JP3707271B2 - Gas-insulated static induction device and method of operating the same - Google Patents

Gas-insulated static induction device and method of operating the same Download PDF

Info

Publication number
JP3707271B2
JP3707271B2 JP32770698A JP32770698A JP3707271B2 JP 3707271 B2 JP3707271 B2 JP 3707271B2 JP 32770698 A JP32770698 A JP 32770698A JP 32770698 A JP32770698 A JP 32770698A JP 3707271 B2 JP3707271 B2 JP 3707271B2
Authority
JP
Japan
Prior art keywords
temperature
gas
pressure
tank
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32770698A
Other languages
Japanese (ja)
Other versions
JP2000150253A (en
Inventor
則行 林
康則 大野
隆志 白根
達 斎藤
雄三 伊藤
寿至 師岡
清登 平石
俊光 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32770698A priority Critical patent/JP3707271B2/en
Publication of JP2000150253A publication Critical patent/JP2000150253A/en
Application granted granted Critical
Publication of JP3707271B2 publication Critical patent/JP3707271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガス絶縁静止誘導電器およびその運転方法に係り、特に、飽和温度が比較的低く、かつ、運転温度範囲で液化する可能性のある絶縁性ガスである CF3I を変圧器、或いはリアクトル等の絶縁および冷却媒体として用いるものに好適なガス絶縁静止誘導電器、およびその運転方法に関する。
【0002】
【従来の技術】
従来、変圧器のような静止誘導電器は、主として絶縁油を用いて絶縁および冷却を行う油絶縁式のものが主流を占めている。しかし、油入電気機器の場合、万一の事故発生に際し、油による災害等に至る可能性がある。特に、近年は、都市部において設置場所の制約からビル等の地下や市街地に変圧器等の変電設備を設置することが多くなり、防災上の対策が重要課題となっている。
【0003】
そこで、絶縁油の替わりに災害発生の可能性が少なく、かつ、安全性の高い不燃性ガスを絶縁および冷却媒体として用いるガス絶縁変圧器が採用される傾向にあり、さらに、これらは大容量化や小型化が要求されている。ガス絶縁冷却媒体の代表的なものとしては、電気絶縁性に優れ、不燃性で、かつ、毒性がなく、化学的にも安定なSF6 等が挙げられる。
【0004】
ところが、近年、CFC(クロロ フルオロ カーボン)やHCFC(ハイドロクロロ フルオロ カーボン)といった化合物が大気中に放出されると、成層圏におけるオゾン層破壊や温室効果による地表の温度上昇が生じるとされ、世界的な環境汚染が問題となっている。このため、段階的にこれらのCFC,HCFCの生産量および消費量が規制され、代替品の選択が世界的に進められてきた。化学的に安定で、難分解性のSF6 も地球温暖化係数がCO2 に比べて非常に大きいことから規制の対象となり、今後、SF6 の排出量の規制が進められていくものと予想される。SF6 以外に電気機器に用いられる電気絶縁性に優れ、不燃性で、かつ、毒性がなく、化学的にも安定な絶縁冷却媒体としては、C26, C48等が挙げられるが、いずれも地球温暖化係数がCO2 と比べて非常に大きい。
【0005】
地球温暖化係数がCO2 と比べて小さく、オゾン破壊が0であり、不燃性で、かつ、毒性が極めて弱い物資にCF3I がある。
【0006】
【発明が解決しようとする課題】
ところで、一般にガス絶縁変圧器では、絶縁耐力を高めるために、圧力を大気圧より上げてある。また、JEC(The Japanese Electrotechnical Committee)−2200に規定されているように、屋外設置では最低気温−20℃まで、また、屋内設置では−5℃まで変圧器の運転を保証しなければならない。そのほか、IEC(International Electrotechnical Commission)やANSI(American National Standards Institute)でも保証しなければならない最低気温が規定されている。
【0007】
上記したCF3I は、沸点(大気圧における飽和温度)が−22.5℃であり、常温常圧では気体であるが、飽和温度がSF6に比べて高いために、このCF3Iを変圧器の絶縁冷却媒体として使用すると、変圧器の運転を保証する低温の領域で液化が生じる可能性がある。変圧器の運転を保証する低温の領域で液化が生じると、絶縁耐力が急激に低下し、絶縁破壊に至る恐れがある。
【0008】
本発明は上述の点に鑑みなされたもので、その目的とするところは、絶縁冷却媒体としてCF3I を用いたものであっても、ガス絶縁静止誘導電器の運転を保証する気温の範囲においてCF3I の液化が生じることはなく、絶縁耐力の低下を防止して絶縁破壊に至ることのない優れた電気絶縁性を確保し、かつ、不燃性で、毒性がほとんどなく、しかも、地球温暖化係数がCO2 より小さく、オゾン破壊係数0のガス絶縁静止誘導電器およびその運転方法を提供することにある。
【0009】
【課題を解決するための手段】
CF3I の絶縁耐力の一例としてAC破壊電圧を図2に示す。該図は横軸にガス圧力(MPa)を示し、その時のAC破壊電圧(SF6 0.1MPa基準)を縦軸に示している。該図から明らかなごとく、CF3I の電気絶縁性は、気体状態ではSF6 と同等以上である。また、化学的安定性については、光で分解しやすいが、変圧器ではタンク内に封入して用いられるため、実用上は問題にならない。
【0010】
図3に超高圧大容量ガス絶縁変圧器を例にとって定格負荷条件の温度が85℃、圧力が0.6MPa の運転線を横軸にガス温度t(℃),縦軸にガス圧力P (MPa)をとって示す。
【0011】
変圧器のように密閉された空間にCF3I が閉じこめられると、CF3I は図3に示すように、飽和温度以上の気体状態では温度が変化しても密度(比重量)一定の状態を保ち、CF3I が液化することはない。しかし、CF3I は沸点 (大気圧における飽和温度)が−22.5℃ であり、飽和温度がSF6 に比べて高いため、気温の低い寒冷地域や冬季に変圧器を起動する場合、定期点検による運転停止後に変圧器を再起動する場合等、変圧器のタンク内のガス温度が飽和温度と等しくなることが考えられる。この場合、タンク内のガス温度が低下すると蒸気圧曲線と交差して液化が始まり、密度一定の状態から外れて蒸気圧曲線に沿った温度と圧力になり、圧力が急激に低下する。気体の密度(比重量)は温度が同じであれば圧力に比例するので、気体の密度(比重量)も急激に低下する。絶縁耐力の一例であるAC破壊電圧VB.D.と気体の密度(比重量)γとの間には、おおよそ
B.D. ∝ γ0.9
の関係があるため、AC破壊電圧VB.D も急激に低下する。従って、ガス絶縁変圧器の運転を保証する気温の範囲でタンク内の絶縁冷却媒体であるCF3I に液化が生じれば、絶縁耐力が急激に低下し、絶縁破壊に至る恐れがあり、この点を考慮する必要がある。
【0012】
そこで、本発明では上記目的を達成するために、CF3I、あるいは、CF3Iを含む混合物を絶縁冷却媒体として用いて運転する際に、装置が運転状態にあるときは該CF3I は常に気体状態に保たれていることを特徴とする。
【0013】
具体的には、CF3I を絶縁冷却媒体とする装置の運転を保証する最低気温tmin ℃におけるCF3I の飽和圧力がPmin MPaのときに、装置タンク内のCF3I のガス温度t℃とガス圧力PMPaとの関係が
P<(Pmin /(tmin +273.15))・(t+273.15)
を満足することを特徴とする。
【0014】
また、CF3I を含む混合物を絶縁冷却媒体とする装置の運転を保証する最低気温tmin ℃におけるCF3I の飽和圧力がPmin MPaのときに、装置タンク内のCF3I のガス温度t℃とガス分圧PCF3IMPaとの関係が
CF3I <(Pmin /(tmin +273.15))・(t+273.15)
を満足することを特徴とする。
【0015】
また、CF3I を絶縁冷却媒体とする装置の運転を保証する最低気温tmin ℃におけるCF3I の飽和圧力がPmin MPaであり、装置タンク内のCF3I のガス温度t℃とガス圧力PMPaとの関係が
P≧(Pmin /(tmin +273.15))・(t+273.15)
の場合に、ガス温度を装置タンク内のCF3I の比重量(密度)γとガス定数Rを使って表される
P=γR(t+273.15)
とCF3I の蒸気圧曲線の交点の温度以上にすることを特徴とする。
【0016】
さらに、CF3I を含む混合物を絶縁冷却媒体とする装置の運転を保証する最低気温tmin ℃におけるCF3I の飽和圧力がPmin MPaであり、装置タンク内のCF3I のガス温度t℃とガス分圧PCF3IMPaの関係が
CF3I ≧(Pmin /(tmin +273.15))・(t+273.15)
の場合に、ガス温度を、装置タンク内のCF3I の比重量(密度)γとガス定数Rを使って表される
CF3I =γR(t+273.15)
とCF3I の蒸気圧曲線の交点の温度以上にすることを特徴とする。
【0017】
CF3I を含む混合物を絶縁冷却媒体として用いる場合、CF3I 以外の物質としては、電気絶縁性に優れ、不燃性で、毒性がなく、地球温暖化係数,オゾン破壊係数とも0であり、かつ、安価なN2 が好ましく用いることができるが、ヘリウム,ネオン,アルゴン,キセノンのような希ガス、あるいは、CO2 、その他の汎用物質を用いることができる。また、SF6 ,C26,C48等と混合して用いて、電気絶縁性に優れるが、地球温暖化係数が大きいこれらの物質の使用量を低減することができる。
【0018】
即ち、このようなガス絶縁静止誘導電器、あるいはその運転方法では、装置の運転で保証する最低気温においても、装置タンク内のCF3I のガス温度は装置タンク内のCF3I のガス圧力、あるいはガス分圧における飽和温度以上に保たれているので、CF3I が液化することはない。このため、運転範囲のガス温度におけるCF3I の密度(比重量)は一定になり、AC破壊電圧で代表される絶縁耐力の低下が防止され、優れた電気絶縁性を確保できる。つまり、CF3I 、あるいはCF3I を含む混合物を絶縁冷却媒体として用いることにより電気絶縁性に優れ、不燃性で、毒性がほとんどなく、なおかつ、地球温暖化係数がCO2 より小さく、オゾン破壊係数0のガス絶縁静止誘導電器として使用することが可能になる。
【0019】
【発明の実施の形態】
以下、本発明の一実施例を図面を参照して説明する。以下の説明は、ガス絶縁静止誘導電器の例として変圧器を取り上げて説明している。
【0020】
まず、図12を用いてガス絶縁変圧器の構造を説明する。該図において、1は変圧器タンクで、この変圧器タンク1内に鉄心2、及びこの鉄心2に巻回された巻線3からなる変圧器中身を収納し、更に、この変圧器タンク1内には絶縁冷却媒体4である気体が封入されている。また、変圧器タンク1内部には、できるだけ多量の絶縁冷却媒体4が鉄心2および巻線3内を流れるように変圧器タンク1内を仕切る仕切板5が設置されており、変圧器タンク1内部の上部空間6と下部空間7が連通しないように区切られている。10は冷却器であり、上部配管12を介して上部空間6とつながっている。また、下部空間7とは、送風機11を経由して下部配管13でつながっている。変圧器タンク1の上部には絶縁冷却媒体4の温度を測定する温度検知器20と圧力を測定する圧力検知器21が設けられている。
