JP3706226B2 - Intermediate and manufacturing method of ball grid array package - Google Patents

Intermediate and manufacturing method of ball grid array package Download PDF

Info

Publication number
JP3706226B2
JP3706226B2 JP17302297A JP17302297A JP3706226B2 JP 3706226 B2 JP3706226 B2 JP 3706226B2 JP 17302297 A JP17302297 A JP 17302297A JP 17302297 A JP17302297 A JP 17302297A JP 3706226 B2 JP3706226 B2 JP 3706226B2
Authority
JP
Japan
Prior art keywords
substrate
grid array
ball grid
array package
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17302297A
Other languages
Japanese (ja)
Other versions
JPH118334A (en
Inventor
澄夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP17302297A priority Critical patent/JP3706226B2/en
Publication of JPH118334A publication Critical patent/JPH118334A/en
Application granted granted Critical
Publication of JP3706226B2 publication Critical patent/JP3706226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【技術分野】
本発明は,ボールグリッドアレイパッケージを構成する複数の基板ユニットに分割することのできるボールグリッドアレイパッケージ部品製造用の中間体,並びにボールグリッドアレイパッケージの電子部品の製造方法に関する。
【0002】
【従来技術】
ボールグリッドアレイパッケージの電子部品90の基本的な構成は,図4に示すように,基板92に搭載された半導体チップなどの半導体素子91と,プリント配線基板96に接合し且つ電気的に接続するための半田ボール93とを有し,樹脂モールド95で半導体素子91を気密封止したり,絶縁性のキャップを用いて封止したりしている。同図において,符号941はボンディングワイヤー,符号942は基板92に形成された導体回路である。
【0003】
そして,上記ボールグリッドアレイパッケージの電子部品90を製造する手順は,始めに基板92と半導体素子91とをそれぞれ別個の工程で製作し,続いて基板92に素子91を接合すると共にボンディングワイヤー942で基板92と素子91とを接続し,その後,樹脂モールド95で半導体素子91を気密封止し,或いは絶縁性のキャップを用いて封止する。
【0004】
なお,半導体素子の基板92への接続方法としては,フリップチップ方式のようなボンディングワイヤーを使用しない方法もある。
そして,基板92の材料は,例えばアルミナ等のセラミックが多く用いられている。また,プリント配線基板96には,合成樹脂製の基板が多く用いられている。
【0005】
【解決しようとする課題】
しかしながら,上記ボールグリッドアレイパッケージの電子部品90の基板92としてセラミックを用い,合成樹脂製のプリント配線基板96に搭載した場合には,次のような問題点がある。
【0006】
それは,セラミック製の基板92と合成樹脂製のプリント配線基板96との間の熱膨張係数の差により,電子部品90とプリント配線基板96との間に熱応力が働き,半田ボール93にクラック等が発生して接合信頼性を著しく損なうため,ボールグリッドアレイパッケージの大きさ(面積)が制限されることである。
【0007】
大きさが制限される理由は,基板92の面積が大きいほど上記両部間に働く熱応力の大きさも大きくなるからである。その結果,電子部品1個当たりの大きさ(面積)が制限され,ひいては電子部品を搭載するプリントボード及び装置の小型化も妨げられることになる。
例えば,基板92にアルミナを用い,プリント配線基板96の材料としてガラスエポキシ等を用いた場合には,上記ボールグリッドアレイパッケージの大きさは25mm×25mm程度に制限される。
【0008】
また,第2の問題点として,電子部品90を製造する中間段階において,基板92や素子91を運搬したり保管したりする場合に,基板92や素子91が損傷するという問題がある。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたものであり,電子部品と電子部品を搭載する樹脂製のプリント配線板との間の熱応力を軽減して部品を大型化する第1の課題と,製造段階における基板などの損傷を低減することのできる第2の課題とを解決するボールグリッドアレイパッケージ製造用の中間体の提供,並びに上記課題を解決するボールグリッドアレイパッケージの電子部品の製造方法を提供しようとするものである。
【0010】
【課題の解決手段】
本願の第1発明は,ボールグリッドアレイパッケージを構成する複数の基板ユニットに分割することのできるパッケージ製造用の中間体であって,外部接続用の半田ボールを備え単一のボールグリッドアレイパッケージに対応する同一の区画を複数個備えた単一の合成樹脂製の樹脂基板と,素子との接続端子を備え上記樹脂基板の各区画に接合される複数のセラミック基板とを有しており,上記セラミック基板の底面と樹脂基板の上面との間は,導電体により電気的に接続すると共に合成樹脂製のアンダーフィルが充填されており,上記アンダーフィルの熱膨張係数は,上記セラミック基板の熱膨張係数と上記樹脂基板の熱膨張係数の中間の値を有していることを特徴とするボールグリッドアレイパッケージ製造用の中間体にある。
【0011】
本発明において特に注目すべきことの第一点は,中間体を構成する樹脂基板には,半田ボールを備え単一のボールグリッドアレイパッケージを形成する区画が複数個形成されており,上記樹脂基板の各区画にはセラミック基板が接合されていることである。従って,上記樹脂基板を切断し各区画に分割することにより,上記中間体から,単一のボールグリッドアレイパッケージを構成する複数の基板ユニットを得ることができる。そして,上記基板ユニットは,外部接続用の半田ボールを備えた樹脂基板と素子を搭載するセラミック基板とからなる。
【0012】
上記のように,上記中間体は複数の基板ユニットを一体として保持するから,電子部品を製造する中間段階において,基板ユニットを運搬したり保管したりする場合に,取り扱いが容易になると共に,バラバラの基板ユニットで保持する場合に比べて基板ユニットの損傷が生じにくくなり,製品の品質を向上させることができる。
【0013】
