effect

上記に示した第1から第4までの課題を解決することにより得られる本発明の効果は以下のとおりである。The effects of the present invention obtained by solving the first to fourth problems described above are as follows.

第1にポンプ固有の全揚程曲線を流量の関数として数式化することにより、全揚程=吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
の方程式を全揚程曲線関数式と等しいとおいて、ポンプ吐出流量を直接、演算により求めることができる。
First, by formulating the pump-specific total head curve as a function of flow rate, the equation of total head = suction head loss + suction side pipe loss + suction head lift + pump outlet pressure head + speed head is calculated. Assuming that it is equal to the function formula, the pump discharge flow rate can be directly calculated.

第2に、
全揚程=吸込み水頭損失+吸込み側管路損失+吸込み実揚程+ポンプ出口圧力水頭+速度水頭
の式において、吸込み水頭損失+吸込み側管路損失を管路の物理的な構造にもとづいて流量の関数として表現することにより、吸込み水頭損失、吸込み側管路損失を無視せずに、流量を求めるために低揚程のポンプでも精度よく流量を求めることができる。
Second,
Total head = suction head loss + suction side pipe loss + actual suction head + pump outlet pressure head + speed head. The suction head loss + suction side pipe loss is calculated based on the physical structure of the pipe. By expressing it as a function, the flow rate can be accurately obtained even with a low-lift pump in order to obtain the flow rate without ignoring the suction head loss and the suction side pipe loss.

第3に、ポンプ出口圧力計測値を吐出流量を求めるために使用することによりポンプ吐出バルブにより流量調整する場合の流量、末端バルブ制御の管網の吐出流量の計測にも適用できる。
また、並列運転するポンプの吐出流量についても各ポンプの流量の和として求められる。
Thirdly, by using the pump outlet pressure measurement value to obtain the discharge flow rate, it can be applied to the measurement of the flow rate when the flow rate is adjusted by the pump discharge valve and the discharge flow rate of the end valve control pipe network.
Further, the discharge flow rate of the pumps operating in parallel is also obtained as the sum of the flow rates of the respective pumps.

第4に、任意回転数で運転するポンプの吐出流量についても、回転数、ポンプ出口圧力、吸水槽水位を与えることにより、計算のみにより求めることができる。Fourthly, the discharge flow rate of a pump operating at an arbitrary rotational speed can also be obtained by calculation only by giving the rotational speed, pump outlet pressure, and water tank level.

本発明の基本的原理を説明するために、ポンプの揚程説明図を図1に示す。
吐出し量Qで運転しているポンプ1の水頭はポンプが水に与えるエネルギーであり、全揚程は全エネルギーである。
In order to explain the basic principle of the present invention, a pump head explanatory diagram is shown in FIG.
The head of the pump 1 operating at the discharge amount Q is the energy that the pump gives to the water, and the total head is the total energy.