【0021】
図4は屋外に設置された変圧器の絶縁冷却媒体としてCF3I を用いた場合の変圧器の運転方法の一実施例であり、JEC−2200に規定されている運転を保証する最低気温が−20℃の場合である。
【0022】
通常、変圧器内のCF3I のガス温度は、最低気温の−20℃と変圧器の耐熱クラスと冷却設計から決定される許容最高ガス温度の間を変化する。密閉された空間である変圧器内に封入されたCF3I は、気体の状態では、温度が変化しても密度(比重量)は一定である。また、気体では、ガス温度t℃とガス圧力PMPaと比重量(密度)γkg/m3 の間には、
P=γR(t+273.15)
(これは、絶対温度:T[K]で表すと、P=γRTとなり、華氏温度:tF[゜R]で表すと、P=γR・(tF+459.67)となる)
という状態方程式が成り立ち、ガス定数Rは気体の種類によって一定の値をとるので、P/(t+273.15)は一定の値になる。従って、変圧器の定格負荷条件のガス温度をtf℃,ガス圧力をPfMPaとすると、気体の状態のCF3I は、図4に示すごとく、

Figure 0003707271
の関係を満足するガス温度t℃とガス圧力PMPaの運転線上の状態を維持することになる。他方、CF3I の蒸気圧曲線の−20℃における飽和圧力は0.1092MPaであり、蒸気圧曲線の高温側(グラフの右側)は気体なので、もし、−20℃で飽和蒸気の状態であるCF3I の温度が高温側に変化すると、そのガス温度t℃とガス圧力PMPaとの関係は、図4に示すごとく、
P=(0.1092/253.15)・(t+273.15)
(これは、絶対温度:T[K]で表すと、P=(0.1092/253.15)・Tとなり、華氏温度:tF[゜R]で表すと、P=(0.1092/455.67)・(tF+459.67)となる)
になる。このため、−20℃の最低気温から許容最高ガス温度に至る運転範囲でCF3I が液化することなく、気体の状態を保ち、ガス温度が変化しても絶縁耐力が低下するのを防ぐためには、変圧器内のCF3I のガス温度t℃とガス圧力PMPaとの間に
P<(0.1092/253.15)・(t+273.15)
(これは、絶対温度:T[K]で表すと、P<(0.1092/253.15)・Tとなり、華氏温度:tF[゜R]で表すと、P<(0.1092/455.67)・(tF+459.67)となる)
の関係が成り立つようにCF3I を封入すればよいことがわかる。
【0023】
図5は屋内に設置された変圧器の絶縁冷却媒体としてCF3I を用いた場合の変圧器の運転方法の一実施例であり、JEC−2200に規定されている運転を保証する最低気温が−5℃の場合である。
【0024】
この場合は、最低気温が屋外の場合の−20℃から−5℃に変わっただけであり、同様の考え方が成り立ち、CF3Iの−5℃における飽和圧力が0.1918MPaであることから、−5℃の最低気温から許容最高ガス温度に至る運転範囲でCF3I が液化することなく、気体の状態を保ち、ガス温度が変化しても絶縁耐力が低下するのを防ぐためには、変圧器内のCF3I のガス温度t℃とガス圧力PMPaとの間に
P<(0.1918/268.15)・(t+273.15)
(これは、絶対温度:T[K]で表すと、P<(0.1918/268.15)・Tとなり、華氏温度:tF[゜R]で表すと、P<(0.1918/482.67)・ (tF+459.67)となる)
の関係が成り立つようにCF3I を封入すればよい。
【0025】
そのほか、IECやANSIでも、変圧器の運転を保証する最低気温が規定されており、その最低気温tmin℃におけるCF3I の飽和圧力をPminMPaとすると、変圧器内のCF3I のガス温度t℃とガス圧力PMPaとの関係が
P<(Pmin/(tmin273.15))・(t+273.15)
(これは、絶対温度:Tmin,T[K]で表すと、P<(Pmin/Tmin)・Tとなり、華氏温度:tFmin,tF[゜R]で表すと、P<(Pmin/(tFmin+459.67))・(tF+459.67)となる)
を満足するようにCF3I を封入すればよい。
【0026】
図6は屋外に設置された変圧器の絶縁冷却媒体としてCF3I を含む混合物を用いた場合の変圧器の運転方法の一実施例であり、JEC−2200に規定されている運転を保証する最低気温が−20℃の場合である。この場合は、運転範囲における変圧器内の混合物の最高ガス圧力、即ち、許容最高ガス温度における圧力が0.2975MPa(2kg/cm2G)に満たない例である。こうすることによって変圧器のタンクが第二種圧力容器の規制を免れることができる。
【0027】
CF3I と他の物質の混合物の場合、CF3I の液化は、CF3I 単独の場合と異なり、変圧器内の圧力ではなく、CF3I の分圧で評価しなければならない。−20℃で飽和蒸気になるCF3I のガス温度t℃とガス圧力PMPaとの間には、前述の通り
P=(0.1092/253.15)・(t+273.15)
の関係がある。CF3Iと他の物質の混合物では、ガス温度t℃におけるCF3Iのガス分圧PCF3Iがこの圧力に達しなければ、−20℃の最低気温から許容最高ガス温度に至る運転範囲で、CF3I の液化が生じることはない。そのため、
CF3I を含む混合物を絶縁冷却媒体とするガス絶縁変圧器では、CF3I のガス温度t℃とガス分圧PCF3IMPaとの間に
CF3I<(0.1092/253.15)・(t+273.15)
(これは、絶対温度:T[K]で表すと、PCF3I<(0.1092/253.15)・Tとなり、華氏温度:tF[゜R]で表すと、PCF3I<(0.1092/455.67)・(tF+459.67)となる)
の関係が成り立つようにCF3I を封入すればよい。
【0028】
CF3I を含む混合物のCF3I 以外の物質としては、電気絶縁性に優れ、不燃性で、毒性がなく、地球温暖化係数,オゾン破壊係数とも0であり、かつ、安価なN2 が好ましく用いることができるが、ヘリウム,ネオン,アルゴン,キセノンのような希ガス、あるいは、CO2 その他の汎用物質を用いることができる。また、SF6 ,C26,C48等と混合して用いて、電気絶縁性に優れるが、地球温暖化係数が大きいこれらの物質の使用量を低減することができる。
【0029】
CF3I に他の物質を加えると、その物質によってCF3I 単独の時に比べて絶縁耐力や冷却能力が向上し、変圧器の大容量化や小型化が図れることになる。
絶縁耐力や冷却能力のより一層の向上を図るために、運転範囲における変圧器の最高ガス圧力が0.2975MPa(2kg/cm2G)以上になるようにCF3I 以外の物質を封入することも可能である。ただし、その場合、変圧器のタンクは第二種圧力容器になる。
【0030】
図7は屋内に設置された変圧器の絶縁冷却媒体としてCF3I を含む混合物を用いた場合の変圧器の運転方法の一実施例であり、JEC−2200に規定されている運転を保証する最低気温が−5℃の場合である。この場合は最低気温が、屋外の場合の−20℃から−5℃に変わっただけで、同様の考え方が成り立ち、−5℃の最低気温から許容最高ガス温度に至る運転範囲で、CF3I が液化しないようにするためには、変圧器内のCF3I のガス温度t℃とガス分圧PCF3Iとの間に
CF3I<(0.1918/268.15)・(t+273.15)
(これは、絶対温度:T[K]で表すと、PCF3I<(0.1918/268.15)・Tとなり、華氏温度:tF[゜R]で表すと、PCF3I<(0.1918/482.67)・(tF+459.67)となる)
の関係が成り立つようにCF3I を封入すればよい。
【0031】
そのほか、IECやANSIで変圧器の運転を保証する最低気温に対しても、最低気温tmin℃におけるCF3I の飽和圧力がPminMPaのときに、CF3I を含む混合物を絶縁冷却媒体とする変圧器内のCF3I のガス温度t℃とガス分圧PCF3IMPaとの関係が
CF3I<(Pmin/(tmin+273.15))・(t+273.15)
(これは、絶対温度:Tmin,T[K]で表すと、PCF3I<(Pmin/Tmin)・Tとなり、華氏温度:tFmin,tF[゜R]で表すと、PCF3I<(Pmin/(tFmin+459.67))・(tF+459.67)となる)
を満足するようにCF3I を封入すればよい。
【0032】
ところで、上述した各式のうち、P<(0.1092/253.15)・(t+273.15),P<(0.1918/268.15)・(t+273.15),P<(Pmin/(tmin+273.15))・(t+273.15)では、CF3Iのガス圧力が0.1013MPa(大気圧)以上,0.2975MPa(2kg/cm2G)未満であればよく、また、PCF3I<(0.1092/253.15)・(t+273.15)、PCF3I<(0.1918/268.15)・(t+273.15),PCF3I<(Pmin/(tmin+273.15))・(t+273.15)では、CF3I のガス分圧が0.1013MPa(大気圧)以上、0.2975MPa(2kg/cm2G)未満であればよい。
【0033】
その根拠を図11を用いて説明する。図11に示すごとく、CF3I の 0.1013MPa(大気圧)における飽和温度(沸点)は−22.5℃であり、屋外設置の場合にJEC−2200で規定されている運転を保証する最低気温−20℃より低く、JEC−2200の最低気温である−20℃を含むことになる。0.2975MPa(2kg/cm2G)未満は、実施例で説明している第二種圧力容器の規制を免れることができる圧力である。JEC−2200の屋内設置の場合の運転を保証する最低気温である−5℃におけるCF3I の飽和圧力は 0.1918MPa であり、この状態から温度が上昇したときのCF3I のガス温度t℃とガス圧力PMPaの関係を表す
P=(0.1918/268.15)・(t+273.15)
の式で、P=0.2975MPaになる温度を求めると、t=142.8℃となり、変圧器で使用するガス温度(最高100℃程度)を十分カバーできることになる。
【0034】
図8は変圧器の絶縁冷却媒体としてCF3I を用いた場合の変圧器の運転方法の一実施例であり、変圧器の運転を保証する最低気温tmin℃ におけるCF3I の飽和圧力がPminMPaであり、変圧器内のCF3Iのガス温度t℃とガス圧力PMPaの関係が
P≧(Pmin/(tmin+273.15))・(t+273.15)
(これは、絶対温度:Tmin,T[K]で表すと、P≧(Pmin/Tmin)・T となり、華氏温度:tFmin,tF[゜R]で表すと、P≧(Pmin/(tFmin+459.67))・(tF+459.67)となる)
の場合である。この場合、気温が低くて起動時等のように変圧器タンク内のCF3Iのガス温度が低い時にはCF3I が液化する。それを防ぐためのガス絶縁変圧器の構成を図1に示す。
【0035】
該図において、1は変圧器タンクで、この変圧器タンク1内に鉄心2、及びこの鉄心2に巻回された巻線3からなる変圧器中身を収納し、さらに、この変圧器タンク1内には絶縁冷却媒体4であるCF3I が
P≧(Pmin/(tmin+273.15))・(t+273.15)
になるような圧力で封入してある。また、変圧器タンク1内部には、できるだけ多量のCF3I が鉄心2および巻線3内を流れるように変圧器タンク1内を仕切る仕切板5が設置されており、変圧器タンク1内部の上部空間6と下部空間7が連通しないように区切られている。10は冷却器であり、上部配管12を介して上部空間6とつながっている。また、下部空間7とは、送風機11を経由して下部配管13でつながっている。変圧器タンク1の下部にはCF3I の温度を上昇させる加熱手段である電気ヒータ14が設けられている。変圧器タンク1の上部にはCF3I の温度を測定する温度検知器20と圧力を測定する圧力検知器21が設けられている。また、冷却器10の冷却水15の流量を測定する流量検知器22と流量を制御する流量制御弁23、さらに、電気ヒータ14の入力を測定する電力計24と入力を制御する入力制御器25が設置されている。26は演算器であり、後述詳細説明するが、電力計24の値を参照しながら電気ヒータ14の入力の制御信号を入力制御器25に送信するものである。
