JP3983916B2 - Gas insulated electrical equipment - Google Patents

Gas insulated electrical equipment Download PDF

Info

Publication number
JP3983916B2
JP3983916B2 JP02169999A JP2169999A JP3983916B2 JP 3983916 B2 JP3983916 B2 JP 3983916B2 JP 02169999 A JP02169999 A JP 02169999A JP 2169999 A JP2169999 A JP 2169999A JP 3983916 B2 JP3983916 B2 JP 3983916B2
Authority
JP
Japan
Prior art keywords
gas
sealed container
temperature
electrical
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02169999A
Other languages
Japanese (ja)
Other versions
JP2000224722A (en
Inventor
直樹 南
則行 林
隆志 白根
知明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02169999A priority Critical patent/JP3983916B2/en
Publication of JP2000224722A publication Critical patent/JP2000224722A/en
Application granted granted Critical
Publication of JP3983916B2 publication Critical patent/JP3983916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6

Landscapes

  • Gas-Insulated Switchgears (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁性ガスで絶縁した電気機器を有するガス絶縁電気機器に関するものである。
【0002】
【従来の技術】
近年、変電所の遮断器や断路器、母線、ブッシングは外側が密閉型金属容器から成り、容器内に封入したSF6ガスで絶縁されたガス絶縁開閉装置で構成されている。しかし、最近の研究によりSF6は地球温暖化係数が極めて大きなガスであることが明らかにされ、SF6の使用量の削減が世界的規模で必要とされている。尚、電気絶縁性ガスを電気機器に使用した技術として特開昭60−13414号公報、特開昭60−20405号公報、特開昭60−20406号公報、特開平2−204907号公報を挙げることができる。
【0003】
【発明が解決しようとする課題】
地球温暖化係数がCO2より小さく、オゾン破壊係数が0であり、不燃性で、かつ毒性が極めて弱いガスにCF3Iがある。しかし、CF3IはSF6よりも飽和温度が高いため、ガス絶縁開閉装置に用いると低温時に液化が生じる可能性がある。ガス絶縁開閉装置内でCF3Iが液化すると、絶縁耐力が急激に低下し、絶縁破壊に至る恐れがある。
【0004】
本発明の目的は、SF6ガスよりも地球温暖化係数の小さい電気絶縁性ガスとしてCF3Iを使用した時に、ガス絶縁開閉装置の運転中に液化することはなく、絶縁耐力の低下を防止して、絶縁破壊に至ることのない優れた電気絶縁性を確保でき、不燃性で、毒性がほとんど無く、なおかつオゾン破壊係数が0のガス絶縁電気機器を提供することにある。
【0005】
【課題を解決するための手段】
CF3Iの絶縁耐力の一例としてAC破壊電圧を図2に示す。該図は横軸にガス圧力(MPa)を示し、その時のAC破壊電圧(SF60.1MPa基準)を縦軸に示している。該図から明らかなごとく、CF3Iの電気絶縁性は、気体状態ではSF6と同等以上である。また、化学的安定性については、光で分解しやすいが、ガス絶縁開閉装置の母線、避雷器、ブッシングでは密閉容器内に封入して用いられるため、実用上は問題にならない。
【0006】
図3にガス絶縁開閉装置を例にとって定格運転条件の温度が60℃、圧力が0.568MPaの運転線を横軸にガス温度t(℃)、縦軸にガス圧力P(MPa)をとって示す。CF3Iの飽和圧力と温度の関係は図3の通りであり、CF3Iのガス圧力が蒸気圧曲線以上になると液化する。ガス絶縁開閉装置の母線、避雷器、ブッシングのように密閉された空間にCF3Iが閉じこめられると、飽和温度以上の気体状態では温度が変化しても密度(比重量)一定の状態を保つため、CF3Iが液化することはない。
【0007】
しかし、CF3Iは沸点(大気圧における飽和温度)が−22.5℃であり、飽和温度がSF6に比べて高いため、気温の低い寒冷地域や冬季に使用する場合等、ガス絶縁開閉装置の母線、避雷器、ブッシングの密閉容器内のガス温度が飽和温度と等しくなることが考えられる。この場合、密閉容器内のガス温度が低下すると図3に示す蒸気圧曲線と交差して液化が始まり、密度一定の状態から外れて蒸気圧曲線に沿った温度と圧力になり、圧力が急激に低下する。気体の密度(比重量)は温度が同じであれば圧力に比例するので、気体の密度(比重量)も急激に低下する。
【0008】
絶縁耐力の一例であるAC破壊電圧VB.D.と気体の密度(比重量)γとの間には、おおよそVB.D.∝γ0.9の関係があるため、AC破壊電圧VB.Dも急激に低下する。従って、ガス絶縁開閉装置の使用範囲でCF3Iに液化が生じれば、絶縁耐力が急激に低下し、絶縁破壊に至る恐れがあり、この点を考慮する必要がある。
【0009】
そこで、本発明では上記目的を達成するために、CF3Iを絶縁冷却媒体として用いて運転する際に、装置が運転状態にあるときは、CF3Iは常に気体状態に保たれていることを特徴とする。
【0010】
具体的には、CF3Iを絶縁性ガスとするガス絶縁開閉装置の運転を保証する最低気温tmin℃におけるCF3Iの飽和圧力がPminMPaであり、ガス絶縁開閉装置内のCF3Iのガス温度t℃とガス圧力PMPaの関係が P≧(Pmin/(tmin+273.15))・(t+273.15)の場合に、ガス温度をガス絶縁開閉装置内のCF3Iの比重量(密度)γとガス定数Rを使って表される。
【0011】
P=γR(t+273.15)とCF3Iの蒸気圧曲線の交点の温度以上にすることを特徴とする。
【0012】
更に、CF3Iを含む混合物を絶縁性ガスとするガス絶縁開閉装置の運転を保証する最低気温tmin℃におけるCF3Iの飽和圧力がPminMPaであり、ガス絶縁開閉装置内のCF3Iのガス温度t℃とガス分圧PCF3IMPaの関係が PCF3I≧(Pmin/(tmin+273.15))・(t+273.15)の場合に、ガス温度を、ガス絶縁開閉装置内のCF3Iの比重量(密度)γとガス定数を使って表される。
【0013】
CF3I=γR(t+273.15) とCF3Iの蒸気圧曲線の交点の温度以上にすることを特徴とする。
【0014】
CF3Iを含む混合物を絶縁性ガスとして用いる場合、CF3I以外の物質としては、電気絶縁性に優れ、不燃性で、毒性が無く、地球温暖化係数、オゾン破壊係数とも0であり、かつ、安価なN2が好ましく用いることができるが、ヘリウム,ネオン,アルゴン,キセノンのような希ガス、あるいは、CO2、その他の汎用物質を用いることができる。また、SF6,C26,C48等と混合して用いて、電気絶縁性に優れるが、地球温暖化係数が大きいこれらの物質の使用量を低減することができる。
【0015】
即ち、このようなガス絶縁電気機器の運転方法では、ガス絶縁電気機器の最低使用気温においても、ガス絶縁電気機器内のCF3Iのガス温度はガス絶縁電気機器内のCF3Iのガス圧力、或いはガス分圧における飽和温度以上に保たれているので、CF3Iが液化することはない。このため、運転範囲のガス温度におけるCF3Iの密度(比重量)は一定になり、AC破壊電圧で代表される絶縁耐力の低下が防止され、優れた電気絶縁性を確保できる。
【0016】
つまり、CF3I、或いはCF3Iを含む混合物を絶縁性ガスとして用いることにより電気絶縁性に優れ、不燃性で、毒性がほとんど無く、なおかつ地球温暖化係数がCO2より小さく、オゾン破壊係数0のガス絶縁電気機器として使用することが可能になる。
【0017】
【発明の実施の形態】
以下、本発明の実施例を図面を参照して説明する。図4はガス絶縁開閉装置の絶縁性ガスとしてCF3Iを用いた場合のガス絶縁開閉装置の運転方法の一実施例であり、開閉装置の運転を保証する最低気温tmin℃におけるCF3Iの飽和圧力がPminMPaであり、開閉装置内のCF3Iのガス温度t℃とガス圧力PMPaの関係が P≧(Pmin/(tmin+273.15))・(t+273.15)(これは、絶対温度:Tmin、T(K)とすれば、P≧(Pmin/Tmin)・Tと表される。華氏温度:tFmin、tF(1゜R)とすれば、P≧(Pmin/( tFmin+459.67))・( tF+459.67)と表される。)の場合である。
【0018】
この場合、気温が低くて起動時等のように開閉装置内のCF3Iのガス温度が低い時にはCF3Iが液化する。それを防ぐためのガス絶縁開閉装置の構成を図6に示す。
【0019】
図6に示す通り、ガス絶縁開閉装置は電流を遮断する遮断器1、高電圧の加わっている高電圧導体2a〜2cを電気的に切り離す断路器3a〜3c、送電線からの高電圧を導入するガスで絶縁されたブッシング4、サージ電圧を抑制するための避雷器5、及びこれらを連結する母線6a〜6gで構成される。それぞれの部分は絶縁物で出来たスペーサ7a〜7lで区切られている。ガス絶縁開閉装置はダクト8a,8bによりガス絶縁変圧器12に接続されている。
【0020】
また、遮断器1、断路器3、母線6、避雷器5、ブッシング4はダクト8c〜8Lで連結されている。遮断器1、断路器3、母線6、避雷器5、ブッシング4、ガス絶縁変圧器12を連結するダクト8にはバルブ13a〜13Lが設けられている。遮断器1、断路器3、ブッシング4、避雷器5、母線6の密閉容器内及びガス絶縁変圧器12内には、絶縁性ガスであるCF3Iが充填されている。ダクト8aの途中には送風機11が設けられている。
【0021】
このような構成にすれば、ガス絶縁変圧器12内、遮断器1、断路器3、母線6、避雷器5、ブッシング4の密閉容器内に充填してある絶縁性ガスであるCF3Iを送風機11を用いて循環させることができる。このため、遮断器1、断路器3、母線6、避雷器5、ブッシング4の各密閉容器内には変圧器12で飽和温度以上に加熱されたCF3Iが常に流れることになる。
【0022】
図4に示すように、開閉装置の定格負荷条件のCF3Iのガス温度をtf℃、ガス圧力をPfMPa、また比重量(密度)をγkg/m3、ガス定数をRとすると、気体の状態のCF3Iは P=(Pf/(tf+273.15))・(t+273.15)=γR(t+273.15)(これは絶対温度:Tf、T(K)とすれば、P=(Pf/Tf)・T=γRTと表される。華氏温度:tFf,tF(oR)とすれば、P=(Pf/( tFf+459.67))・(tF+459.67)=γR(tF+459.67)と表される。)で表されるガス温度t℃とガス圧力PMPaの運転線上の状態を保つことになる。
【0023】
この直線とCF3Iの蒸気圧曲線の交点の温度以上になるようにCF3Iのガス温度は維持されるので、気温が低くて起動時等のように開閉装置が暖まっていないときでもCF3Iの液化が生じないので、絶縁耐力の低下を防止することができる。
【0024】
図5はガス絶縁開閉装置の絶縁冷却媒体としてCF3Iを含む混合物を用いた場合のガス絶縁開閉装置の運転方法の一実施例であり、ガス絶縁開閉装置の運転を保証する最低気温tmin℃におけるCF3Iの飽和圧力がPminMPaであり、開閉装置内のCF3Iのガス温度t℃とガス分圧PCF3IMPaの関係が PCF3I≧(Pmin/(tmin+273.15))・(t+273.15)(これは、絶対温度:Tmin、T(K)とすれば、PCF3I≧(Pmin/Tmin)・Tと表される。華氏温度:tFmin、tF(oR)とすれば、PCF3I≧(Pmin/( tFmin+459.67))・( tF+459.67)と表される。)の場合である。
【0025】