本発明において特に注目すべきことの第二点は,上記基板ユニットには,素子を搭載するセラミック基板の他に底面に半田ボールを接合した合成樹脂製の樹脂基板がもう一つ設けられており,かつ上記セラミック基板と樹脂基板との間にアンダーフィルを介設させてあること,そして,上記アンダーフィルの熱膨張係数は,上記セラミック基板の熱膨張係数と上記樹脂基板の熱膨張係数の中間の値を有していることである。
【0014】
その結果,第1の作用効果として,底部に位置する外部との接続用の基板を樹脂基板としたことにより,電子部品が搭載されるプリント配線基板を合成樹脂製の基板とした場合にも,電子部品の底部とプリント配線基板との間に働く熱応力を小さくすることができる。
何故ならば,従来のように電子部品の底部をセラミック基板とした場合に比べて,樹脂製のプリント配線基板とパッケージ底部との間の熱膨張係数の差が少なくなるからである。従って,より面積の大きな大型のボールグリッドアレイパッケージを電子部品用に使用することが可能となり,電子装置の集約度を向上させることができる。
【0015】
また,第2の作用効果として,パッケージの内部においては,セラミック基板と樹脂基板の間に中間的な熱膨張係数のアンダーフィルを介設させてあるため,上記上下の基板間に働く熱応力は分散されて低減することがある。
その結果,上記のようにボールグリッドアレイパッケージの面積を大きくしても,セラミック基板と樹脂基板との間の強度の低下や信頼性の低下などの不具合が生じにくくなる。
【0016】
上記のように,本発明によれば,電子部品と電子部品を搭載する樹脂製のプリント配線板との間の熱応力を軽減して部品を大型化する第1の課題と,製造段階における基板などの損傷を低減することのできる第2の課題とを同時に解決するボールグリッドアレイパッケージ製造用の中間体の提供することができる。
【0017】
なお,複数のユニット(区画)からなる上記中間体は,請求項2に記載のように,更に,セラミック基板に半導体素子を実装し素子シールまたはケーシングを施したものとしてもよい。そして,上記素子付きの中間体を各区画に分割してボールグリッドアレイパッケージ部品の完成体を得る。
【0018】
また,請求項3に記載のように,セラミック基板の底面と樹脂基板の上面とを接続する導電体を半田部材とした場合には,外部接続用の半田ボールは,前記中継用の半田部材よりも融点が低い共晶半田とすることが好ましい。
これによって,ボールグリッドアレイパッケージのプリント配線板への接続時に,外部接続用の半田ボールを介して,中継用の半田が溶融する不具合を防止することができるからである。その結果,ボールグリッドアレイパッケージ部品をプリント配線板へ搭載する時に加熱されても,セラミック基板と樹脂基板の間の半田部材は溶融したりしないので,セラミック基板と樹脂基板の間の剥離やズレ等の問題は起こらなくなる。
【0019】
一方,本願の第2発明は,ボールグリッドアレイパッケージの電子部品の製造方法であって,外部接続用の半田ボールを備えた複数の区画からなる単一の合成樹脂製の樹脂基板を製作する第1の工程と,搭載する素子との接続端子を備えたセラミック基板を製作する第2の工程と,上記樹脂基板の各区画に上記セラミック基板を接合する第3の工程と,樹脂基板へ搭載後の上記セラミック基板に素子を実装しシールまたはケーシングを行う第4の工程と,素子実装後の上記樹脂基板を各区画別に切断する第5の工程とからなり,上記第3工程においては,セラミック基板の底面と樹脂基板の上面との間を導電体により電気的に接続すると共に両面間に合成樹脂製のアンダーフィルを充填して接合し,上記アンダーフィルの熱膨張係数を上記セラミック基板の熱膨張係数と上記樹脂基板の熱膨張係数の中間の値に設定することを特徴とするボールグリッドアレイパッケージの電子部品の製造方法にある。
【0020】
本発明において特に注目すべきことの第一点は,第1工程で製作する樹脂基板には,半田ボールを備え単一のボールグリッドアレイパッケージを形成する区画が複数個形成されており,第3工程において上記樹脂基板の各区画にセラミック基板が接合され,続く第4工程において素子が実装されることである。従って,第5工程において上記樹脂基板を切断し各区画に分割することにより,単一のボールグリッドアレイパッケージを構成する複数のボールグリッドアレイパッケージ部品を得ることができる。
【0021】
上記のように,第3,第4工程での中間体は複数の基板ユニットを一体として保持するから,電子部品を製造する中間段階において,基板ユニットを運搬したり保管したりする場合に,取り扱いが容易になると共に,バラバラの基板ユニットで保持する場合に比べて基板ユニットの損傷が生じにくくなり,製品の品質を向上させることができる。
【0022】
本発明において特に注目すべきことの第二点は,上記基板ユニットには,素子を搭載するセラミック基板の他に底面に半田ボールを接合した合成樹脂製の樹脂基板がもう一つ設けられており,かつ上記セラミック基板と樹脂基板との間にアンダーフィルを介設させてあること,そして,上記アンダーフィルの熱膨張係数は,上記セラミック基板の熱膨張係数と上記樹脂基板の熱膨張係数の中間の値を有していることである。
【0023】
その結果,上記構成から前記第1発明で述べたと同様の第1,第2の作用効果を得ることができる。
従って,本発明によれば,電子部品と電子部品を搭載する樹脂製のプリント配線板との間の熱応力を軽減して部品を大型化する第1の課題と,製造段階における基板などの損傷を低減することのできる第2の課題とを同時に解決するボールグリッドアレイパッケージ部品の製造方法を提供することができる。
【0024】
そして,請求項5に記載のように,セラミック基板の底面と樹脂基板の上面とを接続する導電体を半田部材とした場合には,外部接続用の半田ボールは,前記中継用の半田部材よりも融点が低い共晶半田とすることが好ましい。
これによって,ボールグリッドアレイパッケージのプリント配線板への接続時に,外部接続用の半田ボールを介して,中継用の半田が溶融する不具合を防止することができるからである。
【0025】
【発明の実施の形態】
実施形態例
本例は,図1(e)に示すボールグリッドアレイパッケージの電子部品81の製造方法であって,図2に示すように外部接続用の半田ボール15を備えた複数の区画11からなる単一の合成樹脂製の樹脂基板10を製作する第1の工程と,搭載する半導体素子31との接続端子21を備えた図1(a)に示すセラミック基板20を製作する第2の工程と,図1(b),(c)に示すように樹脂基板10の各区画11(図2,図3)にセラミック基板20を接合する第3の工程と,図1(d)に示すように樹脂基板10へ搭載後のセラミック基板20に半導体素子31を実装する第4の工程と,素子31の実装後の樹脂基板10を各区画11別に切断し,図1(e)に示すように単一のボールグリッドアレイパッケージ部品81を得る第5の工程とからなる。
【0026】
そして,図1(b),(c)に示すように,上記第3工程においては,セラミック基板20の底面と樹脂基板10の上面との間を半田部材25により電気的に接続すると共に両面間に合成樹脂製のアンダーフィル27を充填して接合する。そして,アンダーフィル27の熱膨張係数をセラミック基板20の熱膨張係数と樹脂基板10の熱膨張係数の中間の値に設定する。
【0027】