【0036】
このような構成にすれば、電気ヒータ14でCF3I を加熱して温度を上昇させることもできるし、CF3I の温度や圧力を温度検知器20や圧力検知器21で知ることができる。
【0037】
図8に示すように、変圧器の定格負荷条件のCF3I のガス温度をtf℃ ,ガス圧力をPfMPa、また、比重量(密度)をγkg/m3,ガス定数をRとすると、気体の状態のCF3I は
Figure 0003707271
(これは絶対温度:Tf,T[K]で表すと、P=(Pf/Tf)・T=γRTとなり、華氏温度:tF,f,tF[゜R]で表すと、P=(Pf/(tF,f+459.67))・(tF+459.67)=γR(tF+459.67)となる)
で表されるガス温度t℃とガス圧力PMPaの運転線上の状態を保つことになる。この直線とCF3I の蒸気圧曲線の交点の温度以上になるように加熱手段によって加熱してCF3I のガス温度を維持すれば、気温が低くて起動時等のように変圧器全体が十分に暖まっていないときでもCF3I の液化が生じないので、絶縁耐力の低下を防止することができる。
【0038】
先程述べた温度検知器20と圧力検知器21からCF3I 4の温度と圧力を知ることができるので、
Figure 0003707271
とCF3I の蒸気圧曲線の交点の温度、あるいは、圧力、あるいは温度と圧力の両方の値と温度検知器20から得られる温度、あるいは圧力検知器21から得られる圧力、あるいは温度検知器20と圧力検知器21から得られる温度と圧力の両方を演算器26で比較し、交点の温度以上、あるいは交点の圧力以上、あるいは温度,圧力とも交点の値以上となるように、演算器26から電力計24の値を参照しながら電気ヒータ14の入力の制御信号を入力制御器25に送って加熱量を制御することによって図8に示した運転が可能になる。
【0039】
加熱手段は必ずしも、電気ヒータ14である必要はなく、変圧器タンク1の下部に設けられた配管に高温水や水蒸気のような高温の流体を流してもよいし、冷却器10に供給する冷却水15をCF3I の加熱が必要なときだけ高温の流体に替えてもよい。また、加熱手段の設置場所は変圧器タンク1の下部に限らない。例えば、冷却器10と変圧器タンク1とを連通させる配管に設けてもよい。
【0040】
この運転方法は、CF3I のガス圧力を高くすることができるので、密度(比重量)が大きくなり、絶縁耐力を大きくすることができ、変圧器の高圧化や大容量化,小型化が可能になる。
【0041】
本実施例では導ガス水冷方式について述べたが、冷却方式が他の方式でも同じ効果が得られる。
【0042】
図9は変圧器の絶縁冷却媒体としてCF3I を含む混合物を用いた場合の変圧器の運転方法の一実施例であり、変圧器の運転を保証する最低気温tmin℃ におけるCF3I の飽和圧力がPminMPa であり、変圧器内のCF3I のガス温度t℃とガス分圧PCF3IMPaの関係が
CF3I≧(Pmin/(tmin+273.15))・(t+273.15)
(これは、絶対温度:Tmin,T[K]で表すと、PCF3I≧(Pmin/Tmin)・Tとなり、華氏温度:tFmin,tF[゜R]で表すと、PCF3I≧(Pmin/(tFmin+459.67))・(tF+459.67)となる)
の場合である。CF3I と他の物質の混合物の場合、CF3Iの液化はCF3Iの分圧で評価すればよく、変圧器の定格負荷条件のCF3I のガス温度tf℃ 、ガス分圧をPf,CF3I MPa、また、比重量(密度)をγkg/m3,ガス定数をRとすると、
Figure 0003707271
(ここで、絶対温度:Tf,T[K]で表すと、P=(Pf,CF3I /Tf)・T=γRTとなり、華氏温度:tF,f,tF[゜R]で表すと、P=(Pf,CF3I / (tF,f+459.67))・(tF+459.67)=γR(tF+459.67)となる)
とCF3I の蒸気圧曲線の交点の温度以上になるように上記加熱手段によって加熱して、CF3I を含む混合物のガス温度を飽和温度以上に保てば、起動時等のように変圧器全体の温度が低いときにもCF3I を含む混合物は液化しないので、絶縁耐力の低下を防ぐことができる。
【0043】
この運転方法も、CF3I 以外の物質によってCF3I 単独のときに比べて絶縁耐力が向上し、変圧器の高圧化や大容量化,小型化が図れることになる。
【0044】
図10は図1に示した実施例の変形例であり、図1と異なるのは電気ヒータと電力計、及び入力制御器を備えていない点であり、その他の構成は図1と同様である。
【0045】
このような本実施例の構成とすれば、気温の低い寒冷地域や冬季に変圧器を起動する場合、定期点検による運転停止後に変圧器を再起動する場合等、変圧器タンク1内のガス温度が飽和温度と等しいときには、変圧器自身を運転する前に送風機11のみを運転し、変圧器タンク1の絶縁冷却媒体4であるCF3I を循環させて、変圧器タンク1内のCF3Iの飽和温度より高い温度になるまでCF3Iを暖め、飽和温度より高い温度になった時点で変圧器本体を運転することが可能となる。変圧器タンク1内のCF3I の温度や圧力は、図1と同様に温度検知器20や圧力検知器21で知ることができる。
【0046】
尚、上述した実施例では、CF3I の液化を防止する加熱手段として電気ヒータを用いて説明したが、巻線に所定の電圧ではなく低電圧をかけて電界を小さくしておいてガスを暖め、液化が生じない温度以上になると所定の電圧をかけるという運転も可能であり、このようにしてガスを暖めるものも加熱手段に含まれる。
【0047】
【発明の効果】
以上説明したように本発明によれば、CF3I 、あるいはCF3I を含む混合物を絶縁冷却媒体として用いるガス絶縁静止誘導電器の運転を保証する気温の範囲において、CF3I の液化が生じなくなり、絶縁耐力の低下が防止できる結果、電気絶縁性に優れ、不燃性で、毒性がほとんど無く、なおかつ、地球温暖化係数がCO2 より小さく、オゾン破壊係数0のガス絶縁静止誘導電器の運転が可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例として示したガス絶縁変圧器の構成図である。
【図2】CF3I とSF6 のAC破壊電圧の測定結果を示す特性図である。
【図3】CF3I を絶縁冷却媒体とする変圧器の運転範囲を示す特性図である。
【図4】CF3I を絶縁冷却媒体とする変圧器を屋外に設置し、最低気温が−20℃の場合の運転範囲を示す特性図である。
【図5】CF3I を絶縁冷却媒体とする変圧器を屋内に設置し、最低気温が−5℃の場合の運転範囲を示す特性図である。
【図6】CF3I を含む混合物を絶縁冷却媒体とする変圧器を屋外に設置し、最低気温が−20℃の場合の運転範囲を示す特性図である。
【図7】CF3I を含む混合物を絶縁冷却媒体とする変圧器を屋内に設置し、最低気温が−5℃の場合の運転範囲を示す特性図である。
【図8】CF3I を絶縁冷却媒体とする変圧器の他の実施例における運転範囲を示す特性図である。
【図9】CF3I を含む混合物を絶縁冷却媒体とする変圧器の他の実施例における運転範囲を示す特性図である。
【図10】本発明の他の実施例として示した変圧器の構成図である。
【図11】CF3I の蒸気圧曲線と低ガス圧変圧器の運転範囲を示す特性図である。
【図12】従来のガス絶縁変圧器を示す構成図である。
【符号の説明】
1…変圧器タンク、2…鉄心、3…巻線、4…絶縁冷却媒体、5…仕切板、6…タンク上部空間、7…タンク下部空間、10…冷却器、11…送風機、12…上部配管、13…下部配管、14…電気ヒータ、15…冷却水、20…温度検知器、21…圧力検知器、22…流量検知器、23…流量制御弁、24…電力計、25…入力制御器、26…演算器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-insulated static induction appliance and a method for operating the gas-insulated static induction device.ThreeThe present invention relates to a gas-insulated static induction appliance suitable for use as an insulation and cooling medium such as a transformer or a reactor, and an operation method thereof.
[0002]
[Prior art]
Conventionally, an oil-insulated type that mainly performs insulation and cooling using insulating oil has been the mainstream of static induction electric appliances such as transformers. However, in the case of an oil-filled electrical device, there is a possibility that an accident such as an oil may occur when an accident occurs. In particular, in recent years, substation facilities such as transformers are often installed in urban areas due to restrictions on installation locations in urban areas, and countermeasures for disaster prevention have become an important issue.
[0003]
Therefore, instead of insulating oil, there is a tendency to adopt gas-insulated transformers that use non-combustible gases that are less likely to cause disasters and that are highly safe as insulating and cooling media. And miniaturization is required. As a typical gas-insulated cooling medium, SF is excellent in electrical insulation, nonflammable, non-toxic and chemically stable.6Etc.
[0004]
However, in recent years, when compounds such as CFC (chlorofluorocarbon) and HCFC (hydrochlorofluorocarbon) are released into the atmosphere, the surface temperature rises due to the destruction of the ozone layer and the greenhouse effect in the stratosphere. Environmental pollution is a problem. For this reason, the production and consumption of these CFCs and HCFCs are regulated in stages, and selection of alternatives has been promoted worldwide. Chemically stable and persistent SF6Has a global warming potential of CO2Since it is very large compared to6It is expected that regulations on emissions will be promoted. SF6In addition, as an insulating cooling medium that is excellent in electrical insulation, non-flammable, non-toxic and chemically stable for use in electrical equipment, C2F6, CFourF8In all cases, the global warming potential is CO2Very large compared to