CF3Iと他の物質の混合物の場合、CF3Iの液化はCF3Iの分圧で評価すればよく、開閉装置の定格負荷条件のCF3Iのガス温度tf℃、ガス分圧をPf,CF3IMPa、また、比重量(密度)をγkg/m3、ガス定数をRとすると、 PCF3I=(Pf,CF3I/(tf+273.15))・(t+273.15)=γR(t+273.15)(これは絶対温度:Tf、T(K)とすれば、PCF3I=(Pf,CF3I/Tf)・T=γRTと表される。華氏温度:tFf,tF(oR)とすれば、PCF3I=(Pf,CF3I/(tFf+459.67))・(tF+459.67)=γR(tF+459.67)と表される。)
とCF3Iの蒸気圧曲線の交点の温度以上になるようにガス温度を上げて、CF3Iを含む混合物のガス温度を飽和温度以上に保てば、起動時等のように開閉装置の温度が低いときにもCF3Iを含む混合物が液化しないので、絶縁耐力の低下を防ぐことができる。
【0026】
ガス絶縁開閉装置内で事故時などに大電流が流れている電路を遮断する機器は遮断器1であるが、この時に遮断器1の密閉容器内ではアークが発生する。アークによる光や高い温度で密閉容器内の絶縁性ガスであるCF3Iが分解すると、十分な絶縁耐力と遮断性能が確保できない恐れがある。この場合、図7の実施例のように遮断器1にはアーク発生時にも分解しにくく絶縁耐力と遮断性能に優れたSF6等を封入し、それ以外の断路器3、母線6等の密閉容器内に絶縁性ガスであるCF3Iを封入すればよい。
【0027】
また、定期点検などで電路を切り離す断路器3においては小電流しか流れないが、アークの発生により断路器3の密閉容器内のCF3Iの絶縁耐力や遮断性能が低下する場合には、図1のように遮断器1や断路器3のような電路を機械的に入り切りする開閉器以外の母線6、避雷器5、ブッシング4の密閉容器内にのみ絶縁ガスとしてCF3Iを使用し、遮断器1や断路器3にはSF6を使用すればよい。
【0028】
油入り変圧器の場合、タンク内で暖められた油をダクト8に通すか、油で暖められたタンクにダクト8を接触させ、そのダクト8を母線6、避雷器5、ブッシング4等の各密閉容器に接続し、ダクト8の途中に送風機11を設置する構成とすれば、ダクト8で接続されている母線6、避雷器5、ブッシング4等の各密閉容器内のCF3I、或いはCF3Iを含む混合物を送風機11により循環させることによって、油入り変圧器のタンク内で暖められた油の熱を利用し、CF3Iを暖めることができる。
【0029】
図8に本発明の他の一実施例を示す。該図において、リードダクト14内にはガス絶縁変圧器12a〜12cとタップ切換器15を接続するタップリード線16、中性点リード線17、二次リード線18が引き回されている。ガス絶縁変圧器12とリードダクト14の接続部は絶縁物で出来たスペーサ7a〜7fで気密に仕切られている。ガス絶縁変圧器12とリードダクト14はダクト8a〜8Lにより連通されており、途中にバルブ13a〜13fと送風機11a〜11fが設置されている。リードダクト14内にはCF3I、或いはCF3Iを含む混合物が封入されている。
【0030】
このような構成にすれば、ガス絶縁変圧器12内で使用している絶縁冷却媒体であるCF3I、或いはCF3Iを含む混合物をダクト8を通して送風機11により、リードダクト14内に循環させることができる。リードダクト14内のCF3I、或いはCF3Iを含む混合物はガス絶縁変圧器12内で飽和温度以上になったガスが供給されることになるので、ガス温度を飽和温度以上に維持することが可能となる。
【0031】
このような運転方法を行うことにより、リードダクト内のCF3I、或いはCF3Iを含む混合物のガス温度を飽和温度以上に保てば、起動時等のようにリードダクトの温度が低いときにもCF3I、或いはCF3Iを含む混合物が液化しないので、絶縁耐力の低下を防ぐことができる。
【0032】
図9に本発明による別の一実施例を示す。該図ではガス絶縁開閉装置は電流を遮断する遮断器1、高電圧の加わっている高電圧導体2a〜2cを電気的に切り離す断路器3a〜3c、送電線からの高電圧を導入するガスで絶縁されたブッシング4、サージ電圧を抑制するための避雷器5、及びこれらを連結する母線6a〜6fで構成される。それぞれの部分は絶縁物でできたスペーサ7a〜7Lで気密に仕切られている。更に、母線6、避雷器5、ブッシング4の密閉容器内にガス温度が低い場合の加熱手段として電気ヒータ9a〜9iを取り付けてある。
【0033】
このような構成にすれば、母線6、避雷器5、ブッシング4の密閉容器内にCF3I、或いはCF3Iを含む混合物が飽和温度以上になるまで、電気ヒータ9a〜iを運転してガスを暖め、飽和温度以上になった時点で開閉装置本体を運転することが可能となる。
【0034】
上述のような運転方法を行うことにより、CF3I、或いはCF3Iを含む混合物を加熱手段によって加熱して、ガス温度を飽和温度以上に保てば、起動時等のように開閉装置の温度が低いときにも、CF3I或いはCF3Iを含む混合物が液化しないので、絶縁耐力の低下を防ぐことができる。
【0035】
加熱手段は必ずしも、電気ヒータである必要はなく、ガス絶縁開閉装置の母線6、避雷器5、ブッシング4に接して設けられた配管に水蒸気のような高温の流体を流してもよいし、油入り変圧器のタンク内で暖められた油を配管に流して、この配管の熱を利用し、各密閉容器内のCF3I、或いはCF3Iを含む混合物を暖めてもよい。
【0036】
更に、図10に本発明による一実施例を示す。同図に示す管路気中送電線はシース10内に高電圧の加わっている高電圧導体2、ガス区画を形成するためのスペーサ7が設置され、ガス区画間はダクト8で連結されている。端のガス区画はダクト8でガス絶縁変圧器12と繋がっており、ダクト8の途中には送風機11が設けられている。シース10内には絶縁性ガスとしてCF3I、或いはCF3Iを含む混合物が封入してあり、送風機11により絶縁性ガスを循環させるように構成してある。
【0037】
このような構成にすることにより、CF3I、或いはCF3Iを含む混合物をガス絶縁変圧器12からダクト8を通してシース10内に送風機11により送り込むことができる。シース10内は変圧器12内で飽和温度以上になったCF3I、或いはCF3Iを含む混合物が流れることになるので、ガス温度を飽和温度以上に維持することが可能となる。
【0038】
上記実施例で示した運転方法のように、管路気中送電線内のCF3I、或いはCF3Iを含む混合物のガス温度を飽和温度以上に保てば、起動時等のように管路気中送電線の温度が低いときにも、CF3I或いはCF3Iを含む混合物が液化しないので、シース内の絶縁性ガスであるCF3Iが液化し絶縁耐力の低下することはない。
【0039】
図9の電気ヒータ9aを制御部100に接続し、密閉容器内の温度を温度検出器100Xで検出した検出結果により、制御部100で電気ヒータ9aに流す電流値を制御して、CF3Iが液化し絶縁耐力の低下しない温度に制御している。
【0040】
また図10では制御部100のCF3Iが液化し絶縁耐力の低下しない温度に相当する電流値を基準電流値として制御部100に記憶して置き、送風機11を回転させるモータ100yに流れる電流値を基準電流値に成るように常に制御部100で制御し、送風機11から送風量を制御する場合には、必ずしも温度検出器100Xは必要ない。
【0041】
【発明の効果】
本発明によれば、CF3I、或いはCF3Iを含む混合物を絶縁性ガスとして用いるガス絶縁電気機器において、CF3Iの液化が生じなくなり、絶縁耐力の低下が防止できる結果、地球温暖化係数がCO2より小さく、電気絶縁性に優れ、不燃性で、毒性がほとんど無く、尚且つオゾン破壊を少なくして自然環境を良好に出来る。
【0042】
また密閉容器の一部に加熱手段を設けてCF3Iが液化しない温度にしているから、CF3Iの絶縁耐力の低下を防止することが出来る。
【図面の簡単な説明】
【図1】本発明の一実施例を示すガス絶縁開閉装置の断面図である。
【図2】CF3IとSF6のAC破壊電圧の測定結果を示す特性図である。
【図3】CF3Iを絶縁冷却媒体とするガス絶縁開閉装置における運転範囲を示す特性図である。
【図4】CF3Iを絶縁冷却媒体とするガス絶縁開閉装置の実施例における運転範囲を示す特性図である。
【図5】CF3I、或いはCF3Iを含む混合物を絶縁冷却媒体とするガス絶縁開閉装置の実施例における運転範囲を示す特性図である。
【図6】本発明の別の実施例を示すガス絶縁開閉装置の断面図である。
【図7】本発明の別の実施例を示すガス絶縁開閉装置の断面図である。
【図8】本発明の一実施例を示すガス絶縁変圧器に接続されるリードダクトの断面図である。
【図9】本発明の一実施例を示す加熱手段を備えたガス絶縁開閉装置の断面図である。
【図10】本発明の一実施例を示す管路気中送電線の断面図である。
【符号の説明】
1…遮断器、2…高圧導体、3…断路器、4…ブッシング、5…避雷器、6…母線、7…スペーサ、8…ダクト、9…電気ヒータ、10…シース、11…送風機、12…ガス絶縁変圧器、13…バルブ、14…リードダクト、15…タップ切換器、16…タップリード線、17…中性点リード線、18…二次リード線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-insulated electric device having an electric device insulated with an insulating gas.
[0002]
[Prior art]
In recent years, circuit breakers, disconnectors, busbars, and bushings in substations are composed of a gas-insulated switchgear that is formed of a sealed metal container and insulated by SF 6 gas enclosed in the container. However, recent research has revealed that SF 6 is a gas with an extremely large global warming potential, and a reduction in the amount of SF 6 used is required on a global scale. In addition, as a technique using an electrically insulating gas for an electric device, JP-A-60-13414, JP-A-60-20405, JP-A-60-20406, JP-A-2-204907 are listed. be able to.
[0003]
[Problems to be solved by the invention]
CF 3 I is a gas that has a global warming potential smaller than CO 2 , an ozone depletion potential of 0, nonflammable, and extremely low toxicity. However, since CF 3 I has a higher saturation temperature than SF 6 , liquefaction may occur at low temperatures when used in a gas insulated switchgear. When CF 3 I is liquefied in the gas insulated switchgear, the dielectric strength is drastically reduced, and there is a risk of causing dielectric breakdown.
[0004]