この全揚程は下記の水頭で表現できる。
(イ)ポンプがポンプの中心レベル(L2)11まで吸水槽の水を吸い上げるに必要なエネルギー。
これは下記のエネルギーの合計である。
吸込み水頭損失(h2)2
吸込み管路損失(h1)3
吸込み実揚程(H1)4
速度水頭(hv)5
ここではポンプの入口側、出口側の口径は同一とし、管内流速は同じとして速度水頭(hv)5は入口から出口にそのまま引き継ぐものとする。
(ロ)ポンプが出口の水に与えるエネルギー
ポンプ出口圧力水頭(Hp)6
(ハ)ポンプの全揚程
ポンプが水に与える全エネルギーすなわち全揚程(H)7は下記の合計となる。
吸込み水頭損失(h2)2
吸込み管路損失(h1)3
吸込み実揚程(H1)4
速度水頭(hv)5
ポンプ出口圧力水頭(Hp)6
ここで、吸込み水頭損失(h2)2は吸水槽8の中に設けられた吸込み管の吸込み口の形状、寸法、材質と吸込み管12の流速vの2乗に依存する値である。
吸込み管路損失(h1)3は吸込み管12の形状、寸法、材質と流速vの2乗に依存する値である。
吸水槽8の底面を高さの基準レベル(L1)9としたとき、吸込み実揚程はポンプ中心レベルL2 11と吸水槽8の吸水槽水位レベルW1 10の差L2−W1である。
速度水頭(hv)5は吸込み管12または吐出管の管内流速のエネルギーに相当するもので流速vの2乗にする値である。
吸込み水頭損失(h2)2、吸込み管路損失(h1)3、速度水頭(hv)5は流速vの2乗、換言すれば流量Qの2乗に依存している。
吸込み水頭損失は吸水槽8の吸込み口の機械的、物理的構造、吸込み管路損失は吸込み管12の機械的、物理的構造でそれぞれ損失係数が定まる。
また、速度水頭は管内流速のみで決まり、管の機械的、物理的構造に依存しない。従ってこれらの3つの和はkを吸水槽からポンプまでの機械的、物理的な構造により定まる値として、kQと表現する。kはポンプ吐出側の機械的、物理的な条件に依存しない値である。
各水頭合計の全水頭Hの数式による関数式は下記となる。
H=kQ+L2−W1+Hp (1)式
This total head can be expressed by the following head.
(B) Energy required for the pump to suck up water in the water tank up to the pump center level (L2) 11.
This is the sum of the following energies:
Suction head loss (h2) 2
Suction line loss (h1) 3
Actual suction head (H1) 4
Speed head (hv) 5
Here, the diameters of the inlet side and the outlet side of the pump are the same, the flow velocity in the pipe is the same, and the velocity head (hv) 5 is taken over from the inlet to the outlet as it is.
(B) Energy pump outlet pressure head (Hp) 6 given to the outlet water by the pump
(C) Total head of the pump The total energy given to the water by the pump, that is, the total head (H) 7 is the following sum.
Suction head loss (h2) 2
Suction line loss (h1) 3
Actual suction head (H1) 4
Speed head (hv) 5
Pump outlet pressure head (Hp) 6
Here, the suction head loss (h2) 2 is a value that depends on the shape, size, and material of the suction port of the suction pipe provided in the water suction tank 8 and the square of the flow velocity v of the suction pipe 12.
The suction pipe loss (h1) 3 is a value depending on the shape, size, material, and square of the flow velocity v of the suction pipe 12.
When the bottom surface of the water absorption tank 8 is set to a height reference level (L1) 9, the actual suction head is the difference L2−W1 between the pump center level L2 11 and the water absorption tank water level W1 10 of the water absorption tank 8.
The velocity head (hv) 5 corresponds to the energy of the flow velocity in the suction pipe 12 or the discharge pipe, and is a value that makes the flow velocity v square.
The suction head loss (h2) 2, the suction pipe loss (h1) 3, and the speed head (hv) 5 depend on the square of the flow velocity v, in other words, the square of the flow rate Q.
The suction head loss is determined by the mechanical and physical structure of the suction port of the water absorption tank 8, and the suction pipe loss is determined by the mechanical and physical structure of the suction pipe 12, respectively.
Moreover, the velocity head is determined only by the flow velocity in the pipe, and does not depend on the mechanical or physical structure of the pipe. Therefore, these three sums are expressed as kQ 2 where k is a value determined by the mechanical and physical structure from the water tank to the pump. k is a value that does not depend on the mechanical and physical conditions on the pump discharge side.
The function formula by the formula of the total head H of each head is as follows.
H = kQ 2 + L2-W1 + Hp (1) formula