[0005]
Global warming potential is CO2Compared to CF, it is small in size, ozone destruction is 0, non-flammable and extremely toxicThreeThere is I.
[0006]
[Problems to be solved by the invention]
By the way, in general, in a gas-insulated transformer, the pressure is increased from the atmospheric pressure in order to increase the dielectric strength. Also, JEC (TheJapaneseElectrotechnicalCommittee) -2200, transformer operation must be guaranteed to a minimum temperature of -20 ° C for outdoor installations and to -5 ° C for indoor installations. In addition, IEC (InternationalElectrotechnicalCommission) and ANSI (AmericanNationalStandardsInstitute) also stipulates the minimum temperature that must be guaranteed.
[0007]
CF mentioned aboveThreeI has a boiling point (saturation temperature at atmospheric pressure) of −22.5 ° C. and is a gas at normal temperature and pressure, but the saturation temperature is SF6This CF is higher thanThreeWhen I is used as the insulating cooling medium of the transformer, liquefaction may occur in the low temperature region that ensures operation of the transformer. If liquefaction occurs in a low temperature region that guarantees the operation of the transformer, the dielectric strength is drastically reduced, which may lead to dielectric breakdown.
[0008]
The present invention has been made in view of the above points, and its object is to provide CF as an insulating cooling medium.ThreeEven in the case of using I 2, the CF in the temperature range that guarantees the operation of the gas-insulated static induction deviceThreeLiquefaction of I does not occur, the insulation strength is prevented from decreasing and the electrical insulation without breakdown is ensured, and it is nonflammable, hardly toxic, and has a global warming potential Is CO2It is an object of the present invention to provide a gas insulated static induction apparatus having a smaller ozone depletion coefficient and an operation method thereof.
[0009]
[Means for Solving the Problems]
CFThreeFIG. 2 shows an AC breakdown voltage as an example of the dielectric strength of I 2. In this figure, the horizontal axis indicates the gas pressure (MPa), and the AC breakdown voltage (SF)60.1 MPa standard) is shown on the vertical axis. As is clear from the figure, CFThreeThe electrical insulation of I is SF in the gas state.6Is equivalent to or better than In addition, chemical stability is easily decomposed by light, but in a transformer, it is used in a tank so that it is not a problem in practice.
[0010]
Fig. 3 shows an example of an ultra-high-pressure, large-capacity gas-insulated transformer. The operating line at a rated load condition of 85 ° C and pressure of 0.6MPa is plotted with the gas temperature t (° C) on the horizontal axis, ).
[0011]
CF in a sealed space like a transformerThreeWhen I is confined, CFThreeAs shown in FIG. 3, in the gas state above the saturation temperature, I 2 maintains a constant density (specific weight) even if the temperature changes, and CF 1ThreeI will not liquefy. But CFThreeI has a boiling point (saturation temperature at atmospheric pressure) of −22.5 ° C. and a saturation temperature of SF.6The temperature of the gas in the transformer tank is equal to the saturation temperature, such as when starting up a transformer in a cold region where the temperature is low or in winter, or restarting the transformer after shutting down due to periodic inspection. It is possible. In this case, when the gas temperature in the tank decreases, liquefaction begins to intersect the vapor pressure curve, deviates from a constant density state, changes to a temperature and pressure along the vapor pressure curve, and the pressure rapidly decreases. Since the density (specific weight) of the gas is proportional to the pressure if the temperature is the same, the density (specific weight) of the gas also rapidly decreases. AC breakdown voltage V, an example of dielectric strengthBDAnd the density (specific weight) γ of the gas is roughly
VBD∝ γ0.9
AC breakdown voltage VBDAlso decreases rapidly. Therefore, CF, which is the insulating cooling medium in the tank, in the temperature range that guarantees the operation of the gas insulating transformerThreeIf liquefaction occurs in I 2, the dielectric strength may drop rapidly, leading to dielectric breakdown, and this point needs to be considered.
[0012]
Therefore, in the present invention, in order to achieve the above object, CFThreeI or CFThreeWhen operating using a mixture containing I as an insulating cooling medium, the CFThreeI is characterized in that it is always kept in a gaseous state.
[0013]
Specifically, CFThreeCF at the minimum temperature tmin ° C that guarantees the operation of equipment with I as the insulating cooling mediumThreeCF in the apparatus tank when the saturation pressure of I is Pmin MPaThreeThe relationship between the gas temperature t of I and the gas pressure PMPa is
P <(Pmin / (tmin + 273.15)). (T + 273.15)
It is characterized by satisfying.