上記のように,第3工程により製作されたボールグリッドアレイパッケージ部品81製造用の第1の中間体851は,図1(c)に示すように,外部接続用の半田ボール15を備え単一のボールグリッドアレイパッケージに対応する同一の区画11を複数個備えた単一の合成樹脂製の樹脂基板10と,半導体素子31との接続端子21を備え樹脂基板10の各区画11に接合される複数のセラミック基板20とを有している。
【0028】
そして,セラミック基板20の底面と樹脂基板10の上面との間は,半田部材25により電気的に接続すると共に合成樹脂製のアンダーフィル27が充填されている。また,外部接続用の半田ボール15は,上記半田部材25よりも融点が低い共晶半田である。
そして,図1(d),図3に示すように,第4工程終了時における第2中間体852には,半導体素子31が実装されている。
【0029】
以下それぞれについて説明を補足する。
樹脂基板10の本体を形成する合成樹脂はガラスエポキシであり,セラミック基板11との間に充填されるアンダーフィル27の材料はエポキシ樹脂である。
そして,中継用の半田部材25は,融点280℃ぐらいの高融点半田であり,半田ボール15は,中継用の半田部材25よりも融点が低い共晶半田である。
なお図1(d),(e)において,符号32はボンディングワイヤー,符号13は半田部材25と半田ボール15との間を接続するビアホールである。
【0030】
そして,上記ボールグリッドアレイパッケージの電子部品81は,次のような工程により製作される。
始めに図示しない回路パターンとビアホールとを形成したセラミック基板20と,ビアホール13を形成した樹脂基板10とを別個に製作し,図1(b)に示すように,樹脂基板10とセラミック基板20とを中継用の半田部材25で接合する。
【0031】
その後,同図(c)に示すように,樹脂を注入する方法によりアンダーフィル27を両基板10,20の間に形成し,第1の中間体851を得る。その後は,同図(d),図3に示すように,従来と同様の方法により半導体素子31を搭載し,ボンディングワイヤー32で接続し,第2の中間体852を得る。
上記のように素子31を実装した後,素子部全体を樹脂41で封止して樹脂基板10を各区画11別に切断し,図1(e)に示すように単一のボールグリッドアレイパッケージ部品81を得る。
【0032】
本例の電子部品81の製造方法においては,第1工程で製作する樹脂基板10には,半田ボール15を備え単一のボールグリッドアレイパッケージを形成する区画11が複数個形成されており,第3工程において上記樹脂基板10の各区画11にセラミック基板20が接合される。そして,続く第4工程において半導体素子31が実装され,第5工程において上記樹脂基板10を切断し各区画11に分割することにより,単一のボールグリッドアレイパッケージ部品81を得ることができる。
【0033】
上記のように,第3,第4工程で中間体851,852を形成し,そこに最終的に分離独立し単一のボールグリッドアレイパッケージを構成する複数の基板ユニットを一体として保持するから,電子部品81を製造する中間段階において,上記基板ユニットを運搬したり保管したりする場合に,バラバラの基板ユニットで保持する場合に比べて基板ユニットの損傷が生じにくくなり,製品の品質を向上させることができる。
【0034】
また,上記基板ユニットには,素子31を搭載するセラミック基板20の他に底面に半田ボールを接合した外部接続用の樹脂基板10がもう一つ設けられている。また,上記セラミック基板20と樹脂基板10との間にアンダーフィル27を介設させてあり,アンダーフィル27の熱膨張係数は,セラミック基板20の熱膨張係数と樹脂基板10の熱膨張係数の中間の値を有している。
【0035】
その結果,外部接続用の基板10を合成樹脂製としたことにより,電子部品81が搭載されるプリント配線基板を合成樹脂基板とした場合にも,電子部品81の底部とプリント配線基板との間に働く熱応力を小さくすることができる。
樹脂製のプリント配線基板と部品81での接合部(樹脂基板10)との間の熱膨張係数の差が少なくなるからである。従って,より面積の大きな大型のボールグリッドアレイパッケージを電子部品用にに使用することが可能となり,電子装置の集約度を向上させることができる。
【0036】
また,パッケージの内部においては,セラミック基板20と樹脂基板10の間に両者の中間的な熱膨張係数のアンダーフィル27を介設させてあるため,上下の基板10,20に働く熱応力は分散されて低減する。
その結果,上記のようにボールグリッドアレイパッケージの面積を大きくしても,セラミック基板20と樹脂基板10との間の強度の低下や信頼性の低下などの不具合が生じにくくなる。
【0037】
従って,本例によれば,電子部品81と電子部品81を搭載する樹脂製のプリント配線板との間の熱応力を軽減して部品81を大型化する第1の課題と,製造段階における基板10,20の損傷を低減することのできる第2の課題とを同時に解決することのできるボールグリッドアレイパッケージ部品81の製造方法を提供することができる。
【0038】
【発明の効果】
上記のように本発明によれば,電子部品と電子部品を搭載する樹脂製のプリント配線板との間の熱応力を軽減して部品を大型化する第1の課題と,製造段階における基板などの損傷を低減することのできる第2の課題とを同時に解決するボールグリッドアレイパッケージ製造用の中間体,並びに上記課題を解決するボールグリッドアレイパッケージの電子部品の製造方法を得ることができる。
【図面の簡単な説明】
【図1】実施形態例の電子部品の製造方法の第3〜第5工程の流れを示す図。
【図2】図1(d)に示す中間体の区画の構成を示す正面断面図。
【図3】図2の平面図。
【図4】ボールグリッドアレイパッケージの電子部品の一例を示す断面図。
【符号の説明】
10...樹脂基板,
11...半田ボール
20...セラミック基板,
21...接続端子,
25...導電体(半田部材),
27...アンダーフィル,
31...素子,
81...ボールグリッドアレイパッケージ部品,
851,852...中間体,
[0001]
【Technical field】
The present invention relates to an intermediate for manufacturing a ball grid array package component that can be divided into a plurality of substrate units constituting a ball grid array package, and a method for manufacturing an electronic component of the ball grid array package.
[0002]
[Prior art]