全揚程曲線の数式化は全揚程曲線を流量Qの関数f(Q)として数式化する。
全揚程曲線はポンプ製作メーカーでの工場試験で作成したデータとして、一般に、縦軸に全揚程H、横軸に流量QをとったH−Q曲線としてグラフの形で提供されている。この曲線は一般に上に凸の右下がりの曲線である。
また、特別の場合として軸流、斜流ポンプではポンプの羽根の角度を可変した翼角制御の場合は全揚程曲線は小流量で下に凸で、流量が大きくなった場合、上に凸の右下がりのH−Q曲線となる。
数式化する具体的な関数として、上に凸の右下がりのH−Q曲線の場合は、
2次関数 f(Q)=aQ+bQ+c (2)式
小流量で下に凸で、流量が大きくなった場合、上に凸の右下がりの曲線に変化するH−Q曲線の場合は、
3次関数 f(Q)=aQ+bQ+cQ+d (3)式
等が考えられる。
実際のH−Q曲線の数式化は最小2乗法など関数近似手法により市販の表計算ソフトウェアにより高精度な近似が容易に実現できる。
Formulating the total head curve formulates the total head curve as a function f (Q) of the flow rate Q.
The total head curve is generally provided in the form of a graph as an HQ curve having a total head H on the vertical axis and a flow rate Q on the horizontal axis as data created in a factory test at a pump manufacturer. This curve is generally an upward convex downward curve.
As a special case, for axial flow and mixed flow pumps, in the case of blade angle control where the blade angle of the pump is varied, the total head curve is convex downward at a small flow rate, and upward when the flow rate is increased. It becomes a HQ curve descending to the right.
As a specific function to formulate, in the case of an HQ curve with an upward convex downward slope,
Quadratic function f (Q) = aQ 2 + bQ + c (2) Formula When the HQ curve changes to a convex downward curve when the flow rate increases with a small flow rate, the flow rate increases.
Cubic function f (Q) = aQ 3 + bQ 2 + cQ + d Equation (3) or the like can be considered.
The actual HQ curve can be expressed by a high-precision approximation by commercially available spreadsheet software using a function approximation method such as a least square method.

ポンプ流量の算出は図1において、ポンプ運転点A14の流量を求めることである。吐出流量Qで運転しているポンプの各水頭合計の全水頭H、上記の(1)式H=kQ+L2−W1+Hpを全揚程曲線の関数式f(Q)に等しいとおいて、Qを求める。
f(Q)=kQ+L2−W1+Hp (4)式
(4)式でW1は吸水槽8の水位計の値W1によって与えられる。Hpはポンプ出口の吐出圧力計の値から求められる。
具体的な例として、全揚程曲線を(2)式とした場合
(k−a)Q−bQ+L2−W1+Hp−c=0 (5)式
全揚程曲線を(3)式とした場合
aQ+(b−k)Q+cQ+d−L2+W1−Hp=0 (6)式
これらは2次式と3次式であるからQについて解くことができ、流量Qが求められることになる
すなわち、流量をQの関数式として求めることができる。
従来の流量の求め方は、全揚程曲線を揚程H、流量Qの離散値をテーブル化し、各水頭合計の全水頭Hについてもテーブル化し、一致する動作点を逐次、値を変えて探索する方法または全揚程曲線テーブル、全水頭Hのテーブルの両者についてHを縦軸、流量を横軸として、プロットしそれぞれ折れ線近似グラフを作成して交点を動作点として求めている。
The calculation of the pump flow rate is to obtain the flow rate at the pump operating point A14 in FIG. The total head H of the total heads of the pumps operating at the discharge flow rate Q, the above formula (1) H = kQ 2 + L2−W1 + Hp is equal to the function formula f (Q) of the total head curve, and Q is obtained. .
f (Q) = kQ 2 + L2−W1 + Hp (4) In the equation (4), W1 is given by the value W1 of the water level meter of the water absorption tank 8. Hp is obtained from the value of the discharge pressure gauge at the pump outlet.
As a specific example, when the total lift curve is the formula (2) (ka) Q 2 -bQ + L2-W1 + Hp-c = 0 (5) When the total lift curve is the formula (3) aQ 3 + (B−k) Q 2 + cQ + d−L 2 + W 1 −Hp = 0 (6) Since these are a quadratic expression and a cubic expression, they can be solved for Q, and the flow rate Q is obtained. It can be obtained as a functional expression of
The conventional method of obtaining the flow rate is a method in which the total head curve is tabulated with discrete values of the head H and the flow rate Q, and the total head H of each head is also tabulated, and the matching operating points are sequentially changed and searched. Alternatively, for each of the total head curve table and the total head H table, H is plotted on the vertical axis and the flow rate is plotted on the horizontal axis, and a broken line approximation graph is created to obtain the intersection as the operating point.