[0014]
CFThreeCF at the minimum temperature tmin ° C. which guarantees the operation of the apparatus using the mixture containing I as the insulating cooling mediumThreeCF in the apparatus tank when the saturation pressure of I is Pmin MPaThreeI gas temperature t ° C and gas partial pressure PCF3IThe relationship with MPa
PCF3I<(Pmin / (tmin + 273.15)) · (t + 273.15)
It is characterized by satisfying.
[0015]
CFThreeCF at the minimum temperature tmin ° C that guarantees the operation of equipment with I as the insulating cooling mediumThreeThe saturation pressure of I is Pmin MPa, and CF in the apparatus tankThreeThe relationship between the gas temperature t of I and the gas pressure PMPa is
P ≧ (Pmin / (tmin + 273.15)) · (t + 273.15)
In the case ofThreeIt is expressed using the specific weight (density) γ of I and the gas constant R.
P = γR (t + 273.15)
And CFThreeThe temperature is equal to or higher than the temperature at the intersection of the vapor pressure curves of I 2.
[0016]
In addition, CFThreeCF at the minimum temperature tmin ° C. which guarantees the operation of the apparatus using the mixture containing I as the insulating cooling mediumThreeThe saturation pressure of I is Pmin MPa, and CF in the apparatus tankThreeI gas temperature t ° C and gas partial pressure PCF3IMPa relationship
PCF3I≧ (Pmin / (tmin + 273.15)) · (t + 273.15)
In the case ofThreeIt is expressed using the specific weight (density) γ of I and the gas constant R.
PCF3I= ΓR (t + 273.15)
And CFThreeThe temperature is equal to or higher than the temperature at the intersection of the vapor pressure curves of I 2.
[0017]
CFThreeWhen a mixture containing I is used as an insulating cooling medium, CFThreeSubstances other than I are excellent in electrical insulation, nonflammable, non-toxic, have both global warming potential and ozone depletion potential of 0, and are inexpensive N2Can be preferably used, but rare gas such as helium, neon, argon, xenon, or CO2Other general-purpose substances can be used. SF6, C2F6, CFourF8It is possible to reduce the amount of use of these substances having a high global warming potential, although they are excellent in electrical insulation properties.
[0018]
That is, in such a gas-insulated static induction electric appliance or its operation method, the CF in the apparatus tank can be used even at the lowest temperature guaranteed by the operation of the apparatus.ThreeThe gas temperature of I is the CF in the equipment tankThreeSince it is kept above the saturation temperature at the gas pressure of I 2 or the gas partial pressure, CFThreeI will not liquefy. For this reason, the CF at the gas temperature in the operating rangeThreeThe density (specific weight) of I is constant, the decrease in dielectric strength represented by the AC breakdown voltage is prevented, and excellent electrical insulation can be ensured. That is, CFThreeI or CFThreeBy using a mixture containing I as an insulating cooling medium, it has excellent electrical insulation, is nonflammable, has almost no toxicity, and has a global warming potential of CO2.2It becomes smaller and can be used as a gas-insulated static induction machine having an ozone depletion coefficient of 0.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, a transformer is taken up as an example of a gas-insulated static induction appliance.
[0020]
First, the structure of the gas insulated transformer will be described with reference to FIG. In the figure, reference numeral 1 denotes a transformer tank. The transformer tank 1 contains an iron core 2 and a transformer 3 comprising a winding 3 wound around the iron core 2. Is filled with a gas which is an insulating cooling medium 4. In addition, a partition plate 5 for partitioning the transformer tank 1 is installed in the transformer tank 1 so that as much insulating cooling medium 4 as possible flows in the iron core 2 and the winding 3. The upper space 6 and the lower space 7 are partitioned so as not to communicate with each other. A cooler 10 is connected to the upper space 6 through the upper pipe 12. The lower space 7 is connected by a lower pipe 13 via a blower 11. Above the transformer tank 1, a temperature detector 20 for measuring the temperature of the insulating cooling medium 4 and a pressure detector 21 for measuring the pressure are provided.
[0021]
Figure 4 shows CF as an insulating cooling medium for transformers installed outdoors.ThreeIt is one Example of the operation method of the transformer at the time of using I, and is the case where the minimum temperature which guarantees the operation | movement prescribed | regulated to JEC-2200 is -20 degreeC.
[0022]
Usually CF in transformerThreeThe gas temperature of I varies between a minimum temperature of −20 ° C. and a maximum allowable gas temperature determined from the heat resistance class of the transformer and the cooling design. CF enclosed in a transformer that is a sealed spaceThreeIn gas state, the density (specific weight) is constant even if the temperature changes. For gases, the gas temperature t ° C., the gas pressure PMPa and the specific weight (density) γkg / mThreeIn between
P = γR (t + 273.15)
(This is expressed as absolute temperature: T [K], P = γRT, Fahrenheit temperature: tFIn terms of [° R], P = γR · (tF+45.9.67))
Since the equation of state holds and the gas constant R takes a constant value depending on the kind of gas, P / (t + 273.15) becomes a constant value. Therefore, the gas temperature at the rated load condition of the transformer is tf℃, gas pressure is PfAssuming MPa, CF in a gaseous stateThreeI is as shown in FIG.
Figure 0003707271
Thus, the state on the operating line of the gas temperature t ° C. and the gas pressure PMPa satisfying the above relationship is maintained. On the other hand, CFThreeThe saturation pressure at −20 ° C. of the vapor pressure curve of I is 0.1092 MPa, and the high temperature side (right side of the graph) of the vapor pressure curve is a gas.ThreeWhen the temperature of I changes to the high temperature side, the relationship between the gas temperature t ° C. and the gas pressure PMPa is as shown in FIG.
P = (0.1092 / 253.15) · (t + 273.15)
(This is expressed as absolute temperature: T [K], P = (0.1092 / 253.15) · T, Fahrenheit temperature: tFIn terms of [° R], P = (0.1092 / 455.67) · (tF+45.9.67))
become. For this reason, in the operating range from the lowest temperature of -20 ° C to the allowable maximum gas temperature, CFThreeIn order to keep the gas state without liquefying I and prevent the dielectric strength from decreasing even if the gas temperature changes, the CF in the transformerThreeI between the gas temperature t ° C. and the gas pressure PMPa
P <(0.1092 / 253.15). (T + 273.15)
(This is expressed as absolute temperature: T [K], P <(0.1092 / 253.15) · T, Fahrenheit temperature: tFIn terms of [° R], P <(0.1092 / 455.67) · (tF+45.9.67))
CF so that the relationshipThreeIt can be seen that I 1 should be enclosed.
[0023]
Figure 5 shows CF as an insulation cooling medium for transformers installed indoors.ThreeIt is one Example of the operation method of the transformer at the time of using I, and is the case where the minimum temperature which guarantees the operation | movement prescribed | regulated to JEC-2200 is -5 degreeC.
[0024]
In this case, the minimum temperature has only changed from -20 ° C in the outdoor environment to -5 ° C.ThreeSince the saturation pressure of I at −5 ° C. is 0.1918 MPa, the CF is within the operating range from the lowest temperature of −5 ° C. to the allowable maximum gas temperature.ThreeIn order to keep the gas state without liquefying I and prevent the dielectric strength from decreasing even if the gas temperature changes, the CF in the transformerThreeI between the gas temperature t ° C. and the gas pressure PMPa
P <(0.1918 / 268.15). (T + 273.15)
(This is expressed as absolute temperature: T [K], P <(0.1918 / 268.15) · T, Fahrenheit temperature: tF[° R], P <(0.1918 / 482.67) · (tF+45.9.67))
CF so that the relationshipThreeI may be enclosed.
[0025]
In addition, IEC and ANSI also specify the minimum temperature that guarantees the operation of the transformer. CF at the minimum temperature tmin ° CThreeIf the saturation pressure of I is PminMPa, the CF in the transformerThreeThe relationship between the gas temperature t of I and the gas pressure PMPa is
P <(Pmin / (tmin273.15)). (T + 273.15)
(This is expressed as absolute temperature: Tmin, T [K], P <(Pmin / Tmin) · T, Fahrenheit temperature: tFmin, tFIn terms of [° R], P <(Pmin / (tFmin + 459.67)) ・ (tF+45.9.67))
CF to satisfyThreeI may be enclosed.
[0026]
Figure 6 shows CF as an insulating cooling medium for transformers installed outdoors.ThreeIt is one Example of the operating method of the transformer at the time of using the mixture containing I, and is the case where the minimum temperature which guarantees the operation | movement prescribed | regulated to JEC-2200 is -20 degreeC. In this case, the maximum gas pressure of the mixture in the transformer in the operating range, that is, the pressure at the maximum allowable gas temperature is 0.2975 MPa (2 kg / cm2This is an example less than G). By doing so, the tank of the transformer can be free from the regulation of the second type pressure vessel.
[0027]
CFThreeCF is a mixture of I and other substancesThreeI liquefaction is CFThreeI Unlike the single case, not the pressure in the transformer,ThreeThe partial pressure of I must be evaluated. CF that becomes saturated vapor at -20 ℃ThreeBetween the gas temperature t ° C. and the gas pressure PMPa as described above
P = (0.1092 / 253.15) · (t + 273.15)
There is a relationship. CFThreeFor mixtures of I and other substances, CF at a gas temperature of t ° C.ThreeI gas partial pressure PCF3IIf this pressure is not reached, the operating range from the lowest temperature of −20 ° C. to the maximum allowable gas temperatureThreeI liquefaction does not occur. for that reason,
CFThreeFor gas-insulated transformers with a mixture containing I as the insulating cooling medium, CFThreeI gas temperature t ° C and gas partial pressure PCF3IBetween MPa
PCF3I<(0.1092 / 253.15) · (t + 273.15)
(This is expressed in absolute temperature: T [K], PCF3I<(0.1092 / 253.15) · T, Fahrenheit temperature: tF[° R] represents PCF3I<(0.1092 / 455.67) ・ (tF+45.9.67))
CF so that the relationshipThreeI may be enclosed.