As shown in FIG. 4, the basic configuration of the electronic component 90 of the ball grid array package is bonded to and electrically connected to a semiconductor element 91 such as a semiconductor chip mounted on a substrate 92 and a printed wiring board 96. The semiconductor element 91 is hermetically sealed with a resin mold 95 or sealed with an insulating cap. In the figure, reference numeral 941 denotes a bonding wire, and reference numeral 942 denotes a conductor circuit formed on the substrate 92.
[0003]
The procedure for manufacturing the electronic component 90 of the ball grid array package is as follows. First, the substrate 92 and the semiconductor element 91 are manufactured in separate steps, then the element 91 is bonded to the substrate 92 and the bonding wire 942 is used. The substrate 92 and the element 91 are connected, and then the semiconductor element 91 is hermetically sealed with a resin mold 95 or sealed with an insulating cap.
[0004]
As a method for connecting the semiconductor element to the substrate 92, there is a method that does not use a bonding wire such as a flip chip method.
As the material of the substrate 92, for example, a ceramic such as alumina is often used. Further, as the printed wiring board 96, a board made of synthetic resin is often used.
[0005]
[Problems to be solved]
However, when ceramic is used as the substrate 92 of the electronic component 90 of the ball grid array package and mounted on the printed wiring board 96 made of synthetic resin, there are the following problems.
[0006]
This is because a thermal stress acts between the electronic component 90 and the printed wiring board 96 due to a difference in thermal expansion coefficient between the ceramic substrate 92 and the synthetic resin printed wiring board 96, and the solder balls 93 are cracked. Occurs and the bonding reliability is remarkably impaired, so that the size (area) of the ball grid array package is limited.
[0007]
The reason why the size is limited is that the larger the area of the substrate 92, the greater the magnitude of the thermal stress acting between the two parts. As a result, the size (area) per electronic component is limited, and as a result, miniaturization of the printed board and the device on which the electronic component is mounted is hindered.
For example, when alumina is used for the substrate 92 and glass epoxy is used as the material of the printed wiring board 96, the size of the ball grid array package is limited to about 25 mm × 25 mm.
[0008]
Further, as a second problem, there is a problem that the substrate 92 and the element 91 are damaged when the substrate 92 and the element 91 are transported or stored in an intermediate stage of manufacturing the electronic component 90.
[0009]
The present invention has been made in view of such conventional problems, and is a first method for reducing the thermal stress between an electronic component and a resin printed wiring board on which the electronic component is mounted, thereby increasing the size of the component. An intermediate for manufacturing a ball grid array package that solves the problem and the second problem that can reduce damage to a substrate or the like in the manufacturing stage, and an electronic component of the ball grid array package that solves the above problem A manufacturing method is to be provided.