回転数制御ポンプの全揚程曲線は回転数毎に相違がある。
図2はポンプの回転数を可変した場合の全揚程曲線の変化に示す。
全揚程曲線は基準の回転数Nの曲線1 2−1に対して、回転数N1に減少するに従い、曲線2 2−2のように変化する。
この場合、可変する回転数毎に揚程曲線を作成してポンプの流量を求めることができる。しかし、この場合、回転数毎に揚程曲線を作ることは手数を要するために、回転数の変化と全揚程、流量の関係則を用いて、全揚程曲線を作ることなく流量を求める。
すなわち、ポンプの揚程は回転数の2乗に比例し、流量は回転数に比例することを利用して、流量を求める。
基準の回転数をNとして、α、βを任意とし、2次式 H=αQ、H=βQと回転数Nの曲線1 2−1、との交点の座標をそれぞれ、(m1、n1)、(m2、n2)とする。
回転数がN1に変化したとき、回転数N1の曲線2 2−2、との交点の座標はそれぞれ、{m1(N1/N)、n1(N1/N}、{m2(N1/N、n2(N1/N}となる。
即ち、横軸の値Qは回転数の比に比例して変化し、縦軸の値Hは回転数の2乗に比例して変化する。このとき、全揚程曲線は回転数変化より、
(2)式の2次式の全揚程曲線は
f(Q)=aQ+b(N1/N)Q+c(N1/N (7)式
(3)式の3次式の全揚程曲線は
f(Q)=a(N/N1)Q+bQ+c(N1/N)Q+d(N1/N (8)式
となる。
これらの式を(4)式 f(Q)=kQ+L2−W1+Hp
に代入して
(k−a)Q−b(N1/N)Q+L2−W1+Hp−c(N1/N=0 (9)式
a(N/N11)Q+(b−k)Q+c(N1/N)Q+d(N1/N−L2+W1−Hp=0 (10)式
回転数制御する場合の流量は全揚程曲線が2次式近似の場合は(9)式、3次式近似の場合は(10)式によって流量を求めることができる。
従来、回転数制御の場合の全揚程曲線は数式化した関数として表現できなかった。
このため、回転数変化時の全揚程曲線は図2に示したように、回転数Nの曲線1から各点毎に計算により、回転数N1の曲線2をプロットして求めていた。
The total head curve of the rotational speed control pump differs depending on the rotational speed.
FIG. 2 shows the change in the total head curve when the rotational speed of the pump is varied.
All head curve for curve 1 2-1 rpm N 0 of the reference, in accordance with decrease in the rotation speed N1, varies as the curve 2 2-2.
In this case, the pump flow rate can be determined by creating a lift curve for each variable rotation speed. However, in this case, since it is necessary to create a lift curve for each rotation speed, the flow rate is obtained without creating a total lift curve by using a relational law between the change in the rotation speed, the total lift, and the flow rate.
That is, the flow rate is obtained by utilizing the fact that the pump head is proportional to the square of the rotational speed and the flow rate is proportional to the rotational speed.
As N 0 the rotational speed of the reference, alpha, and β is an arbitrary, quadratic H = αQ 2, H = βQ 2 and curve 1 2-1 speed N 0, and the intersection of the coordinates, respectively, (m1 , N1) and (m2, n2).
When the rotational speed changes to N1, the coordinates of the intersection with the curve 2 2-2 of the rotational speed N1 are {m1 (N1 / N 0 ), n1 (N1 / N 0 ) 2 }, {m2 (N1 / N 0 , n2 (N1 / N 0 ) 2 }.
That is, the value Q on the horizontal axis changes in proportion to the rotation speed ratio, and the value H on the vertical axis changes in proportion to the square of the rotation speed. At this time, the total head curve is
The total lift curve of the quadratic equation (2) is: f (Q) = aQ 2 + b (N1 / N 0 ) Q + c (N1 / N 0 ) 2 (7) The total lift of the cubic equation of equation (3) curve becomes f (Q) = a (N 0 / N1) Q 3 + bQ 2 + c (N1 / N 0) Q + d (N1 / N 0) 2 (8) formula.
These formulas are expressed by formula (4) f (Q) = kQ 2 + L2−W1 + Hp
(K−a) Q 2 −b (N 1 / N 0 ) Q + L 2 −W 1 + Hp−c (N 1 / N 0 ) 2 = 0 (9) Formula a (N 0 / N 11) Q 3 + (b− k) Q 2 + c (N 1 / N 0 ) Q + d (N 1 / N 0 ) 2 −L 2 + W 1 −Hp = 0 (10) The flow rate in the case of controlling the rotational speed is (9) when the total head curve is a quadratic approximation. In the case of the approximation of the equation (3) and the cubic equation, the flow rate can be obtained by the equation (10).
Conventionally, the total head curve in the case of rotational speed control cannot be expressed as a mathematical function.
Thus, as total head curve during speed change is shown in FIG. 2, by calculation from the curve 1 of the rotational speed N 0 in each point, I was asked by plotting the curve 2 of the rotational speed N1.