It is an object of the present invention to prevent a decrease in dielectric strength without being liquefied during operation of a gas insulated switchgear when CF 3 I is used as an electrically insulating gas having a global warming potential smaller than that of SF 6 gas. Thus, an object of the present invention is to provide a gas-insulated electrical apparatus that can ensure excellent electrical insulation without causing dielectric breakdown, is nonflammable, has almost no toxicity, and has an ozone depletion coefficient of zero.
[0005]
[Means for Solving the Problems]
FIG. 2 shows an AC breakdown voltage as an example of the dielectric strength of CF 3 I. In this figure, the horizontal axis indicates the gas pressure (MPa), and the AC breakdown voltage (based on SF 6 0.1 MPa) at that time is indicated on the vertical axis. As is apparent from the figure, the electrical insulation of CF 3 I is equal to or higher than that of SF 6 in the gas state. In addition, chemical stability is easily decomposed by light, but it is not a problem in practical use because it is enclosed in a sealed container in a bus bar, a lightning arrester, or a bushing of a gas insulated switchgear.
[0006]
FIG. 3 shows a gas-insulated switchgear as an example. The operating line of the rated operating condition is 60 ° C. and the pressure is 0.568 MPa. The horizontal axis indicates the gas temperature t (° C.) and the vertical axis indicates the gas pressure P (MPa). Show. The relationship between the saturation pressure of CF 3 I and the temperature is as shown in FIG. 3, and liquefies when the gas pressure of CF 3 I exceeds the vapor pressure curve. When CF 3 I is confined in a sealed space such as a bus bar, lightning arrester, or bushing of a gas insulated switchgear, the density (specific weight) remains constant even when the temperature changes in a gas state above the saturation temperature. CF 3 I is not liquefied.
[0007]
However, CF 3 I has a boiling point (saturation temperature at atmospheric pressure) of −22.5 ° C., and the saturation temperature is higher than that of SF 6. It is conceivable that the gas temperature in the device's bus bar, lightning arrester, and bushing sealed container is equal to the saturation temperature. In this case, when the gas temperature in the sealed container decreases, liquefaction begins to intersect with the vapor pressure curve shown in FIG. 3, deviates from a constant density state, changes to the temperature and pressure along the vapor pressure curve, and the pressure rapidly increases. descend. Since the density (specific weight) of the gas is proportional to the pressure if the temperature is the same, the density (specific weight) of the gas also rapidly decreases.
[0008]
There is a relation of V BD .∝γ 0.9 between the AC breakdown voltage V BD, which is an example of dielectric strength, and the gas density (specific weight) γ, so the AC breakdown voltage V BD also decreases rapidly. To do. Therefore, if liquefaction occurs in CF 3 I within the range of use of the gas insulated switchgear, the dielectric strength is drastically reduced and there is a risk of dielectric breakdown. This point needs to be considered.
[0009]
Therefore, in order to achieve the above object, in the present invention, when operating using CF 3 I as an insulating cooling medium, CF 3 I is always kept in a gaseous state when the apparatus is in an operating state. It is characterized by.
[0010]
Specifically, the saturation pressure of CF 3 I at the minimum temperature t min ° C that guarantees the operation of the gas insulated switchgear using CF 3 I as the insulating gas is P min MPa, and the CF 3 in the gas insulated switchgear When the relationship between the gas temperature t ° C. of I and the gas pressure PMP is P ≧ (P min / (t min +273.15)) · (t + 273.15), the gas temperature is the CF 3 I in the gas insulated switchgear. It is expressed using specific weight (density) γ and gas constant R.
[0011]
P = γR (t + 273.15) and the temperature at the intersection of the vapor pressure curves of CF 3 I are set to be equal to or higher.
[0012]
Further, the saturation pressure of CF 3 I at the minimum temperature t min ° C for guaranteeing the operation of the gas insulated switchgear using a mixture containing CF 3 I as the insulating gas is P min MPa, and the CF 3 in the gas insulated switchgear is When the relationship between the gas temperature t ° C of I and the gas partial pressure P CF3I MPa is P CF3I ≧ (P min / (t min +273.15)) · (t + 273.15), the gas temperature is changed in the gas insulated switchgear. It is expressed using the specific weight (density) γ of CF 3 I and the gas constant.
[0013]
P CF3I = γR (t + 273.15) and the temperature at the intersection of the vapor pressure curves of CF 3 I are characterized by being equal to or higher.
[0014]
When a mixture containing CF 3 I is used as an insulating gas, the substance other than CF 3 I is excellent in electrical insulation, nonflammable, non-toxic, and has a global warming potential and ozone depletion potential of 0. In addition, inexpensive N 2 can be preferably used, but rare gases such as helium, neon, argon, and xenon, CO 2 , and other general-purpose substances can be used. Moreover, it is excellent in electrical insulation when used in combination with SF 6 , C 2 F 6 , C 4 F 8, etc., but the use amount of these substances having a large global warming potential can be reduced.
[0015]