[0010]
[Means for solving problems]
A first invention of the present application is an intermediate for manufacturing a package that can be divided into a plurality of substrate units constituting a ball grid array package, and includes a solder ball for external connection in a single ball grid array package. A resin substrate made of a single synthetic resin having a plurality of corresponding identical sections, and a plurality of ceramic substrates having connection terminals for elements and bonded to the sections of the resin substrate, The bottom surface of the ceramic substrate and the top surface of the resin substrate are electrically connected by a conductor and filled with a synthetic resin underfill. The thermal expansion coefficient of the underfill is the thermal expansion coefficient of the ceramic substrate. It has an intermediate value between the coefficient and the thermal expansion coefficient of the resin substrate.
[0011]
The first point that should be particularly noted in the present invention is that the resin substrate constituting the intermediate body is formed with a plurality of sections having solder balls and forming a single ball grid array package. That is, a ceramic substrate is bonded to each section. Therefore, a plurality of substrate units constituting a single ball grid array package can be obtained from the intermediate body by cutting the resin substrate and dividing it into sections. The substrate unit includes a resin substrate provided with solder balls for external connection and a ceramic substrate on which elements are mounted.
[0012]
As described above, since the intermediate body integrally holds a plurality of board units, when the board unit is transported or stored in an intermediate stage of manufacturing an electronic component, it is easy to handle and separate. Compared with the case of holding the substrate unit, the substrate unit is less likely to be damaged, and the product quality can be improved.
[0013]
The second point that should be particularly noted in the present invention is that the substrate unit is provided with another synthetic resin resin substrate having solder balls bonded to the bottom surface in addition to the ceramic substrate on which the element is mounted. And an underfill is interposed between the ceramic substrate and the resin substrate, and the thermal expansion coefficient of the underfill is intermediate between the thermal expansion coefficient of the ceramic substrate and the thermal expansion coefficient of the resin substrate. Having a value of.
[0014]
As a result, as a first effect, even when the printed wiring board on which the electronic component is mounted is made of a synthetic resin board by using the resin board as the board for connection with the outside located at the bottom, Thermal stress acting between the bottom of the electronic component and the printed wiring board can be reduced.
This is because the difference in coefficient of thermal expansion between the printed wiring board made of resin and the bottom of the package is reduced as compared with the conventional case where the bottom of the electronic component is a ceramic substrate. Therefore, a large ball grid array package having a larger area can be used for electronic components, and the degree of integration of the electronic device can be improved.
[0015]
As a second effect, since an underfill having an intermediate thermal expansion coefficient is interposed between the ceramic substrate and the resin substrate inside the package, the thermal stress acting between the upper and lower substrates is as follows. May be reduced by dispersion.
As a result, even if the area of the ball grid array package is increased as described above, problems such as a decrease in strength and a decrease in reliability between the ceramic substrate and the resin substrate are less likely to occur.
[0016]
As described above, according to the present invention, the first problem of increasing the size of the component by reducing the thermal stress between the electronic component and the resin printed wiring board on which the electronic component is mounted, and the substrate in the manufacturing stage Thus, it is possible to provide an intermediate for manufacturing a ball grid array package that simultaneously solves the second problem that can reduce damage.
[0017]
In addition, the intermediate body composed of a plurality of units (sections) may further include a semiconductor element mounted on a ceramic substrate and an element seal or casing provided thereon as described in claim 2. Then, the intermediate body with the elements is divided into sections to obtain a completed ball grid array package component.
[0018]
Further, when the conductor connecting the bottom surface of the ceramic substrate and the top surface of the resin substrate is a solder member as described in claim 3, the solder balls for external connection are formed from the relay solder member. It is preferable to use eutectic solder having a low melting point.
This is because it is possible to prevent a problem that the relay solder melts via the external connection solder balls when the ball grid array package is connected to the printed wiring board. As a result, the solder member between the ceramic substrate and the resin substrate does not melt even when heated when the ball grid array package component is mounted on the printed wiring board. The problem no longer occurs.
[0019]
On the other hand, the second invention of the present application is a method for manufacturing an electronic component of a ball grid array package, wherein a single synthetic resin resin substrate comprising a plurality of compartments provided with solder balls for external connection is manufactured. A first step, a second step of manufacturing a ceramic substrate having a connection terminal with an element to be mounted, a third step of bonding the ceramic substrate to each section of the resin substrate, and after mounting on the resin substrate A fourth step of mounting an element on the ceramic substrate and sealing or casing, and a fifth step of cutting the resin substrate after the element is mounted in each section. In the third step, the ceramic substrate The bottom surface of the resin and the top surface of the resin substrate are electrically connected by a conductor, and both surfaces are filled with a synthetic resin underfill and bonded together. In a method of manufacturing an electronic component of a ball grid array package, characterized by setting the intermediate value of the thermal expansion coefficient of the electrochromic substrate and the thermal expansion coefficient of the resin substrate.
[0020]
The first point that should be particularly noted in the present invention is that the resin substrate manufactured in the first step is formed with a plurality of sections having solder balls and forming a single ball grid array package. In the process, the ceramic substrate is bonded to each section of the resin substrate, and the element is mounted in the subsequent fourth process. Therefore, a plurality of ball grid array package parts constituting a single ball grid array package can be obtained by cutting the resin substrate and dividing it into sections in the fifth step.
[0021]
As described above, since the intermediate body in the third and fourth steps holds a plurality of board units as a unit, it must be handled when the board unit is transported or stored in an intermediate stage of manufacturing an electronic component. As a result, the substrate unit is less likely to be damaged as compared with the case where the substrate unit is held apart, and the quality of the product can be improved.