図3はポンプが1台の場合の実施例である。ポンプ3−1の出口には圧力計3−2を設置し、出口圧力を流量計測装置3−5の演算部に入力する。ポンプ3−1のポンプ制御盤からポンプの回転数を取り出して、同様に流量計測装置3−5の演算部に入力する。
また、吸水槽3−3の水位は水位計3−3で計測され、同様に流量計測装置3−5の演算部に入力する。演算部にはあらかじめ、上記の(9)式または(10)式の流量演算式がメモリーに記憶されており、これらの演算式と入力されたポンプ出口圧力、ポンプの回転数、吸水槽水位を用いて、ポンプの吐出流量を数式で演算する。演算の結果は流量計測装置3−5の流量表示部で表示する。
FIG. 3 shows an embodiment in the case of a single pump. A pressure gauge 3-2 is installed at the outlet of the pump 3-1, and the outlet pressure is input to the calculation unit of the flow rate measuring device 3-5. The number of rotations of the pump is taken out from the pump control panel of the pump 3-1, and is similarly input to the calculation unit of the flow rate measuring device 3-5.
Moreover, the water level of the water absorption tank 3-3 is measured by the water level meter 3-3, and similarly input to the calculation unit of the flow rate measuring device 3-5. In the calculation unit, the flow rate calculation formula (9) or (10) above is stored in the memory in advance, and these calculation formulas, the pump outlet pressure, the pump rotation speed, and the water tank level are input. The pump discharge flow rate is calculated using a mathematical formula. The calculation result is displayed on the flow rate display unit of the flow rate measuring device 3-5.