[0028]
CFThreeCF of the mixture containing IThreeSubstances other than I are excellent in electrical insulation, nonflammable, non-toxic, have both global warming potential and ozone depletion potential of 0, and are inexpensive N2Can be preferably used, but rare gas such as helium, neon, argon, xenon, or CO2Other general purpose materials can be used. SF6, C2F6, CFourF8It is possible to reduce the amount of use of these substances having a high global warming potential, although they are excellent in electrical insulation properties.
[0029]
CFThreeWhen another substance is added to I, CFThreeCompared to the case of I alone, the dielectric strength and the cooling capacity are improved, and the capacity and size of the transformer can be increased.
In order to further improve the dielectric strength and cooling capacity, the maximum gas pressure of the transformer in the operating range is 0.2975 MPa (2 kg / cm2G) CF to be more thanThreeIt is also possible to enclose substances other than I 2. However, in that case, the tank of the transformer becomes the second type pressure vessel.
[0030]
Figure 7 shows CF as an insulating cooling medium for transformers installed indoors.ThreeIt is one Example of the operation method of the transformer at the time of using the mixture containing I, and is the case where the minimum temperature which guarantees the operation | movement prescribed | regulated to JEC-2200 is -5 degreeC. In this case, the same idea can be established just by changing the minimum temperature from -20 ° C to -5 ° C in the outdoor environment. In the operating range from the minimum temperature of -5 ° C to the allowable maximum gas temperature, CFThreeTo prevent I from liquefying, CF in the transformerThreeI gas temperature t ° C and gas partial pressure PCF3IBetween
PCF3I<(0.1918 / 268.15) · (t + 273.15)
(This is expressed in absolute temperature: T [K], PCF3I<(0.1918 / 268.15) · T, Fahrenheit temperature: tF[° R] represents PCF3I<(0.1918 / 482.67) ・ (tF+45.9.67))
CF so that the relationshipThreeI may be enclosed.
[0031]
In addition, the CF at the minimum temperature tmin ° C is the minimum temperature that guarantees transformer operation with IEC and ANSI.ThreeWhen the saturation pressure of I is Pmin MPa, CFThreeCF in a transformer using a mixture containing I as an insulating cooling mediumThreeI gas temperature t ° C and gas partial pressure PCF3IThe relationship with MPa
PCF3I<(Pmin / (tmin + 273.15)) · (t + 273.15)
(This is expressed as absolute temperature: Tmin, T [K].CF3I<(Pmin / Tmin) · T, Fahrenheit temperature: tFmin, tF[° R] represents PCF3I<(Pmin / (tFmin + 459.67)) ・ (tF+45.9.67))
CF to satisfyThreeI may be enclosed.
[0032]
Of the above-described equations, P <(0.1092 / 253.15) · (t + 273.15), P <(0.1918 / 268.15) · (t + 273.15), P <(Pmin / In (tmin + 273.15)) and (t + 273.15), CFThreeI gas pressure is 0.1013 MPa (atmospheric pressure) or more, 0.2975 MPa (2 kg / cm2G), and PCF3I<(0.1092 / 253.15) · (t + 273.15), PCF3I<(0.1918 / 268.15) · (t + 273.15), PCF3I<(Pmin / (tmin + 273.15)) · (t + 273.15), CFThreeThe gas partial pressure of I is 0.1013 MPa (atmospheric pressure) or more, 0.2975 MPa (2 kg / cm2It may be less than G).
[0033]
The basis for this will be described with reference to FIG. As shown in FIG.ThreeThe saturation temperature (boiling point) of I at 0.1013 MPa (atmospheric pressure) is −22.5 ° C., which is lower than the minimum temperature −20 ° C. that guarantees the operation specified in JEC-2200 when installed outdoors. -200C which is the lowest temperature of -2200. 0.2975 MPa (2 kg / cm2Less than G) is a pressure that can avoid the regulation of the second type pressure vessel described in the embodiment. CF at -5 ° C, which is the lowest temperature that guarantees operation when JEC-2200 is installed indoorsThreeThe saturation pressure of I is 0.1918 MPa, and the CF when the temperature rises from this stateThreeI represents the relationship between gas temperature t ° C. and gas pressure PMPa.
P = (0.1918 / 268.15). (T + 273.15)
In this equation, when the temperature at which P = 0.2975 MPa is obtained, t = 142.8 ° C., and the gas temperature (about 100 ° C. maximum) used in the transformer can be sufficiently covered.
[0034]
Figure 8 shows CF as an insulating cooling medium for transformers.ThreeIs an example of a method of operating a transformer when I is used, and the CF at the minimum temperature tmin ° C. that guarantees the operation of the transformerThreeThe saturation pressure of I is Pmin MPa, and CF in the transformerThreeI gas temperature t ° C and gas pressure PMPa
P ≧ (Pmin / (tmin + 273.15)) · (t + 273.15)
(This is expressed as absolute temperature: Tmin, T [K], P ≧ (Pmin / Tmin) · T, Fahrenheit temperature: tFmin, tFIn terms of [° R], P ≧ (Pmin / (tFmin + 459.67)) ・ (tF+45.9.67))
This is the case. In this case, the CF in the transformer tankThreeCF when I gas temperature is lowThreeI liquefies. The structure of the gas insulation transformer for preventing it is shown in FIG.
[0035]
In the figure, reference numeral 1 denotes a transformer tank. The transformer tank 1 contains an iron core 2 and a transformer 3 comprising a winding 3 wound around the iron core 2. For the insulating cooling medium 4 CFThreeI
P ≧ (Pmin / (tmin + 273.15)) · (t + 273.15)
It is sealed at such a pressure. The transformer tank 1 has as much CF as possible.ThreeA partition plate 5 is provided to partition the transformer tank 1 so that I flows in the iron core 2 and the winding 3, and the upper space 6 and the lower space 7 in the transformer tank 1 are separated so as not to communicate with each other. Yes. A cooler 10 is connected to the upper space 6 through the upper pipe 12. The lower space 7 is connected by a lower pipe 13 via a blower 11. CF below the transformer tank 1ThreeAn electric heater 14 is provided as heating means for raising the temperature of I 2. CF on the top of the transformer tank 1ThreeA temperature detector 20 for measuring the temperature of I 1 and a pressure detector 21 for measuring the pressure are provided. Further, a flow rate detector 22 that measures the flow rate of the cooling water 15 of the cooler 10, a flow rate control valve 23 that controls the flow rate, a wattmeter 24 that measures the input of the electric heater 14, and an input controller 25 that controls the input. Is installed. An arithmetic unit 26, which will be described in detail later, transmits a control signal for the input of the electric heater 14 to the input controller 25 while referring to the value of the wattmeter 24.
[0036]
With such a configuration, the electric heater 14 can generate CF.ThreeI can be heated to raise the temperature, or CFThreeThe temperature and pressure of I can be known by the temperature detector 20 and the pressure detector 21.
[0037]
As shown in FIG. 8, the CF of the rated load condition of the transformerThreeThe gas temperature of I is tf℃, gas pressure PfMPa, specific weight (density) is γkg / mThree, Where R is the gas constant, CF in the gaseous stateThreeI is
Figure 0003707271
(This is absolute temperature: Tf, T [K], P = (Pf/ Tf・ T = γRT, Fahrenheit temperature: tF, f, TF[° R] represents P = (Pf/ (TF, f+459.67)) ・ (tF+459.67) = γR (tF+45.9.67))
The state on the operating line of the gas temperature t ° C. and the gas pressure PMPa expressed as follows is maintained. This straight line and CFThreeHeated by heating means so that the temperature is equal to or higher than the intersection temperature of the vapor pressure curve of IThreeIf the gas temperature of I is maintained, even when the temperature is low and the entire transformer is not sufficiently warm, such as during startup, the CFThreeSince liquefaction of I does not occur, it is possible to prevent a decrease in dielectric strength.
[0038]
From the temperature detector 20 and the pressure detector 21 described above, CFThreeBecause I can know the temperature and pressure of I 4
Figure 0003707271
And CFThreeThe temperature at the intersection of the vapor pressure curve of I, or the pressure, the value of both temperature and pressure, and the temperature obtained from the temperature detector 20, or the pressure obtained from the pressure detector 21, or the temperature detector 20 and the pressure detection Both the temperature and pressure obtained from the calculator 21 are compared by the calculator 26, and the wattmeter 24 from the calculator 26 is equal to or higher than the temperature of the intersection, or the pressure of the intersection, or both the temperature and pressure are equal to or greater than the value of the intersection. The operation shown in FIG. 8 can be performed by sending a control signal for the input of the electric heater 14 to the input controller 25 and controlling the heating amount while referring to the value of.
[0039]
The heating means does not necessarily need to be the electric heater 14, and a high-temperature fluid such as high-temperature water or water vapor may flow through a pipe provided in the lower part of the transformer tank 1, or cooling supplied to the cooler 10. Water 15 CFThreeThe hot fluid may be replaced only when heating of I is required. Further, the installation place of the heating means is not limited to the lower part of the transformer tank 1. For example, you may provide in the piping which makes the cooler 10 and the transformer tank 1 communicate.
[0040]
This driving method is CFThreeSince the gas pressure of I 2 can be increased, the density (specific weight) increases, the dielectric strength can be increased, and the transformer can be increased in pressure, capacity, and size.
[0041]
In this embodiment, the guided gas water cooling method is described, but the same effect can be obtained even when the cooling method is other methods.
[0042]
Fig. 9 shows CF as an insulating cooling medium for transformers.Three1 is an example of a method for operating a transformer when a mixture containing I is used, and the CF at the minimum temperature tmin ° C. that guarantees the operation of the transformer.ThreeThe saturation pressure of I is PminMPa, and CF in the transformerThreeI gas temperature t ° C and gas partial pressure PCF3IMPa relationship
PCF3I≧ (Pmin / (tmin + 273.15)) · (t + 273.15)
(This is expressed as absolute temperature: Tmin, T [K].CF3I≧ (Pmin / Tmin) · T, Fahrenheit temperature: tFmin, tF[° R] represents PCF3I≧ (Pmin / (tFmin + 459.67)) ・ (tF+45.9.67))
This is the case. CFThreeCF is a mixture of I and other substancesThreeI liquefaction is CFThreeIt is sufficient to evaluate with the partial pressure of I. CF of the rated load condition of the transformerThreeI gas temperature tf℃, gas partial pressure Pf, CF3IMPa, specific weight (density) is γkg / mThree, If the gas constant is R,
Figure 0003707271
(Where absolute temperature is Tf, T [K], P = (Pf, CF3I/ Tf・ T = γRT, Fahrenheit temperature: tF, f, TF[° R] represents P = (Pf, CF3I/ (TF, f+459.67)) ・ (tF+459.67) = γR (tF+45.9.67))
And CFThreeI is heated by the heating means so as to be equal to or higher than the temperature of the intersection of the vapor pressure curves of I,ThreeIf the gas temperature of the mixture containing I is kept at or above the saturation temperature, the CF can be used even when the temperature of the entire transformer is low, such as during startup.ThreeSince the mixture containing I is not liquefied, a decrease in dielectric strength can be prevented.
[0043]
This driving method is also CFThreeCF other than IThreeI The dielectric strength is improved as compared with the case of I alone, and the transformer can be increased in voltage, capacity, and size.
[0044]
FIG. 10 is a modification of the embodiment shown in FIG. 1, and is different from FIG. 1 in that it does not include an electric heater, a wattmeter, and an input controller, and other configurations are the same as those in FIG. .
[0045]
With such a configuration of the present embodiment, the gas temperature in the transformer tank 1 is used, for example, when starting a transformer in a cold region where the temperature is low or in the winter, or when restarting the transformer after a shutdown due to periodic inspection. Is equal to the saturation temperature, only the blower 11 is operated before the transformer itself is operated, and the insulating cooling medium 4 of the transformer tank 1 is CF.ThreeI is circulated and the CF in the transformer tank 1 isThreeCF until a temperature higher than the saturation temperature of IThreeThe transformer body can be operated when I is warmed to a temperature higher than the saturation temperature. CF in transformer tank 1ThreeThe temperature and pressure of I can be known by the temperature detector 20 and the pressure detector 21 as in FIG.
[0046]
In the embodiment described above, CFThreeThe electric heater is used as the heating means for preventing the liquefaction of I 2. However, when the electric field is reduced by applying a low voltage to the winding instead of a predetermined voltage to warm the gas and the temperature becomes higher than the temperature at which liquefaction does not occur. An operation in which a predetermined voltage is applied is also possible, and the heating means includes the one that warms the gas in this way.
[0047]
【The invention's effect】
As described above, according to the present invention, CFThreeI or CFThreeIn the range of temperatures that guarantees the operation of gas-insulated static induction appliances using a mixture containing I as the insulating cooling medium, CFThreeAs a result of no liquefaction of I 2 and prevention of decrease in dielectric strength, it has excellent electrical insulation, nonflammability, almost no toxicity, and a global warming potential of CO2Smaller, gas-insulated static induction machines with an ozone depletion coefficient of 0 can be operated.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gas-insulated transformer shown as an embodiment of the present invention.
FIG. 2 CFThreeI and SF6It is a characteristic view which shows the measurement result of AC breakdown voltage.
FIG. 3 CFThreeIt is a characteristic view which shows the driving | operation range of the transformer which uses I as an insulation cooling medium.
FIG. 4 CFThreeIt is a characteristic view which shows the driving | operation range in case the transformer which uses I as an insulation cooling medium is installed outdoors, and minimum temperature is -20 degreeC.
FIG. 5 CFThreeIt is a characteristic figure which shows the driving | running range in case the transformer which uses I as an insulation cooling medium is installed indoors, and minimum temperature is -5 degreeC.
FIG. 6 CFThreeIt is a characteristic view which shows the driving | operation range in case the transformer which uses the mixture containing I as the insulation cooling medium is installed outdoors, and the minimum temperature is -20 degreeC.
FIG. 7 CFThreeIt is a characteristic view which shows the driving | operation range in case the transformer which uses the mixture containing I as the insulation cooling medium is installed indoors, and minimum temperature is -5 degreeC.
FIG. 8 CFThreeIt is a characteristic view which shows the operating range in the other Example of the transformer which uses I as an insulation cooling medium.
FIG. 9 CFThreeIt is a characteristic view which shows the operating range in the other Example of the transformer which uses the mixture containing I as the insulation cooling medium.
FIG. 10 is a configuration diagram of a transformer shown as another embodiment of the present invention.
FIG. 11 CFThreeIt is a characteristic view which shows the operating range of the vapor pressure curve of I and a low gas pressure transformer.
FIG. 12 is a configuration diagram showing a conventional gas-insulated transformer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transformer tank, 2 ... Iron core, 3 ... Winding, 4 ... Insulation cooling medium, 5 ... Partition plate, 6 ... Tank upper space, 7 ... Tank lower space, 10 ... Cooler, 11 ... Blower, 12 ... Upper Piping, 13 ... Lower piping, 14 ... Electric heater, 15 ... Cooling water, 20 ... Temperature detector, 21 ... Pressure detector, 22 ... Flow detector, 23 ... Flow control valve, 24 ... Wattmeter, 25 ... Input control Unit, 26 ... arithmetic unit.

Claims (7)

鉄心とこの鉄心に巻回される巻線とからなる電器中身を絶縁冷却媒体とともにタンクに収納し、該タンク外側に配置された冷却器とタンクとの間を配管を介して絶縁冷却媒体であるCF3I を循環させ、加熱手段によりCF3I の温度を上昇させて運転する際に、
前記CF3I の封入量によって定まる比重量(密度)γとガス定数Rを使って表されるCF3I のガス温度t℃とガス圧力PMPaの関係
P=γR(t+273.15)
とCF3I の蒸気圧曲線の交点の温度、あるいは圧力、あるいは温度と圧力の両方の値と温度検知器から得られるCF3I の温度、あるいは圧力検知器から得られるCF3I の圧力、あるいは温度検知器と圧力検知器から得られるCF3I の温度と圧力の両方を比較し、前記交点の温度以上、あるいは前記交点の圧力以上、あるいは温度,圧力とも前記交点の値以上となるように前記加熱手段を制御することを特徴とするガス絶縁静止誘導電器の運転方法。
The contents of the electric appliance composed of an iron core and a winding wound around the iron core are housed in a tank together with an insulating cooling medium, and an insulating cooling medium is provided between the cooler disposed outside the tank and the tank via a pipe. circulating the CF 3 I, when operated to raise the temperature of CF 3 I by the heating means,
Relationship between CF 3 I gas temperature t ° C. and gas pressure PMP expressed by specific weight (density) γ determined by the amount of CF 3 I enclosed and gas constant R P = γR (t + 273.15)
And the pressure at the intersection of the vapor pressure curves of CF 3 I, or the pressure, or the value of both temperature and pressure and the temperature of CF 3 I obtained from the temperature detector, or the pressure of CF 3 I obtained from the pressure detector, Alternatively, both the temperature and pressure of CF 3 I obtained from the temperature detector and the pressure detector are compared, so that the temperature is equal to or higher than the temperature at the intersection, or the pressure at the intersection, or the temperature and pressure are equal to or higher than the value at the intersection. A method for operating a gas-insulated static induction device, wherein the heating means is controlled.