[0022]
The second point that should be particularly noted in the present invention is that the substrate unit is provided with another synthetic resin resin substrate having solder balls bonded to the bottom surface in addition to the ceramic substrate on which the element is mounted. And an underfill is interposed between the ceramic substrate and the resin substrate, and the thermal expansion coefficient of the underfill is intermediate between the thermal expansion coefficient of the ceramic substrate and the thermal expansion coefficient of the resin substrate. Having a value of.
[0023]
As a result, the first and second functions and effects similar to those described in the first invention can be obtained from the above configuration.
Therefore, according to the present invention, the first problem of increasing the size of the component by reducing the thermal stress between the electronic component and the resin-made printed wiring board on which the electronic component is mounted, and damage to the substrate or the like in the manufacturing stage It is possible to provide a method of manufacturing a ball grid array package component that can simultaneously solve the second problem that can reduce the above.
[0024]
When the conductor connecting the bottom surface of the ceramic substrate and the top surface of the resin substrate is used as a solder member as described in claim 5, the external connection solder balls are formed by the relay solder member. It is preferable to use eutectic solder having a low melting point.
This is because it is possible to prevent a problem that the relay solder melts via the external connection solder balls when the ball grid array package is connected to the printed wiring board.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment This embodiment is a method of manufacturing the electronic component 81 of the ball grid array package shown in FIG. 1 (e), and includes a plurality of compartments 11 having solder balls 15 for external connection as shown in FIG. A first step of manufacturing the single synthetic resin resin substrate 10 and a second step of manufacturing the ceramic substrate 20 shown in FIG. 1A having the connection terminals 21 to the semiconductor element 31 to be mounted. As shown in FIGS. 1B and 1C, a third step of bonding the ceramic substrate 20 to each section 11 (FIGS. 2 and 3) of the resin substrate 10 and as shown in FIG. A fourth step of mounting the semiconductor element 31 on the ceramic substrate 20 after mounting on the resin substrate 10 and the resin substrate 10 after mounting of the element 31 are cut into individual sections 11 as shown in FIG. Obtain a single ball grid array package part 81 Consisting of a fifth step.
[0026]
Then, as shown in FIGS. 1B and 1C, in the third step, the bottom surface of the ceramic substrate 20 and the top surface of the resin substrate 10 are electrically connected by the solder member 25 and between both surfaces. Are filled with a synthetic resin underfill 27 and bonded together. The thermal expansion coefficient of the underfill 27 is set to an intermediate value between the thermal expansion coefficient of the ceramic substrate 20 and the thermal expansion coefficient of the resin substrate 10.
[0027]
As described above, the first intermediate 851 for manufacturing the ball grid array package component 81 manufactured by the third step includes a solder ball 15 for external connection as shown in FIG. A resin substrate 10 made of a single synthetic resin having a plurality of the same sections 11 corresponding to the ball grid array package and a connection terminal 21 to the semiconductor element 31 are joined to each section 11 of the resin substrate 10. And a plurality of ceramic substrates 20.
[0028]
The bottom surface of the ceramic substrate 20 and the top surface of the resin substrate 10 are electrically connected by a solder member 25 and filled with an underfill 27 made of synthetic resin. The external connection solder balls 15 are eutectic solder having a melting point lower than that of the solder member 25.
Then, as shown in FIGS. 1D and 3, the semiconductor element 31 is mounted on the second intermediate 852 at the end of the fourth step.
[0029]
The following is a supplementary explanation.
The synthetic resin forming the main body of the resin substrate 10 is glass epoxy, and the material of the underfill 27 filled between the ceramic substrate 11 and the ceramic substrate 11 is epoxy resin.
The relay solder member 25 is a high melting point solder having a melting point of about 280 ° C., and the solder balls 15 are eutectic solder having a melting point lower than that of the relay solder member 25.
1D and 1E, reference numeral 32 denotes a bonding wire, and reference numeral 13 denotes a via hole that connects the solder member 25 and the solder ball 15.
[0030]
The electronic component 81 of the ball grid array package is manufactured by the following process.
First, the ceramic substrate 20 on which a circuit pattern and via holes (not shown) are formed and the resin substrate 10 on which the via holes 13 are formed are manufactured separately, and as shown in FIG. Are joined by a solder member 25 for relay.
[0031]
Thereafter, as shown in FIG. 2C, the underfill 27 is formed between the substrates 10 and 20 by a method of injecting resin to obtain a first intermediate 851. Thereafter, as shown in FIG. 3D and FIG. 3, the semiconductor element 31 is mounted by a method similar to the conventional method and connected by the bonding wire 32 to obtain the second intermediate 852.
After the element 31 is mounted as described above, the entire element portion is sealed with the resin 41, and the resin substrate 10 is cut into each section 11, and a single ball grid array package component as shown in FIG. 81 is obtained.
[0032]
In the method of manufacturing the electronic component 81 of the present example, the resin substrate 10 manufactured in the first step is formed with a plurality of sections 11 having solder balls 15 and forming a single ball grid array package. In three steps, the ceramic substrate 20 is bonded to each section 11 of the resin substrate 10. In the subsequent fourth step, the semiconductor element 31 is mounted, and in the fifth step, the resin substrate 10 is cut and divided into the respective sections 11, whereby a single ball grid array package component 81 can be obtained.
[0033]
As described above, the intermediate bodies 851 and 852 are formed in the third and fourth steps, and finally, a plurality of substrate units constituting a single ball grid array package are held together as a unit. In the intermediate stage of manufacturing the electronic component 81, when the board unit is transported or stored, the board unit is less likely to be damaged than when the board unit is held by different board units, and the product quality is improved. be able to.