図4はポンプが2台並列運転の場合の実施例である。ポンプ4−1は固定速度運転、ポンプ4−2は回転数制御の可変速運転である。並列運転の場合、それぞれ独立に、全揚程曲線の関数式、全水頭曲線の関数式を作成し、上記の(9)式または(10)式の流量演算式を各ポンプ毎に作成し、吐出流量Qを求める。それぞれの各ポンプの吐出流量の和が合計の流量となる。ポンプ4−1、ポンプ4−2の合流点に圧力計4−5を設置し、出口圧力を流量計測装置4−7の演算部に入力する。ポンプ4−2のポンプ制御盤からポンプ4−2の回転数を取り出して、同様に流量計測装置4−7の演算部に入力する。
また、吸水槽4−4の水位は水位:計4−3で計測され、同様に流量計測装置4−7の演算部に入力する。演算部にはあらかじめ、両方のポンプの上記の(9)式または(10)式の流量演算式がメモリーに記憶されており、これらの関数式と入力されたポンプ出口圧力、ポンプの回転数、吸水槽水位を用いて、それぞれのポンプの吐出流量を独立に演算して合計を全体の流量とする。演算の結果は流量計測装置4−7の流量表示部で表示する。
ポンプ4−1、ポンプ4−2の合流点の圧力計4−5の後に、吐出弁4−6が設置されているが、吐出弁4−6の有り無しに拘わらず本方式では流量の計測が可能である。
FIG. 4 shows an embodiment when two pumps are operated in parallel. The pump 4-1 is a fixed speed operation, and the pump 4-2 is a variable speed operation with rotation speed control. In the case of parallel operation, the function formula of the total head curve and the function formula of the total head curve are created independently, and the flow rate calculation formula of the above formula (9) or (10) is created for each pump, and discharge is performed. Obtain the flow rate Q. The sum of the discharge flow rates of the respective pumps is the total flow rate. A pressure gauge 4-5 is installed at the confluence of the pump 4-1 and the pump 4-2, and the outlet pressure is input to the calculation unit of the flow rate measuring device 4-7. The number of rotations of the pump 4-2 is taken out from the pump control panel of the pump 4-2, and is similarly input to the calculation unit of the flow rate measuring device 4-7.
Moreover, the water level of the water absorption tank 4-4 is measured by a water level: a total of 4-3, and is similarly input to the calculation unit of the flow rate measuring device 4-7. In the calculation unit, the flow rate calculation formulas of the above formulas (9) and (10) for both pumps are stored in memory in advance, and these function formulas and the input pump outlet pressure, pump rotation speed, Using the water absorption tank water level, the discharge flow rate of each pump is calculated independently to make the total flow rate. The calculation result is displayed on the flow rate display unit of the flow rate measuring device 4-7.
A discharge valve 4-6 is installed after the pressure gauge 4-5 at the confluence of the pump 4-1 and the pump 4-2. In this method, regardless of the presence or absence of the discharge valve 4-6, the flow rate is measured. Is possible.

図5はポンプ設置点の揚水機場に流量計測装置を設置せず、それぞれのポンプ出口圧力、ポンプの回転数、吸水槽水位をテレメータで中央に伝送して管理所で流量の演算を行うものである。管理所の流量計測装置には、あらかじめ、各揚水機場の各ポンプの上記の(9)式または(10)式の流量演算式がメモリーに記憶されており、これらの流量演算式と入力された各揚水機場のポンプ出口圧力、ポンプの回転数、吸水槽水位を用いて、ポンプの吐出流量を演算する。本実施例の中央演算方式は、流量計測装置はパソコン等で構成し、多数の揚水機場に流量計測装置の設置を必要とせず、共通の流量計測装置で演算することにより経済的な構成とすることができる。Figure 5 does not install a flow measuring device at the pumping station at the pump installation point, and transmits the pump outlet pressure, pump rotation speed, water tank level to the center with a telemeter, and calculates the flow rate at the management office. is there. In the flow rate measuring device of the management office, the flow rate calculation formulas of the above formulas (9) or (10) of each pump at each pumping station are stored in the memory in advance, and these flow rate calculation formulas are inputted. The discharge flow rate of the pump is calculated using the pump outlet pressure of each pumping station, the rotational speed of the pump, and the water tank level. The central calculation method of the present embodiment is an economical configuration in which the flow rate measuring device is configured by a personal computer or the like, and does not require installation of the flow rate measuring device in many pumping stations, and is calculated by a common flow rate measuring device. be able to.