That is, in such a method of operating a gas insulated electrical device, the gas temperature of CF 3 I in the gas insulated electrical device is equal to the gas pressure of CF 3 I in the gas insulated electrical device even at the minimum operating temperature of the gas insulated electrical device. Alternatively, CF 3 I is not liquefied because it is maintained at a temperature equal to or higher than the saturation temperature at the gas partial pressure. For this reason, the density (specific weight) of CF 3 I at the gas temperature in the operating range is constant, and a decrease in the dielectric strength represented by the AC breakdown voltage is prevented, and excellent electrical insulation can be ensured.
[0016]
That is, by using CF 3 I or a mixture containing CF 3 I as an insulating gas, it has excellent electrical insulation, is non-flammable, has almost no toxicity, has a global warming potential smaller than CO 2 , and has an ozone depletion potential. It can be used as zero gas-insulated electrical equipment.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows an example of a method for operating a gas insulated switchgear when CF 3 I is used as the insulating gas of the gas insulated switchgear, and CF 3 I at the minimum temperature t min ° C that guarantees the operation of the switchgear. a saturation pressure of P min MPa, relationship P ≧ the gas temperature t ° C. and the gas pressure PMPa of CF 3 I in switchgear (P min / (t min +273.15 )) · (t + 273.15) ( This is the absolute temperature: T min, if T (K), expressed as P ≧ (P min / T min ) · T degrees Fahrenheit:. t Fmin, if t F (1 ° R), This is a case where P ≧ (P min / (t Fmin +459.67)) · (t F +459.67)).
[0018]
In this case, CF 3 I is liquefied when the temperature of the CF 3 I in the switchgear is low, such as during startup, when the temperature is low. The structure of the gas insulated switchgear for preventing this is shown in FIG.
[0019]
As shown in FIG. 6, the gas-insulated switchgear introduces a circuit breaker 1 that cuts off current, disconnectors 3 a to 3 c that electrically disconnect high voltage conductors 2 a to 2 c to which high voltage is applied, and a high voltage from a transmission line. The bushing 4 insulated with the gas to be operated, the lightning arrester 5 for suppressing the surge voltage, and the buses 6a to 6g connecting them. Each part is delimited by spacers 7a to 7l made of an insulator. The gas insulated switchgear is connected to the gas insulated transformer 12 by ducts 8a and 8b.
[0020]
Moreover, the circuit breaker 1, the disconnector 3, the bus-line 6, the lightning arrester 5, and the bushing 4 are connected by ducts 8c to 8L. Valves 13 a to 13 L are provided in a duct 8 that connects the circuit breaker 1, the disconnector 3, the bus 6, the lightning arrester 5, the bushing 4, and the gas insulating transformer 12. The circuit breaker 1, the disconnector 3, the bushing 4, the lightning arrester 5, the hermetic container of the bus 6 and the gas insulating transformer 12 are filled with CF 3 I which is an insulating gas. A blower 11 is provided in the middle of the duct 8a.
[0021]
With such a configuration, CF 3 I, which is an insulating gas filled in the gas insulated transformer 12, the circuit breaker 1, the disconnector 3, the bus 6, the lightning arrester 5, and the bushing 4, is blower. 11 can be used to circulate. For this reason, CF 3 I heated above the saturation temperature by the transformer 12 always flows in the sealed containers of the circuit breaker 1, the disconnector 3, the bus 6, the lightning arrester 5, and the bushing 4.
[0022]
As shown in FIG. 4, assuming that the gas temperature of CF 3 I as the rated load condition of the switchgear is t f ° C, the gas pressure is P f MPa, the specific weight (density) is γkg / m 3 , and the gas constant is R. , CF 3 I in the gas state is P = (P f / (t f +273.15)) · (t + 273.15) = γR (t + 273.15) (this is absolute temperature: T f , T (K) Then, P = (P f / T f ) · T = γRT If Fahrenheit temperature: t F , f , t F (oR), then P = (P f / (t F , f +459) .67)) · (t F +459.67) = γR (t F +459.67))), the gas temperature t ° C. and the gas pressure PMPa on the operation line are maintained.
[0023]
Since the gas temperature of CF 3 I is maintained so as to be equal to or higher than the temperature at the intersection of this straight line and the CF 3 I vapor pressure curve, even when the temperature is low and the switchgear is not warmed at the time of startup or the like, the CF Since no liquefaction of 3 I occurs, it is possible to prevent a decrease in dielectric strength.
[0024]
FIG. 5 shows an example of the operation method of the gas insulated switchgear when a mixture containing CF 3 I is used as the insulating cooling medium of the gas insulated switchgear, and the minimum temperature t min that guarantees the operation of the gas insulated switchgear. The saturation pressure of CF 3 I at 0 ° C. is P min MPa, and the relationship between the gas temperature t ° C. of CF 3 I in the switchgear and the gas partial pressure P CF3I MPa is P CF3I ≧ (P min / (t min +273.15 )) · (T + 273.15) (This is expressed as P CF3I ≧ (P min / T min ) · T if absolute temperature: T min , T (K). Fahrenheit temperature: tF min , tF if (oR), the case of P CF3I ≧., denoted (P min / (tF min +459.67 )) · (tF + 459.67)).
[0025]
For CF 3 mixture of I with other substances, CF 3 liquefaction I may be evaluated at a partial pressure of CF 3 I, CF 3 I gas temperature t f ° C. rated load condition of the switchgear, gas partial pressure Is P f , CF 3 I MPa, the specific weight (density) is γkg / m 3 , and the gas constant is R, P CF3I = (P f , CF 3I / (t f +273.15)) · (t + 273.15) = ΓR (t + 273.15) (This is expressed as P CF3I = (P f , CF 3I / T f ) · T = γRT, where absolute temperature is T f , T (K). Fahrenheit temperature: t F , F , t F (oR), P CF3I = (P f , CF 3I / (t F , f +459.67)) · (t F +459.67) = γR (t F +45.9.67) )