[0034]
In addition to the ceramic substrate 20 on which the element 31 is mounted, the substrate unit is provided with another resin substrate 10 for external connection in which solder balls are bonded to the bottom surface. An underfill 27 is interposed between the ceramic substrate 20 and the resin substrate 10, and the thermal expansion coefficient of the underfill 27 is intermediate between the thermal expansion coefficient of the ceramic substrate 20 and the thermal expansion coefficient of the resin substrate 10. Has the value of
[0035]
As a result, since the substrate 10 for external connection is made of synthetic resin, even when the printed wiring board on which the electronic component 81 is mounted is made of a synthetic resin board, the gap between the bottom of the electronic component 81 and the printed wiring board can be reduced. The thermal stress acting on can be reduced.
This is because the difference in coefficient of thermal expansion between the resin printed wiring board and the joint portion (resin substrate 10) at the component 81 is reduced. Therefore, a large ball grid array package having a larger area can be used for electronic components, and the degree of integration of electronic devices can be improved.
[0036]
In the package, since an underfill 27 having an intermediate thermal expansion coefficient between the ceramic substrate 20 and the resin substrate 10 is interposed, thermal stress acting on the upper and lower substrates 10 and 20 is dispersed. Has been reduced.
As a result, even if the area of the ball grid array package is increased as described above, problems such as a decrease in strength and a decrease in reliability between the ceramic substrate 20 and the resin substrate 10 are less likely to occur.
[0037]
Therefore, according to this example, the first problem of increasing the size of the component 81 by reducing the thermal stress between the electronic component 81 and the resin printed wiring board on which the electronic component 81 is mounted, and the substrate in the manufacturing stage It is possible to provide a method of manufacturing the ball grid array package component 81 that can simultaneously solve the second problem that can reduce the damages 10 and 20.
[0038]
【The invention's effect】
As described above, according to the present invention, the first problem of increasing the size of the component by reducing the thermal stress between the electronic component and the resin printed wiring board on which the electronic component is mounted, the substrate in the manufacturing stage, etc. It is possible to obtain an intermediate for manufacturing a ball grid array package that can simultaneously solve the second problem that can reduce the damage of the ball grid array, and a method for manufacturing an electronic component of the ball grid array package that solves the above problem.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of third to fifth steps of an electronic component manufacturing method according to an embodiment.
FIG. 2 is a front sectional view showing a configuration of a section of the intermediate shown in FIG.
FIG. 3 is a plan view of FIG. 2;
FIG. 4 is a cross-sectional view showing an example of an electronic component of a ball grid array package.
[Explanation of symbols]
10. . . Resin substrate,
11. . . Solder ball 20. . . Ceramic substrate,
21. . . Connecting terminal,
25. . . Conductor (solder member),
27. . . Underfill,
31. . . element,
81. . . Ball grid array package parts,
851,852. . . Intermediate,

Claims (5)

ボールグリッドアレイパッケージを構成する複数の基板ユニットに分割することのできるパッケージ製造用の中間体であって,
外部接続用の半田ボールを備え単一のボールグリッドアレイパッケージに対応する同一の区画を複数個備えた単一の合成樹脂製の樹脂基板と,素子との接続端子を備え上記樹脂基板の各区画に接合される複数のセラミック基板とを有しており,
上記セラミック基板の底面と樹脂基板の上面との間は,導電体により電気的に接続すると共に合成樹脂製のアンダーフィルが充填されており,上記アンダーフィルの熱膨張係数は,上記セラミック基板の熱膨張係数と上記樹脂基板の熱膨張係数の中間の値を有していることを特徴とするボールグリッドアレイパッケージ製造用の中間体。
An intermediate for manufacturing a package that can be divided into a plurality of substrate units constituting a ball grid array package,
A single synthetic resin resin substrate having a plurality of identical partitions corresponding to a single ball grid array package with solder balls for external connection, and each section of the resin substrate having a connection terminal for the element A plurality of ceramic substrates bonded to each other,
The bottom surface of the ceramic substrate and the top surface of the resin substrate are electrically connected by a conductor and filled with an underfill made of synthetic resin, and the thermal expansion coefficient of the underfill is the thermal expansion coefficient of the ceramic substrate. An intermediate for producing a ball grid array package, having an intermediate value between an expansion coefficient and a thermal expansion coefficient of the resin substrate.