発明の効果The invention's effect

本発明によれば揚水機場で流量を直接測定する流量計を必要とせず、流量計のように設置条件が厳しくない、安価な圧力計を用いて、精度良くポンプ吐出流量を計測できる。また、複数ポンプの並列運転、回転数制御、ポンプ出口側管網のバルブの開閉条件に依存しないなどあらゆる条件の揚水機場の流量の計測ができる。
このため、多数の揚水機場が散在した地区において、これらの揚水機場の出口圧力などを管理所にテレメータで収集し、流量を計測する集中監視制御システムなどに本発明を適用した場合、経済的な管理が可能となる。
According to the present invention, it is possible to accurately measure the pump discharge flow rate using an inexpensive pressure gauge that does not require a flow meter that directly measures the flow rate at the pumping station and that is not strict in installation conditions like the flow meter. Moreover, it is possible to measure the flow rate of the pumping station under all conditions such as parallel operation of multiple pumps, rotation speed control, and independent of the valve opening / closing conditions of the pump outlet side pipe network.
For this reason, when the present invention is applied to a centralized monitoring control system that collects the outlet pressure of these pumping stations by a telemeter and measures the flow rate in an area where many pumping stations are scattered, it is economical. Management becomes possible.

本発明の揚程説明図Explanatory drawing of the present invention ポンプの回転数特性Pump speed characteristics 本発明のポンプ1台の実施例Example of one pump of the present invention 本発明のポンプ2台の実施例Example of two pumps of the present invention 本発明の中央演算方式の実施例Embodiment of the central processing system of the present invention

Claims (1)

全揚程Hとポンプ吐出流量Qの関係を示す全揚程曲線を全揚程Hとポンプ吐出流量Qのテーブル、折れ線近似式などによらず、あらかじめ、全揚程Hとポンプ吐出流量Qの関係を数式で表現する関数式作成する。この関数式をポンプ吐出流量はポンプ回転数Nに比例し、全揚程はポンプ回転数Nの2乗に比例することを利用して、任意のポンプ回転数で運転時の全揚程曲線をポンプ吐出流量Qと回転数Nを変数とした全揚程曲線関数式として数式化する。
次に、ポンプ吐出流量Q、管路等の損失係数、ポンプ中心の基準レベルよりの高さ、吸水槽水位レベル、ポンプ吐出圧などより全揚程Hを求める関数式を作成する。
この全揚程Hを求める関数式と前記の全揚程曲線関数式とを等しいとおいてポンプ吐出流量Qを求める関数式を作成する。
流量計測装置に、このポンプ吐出流量を求める関数式を記憶し、この関数式および装置に入力したポンプの吐出圧力、吸水槽水位、ポンプ回転数の計測値を用いてポンプ吐出流量を直接関数式により求めるようにしたポンプ流量計測装置。
The total lift curve showing the relationship between the total head H and the pump discharge flow rate Q can be expressed in advance using the formula for the relationship between the total head H and the pump discharge flow rate Q in advance. Create a function expression to express. Using this function formula, the pump discharge flow rate is proportional to the pump speed N and the total head is proportional to the square of the pump speed N, so that the total head curve during operation at any pump speed can be pumped. Formulated as a total lift curve function formula with the flow rate Q and the rotational speed N as variables.
Next, a function formula for determining the total head H from the pump discharge flow rate Q, the loss factor of the pipe line, the height from the reference level of the pump center, the water tank level, the pump discharge pressure, etc. is created.
A function expression for determining the pump discharge flow rate Q is created by assuming that the function expression for determining the total head H is equal to the above-mentioned total head curve function expression.
The flow rate measurement device stores a function equation for determining the pump discharge flow rate, and the pump discharge flow rate is directly expressed by using the function equation and the pump discharge pressure, water tank level, and pump rotation number input to the device. The pump flow rate measuring device that was determined by
JP2008167913A 2008-05-30 2008-05-30 Pump flow measuring device Pending JP2009288231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167913A JP2009288231A (en) 2008-05-30 2008-05-30 Pump flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167913A JP2009288231A (en) 2008-05-30 2008-05-30 Pump flow measuring device

Publications (1)

Publication Number Publication Date
JP2009288231A true JP2009288231A (en) 2009-12-10

Family

ID=41457570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167913A Pending JP2009288231A (en) 2008-05-30 2008-05-30 Pump flow measuring device

Country Status (1)

Country Link
JP (1) JP2009288231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170173A (en) * 2017-12-26 2018-06-15 迈克医疗电子有限公司 Flow control methods and device, analytical instrument and computer readable storage medium
JP6436408B1 (en) * 2018-02-15 2018-12-12 有限会社北沢技術事務所 Pump flow measurement device
CN113868837A (en) * 2021-09-03 2021-12-31 中国核电工程有限公司 On-line monitoring method for concrete volute pump wall surface abrasion
CN115017666A (en) * 2022-08-08 2022-09-06 廊坊市清泉供水有限责任公司 Intelligent operation method and system for underground water source
WO2023123184A1 (en) * 2021-12-27 2023-07-06 浙江工业大学台州研究院 Centrifugal pump efficiency prediction method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170173A (en) * 2017-12-26 2018-06-15 迈克医疗电子有限公司 Flow control methods and device, analytical instrument and computer readable storage medium
JP6436408B1 (en) * 2018-02-15 2018-12-12 有限会社北沢技術事務所 Pump flow measurement device
JP2019143982A (en) * 2018-02-15 2019-08-29 有限会社北沢技術事務所 Pump flow rate measurement device
CN113868837A (en) * 2021-09-03 2021-12-31 中国核电工程有限公司 On-line monitoring method for concrete volute pump wall surface abrasion
CN113868837B (en) * 2021-09-03 2024-05-17 中国核电工程有限公司 Online monitoring method for wall surface abrasion of concrete volute pump
WO2023123184A1 (en) * 2021-12-27 2023-07-06 浙江工业大学台州研究院 Centrifugal pump efficiency prediction method
CN115017666A (en) * 2022-08-08 2022-09-06 廊坊市清泉供水有限责任公司 Intelligent operation method and system for underground water source

Similar Documents

Publication Publication Date Title
US6776584B2 (en) Method for determining a centrifugal pump operating state without using traditional measurement sensors
KR102045239B1 (en) The lowest power consumption operation method of a water pump system consisting of multiple pumps
JP2009288231A (en) Pump flow measuring device
EP2192391A1 (en) Apparatus and a method of measuring the flow of a fluid
US20160341594A1 (en) Re-calibration of instruments
US20160341581A1 (en) Systems and methods for measuring material flow
CN110807231B (en) Water pump operation efficiency online detection method and detection device
Li Impeller trimming of an industrial centrifugal viscous oil pump
CN112664464B (en) Intelligent efficient optimization control method for water pump
CN104776971A (en) Visualization experiment device for liquid and sand carrying of gas flow
CN102213606A (en) Mirror image flow detection method and virtual flowmeter
JP2019143982A (en) Pump flow rate measurement device
CN112628515A (en) Method for manufacturing orifice plate by using flowmeter
US20230038837A1 (en) Methodology and Algorithms for Protecting Centrifugal and Axial Compressors from Surge and Choke
CN107131131A (en) A kind of flow equilibrium method of water pump serial-connection system
Amaral et al. On the influence of viscosity on ESP performance
Sobenko et al. Characterization of venturi injector using dimensional analysis
Adamkowski et al. Uncertainty analysis of liquid flow rate measurement with the pressure–time method
Mahrous Experimental study of airlift pump performance with s-shaped riser tube bend
CN107939367A (en) A kind of pressure break water horse power determines method
Hammo et al. Testing the accuracy of pump flow calculation without metering
CN100580256C (en) Energy-saving type constant pressure fluid conveying machine parallel arrangement
US11982556B2 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
CN106840282A (en) Compressor flow and Efficiency test method based on gas temperature rise
Aissa et al. Experimental and Theoretical Investigation of Water Jet Pump Performance