If the gas temperature is raised so that it is equal to or higher than the intersection of the vapor pressure curves of CF 3 I and CF 3 I, and the gas temperature of the mixture containing CF 3 I is kept above the saturation temperature, the switchgear Since the mixture containing CF 3 I is not liquefied even when the temperature is low, it is possible to prevent a decrease in dielectric strength.
[0026]
In the gas insulated switchgear, the circuit breaker 1 is a device that interrupts an electric circuit through which a large current flows in the event of an accident, but an arc is generated in the sealed container of the circuit breaker 1 at this time. If CF 3 I, which is an insulating gas in the sealed container, is decomposed by arc light or high temperature, there is a possibility that sufficient dielectric strength and interruption performance cannot be ensured. In this case, as in the embodiment of FIG. 7, the circuit breaker 1 is filled with SF 6 or the like that is not easily disassembled when an arc is generated and has excellent dielectric strength and interruption performance, and the other disconnectors 3 and bus 6 are sealed. CF 3 I, which is an insulating gas, may be sealed in the container.
[0027]
In addition, only a small current flows in the disconnector 3 that disconnects the electric circuit for periodic inspections, etc., but when the dielectric strength and interrupting performance of CF 3 I in the sealed container of the disconnector 3 are reduced due to the occurrence of an arc, As shown in Fig. 1, only CF 3 I is used as an insulating gas in the sealed container of the bus bar 6, the lightning arrester 5 and the bushing 4 other than the switch that mechanically turns on and off the electric circuit such as the circuit breaker 1 and the disconnect circuit 3 SF 6 may be used for the device 1 and the disconnector 3.
[0028]
In the case of an oil-filled transformer, the oil warmed in the tank is passed through the duct 8 or the duct 8 is brought into contact with the oil-warmed tank, and the duct 8 is sealed in each of the bus 6, the lightning arrester 5, the bushing 4, etc. If the air blower 11 is installed in the middle of the duct 8 connected to the container, CF 3 I or CF 3 I in each hermetic container such as the bus 6, the lightning arrester 5, and the bushing 4 connected by the duct 8. By circulating the mixture containing the oil by the blower 11, the heat of the oil warmed in the tank of the oil-filled transformer can be utilized to warm the CF 3 I.
[0029]
FIG. 8 shows another embodiment of the present invention. In the figure, a tap lead wire 16, a neutral lead wire 17, and a secondary lead wire 18 that connect the gas insulating transformers 12 a to 12 c and the tap changer 15 are routed in the lead duct 14. The connection between the gas insulating transformer 12 and the lead duct 14 is airtightly partitioned by spacers 7a to 7f made of an insulating material. The gas insulation transformer 12 and the lead duct 14 are communicated with each other by ducts 8a to 8L, and valves 13a to 13f and blowers 11a to 11f are installed on the way. Mixture containing CF 3 I, or CF 3 I is enclosed in lead duct 14.
[0030]
With such a configuration, CF 3 I which is an insulating cooling medium used in the gas-insulated transformer 12 or a mixture containing CF 3 I is circulated in the lead duct 14 through the duct 8 by the blower 11. be able to. Since the CF 3 I in the lead duct 14 or the mixture containing CF 3 I is supplied with a gas having a saturation temperature or higher in the gas-insulated transformer 12, the gas temperature must be maintained at or higher than the saturation temperature. Is possible.
[0031]
If the gas temperature of the CF 3 I or the mixture containing CF 3 I in the lead duct is maintained at a saturation temperature or higher by performing such an operation method, the temperature of the lead duct is low, such as at startup. In addition, since CF 3 I or a mixture containing CF 3 I is not liquefied, a decrease in dielectric strength can be prevented.
[0032]
FIG. 9 shows another embodiment according to the present invention. In this figure, the gas-insulated switchgear is a circuit breaker 1 that cuts off current, disconnectors 3a to 3c that electrically disconnect high voltage conductors 2a to 2c to which high voltage is applied, and gas that introduces high voltage from a transmission line. It comprises an insulated bushing 4, a lightning arrester 5 for suppressing a surge voltage, and buses 6a to 6f connecting them. Each part is airtightly partitioned by spacers 7a to 7L made of an insulating material. Furthermore, electric heaters 9a to 9i are attached as heating means when the gas temperature is low in the sealed container of the bus bar 6, the lightning arrester 5, and the bushing 4.
[0033]
With such a configuration, bus 6, arrester 5, CF 3 I in the sealed container of the bushing 4, or until the mixture comprising CF 3 I is equal to or higher than the saturation temperature, and driving an electric heater 9a~i gas It becomes possible to operate the switchgear main body when the temperature becomes equal to or higher than the saturation temperature.
[0034]