鉄心とこの鉄心に巻回される巻線とからなる電器中身を絶縁冷却媒体とともにタンクに収納し、該タンク外側に配置された冷却器とタンクとの間を配管を介して絶縁冷却媒体であるCF3I を含む混合物を循環させ、加熱手段によりCF3I を含む混合物の温度を上昇させて運転する際に、
CF3Iの封入量によって定まる比重量(密度)γとガス定数Rを使って表されるCF3Iのガス温度t℃とガス分圧PCF3IMPaとの関係
CF3I=γR(t+273.15)
とCF3I の蒸気圧曲線の交点の温度、あるいは圧力、あるいは温度と圧力の両方の値と温度検知器から得られるCF3I を含む混合物の温度、あるいは圧力検知器で得られる
CF3I を含む混合物の圧力から求められるCF3I の分圧、あるいは温度検知器と圧力検知器から得られるCF3I を含む混合物の温度とCF3I の分圧の両方を比較し、前記交点の温度以上、あるいは前記交点の圧力以上、あるいは温度,分圧とも前記交点の値以上となるように前記加熱手段を制御することを特徴とするガス絶縁静止誘導電器の運転方法。
The contents of the electric appliance composed of an iron core and a winding wound around the iron core are housed in a tank together with an insulating cooling medium, and an insulating cooling medium is provided between the cooler disposed outside the tank and the tank via a pipe. When the mixture containing CF 3 I is circulated and the temperature of the mixture containing CF 3 I is increased by heating means,
Relationship between CF 3 I gas temperature t ° C. and gas partial pressure P CF3I MPa expressed using specific weight (density) γ determined by the amount of CF 3 I enclosed and gas constant R P CF3I = γR (t + 273.15 )
And the temperature of the intersection of the vapor pressure curve of CF 3 I, or the pressure, or the temperature of the mixture containing CF 3 I obtained from both the temperature and pressure values and the temperature detector, or the CF 3 I obtained by the pressure detector comparing both partial pressures of temperature and CF 3 I of a mixture comprising a partial pressure or CF 3 I obtained from the temperature detector and the pressure detector, the CF 3 I obtained from the pressure of the mixture containing, in the intersection A method for operating a gas-insulated static induction device, wherein the heating means is controlled so as to be equal to or higher than a temperature, a pressure equal to or higher than a pressure at the intersection, or a temperature and a partial pressure equal to or higher than the value of the intersection.
鉄心とこの鉄心に巻回される巻線とからなる電器中身を絶縁冷却媒体とともにタンクに収納し、該タンク外側に配置された冷却器とタンクとの間を配管を介して途中に設けられている送風機により絶縁冷却媒体であるCF3I を循環させて運転する際に、
前記タンク内のガス温度が前記CF3I の飽和温度と等しい時には、前記電器を運転する前に前記送風機のみを運転し、タンク内の前記CF3I を循環させて該CF3I の飽和温度より高い温度になるまで前記CF3I を暖め、飽和温度より高い温度になった時点で前記電器を運転することを特徴とするガス絶縁静止誘導電器の運転方法。
The contents of the electric appliance consisting of an iron core and a winding wound around the iron core are stored in a tank together with an insulating cooling medium, and provided between the cooler and the tank arranged outside the tank through a pipe. When operating by circulating CF 3 I, which is an insulating cooling medium, using a blower
When the gas temperature in the tank is equal to the saturation temperature of the CF 3 I, only the blower is operated before operating the electric appliance, and the CF 3 I in the tank is circulated to saturate the CF 3 I saturation temperature. A method for operating a gas-insulated static induction electric appliance, wherein the CF 3 I is heated to a higher temperature, and the electric appliance is operated when the temperature becomes higher than a saturation temperature.
鉄心とこの鉄心に巻回される巻線とからなる電器中身を絶縁冷却媒体とともにタンクに収納し、該タンク外側に配置された冷却器とタンクとの間を配管を介して途中に設けられている送風機により絶縁冷却媒体であるCF3I を含む混合物を循環させて運転する際に、
前記タンク内のガス温度が前記CF3I の飽和温度と等しい時には、前記電器を運転する前に前記送風機のみを運転し、タンク内の前記CF3I を含む混合物を循環させて該CF3I の飽和温度より高い温度になるまで前記CF3I を含む混合物を暖め、飽和温度より高い温度になった時点で前記電器を運転することを特徴とするガス絶縁静止誘導電器の運転方法。
The contents of the electric appliance consisting of an iron core and a winding wound around the iron core are stored in a tank together with an insulating cooling medium, and provided between the cooler and the tank arranged outside the tank through a pipe. When operating by circulating a mixture containing CF 3 I as an insulating cooling medium by a blower that is
When the gas temperature in the tank is equal to the saturation temperature of the CF 3 I, only the blower is operated before the electric appliance is operated, and the mixture containing the CF 3 I in the tank is circulated to the CF 3 I. A method for operating a gas-insulated static induction appliance, wherein the mixture containing CF 3 I is warmed to a temperature higher than a saturation temperature of the gas, and the electric appliance is operated when the temperature becomes higher than the saturation temperature.
鉄心、この鉄心に巻回される巻線からなる電器中身と、該電器中身を絶縁冷却媒体とともに収納するタンクと、該タンク外側に配置された冷却器と、該冷却器とタンクとの間を連通する配管とを備え、前記冷却器とタンクとの間に絶縁冷却媒体を循環させるガス絶縁静止誘導電器において、
前記絶縁冷却媒体としてCF3I を用いると共に、前記ガス絶縁静止誘導電器の少なくとも一部に該CF3I の温度を上昇させる加熱手段を備えていることを特徴とするガス絶縁静止誘導電器。
An iron core, an electric content comprising a winding wound around the iron core, a tank for storing the electric content together with an insulating cooling medium, a cooler disposed outside the tank, and a space between the cooler and the tank. A gas-insulated static induction appliance that comprises a piping that communicates and circulates an insulating cooling medium between the cooler and the tank,
A gas-insulated static induction device characterized in that CF 3 I is used as the insulating cooling medium, and at least a part of the gas-insulated static induction device includes heating means for raising the temperature of the CF 3 I.
鉄心、この鉄心に巻回される巻線からなる電器中身と、該電器中身を絶縁冷却媒体とともに収納するタンクと、該タンク外側に配置された冷却器と、該冷却器とタンクとの間を連通する配管とを備え、前記冷却器とタンクとの間に絶縁冷却媒体を循環させるガス絶縁静止誘導電器において、
前記絶縁冷却媒体としてCF3I を用いると共に、前記ガス絶縁静止誘導電器の少なくとも一部に該CF3I の温度を上昇させる加熱手段とCF3I の温度を検知する温度検知器、あるいはCF3I の圧力を検知する圧力検知器、あるいは前記温度検知器と圧力検知器の両方を備えていることを特徴とするガス絶縁静止誘導電器。
An iron core, an electric content comprising a winding wound around the iron core, a tank for storing the electric content together with an insulating cooling medium, a cooler disposed outside the tank, and a space between the cooler and the tank. A gas-insulated static induction appliance that comprises a piping that communicates and circulates an insulating cooling medium between the cooler and the tank,
The insulation with use of CF 3 I as the cooling medium, the temperature detector detects the temperature of the heating means and the CF 3 I to raise the temperature of the CF 3 I in at least a portion of the gas insulated stationary induction apparatus, or CF 3 A gas-insulated static induction device comprising a pressure detector for detecting the pressure of I 1, or both of the temperature detector and the pressure detector.
前記絶縁冷却媒体であるCF3I は、該CF3I を含む混合物であることを特徴とする請求項5又は6記載のガス絶縁静止誘導電器。The insulating and cooling a medium CF 3 I is claimed in claim 5 or 6, wherein the gas insulated stationary induction apparatus, characterized in that a mixture containing the CF 3 I.
JP32770698A 1998-11-18 1998-11-18 Gas-insulated static induction device and method of operating the same Expired - Lifetime JP3707271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32770698A JP3707271B2 (en) 1998-11-18 1998-11-18 Gas-insulated static induction device and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32770698A JP3707271B2 (en) 1998-11-18 1998-11-18 Gas-insulated static induction device and method of operating the same

Publications (2)

Publication Number Publication Date
JP2000150253A JP2000150253A (en) 2000-05-30
JP3707271B2 true JP3707271B2 (en) 2005-10-19

Family

ID=18202084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32770698A Expired - Lifetime JP3707271B2 (en) 1998-11-18 1998-11-18 Gas-insulated static induction device and method of operating the same

Country Status (1)

Country Link
JP (1) JP3707271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142318A (en) 2001-11-01 2003-05-16 Hitachi Ltd Gas-insulated transformer

Also Published As

Publication number Publication date
JP2000150253A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
US10770198B2 (en) Method and facility for filling a gas-insulated electrical apparatus comprising a mixture of (CF3)2CFCN and CO2
EP0412715A1 (en) Thermal insulation
JP4134403B2 (en) Power transmission / distribution equipment
JP3707271B2 (en) Gas-insulated static induction device and method of operating the same
Yang et al. Prediction model of bubble formation in oil-paper insulation based on the ITBE envelope
EP0153637B1 (en) Gas insulated electromagnetic induction appliance
JP5542919B2 (en) Method for producing hydrocarbon mixed refrigerant
US3163994A (en) Cryogenic refrigerator
JP3983916B2 (en) Gas insulated electrical equipment
JPS61174707A (en) Gas insulation transformer
JPH06204049A (en) Fire-resistant transformer
US11005241B2 (en) Distribution of a dielectric gaseous mixture to a high-voltage apparatus
US3023263A (en) Electrical apparatus
JPH06220435A (en) Refrigerant composition
Moore et al. Design and performance characteristics of gas/vapor transformers
CN114950063B (en) Low-temperature adsorption bed and application method thereof
WO1996028833A1 (en) Stationary induction electric appliance
JPH02110910A (en) Stationary induction electric apparatus
Hsiao et al. The pilot-runs of the helium cryogenic system for the TLS superconducting cavity
Hollister Gas vapor and fire resistant transformers
JPS58154213A (en) Separate type foil wound transformer
JPS6359256B2 (en)
Zhdanov et al. Gas-phase transport phenomena at low temperatures: thermal diffusion in an Ar-Kr system
JPH0349376Y2 (en)
RU2074538C1 (en) Composition for thermal protection of quarts generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term