請求項1記載の中間体の前記セラミック基板に半導体素子が実装され素子シールまたはケーシングがなされていることを特徴とするボールグリッドアレイパッケージ製造用の素子付き中間体。2. An intermediate body with an element for manufacturing a ball grid array package, wherein a semiconductor element is mounted on the ceramic substrate of the intermediate body according to claim 1 to form an element seal or a casing. 請求項1または請求項2において,前記セラミック基板の底面と樹脂基板の上面とを接続する導電体は半田部材であり,前記外部接続用の半田ボールは,上記半田部材よりも融点が低い共晶半田であることを特徴とするボールグリッドアレイパッケージ製造用の中間体。3. The eutectic crystal according to claim 1, wherein the conductor connecting the bottom surface of the ceramic substrate and the top surface of the resin substrate is a solder member, and the solder ball for external connection has a lower melting point than the solder member. An intermediate for manufacturing a ball grid array package, characterized by being solder. ボールグリッドアレイパッケージの電子部品の製造方法であって,
外部接続用の半田ボールを備えた複数の区画からなる単一の合成樹脂製の樹脂基板を製作する第1の工程と,搭載する素子との接続端子を備えたセラミック基板を製作する第2の工程と,上記樹脂基板の各区画に上記セラミック基板を接合する第3の工程と,樹脂基板へ搭載後の上記セラミック基板に素子を実装しシールまたはケーシングを行う第4の工程と,素子実装後の上記樹脂基板を各区画別に切断する第5の工程とからなり,
上記第3工程においては,セラミック基板の底面と樹脂基板の上面との間を導電体により電気的に接続すると共に両面間に合成樹脂製のアンダーフィルを充填して接合し,上記アンダーフィルの熱膨張係数を上記セラミック基板の熱膨張係数と上記樹脂基板の熱膨張係数の中間の値に設定することを特徴とするボールグリッドアレイパッケージの電子部品の製造方法。
A method of manufacturing an electronic component of a ball grid array package,
A first step of manufacturing a single synthetic resin resin substrate composed of a plurality of sections having solder balls for external connection, and a second step of manufacturing a ceramic substrate having connection terminals for mounting elements. A process, a third step of bonding the ceramic substrate to each section of the resin substrate, a fourth step of mounting an element on the ceramic substrate after being mounted on the resin substrate, and sealing or casing, and a step after mounting the element A fifth step of cutting the resin substrate of each section separately,
In the third step, the bottom surface of the ceramic substrate and the top surface of the resin substrate are electrically connected by a conductor, and both surfaces are filled with a synthetic resin underfill and bonded to each other. A method of manufacturing an electronic component of a ball grid array package, wherein an expansion coefficient is set to an intermediate value between a thermal expansion coefficient of the ceramic substrate and a thermal expansion coefficient of the resin substrate.
請求項4において,前記セラミック基板の底面と樹脂基板の上面とを接続する導電体は半田部材であり,前記外部接続用の半田ボールは,上記半田部材よりも融点が低い共晶半田であることを特徴とするボールグリッドアレイパッケージの電子部品の製造方法。5. The conductor connecting the bottom surface of the ceramic substrate and the top surface of the resin substrate is a solder member, and the solder ball for external connection is eutectic solder having a melting point lower than that of the solder member. A method for manufacturing an electronic component of a ball grid array package.
JP17302297A 1997-06-13 1997-06-13 Intermediate and manufacturing method of ball grid array package Expired - Lifetime JP3706226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17302297A JP3706226B2 (en) 1997-06-13 1997-06-13 Intermediate and manufacturing method of ball grid array package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17302297A JP3706226B2 (en) 1997-06-13 1997-06-13 Intermediate and manufacturing method of ball grid array package

Publications (2)

Publication Number Publication Date
JPH118334A JPH118334A (en) 1999-01-12
JP3706226B2 true JP3706226B2 (en) 2005-10-12

Family

ID=15952764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17302297A Expired - Lifetime JP3706226B2 (en) 1997-06-13 1997-06-13 Intermediate and manufacturing method of ball grid array package

Country Status (1)

Country Link
JP (1) JP3706226B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0012273A (en) * 1999-07-08 2002-04-02 Sunstar Engineering Inc Underfill material for semiconductor packaging
FR2796497B1 (en) * 1999-07-13 2001-09-07 Thomson Csf Detexis PERFECTED INTERCONNECTION BETWEEN AN ELECTRONIC COMPONENT AND A CARD
US6492715B1 (en) 2000-09-13 2002-12-10 International Business Machines Corporation Integrated semiconductor package
US7604833B2 (en) 2003-08-29 2009-10-20 Koa Corporation Electronic part manufacturing method
JP2007250764A (en) 2006-03-15 2007-09-27 Elpida Memory Inc Semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
JPH118334A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
US8018076B2 (en) Semiconductor device, semiconductor package for use therein, and manufacturing method thereof
US5677575A (en) Semiconductor package having semiconductor chip mounted on board in face-down relation
KR100480515B1 (en) Semiconductor device
US7365439B2 (en) Semiconductor device, semiconductor package for use therein, and manufacturing method thereof
JP2001053178A (en) Electronic component with electronic circuit device sealed and mounted on circuit board, and manufacture of the electronic component
JP2001168131A (en) Thin interconnection structure
JP3706226B2 (en) Intermediate and manufacturing method of ball grid array package
KR100286746B1 (en) Semiconductor devices
EP0659032B1 (en) Electronic component
JP3666576B2 (en) Multilayer module and manufacturing method thereof
JPH11214611A (en) Semiconductor device and its manufacture
JPH10247706A (en) Ball grid array package
JPH07283334A (en) Airtightly sealed electronic parts
JP3309832B2 (en) Connection structure and connection method for electronic components
JP2002118197A (en) Circuit board and semiconductor device using the same as well as its manufacturing method
JP3509532B2 (en) Semiconductor device substrate, semiconductor device, method of manufacturing the same, and electronic device
JP3087721B2 (en) Memory module
US20040021219A1 (en) Method of mounting integrated circuit die in a package using a solder preform having isolatable portions
JPS62281453A (en) Chip carrier module
JP2541586B2 (en) Semiconductor device
JP2002231875A (en) Semiconductor device and method for manufacturing the same
JPH0677284A (en) Semiconductor device
TW202044435A (en) Structure of system in package module and method of packaging system in package module
JPH09232899A (en) Package mount method for electronic element
JPH11145194A (en) Method for mounting flip chip and structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term