By performing the operation method described above, is heated by CF 3 I, or mixtures heating means comprising CF 3 I, Keeping the gas temperature above the saturation temperature, the switchgear as such startup Even when the temperature is low, CF 3 I or a mixture containing CF 3 I is not liquefied, so that a decrease in dielectric strength can be prevented.
[0035]
The heating means does not necessarily need to be an electric heater, and a high-temperature fluid such as water vapor may flow through a pipe provided in contact with the bus bar 6, the lightning arrester 5, and the bushing 4 of the gas-insulated switchgear. flowing a warmed by the tank of the transformer oil pipe, utilizing the heat of the pipe, CF 3 I, or may be warmed mixture containing CF 3 I in the closed vessel.
[0036]
FIG. 10 shows an embodiment according to the present invention. The pipeline air transmission line shown in the figure is provided with a high voltage conductor 2 to which a high voltage is applied in a sheath 10 and a spacer 7 for forming a gas compartment, and the gas compartments are connected by a duct 8. . The gas section at the end is connected to a gas insulating transformer 12 by a duct 8, and a blower 11 is provided in the middle of the duct 8. The sheath 10 inside Yes encapsulated mixtures comprising CF 3 I, or CF 3 I as the insulating gas, and are configured to circulate the insulating gas by the blower 11.
[0037]
With such a configuration, CF 3 I or a mixture containing CF 3 I can be sent from the gas insulating transformer 12 through the duct 8 into the sheath 10 by the blower 11. Since CF 3 I or a mixture containing CF 3 I that has reached the saturation temperature in the transformer 12 flows in the sheath 10, the gas temperature can be maintained at or above the saturation temperature.
[0038]
As driving methods shown in the above embodiment, CF 3 I in in the transmission line Kanroki or Keeping the temperature of the gas mixture containing CF 3 I above the saturation temperature, the tube as such startup Even when the temperature of the road-side power transmission line is low, CF 3 I or a mixture containing CF 3 I is not liquefied, so that CF 3 I, which is an insulating gas in the sheath, does not liquefy and the dielectric strength does not decrease. .
[0039]
Connect the electric heater 9a in Figure 9 to the control unit 100, the detection result detected by the temperature detector 100X the temperature of the sealed container, by controlling the value of the current flowing to the electric heater 9a in the control unit 100, CF 3 I Is controlled to a temperature at which liquefaction does not decrease and the dielectric strength decreases.
[0040]
In FIG. 10, the current value corresponding to the temperature at which CF 3 I of the control unit 100 is liquefied and the dielectric strength does not decrease is stored in the control unit 100 as a reference current value, and the current value flowing through the motor 100 y that rotates the blower 11 Is always controlled by the control unit 100 so as to become the reference current value, and the air flow rate from the blower 11 is controlled, the temperature detector 100X is not necessarily required.
[0041]
【The invention's effect】
According to the present invention, CF 3 I or a mixture containing CF 3 I is used as an insulating gas in a gas-insulated electrical apparatus. CF 3 I is not liquefied, and a decrease in dielectric strength can be prevented. The coefficient is smaller than CO 2 , excellent electrical insulation, non-flammability, almost no toxicity, and can reduce the ozone destruction and improve the natural environment.
[0042]
In addition, since a heating means is provided in a part of the sealed container so that the CF 3 I is not liquefied, a decrease in the dielectric strength of the CF 3 I can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a gas insulated switchgear according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing measurement results of AC breakdown voltage of CF 3 I and SF 6 .
FIG. 3 is a characteristic diagram showing an operating range in a gas insulated switchgear using CF 3 I as an insulating cooling medium.
FIG. 4 is a characteristic diagram showing an operating range in an embodiment of a gas insulated switchgear using CF 3 I as an insulating cooling medium.
5 is a characteristic diagram showing the operating range in the embodiment of the CF 3 I, or a gas insulated switchgear according to the mixture insulating cooling medium containing CF 3 I.
FIG. 6 is a sectional view of a gas insulated switchgear showing another embodiment of the present invention.
FIG. 7 is a cross-sectional view of a gas insulated switchgear showing another embodiment of the present invention.
FIG. 8 is a cross-sectional view of a lead duct connected to a gas insulated transformer showing an embodiment of the present invention.
FIG. 9 is a cross-sectional view of a gas insulated switchgear provided with heating means according to an embodiment of the present invention.
FIG. 10 is a cross-sectional view of a pipeline air transmission line showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Circuit breaker, 2 ... High voltage conductor, 3 ... Disconnector, 4 ... Bushing, 5 ... Lightning arrester, 6 ... Busbar, 7 ... Spacer, 8 ... Duct, 9 ... Electric heater, 10 ... Sheath, 11 ... Blower, 12 ... Gas insulation transformer, 13 ... valve, 14 ... lead duct, 15 ... tap changer, 16 ... tap lead, 17 ... neutral lead, 18 ... secondary lead.

Claims (5)

電気導体又は電気導体に接続した電気機器を密閉容器に収納し、密閉容器内に電気絶縁性ガスを封入したガス絶縁電気機器において、上記電気絶縁性ガスにCFIを使用すると共に、CFIが液化しない温度にCFIを暖める加熱手段を密閉容器に設けることを特徴とするガス絶縁電気機器。In a gas insulated electrical device in which an electrical conductor or an electrical device connected to the electrical conductor is housed in a sealed container and an electrically insulating gas is sealed in the sealed container, CF 3 I is used as the electrically insulating gas, and CF 3 A gas-insulated electrical apparatus comprising a sealed container provided with a heating means for warming CF 3 I to a temperature at which I does not liquefy. 前記密閉容器は、電気導体又は電気機器ごとに区分された密閉容器であり、電流遮断時にアークを発生する機器を収納した密閉容器内にはSFガスを封入し、それ以外の機器を収納した密閉容器にはCFIを封入したことを特徴とする請求項1記載のガス絶縁電気機器。The sealed container is a sealed container divided for each electrical conductor or electrical device, and SF 6 gas is enclosed in a sealed container that stores a device that generates an arc when current is interrupted, and other devices are stored. The gas-insulated electrical device according to claim 1, wherein CF 3 I is sealed in the sealed container. 前記加熱手段は、前記密閉容器に設けた電気ヒータであることを特徴とする請求項1又は2記載のガス絶縁電気機器。  The gas insulated electric apparatus according to claim 1 or 2, wherein the heating means is an electric heater provided in the sealed container. 電気導体又は電気導体に接続した電気機器を密閉容器に収納し、密閉容器内に電気絶縁性ガスを封入したガス絶縁電気機器において、前記密閉容器は、変圧器を収納した密閉容器とそれ以外の電気機器を収納した密閉容器とからなり、前記変圧器を収納した密閉容器とそれ以外の電気機器を収納した密閉容器とにそれぞれ前記電気絶縁性ガスとしてCF Iを封入すると共に、前記変圧器の密閉容器とそれ以外の電気機器の密閉容器との間に加熱手段を設け、この加熱手段を前記変圧器の密閉容器からそれ以外の電気機器の密閉容器前記CFIを循環させるダクトとこのダクトに設けた送風機とで構成し、前記変圧器の密閉容器内で暖められたCFIを前記変圧器以外の電気機器の密閉容器に循環させることを特徴とするガス絶縁電気機器。Accommodating electrical equipment connected to the electrical conductors or electrical conductor in a closed container, in a gas insulated electric apparatus enclosing an electrically insulating gas in a sealed container, the sealed container, closed container and other housing the transformers And a sealed container containing the transformer and a sealed container containing the other electrical equipment, each containing CF 3 I as the electrically insulating gas , and the transformer the heating means between the sealed container and the sealed container of the other electrical equipment is provided for, the heating means, a duct for circulating the CF 3 I in a sealed container of the other electrical device from the sealed container of the transformer When the gas, characterized in that circulating constituted by a blower provided in the duct, the CF 3 I warmed in a closed vessel of the transformer in a sealed container of the electrical device other than the transformer Edge electrical equipment. 前記密閉容器内の温度を検出する温度測定手段を設けると共に、この温度測定手段の検出値により前記加熱手段を前記CFIが液化しない温度に制御する制御部を設けることを特徴とする請求項1,2,3又は4記載のガス絶縁電気機器。The temperature measuring means for detecting the temperature in the sealed container is provided, and a controller for controlling the heating means to a temperature at which the CF 3 I is not liquefied by a detection value of the temperature measuring means is provided. 1, 2, 3 or 4 gas-insulated electrical equipment.
JP02169999A 1999-01-29 1999-01-29 Gas insulated electrical equipment Expired - Fee Related JP3983916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02169999A JP3983916B2 (en) 1999-01-29 1999-01-29 Gas insulated electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02169999A JP3983916B2 (en) 1999-01-29 1999-01-29 Gas insulated electrical equipment

Publications (2)

Publication Number Publication Date
JP2000224722A JP2000224722A (en) 2000-08-11
JP3983916B2 true JP3983916B2 (en) 2007-09-26

Family

ID=12062324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02169999A Expired - Fee Related JP3983916B2 (en) 1999-01-29 1999-01-29 Gas insulated electrical equipment

Country Status (1)

Country Link
JP (1) JP3983916B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879936B2 (en) * 2008-06-18 2012-02-22 三菱電機株式会社 Gas filling inspection apparatus and gas leakage inspection method
AP3244A (en) 2009-06-12 2015-05-31 Abb Technology Ag Dielectric insulation medium
DE102009025204C5 (en) 2009-06-17 2013-01-31 Abb Technology Ag Switching device for medium, high or very high voltage with a filling medium
MX2013006751A (en) 2010-12-14 2013-07-17 Abb Technology Ag Dielectric insulation medium.
CN103988382B (en) 2011-12-13 2018-02-16 Abb 技术有限公司 Converter building and operation or the method that converter building is provided
DE112012005201T5 (en) 2011-12-13 2014-09-04 Abb Technology Ag Circuit breaker with fluid injection

Also Published As

Publication number Publication date
JP2000224722A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
KR101433436B1 (en) Dielectric insulation medium
TWI574282B (en) Dielectric insulation medium, use of the dielectric insulation medium, apparatus for the generation and/or transmission and/or distribution and/or usage of electrical energy, and method for dimensioning an apparatus for the generation and/or transmission
CN103597565B (en) Mixture of decafluoro-2-methylbutan-3-one and a vector gas as a medium for the electric insulation and/or quenching of medium-voltage electric arcs
JP4134403B2 (en) Power transmission / distribution equipment
US10714256B2 (en) Electrical device comprising a gas-insulated apparatus, in particular a gas-insulated transformer or reactor
US5661280A (en) Combination of a gas-filled interrupter and oil-filled transformer
JP3983916B2 (en) Gas insulated electrical equipment
Wang et al. Conceptual design of a liquid-nitrogen-insulated metal-enclosed switchgear
US4006332A (en) Convection heating apparatus for multi-phase gas-type circuit interrupters
Harumoto et al. Development of 275 kV EHV class gas-insulated power transformer
JPH0550913U (en) Gas insulated switchgear
EP2677612A1 (en) Gas-insulated electrical apparatus having gas channel system, and method of operating the apparatus
JP2557417B2 (en) Abnormality monitoring method for gas filled electrical equipment
JP2022549723A (en) Gas isolation device with anti-liquefaction means
US1746977A (en) Electrical apparatus
US20230223224A1 (en) Gas-insulated electrical apparatus comprising carbon dioxide, heptafluoroisobutyronitrile and a high content of oxygen
Binnendiljk et al. The prevention and control of internal arcs in medium-voltage switchgear
JP2000069626A (en) Gas-insulated switchgear
WO2024115417A1 (en) Gas-insulated electrical apparatus comprising heptafluoroisobutyronitrile and heptafluoroisopropyl(trifluoromethyl)ketone
Afanasiev et al. Methodical instructions for the course project on the subject:“High Voltage Apparatus
JP2008099398A (en) Neutral point grounding device
JPH01206827A (en) Superconducting current limiter
JPH05336628A (en) Power receiving facility
JPH06233423A (en) Power receiving facility
JPH01117611A (en) Gas insulated switchgear

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees