JP3706039B2 - Drilling rig - Google Patents

Drilling rig Download PDF

Info

Publication number
JP3706039B2
JP3706039B2 JP2001088604A JP2001088604A JP3706039B2 JP 3706039 B2 JP3706039 B2 JP 3706039B2 JP 2001088604 A JP2001088604 A JP 2001088604A JP 2001088604 A JP2001088604 A JP 2001088604A JP 3706039 B2 JP3706039 B2 JP 3706039B2
Authority
JP
Japan
Prior art keywords
groove
bit
wing
expansion
pivot shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001088604A
Other languages
Japanese (ja)
Other versions
JP2002285778A (en
Inventor
弥八郎 松崎
昂英 松崎
富夫 加藤
秀穂 田中
広希 松田
Original Assignee
有限会社ウエルマン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ウエルマン filed Critical 有限会社ウエルマン
Priority to JP2001088604A priority Critical patent/JP3706039B2/en
Publication of JP2002285778A publication Critical patent/JP2002285778A/en
Application granted granted Critical
Publication of JP3706039B2 publication Critical patent/JP3706039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水井戸,アンカー工事,地辷り防止などで地中に埋設管を埋設する掘削に用いる掘削装置に係わり、特にデバイスの先端に連結孔を形成し、この連結孔内にビット装置の基端に設けた連結軸を回動自在に連結し、前記デバイスに対して前記ビット装置を回動して該ビット装置の穿孔径を拡大する掘削装置に関するものである。
【0002】
【発明が解決しようとする課題】
従来、鋼管などからなる埋設管を埋め込むボーリングにおいては、埋設管の先端に設けたビット装置に衝撃を与え回転しながら掘削を行い、その掘削に伴って前記埋設管を継ぎ足して掘進するようにしており、その埋設管の地中への挿入を容易にするため、前記埋設管より大径な穿孔径のビット装置が使用される。
【0003】
例えば、特許公報第2710192号には、エアーハンマーの衝撃力及び回転力を受けるデバイスの先端に長さ方向の連結孔を成形し、この連結孔内にビット装置の長さ方向基端に設けた連結軸を回動自在に挿入連結し、前記ビット装置に対して前記デバイスを円周方向一側に所定角度回動して該ビット装置の穿孔径を拡大し、前記デバイスの一側方向回転により前記ビット装置を回転しながら穿孔する掘削装置において、前記デバイスに、放射方向に回動自在な複数の拡大翼を枢支した掘削装置が提案されている。この掘削装置では、ビット装置に対してデバイスを前進すると、ビット装置の保持部が拡大翼に当接して該拡大翼が拡大する。これにより、ビット装置の穿孔径が拡大する。
【0004】
この拡大翼の取付構造について説明すると、図13に示すように、拡大翼100を枢支するデバイス101の先端面に円周等間隔で3個所の取付溝102を形成するとともに、デバイス101の外周面から前記取付溝102を貫通する軸孔103を形成している。また、前記拡大翼100の基部に貫通孔104を形成し、取付溝102に拡大翼100の基部を挿入した状態でデバイス101の外側から軸孔103と貫通孔104に軸105を貫通させることによって前記拡大翼100をビット装置の中心に対して、放射方向に回動自在に枢支している。このように、取付溝102と拡大翼100に形成する軸105を貫通させて拡大翼100を枢支する構造においては、軸105の脱落を防止する必要がある。このため、前記軸孔103の一端側に軸105の一端を位置決めする段部106で形成するとともに、軸孔103の他端側に挿入孔108を形成し、この挿入孔108にロックピン107を圧入して前記軸105の他端を係止している。このロックピン107は軸方向に割溝(図示しない)を有し、挿入孔108に挿入した際の弾性復元力によって挿入孔108からの抜けを防止するようにしている。
【0005】
このように従来の掘削装置では、デバイス101に拡大翼100を枢支するために、デバイス101に形成する取付溝102を軸105を挿入する軸孔103を水平方向に貫通形成することから、この軸孔103によって、デバイス101の強度が低下し、拡大翼100の回転時において、この拡大翼100を枢着する軸105に大きな力が加わった際、軸孔103部分から亀裂が生じるなどして耐久性の低下が懸念される。さらに、拡大翼100を枢着する軸105を挿入孔108に挿入したロックピン107によって抜け止めする構成のため、拡大翼100の回転時に軸105に大きな力が加わると、ロックピン107が破損するなどして拡大翼100を枢支する軸105が軸孔103から抜け落ちるといった問題があった。このように、拡大翼100を枢支する軸105が脱落すると、掘削が困難となり、一旦、作業を停止して、拡大翼100の軸105を再度、ロックピン107で枢支するなど、極めて煩雑なメンテナンス作業が必要であり、効率的な掘削作業を行えないという問題もった。
【0006】
また、この種の掘削装置では、図14に示すように、前記デバイス101にエアハンマーに連通する通路(図示せず)が形成され、この通路に連通する圧縮空気路110がビット装置111に形成されている。そして、この圧縮通路110の先端に複数の分岐通路110Aを連通させ、これら各110Aをビット装置111の先端面に開口させている。また、ビット装置111の先端面には前記各分岐通路110Aの先端開口部に臨んで第1の溝部112を放射状に形成し、これら第1の溝部112と連続するように、ビット装置111の胴周面外側に第2の溝部113を縦設するとともに、デバイス101の外周には排出溝114(図13に示す)が形成されている。そして、ビット装置111の先端に開口する分岐通路110Aから圧縮空気を噴射することによって、ビット装置111で掘削した土砂などを第1の溝部112から第2の溝部113に排出し、さらに、デバイス101の排出溝114から地表へと排出するようにしている。
【0007】
ところで、前記ビット装置111の先端部はテーパ面111Aと、このテーパ面と連続する胴周面111Bで構成され、胴周面111Bの先端面に第1の溝部112が形成され、胴周面111Bの外周からテーパ面111Aのかけて第2の溝部113が形成されているが、従来、図14に示すように、この種の掘削装置において、ビット装置111の先端面に形成する第1の溝部112及び第2の溝部113の深さSは比較的浅く形成され、また、ビット装置111の胴周面111Bの長さLと、その胴周面111Bからテーパ面111Aにかけて形成される第2の溝部113の長さL1は比較的長く形成されている。このため、掘削時において、特に、シルト粘土質などの粘性を有する粘土層を掘削する場合、ビット装置111の先端面に形成する第1の溝部112に土砂が詰り易く、また、第2の溝部113の全長L1も長いことから、デバイス101の排出溝114に排出する途中の第2の溝部113の部分においても泥や土砂が詰まり易い。このため、掘削した土砂を効率的に排出することができないという問題があった。
【0008】
そこで本発明は、拡大翼の取付強度を高めてデバイスに対する拡大翼の取付けを長期に渡って安定的に維持できる掘削装置を提供することを目的とし、また、掘削した土砂をスムーズに排出することができる掘削装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明の掘削装置は、衝撃力及び回転力を受けるデバイスの先端に長さ方向の連結孔を形成すると共に、この連結孔にビット装置の基端に設けた連結軸をスライド可能に挿入して前記デバイスの先端に前記ビット装置を前進及び後退可能に設け、前記デバイスの先端に、放射方向に回動可能な複数の拡大翼を枢支し、前記デバイスの前記ビット装置に対する前記後退により前記拡大翼を前記デバイス側に収納する取付溝を前記デバイスに設け、前記デバイスの前記ビット装置に対する前記前進により前記拡大翼を拡大し、埋設管の先端からビット装置の先端及び前記拡大翼を突出して掘削を行う掘削装置において、前記拡大翼の両側から突出する枢着軸を設け、この枢着軸の両端部を枢着する左右一対の係合凹溝を前記取付溝の対向する側壁面に形成するとともに、前記係合凹溝を前記デバイスの内面に開口させ、前記枢着軸の両端部が前記拡大翼の両側面から突出し、この拡大翼から突出する枢着軸の両端部を滑らかな球面部に形成し、この球面部と係合する前記係合凹溝の断面形状をほぼ半円状に形成し、前記拡大翼の枢着軸は、前記デバイスの内面に開口した前記係合凹溝に沿ってスライド自在に保持されると共に、前記拡大翼は、その内側に位置する前記ビット装置により内側への移動が規制され、前記係合凹溝に対して前記枢着軸が抜け止めされているものである。
【0010】
上記構成により、拡大翼の枢着軸を枢支する係合凹溝はデバイスの外面に開口することなく、デバイスの内側に凹設されているから、係合凹溝によってデバイスの強度を低下することはない。これにより、拡大翼の回転時において、この拡大翼を枢着する枢着軸に大きな力が加わったとしても、係合凹溝の部分から亀裂などが発生することもないため、耐久性を高めることができる。また、拡大翼の組み付けは、単に拡大翼に設けた枢着軸をデバイスの内側から係合凹溝に挿入して、係合凹溝に沿わせてスライドさせるだけで簡単に拡大翼を枢支することができるとともに、係合凹溝に枢着軸を嵌め入れた状態でデバイスの内部にビット装置を組み付けることによって、拡大翼はビット装置によって内側への移動が規制され、係合凹溝に対して拡大翼が抜け止め保持される。
【0011】
また、上記構成により、枢着軸と係合凹溝とが滑らかに嵌合し、拡大翼の動きもスムーズである。
【0012】
【発明の実施形態】
以下、本発明の実施例を添付図面を参照して説明する。図1ないし図12は本発明の一実施例を示し、同図に示すように、鋼管などからなる埋設管1の先端には、ビットケーシングパイプ2が溶着され、このケーシングパイプ2は、内側の内周段部3を介して先端に肉厚部4を有している。前記埋設管1内には、エアーハンマー5が挿入され、このエアーハンマー5にはデバイス6基端の筒部7が連結され、この筒部7の外周にはスプライン溝8が一体に形成され、前記エアーハンマー5の縦溝9に前記スプライン溝8が嵌合して該エアーハンマー5の回転が前記デバイス6に伝達されるようになっており、さらに、前記エアーハンマー5は圧縮空気などを動力源とする図示しないハンマーピストンを内蔵し、このハンマーピストンが前記筒部7を殴打して衝撃力を伝達する。前記デバイス6の外周には、デバイス6の軸方向に沿って掘削した土砂などを埋設管1上方に排出する3本の排出溝10が等間隔に縦設されると共に、前記ビットケーシングパイプ2の内周段部3に係合する外周段部11が周設されている。前記デバイス6の先端側には連結孔12が形成され、その連結孔12の内面に臨んで回転伝達ピン13,13が横設され、この回転伝達ピン13,13はデバイス6に上下に並んで穿設した取付孔14,14に着脱自在に固定される。
【0013】
前記連結孔12には、ビット装置15基端の連結軸16が回動かつ上下スライド可能に挿入され、この連結軸16の外周には前記回転伝達ピン13,13に係合し前記ビット装置15を所定角度回転可能とする係合溝17,17が上下に並んで形成されている。この係合溝17,17は、前記回転伝達ピン13が前記連結軸16の外周に沿って略90度回動可能に形成され、その円周方向一側には、回転伝達ピン13を介して、デバイス6の一側方向Rの回転をビット装置15に伝達する伝達係合部たる一側係合面18と、他側方向の回転をビット装置15に伝達する他側係合部たる他側係合面19とが形成され、その係合溝17は、前記伝達ピン13の直径よりやや大きく形成され、かつ先端側の係合溝17の他端側係合面19の上方には、該他側係合面19に連続して、前記回転伝達ピン13に係合し前記ビット装置15を長さ方向に前後及び後退可能な平坦面を有するスライド溝部20が形成されている。
【0014】
前記デバイス6の先端には、図5に示すように、円周等間隔で3箇所の取付溝21がデバイス6の先端面に開口するようにして形成され、この各取付溝21に枢着軸22を介して拡大翼23が枢支されている。前記枢着軸22は前記拡大翼23の基部側に位置して水平方向に貫通し、その枢着軸22の両端が拡大翼23の両側面から突出している。該拡大翼23から突出する枢着軸22の両端部分は滑らかな球面部22Aとなっている。また、前記各取付溝21の対向する両側壁面にはそれぞれ前記枢着軸22を枢支する左右一対の係合凹溝24が形成されている。この係合凹溝24は、前記デバイス6の内面に開口している。また、前記枢着軸22の断面形状は、前記枢着軸22の両端先端部分と嵌合するように半円形状に形成されている。そして、前記拡大翼23に装着した枢着軸22の両端を前記デバイス6の内側から前記係合凹溝24に挿入することによって軸支する。こうして拡大翼23はビット装置15の中心軸に対して、放射方向に回動自在に取付けられている。前記拡大翼23の基端には、該拡大翼23の拡大状態で、前記取付溝21の傾斜した内端面21Aに当接する平坦状の肩面23Aが形成されており、この肩面23Aに連続して前記枢着軸22を中心とした湾曲面25が形成されている。また、前記拡大翼23の先端側には、左右に幅広部26,26が設けられ、この幅広部26,26の左右基端側には、傾斜面27,27がそれぞれ設けられている。前記取付溝21の先端側には、基端側より幅広で前記幅広部26の基端側が収納可能な幅広溝部28が形成されており、この幅広溝部28には、拡大翼23の拡大状態で、前記傾斜面27が当接する受面29が設けられている。
【0015】
さらに、ビット装置15の連結軸16の先端側に縮小状態で前記拡大翼23が沿い前記埋設管1及びビットケーシングパイプ2内を挿通可能となっている。前記ビット装置15の先端にテーパ面32と、このテーパ面32と連続する胴周面32Aとを形成、前記テーパ面32を前記拡大翼23の内側面23Bに当接することによって該拡大翼23を拡大状態で保持する。また、前記拡大翼23及びビット装置15の先端面には超硬合金からなる複数のチップ33が設けられており、前記拡大翼23の先端面は略く字型をなし、その外側中央と内側左右に前記チップ33が設けられ、該拡大翼23の回転方向先端側には、アーク溶接などにより、前記拡大翼23より硬質な硬質肉盛部34が設けられている。
【0016】
前記デバイス6にはエアハンマー5に連通する通路41が形成され、この通路41に連通する圧縮空気路42がビット装置15に形成され、この圧縮通路42の先端に連通する3つの分岐通路42A,42A,42Aが前記ビット装置15の胴周面32Aの先端面に開口している。そして、各分岐通路42Aの開口部に臨んで3本の第1の溝部43,43,43が、前記胴周面32Aの先端面の中心から胴周面32Aの外周縁に向かって放射状に形成されている。また、これら第1の溝部43,43,43と連続するように、胴周面32Aの外周面に第2の溝部45,45,45が円周等間隔に形成され、さらに、この第2の溝部45,45,45に前記デバイス6の外周面に形成する排出溝10が連設されている。なお、本実施例では、ビット装置15の直径Dが137mm、胴周面32Aの長さL、すなわち、ビット装置15の先端面からテーパ面32までの長さはほぼ37mmで、胴周面32Aからテーパ面32にかけて形成される第2の溝部45の長さL1を47mmに設定している。一方、胴周面32Aの先端面に形成する第1の溝部43の深さSと胴周面32Aの外周面に形成する第2の溝部45の深さS1はビット装置15の直径Dの7〜15%、すなわち、ほぼ9.6〜20.5mm、本実施例においては17.5mmとしている。
【0017】
さらに、前記デバイス6には、後向きに圧縮空気を噴射する2の圧縮空気路50が3箇所形成され、この圧縮空気路50は、前記通路41に連通して前記排出溝10の間において前記デバイス6の肩面6Aに開口する。
【0018】
次ぎに上記掘削装置の使用方法につき説明すると、図8に示すように、拡大翼23に枢着軸22を貫通させた後、その枢着軸22の両端をデバイス6の内側から取付溝21に形成する係合凹溝24に挿入する。この後、拡大翼23を係合凹溝24に沿わせてスライドさせることによって、枢着軸22が係合凹溝24の端面に突き当てる。これにより拡大翼23が取付溝21に軸支され、こうして拡大翼23はビット装置15の中心軸に対して、放射方向に回動自在に取付けられている。この時、拡大翼23の枢着軸22は、デバイス6の内側に開口した係合凹溝24に沿ってスライド自在に保持されているに過ぎないが、図2に示すように、取付溝21に拡大翼23を軸支した状態で埋設管1内に挿入したビット装置15を回転伝達ピン13によってスライド溝部20の上端に係止することによって、拡大翼23は、その内側に位置するビット装置15により内側への移動が規制させる。すなわち、ビット装置15はデバイス6に吊り下げられた状態となり、拡大翼23は連結軸16に沿って吊り下げられた状態で埋設管1内を移動可能となる。そしてビット装置15を一側方向Rに回転させ衝撃を加えながら接地すると、ビット装置15の先端のチップ33により掘削が開始され、この掘削によってビット装置15と拡大翼23とがビットケーシングパイプ2の先端より押し出され、接地したビット装置15に対してデバイス6が前進すると、回転伝達ピン13がスライド溝部20の前端に前進する。この前進により連結軸16が連結孔13内を後退し、図4に示すようにビット装置15のテーパ面32が拡大翼23の内側面23Bに当接して該拡大翼23が拡大状態に保持され、かつ拡大翼23の肩面23Aが内端面21Aに当接して位置決めされ、ビット装置15の穿孔径Pが拡大する。同時にデバイス6の回転により回転伝達ピン13,13が係合溝17,17の一側方向Rに回転して一側係合面18,18に係合し、デバイス6の一側方向Rの回転がビット装置15に伝達される。さらにこの状態でデバイス6の外周段部11がビットケーシングパイプ2の内周段部3に当接し、エアーハンマー5からの衝撃がビットケーシングパイプ2へも伝達される。このようにして、拡大翼23を拡大した状態で、例えばビット装置15を1分間に1100回打撃し、かつ1分間に20回転させるとともに、ビット装置15の先端に形成する分岐通路42A,42A,42Aから圧縮空気を噴射して掘削を行う。そして所定深さの掘削が終了したら、デバイス6を他側方向に回転する。この回転により回転伝達ピン13,13がスライド溝部20側に移動し、デバイス6を上方に引き上げると、スライド溝部20に沿って回転伝達ピン13,13が移動し、拡大翼23が縮小しながらビットケーシングパイプ2内に収納され、ビット装置15が埋設管1内を移動可能となって、これを地上に引き上げることができる。
【0019】
このような拡孔する装置を用いて例えば、シルト粘土質などの粘性を高い層を掘削する場合、ビット装置15の先端面に形成する第1の溝部43,43,43及びビット装置15の外周に形成する第2の溝部45,45,45が深さが浅い場合、掘削した粘土が、まず、ビット装置15の先端面に形成する第1の溝部43,43,43の部分で詰ってしまい、いくらビット装置15の先端に形成する分岐通路42A,42A,42Aから圧縮空気を噴射しても、掘削した粘土層を第2の溝部45,45,45側へ排出することが困難である。また、第2の溝部45,45,45の全長、すなわち、ビット装置15の胴周面32Aの長さLが長い場合には、前記ビット装置15の先端面に形成する第1の溝部43,43,43の部分で粘土が詰らなくとも、前記ビット装置15の外周面に形成する第2の溝部45,45,45の部分で詰まってしまい、デバイス6の排出溝10側へと排出することができない。しかし、本実施例では、ビット装置15の先端面に形成する第1の溝部43とビット装置15の胴周面32Aの外周面に形成する第2の溝部45の深さS,S1が17.5mmと深く設定されるとともに、ビット装置15の胴周面32Aの長さLを30〜40mm、本実施例ではほぼ37mmであり、該胴周面32Aからテーパ面32にかけて形成される第2の溝部45の長さL1を47mmと通常の掘削装置に比べて短く形成することによって、これらビット装置15に形成する第1の溝部43及び第2の溝部45の部分での粘土や土砂などの詰りを抑制することができる。このため、ビット装置15に形成する第1の溝部43に開口する分岐通路42A,42A,42Aからの圧縮空気によって、掘削した土砂や粘土を第1の溝部43から第2の溝部45からデバイス6の排出溝10へと確実に排出することができるため、排出溝10からスムーズに地上へと排出することができる。
【0020】
以上のように、本実施例では、拡大翼23に貫通させた枢着軸22を係合凹溝24の取付溝21の両側面に形成した係合凹溝24にスライドさせてデバイス6に拡大翼23を枢支することから、係合凹溝24によってデバイス6の強度を低下する虞れはない。このため、拡大翼23の回転時において、この拡大翼23を枢着する枢着軸22に大きな力が加わったとしても、係合凹溝24の部分から亀裂が発生することもない。また、拡大翼23の組み付けは、単に拡大翼23に装着する枢着軸22を取付溝23に形成する係合凹溝24にデバイス6の内側から挿入して、拡大翼23を係合凹溝24に沿わせて奥側(デバイス6の外方側)にスライドさせるだけで枢着軸22を抜け止めするための、ロックピンなども不要であるため、拡大翼23の組み付け作業も容易である。なお、この状態のままでは、拡大翼23の枢着軸22は係合凹溝24に対して位置決めされていないが、取付溝23に拡大翼23を取り付けた状態で、その拡大翼23の内面側に回転伝達ピン13よってビット装置15を組み付けると、拡大翼23はビット装置15によって内側への移動が規制されるため、係合凹溝24に対して枢着軸22が抜け止めされる。これにより、デバイス6に対して拡大翼23が抜け止め保持される。また、拡大翼23を枢着する枢着軸22の両端に球面部22Aが形成され、これを軸支する係合凹溝24の断面形状を、前記球面部22Aと嵌合するように半円状に形成したことにより、枢着軸22と係合凹溝24とが滑らかに嵌合することから、ビット装置15と連動する拡大翼23の動きもスムーズである。
【0021】
また、本実施例では、ビット装置15の圧縮空気路42に連通する3つの分岐通路42A,42A,42Aを前記ビット装置15の先端面に開口させ、その分岐通路42Aの開口部に臨む3本の第1の溝部43,43,43の深さSと、ビット装置15の胴周面32Aの外周面に形成する第2の溝部45の深さS1をビット装置15の直径Dの7〜15%、ビット装置15の直径が137mmに形成した本実施例においては17.5mmと深く設定するとともに、ビット装置15の胴周面32Aの長さLを30〜40mm、本実施例ではほぼ37mmと短く形成することによって、第1の溝部43,43,43に連通する第2の溝部45,45,45の長さL1を47mmと短く形成することにより、シルト粘土質などの粘性を高い層を掘削する場合であっても、ビット装置15に形成する第1の溝部43及び第2の溝部45の部分で粘土や土砂などが詰りにくいことから、ビット装置15で掘削した粘土や土砂を第1の溝部43から第2の溝部45及びデバイス6の排出溝10に沿ってスムーズに地上へと排出することができる。
【0022】
以上、本発明の一実施例について詳述したが、本発明は前記実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施例は可能である。例えば、ビット装置の先端面に形成する第1、第2の溝部の形状や数なども適宜選定すればよいものである。さらに、本発明の装置は横方向への掘削にも用いることが可能であり、また、エアハンマーも各種のタイプのものを用いることができる。
【0023】
【発明の効果】
請求項1の発明の掘削装置によれば、衝撃力及び回転力を受けるデバイスの先端に長さ方向の連結孔を形成すると共に、この連結孔にビット装置の基端に設けた連結軸をスライド可能に挿入して前記デバイスの先端に前記ビット装置を前進及び後退可能に設け、前記デバイスの先端に、放射方向に回動可能な複数の拡大翼を枢支し、前記デバイスの前記ビット装置に対する前記後退により前記拡大翼を前記デバイス側に収納する取付溝を前記デバイスに設け、前記デバイスの前記ビット装置に対する前記前進により前記拡大翼を拡大し、埋設管の先端からビット装置の先端及び前記拡大翼を突出して掘削を行う掘削装置において、前記拡大翼の両側から突出する枢着軸を設け、この枢着軸の両端部を枢着する左右一対の係合凹溝を前記取付溝の対向する側壁面に形成するとともに、前記係合凹溝を前記デバイスの内面に開口させ、前記枢着軸の両端部が前記拡大翼の両側面から突出し、この拡大翼から突出する枢着軸の両端部を滑らかな球面部に形成し、この球面部と係合する前記係合凹溝の断面形状をほぼ半円状に形成し、前記拡大翼の枢着軸は、前記デバイスの内面に開口した前記係合凹溝に沿ってスライド自在に保持されると共に、前記拡大翼は、その内側に位置する前記ビット装置により内側への移動が規制され、前記係合凹溝に対して前記枢着軸が抜け止めされているものであるから、拡大翼の回転時において、この拡大翼を枢着する枢着軸に大きな力が加わったとしても、係合凹溝の部分から亀裂が発生することもないため、耐久性を高めることができるとともに、拡大翼の組み付け作業を簡略化することができる。また、デバイスに組み付けた拡大翼は、その内側に組み付けたビット装置によって、抜け止めされることから、拡大翼を長期に渡って安定的に枢支することが可能であり、メンテナンス作業も不要である。また、枢着軸と係合凹溝とが滑らかに嵌合し、拡大翼の動きもスムーズである。
【図面の簡単な説明】
【図1】本発明の一実施例を示すデバイスとビット装置の分解斜視図である。
【図2】本発明の一実施例を示す断面図である。
【図3】本発明の一実施例を示す要部の断面図である。
【図4】本発明の一実施例を示す拡大翼を拡大した状態の断面図である。
【図5】本発明の一実施例を示す拡大翼の取付状態を示す要部の断面図である。
【図6】本発明の一実施例を示す拡大翼の平面図である。
【図7】本発明の一実施例を示す拡大翼を先端側から見た正面図である。
【図8】本発明の一実施例を示す拡大翼回りの断面図である。
【図9】本発明の一実施例を示す拡大翼回りの断面図であり、拡大翼を拡大した状態を示す。
【図10】本発明の一実施例を示すビット装置先端側の圧縮空気路を示す示す断面図である。
【図11】本発明の一実施例を示すビット装置の平面図である。
【図12】本発明の一実施例を示すビット装置基端側の圧縮空気路を示す示す断面図である。
【図13】従来例を示す拡大翼の取付状態を示す要部の断面図である。
【図14】従来例を示すビット装置先端側の圧縮空気路を示す示す断面図である。
【符号の説明】
6 デバイス
10 排出溝
12 連結孔
15 ビット装置
16 連結軸
21 取付溝
22 枢着軸
24 枢着溝
22A 球面部
23 拡大翼
24 係合凹溝
32 テーパ面
32A 胴周面
42 圧縮空気路
42A 分岐通路
43 第1の溝部
45 第2の溝部
D ビットの直径
L ビットの胴周面の長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drilling apparatus used for excavation in which buried pipes are buried in the ground for water wells, anchor work, prevention of landslides, etc., and in particular, a connecting hole is formed at the tip of the device, and a bit device of The present invention relates to a drilling device that connects a connecting shaft provided at a base end in a freely rotatable manner, and rotates the bit device with respect to the device to expand a drilling diameter of the bit device.
[0002]
[Problems to be solved by the invention]
Conventionally, in a boring for embedding a buried pipe made of a steel pipe or the like, excavation is carried out while impacting and rotating a bit device provided at the tip of the buried pipe, and the buried pipe is added along with the excavation to advance. In order to facilitate the insertion of the buried pipe into the ground, a bit device having a bore diameter larger than that of the buried pipe is used.
[0003]
For example, in Japanese Patent Publication No. 2710192, a longitudinal connecting hole is formed at the tip of a device that receives the impact force and rotational force of an air hammer, and is provided at the longitudinal base end of the bit device in this connecting hole. A connecting shaft is rotatably inserted and connected, the device is rotated by a predetermined angle in the circumferential direction with respect to the bit device to increase the diameter of the perforation of the bit device, and the device is rotated in one direction. In an excavating apparatus that drills while rotating the bit apparatus, an excavating apparatus in which a plurality of enlarged wings that are rotatable in a radial direction is pivotally supported on the device has been proposed. In this excavator, when the device is advanced with respect to the bit device, the holding portion of the bit device comes into contact with the enlarged blade and the enlarged blade expands. Thereby, the drilling diameter of the bit device is expanded.
[0004]
Referring to FIG. 13, the mounting structure of the expansion blade is described. As shown in FIG. 13, three mounting grooves 102 are formed at equal circumferential intervals on the tip surface of the device 101 that pivotally supports the expansion blade 100. A shaft hole 103 penetrating the mounting groove 102 from the surface is formed. Further, by forming a through hole 104 in the base of the expansion blade 100 and inserting the shaft 105 through the shaft hole 103 and the through hole 104 from the outside of the device 101 in a state where the base of the expansion blade 100 is inserted into the mounting groove 102 The expansion blade 100 is pivotally supported in a radial direction with respect to the center of the bit device. As described above, in the structure in which the shaft 105 formed in the mounting groove 102 and the expanding blade 100 is passed through and the expanding blade 100 is pivotally supported, it is necessary to prevent the shaft 105 from dropping off. For this reason, a step portion 106 for positioning one end of the shaft 105 is formed on one end side of the shaft hole 103, an insertion hole 108 is formed on the other end side of the shaft hole 103, and a lock pin 107 is provided in the insertion hole 108. The other end of the shaft 105 is locked by press-fitting. The lock pin 107 has a dividing groove (not shown) in the axial direction, and prevents the insertion from the insertion hole 108 by an elastic restoring force when the lock pin 107 is inserted into the insertion hole 108.
[0005]
As described above, in the conventional excavator, in order to pivotally support the expansion blade 100 on the device 101, the mounting groove 102 formed in the device 101 is formed by penetrating the shaft hole 103 into which the shaft 105 is inserted in the horizontal direction. The shaft hole 103 reduces the strength of the device 101, and when a large force is applied to the shaft 105 that pivotally attaches the expansion blade 100 during rotation of the expansion blade 100, a crack is generated from the shaft hole 103 portion. There is concern about a decrease in durability. Furthermore, since the shaft 105 that pivotally attaches the expansion wing 100 is prevented from being removed by the lock pin 107 inserted into the insertion hole 108, the lock pin 107 is damaged when a large force is applied to the shaft 105 during the rotation of the expansion wing 100. As a result, there has been a problem that the shaft 105 that pivotally supports the expansion wing 100 falls out of the shaft hole 103. In this way, if the shaft 105 that pivotally supports the expansion blade 100 falls off, excavation becomes difficult, and once the operation is stopped, the shaft 105 of the expansion blade 100 is pivotally supported again by the lock pin 107. such maintenance work is required, was Tsu also Oh problem in that it does not allow to be efficient drilling operations.
[0006]
In this type of excavator, as shown in FIG. 14, a passage (not shown) communicating with the air hammer is formed in the device 101, and a compressed air passage 110 communicating with this passage is formed in the bit device 111. Has been. A plurality of branch passages 110 </ b> A are communicated with the distal end of the compression passage 110, and each of these 110 </ b> A is opened at the distal end surface of the bit device 111. Further, a first groove 112 is formed radially on the front end surface of the bit device 111 so as to face the front end opening of each branch passage 110A, and the body of the bit device 111 is continuous with the first groove 112. A second groove 113 is provided vertically on the outer peripheral surface, and a discharge groove 114 (shown in FIG. 13) is formed on the outer periphery of the device 101. Then, by jetting compressed air from the branch passage 110A opened at the tip of the bit device 111, the earth and sand excavated by the bit device 111 is discharged from the first groove portion 112 to the second groove portion 113, and further, the device 101 It is made to discharge from the discharge groove 114 to the ground surface.
[0007]
By the way, the front end portion of the bit device 111 is composed of a tapered surface 111A and a body peripheral surface 111B continuous with the taper surface, and a first groove 112 is formed on the front end surface of the body peripheral surface 111B. The second groove 113 is formed from the outer periphery to the taper surface 111A. Conventionally, as shown in FIG. 14, in this type of excavator, the first groove formed on the tip surface of the bit device 111 is formed. The depth S of the 112 and the second groove 113 is formed to be relatively shallow, and the length L of the barrel peripheral surface 111B of the bit device 111 and the second length formed from the barrel peripheral surface 111B to the tapered surface 111A. The length L1 of the groove 113 is relatively long. Therefore, when excavating a clay layer having a viscosity such as silt clay during excavation, the first groove 112 formed on the front end surface of the bit device 111 is easily clogged with soil, and the second groove Since the total length L1 of the 113 is also long, mud and earth and sand are easily clogged even in the second groove 113 in the middle of discharging to the discharge groove 114 of the device 101. For this reason, there was a problem that the excavated earth and sand could not be discharged efficiently.
[0008]
Therefore, the present invention has an object to provide a drilling device capable of increasing the mounting strength of the expanding blade and maintaining the mounting of the expanding blade to the device stably over a long period of time, and smoothly discharging the excavated earth and sand. An object of the present invention is to provide a drilling device capable of performing the above.
[0009]
[Means for Solving the Problems]
The excavation apparatus according to the first aspect of the present invention forms a connecting hole in the length direction at the tip of the device that receives impact force and rotational force, and allows the connecting shaft provided at the base end of the bit device to slide in this connecting hole. insert and arranged to be advanced and retracted the bit device on the tip of the device, the tip of the device, is pivotally supported a plurality of expansion vanes pivotable in a radial direction, the backward with respect to the bit unit of said device the expansion blades provided a mounting groove for accommodating the device side to the device, the expansion wings expanded by the advancement against the bit device of the device, bit device from the distal end of the buried pipe tip and the expanded wings by In the excavating apparatus for performing excavation by projecting, a pivot shaft that projects from both sides of the enlarged wing is provided, and a pair of left and right engagement concave grooves that pivot both ends of the pivot shaft are opposed to the mounting groove. That together form the side wall surface, the engaging recessed groove is opened to the inner surface of the device protrudes from both sides of both end portions said expansion wings of said pivot axis, opposite ends of the pivot shaft projecting from the larger wing The engaging concave groove that engages with the spherical surface is formed in a substantially semicircular shape, and the pivot shaft of the expansion wing is opened on the inner surface of the device. The expansion wing is slidably held along the engagement groove, and the inward movement of the expansion wing is restricted by the bit device located inside thereof, and the pivot shaft is attached to the engagement groove. Is something that has been secured.
[0010]
With the above configuration, the engaging groove that pivotally supports the pivot shaft of the expansion wing is recessed inside the device without opening to the outer surface of the device, so that the strength of the device is reduced by the engaging groove. There is nothing. As a result, even when a large force is applied to the pivot shaft that pivotally attaches the enlarged wing during rotation of the enlarged wing, cracks and the like do not occur from the engaging groove, thereby improving durability. be able to. The expansion wing can be assembled simply by inserting the pivot shaft provided on the expansion wing into the engagement groove from the inside of the device and sliding it along the engagement groove. In addition, by assembling the bit device inside the device with the pivot shaft inserted into the engaging groove, the expansion blade is restricted from moving inward by the bit device. On the other hand, the expansion wing is retained and retained.
[0011]
Further, with the above configuration, the pivot shaft and the engaging groove are smoothly fitted, and the movement of the enlarged wing is also smooth.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 12 show an embodiment of the present invention. As shown in FIG. 1 to FIG. 12, a bit casing pipe 2 is welded to the tip of an embedded pipe 1 made of a steel pipe or the like. A thick portion 4 is provided at the tip via the inner peripheral step portion 3. An air hammer 5 is inserted into the buried pipe 1, and a cylindrical portion 7 at the base end of the device 6 is connected to the air hammer 5. A spline groove 8 is integrally formed on the outer periphery of the cylindrical portion 7, The spline groove 8 is fitted into the vertical groove 9 of the air hammer 5 so that the rotation of the air hammer 5 is transmitted to the device 6. Further, the air hammer 5 powers compressed air or the like. A hammer piston (not shown) serving as a source is incorporated, and the hammer piston strikes the cylindrical portion 7 to transmit an impact force. On the outer periphery of the device 6, three discharge grooves 10 for discharging earth and sand excavated along the axial direction of the device 6 to the upper side of the buried pipe 1 are vertically arranged at equal intervals, and the bit casing pipe 2 An outer peripheral step portion 11 that engages with the inner peripheral step portion 3 is provided around. A connecting hole 12 is formed on the distal end side of the device 6, and rotation transmitting pins 13 and 13 are provided horizontally facing the inner surface of the connecting hole 12, and the rotation transmitting pins 13 and 13 are arranged vertically on the device 6. It is detachably fixed to the drilled mounting holes 14,14.
[0013]
A connecting shaft 16 at the base end of the bit device 15 is inserted into the connecting hole 12 so as to be rotatable and vertically slidable. The outer periphery of the connecting shaft 16 is engaged with the rotation transmission pins 13 and 13 to engage the bit device 15. Engaging grooves 17 and 17 are formed so as to be vertically aligned. The engagement grooves 17 and 17 are formed so that the rotation transmission pin 13 can rotate approximately 90 degrees along the outer periphery of the coupling shaft 16, and the rotation transmission pin 13 is interposed on one side in the circumferential direction. The one-side engaging surface 18 that is a transmission engaging portion that transmits the rotation of the device 6 in one side direction R to the bit device 15 and the other side that is the other-side engaging portion that transmits the rotation in the other side direction to the bit device 15 An engagement surface 19 is formed, and the engagement groove 17 is formed slightly larger than the diameter of the transmission pin 13, and above the other end side engagement surface 19 of the engagement groove 17 on the distal end side, Continuing from the other side engagement surface 19, a slide groove portion 20 having a flat surface that engages with the rotation transmission pin 13 and can retract the bit device 15 back and forth in the length direction is formed.
[0014]
As shown in FIG. 5, three mounting grooves 21 are formed at the front end of the device 6 at equal circumferential intervals so as to open on the front end surface of the device 6. An enlarged wing 23 is pivotally supported via 22. The pivot shaft 22 is located on the base side of the expansion wing 23 and penetrates in the horizontal direction. Both ends of the pivot shaft 22 protrude from both side surfaces of the expansion wing 23. Both end portions of the pivot shaft 22 projecting from the enlarged wing 23 are smooth spherical portions 22A. In addition, a pair of left and right engaging concave grooves 24 that pivotally support the pivot shaft 22 are formed on opposite side wall surfaces of the mounting grooves 21, respectively. The engaging groove 24 is open on the inner surface of the device 6. Further, the cross-sectional shape of the pivot shaft 22 is formed in a semicircular shape so as to be fitted to both end portions of the pivot shaft 22. Then, both ends of the pivot shaft 22 attached to the expansion wing 23 are pivotally supported by being inserted into the engaging groove 24 from the inside of the device 6. In this way, the expansion blade 23 is attached to the central axis of the bit device 15 so as to be rotatable in the radial direction. A flat shoulder surface 23A that abuts against the inclined inner end surface 21A of the mounting groove 21 in the expanded state of the expansion blade 23 is formed at the base end of the expansion blade 23, and is continuous with the shoulder surface 23A. Thus, a curved surface 25 around the pivot shaft 22 is formed. In addition, wide portions 26 and 26 are provided on the left and right sides of the distal end side of the expansion wing 23, and inclined surfaces 27 and 27 are provided on the left and right proximal ends of the wide portions 26 and 26, respectively. A wide groove portion 28 is formed on the distal end side of the mounting groove 21 so as to be wider than the proximal end side and can be accommodated in the proximal end side of the wide portion 26. In the wide groove portion 28, the expanded blade 23 is in an enlarged state. A receiving surface 29 with which the inclined surface 27 abuts is provided.
[0015]
Further, the expanding blade 23 can be inserted into the buried pipe 1 and the bit casing pipe 2 in a reduced state on the distal end side of the connecting shaft 16 of the bit device 15. A tapered surface 32 and a circumferential surface 32A continuous with the tapered surface 32 are formed at the tip of the bit device 15, and the enlarged blade 23 is formed by contacting the tapered surface 32 with the inner surface 23B of the enlarged blade 23. Hold in an expanded state. Further, a plurality of tips 33 made of cemented carbide are provided on the tip surfaces of the expanding blade 23 and the bit device 15, and the tip surface of the expanding blade 23 has a substantially square shape, and the outer center and inner side thereof The tip 33 is provided on the left and right, and a hard-facing portion 34 that is harder than the enlargement blade 23 is provided on the distal end side in the rotation direction of the enlargement blade 23 by arc welding or the like.
[0016]
In the device 6, a passage 41 communicating with the air hammer 5 is formed, and a compressed air passage 42 communicating with the passage 41 is formed in the bit device 15, and three branch passages 42A, 42A and 42A are opened in the front end surface of the body peripheral surface 32A of the bit device 15. Then, three first groove portions 43, 43, 43 facing the opening of each branch passage 42A are formed radially from the center of the front end surface of the trunk peripheral surface 32A toward the outer peripheral edge of the trunk peripheral surface 32A. Has been. In addition, second groove portions 45, 45, 45 are formed on the outer circumferential surface of the body circumferential surface 32A at equal intervals so as to be continuous with the first groove portions 43, 43, 43. A discharge groove 10 formed on the outer peripheral surface of the device 6 is connected to the grooves 45, 45, 45. In this embodiment, the diameter D of the bit device 15 is 137 mm, the length L of the circumferential surface 32A, that is, the length from the tip surface of the bit device 15 to the tapered surface 32 is approximately 37 mm, and the circumferential surface 32A. The length L1 of the second groove 45 formed from the taper surface 32 to the taper surface 32 is set to 47 mm. On the other hand, the depth S of the first groove portion 43 formed on the front end surface of the body peripheral surface 32A and the depth S1 of the second groove portion 45 formed on the outer peripheral surface of the body peripheral surface 32A are 7 of the diameter D of the bit device 15. -15%, that is, approximately 9.6 to 20.5 mm, and 17.5 mm in this embodiment.
[0017]
Further, the device 6 is formed with two compressed air passages 50 for injecting compressed air in the rearward direction. The compressed air passages 50 communicate with the passage 41 and between the discharge grooves 10. 6 to the shoulder surface 6A.
[0018]
Next, a method of using the excavator will be described. As shown in FIG. 8, after the pivot shaft 22 is passed through the enlarged wing 23, both ends of the pivot shaft 22 are inserted into the mounting groove 21 from the inside of the device 6. It inserts in the engagement ditch | groove 24 to form. Thereafter, the pivoting shaft 22 abuts against the end surface of the engaging groove 24 by sliding the enlarged wing 23 along the engaging groove 24. As a result, the enlarged blade 23 is pivotally supported in the mounting groove 21, and thus the enlarged blade 23 is attached to the central axis of the bit device 15 so as to be rotatable in the radial direction. At this time, the pivot shaft 22 of the expansion wing 23 is merely slidably held along the engagement groove 24 opened to the inside of the device 6, but as shown in FIG. By engaging the bit device 15 inserted into the buried pipe 1 with the expansion blade 23 pivotally supported on the upper end of the slide groove portion 20 by the rotation transmission pin 13, the expansion device 23 is positioned inside the bit device The inward movement is restricted by 15. That is, the bit device 15 is suspended from the device 6, and the enlarged wing 23 is movable in the buried pipe 1 while being suspended along the connecting shaft 16. When the bit device 15 is grounded while rotating in one side direction R and applying an impact, excavation is started by the tip 33 at the tip of the bit device 15, and by this excavation, the bit device 15 and the enlarged wing 23 are connected to the bit casing pipe 2. When the device 6 advances with respect to the bit device 15 pushed out from the tip and grounded, the rotation transmission pin 13 advances to the front end of the slide groove portion 20. By this advancement, the connecting shaft 16 moves backward in the connecting hole 13, and as shown in FIG. 4, the tapered surface 32 of the bit device 15 comes into contact with the inner surface 23B of the expanding blade 23, and the expanding blade 23 is held in the expanded state. In addition, the shoulder surface 23A of the expanding blade 23 is positioned in contact with the inner end surface 21A, and the drilling diameter P of the bit device 15 increases. Simultaneously, rotation of the device 6 causes the rotation transmitting pins 13 and 13 to rotate in the one side direction R of the engagement grooves 17 and 17 to engage with the one side engagement surfaces 18 and 18. Is transmitted to the bit unit 15. Further, in this state, the outer peripheral step portion 11 of the device 6 contacts the inner peripheral step portion 3 of the bit casing pipe 2, and the impact from the air hammer 5 is transmitted to the bit casing pipe 2. In this manner, for example, the bit device 15 is struck 1100 times per minute and rotated 20 times per minute in the state in which the expansion blade 23 is expanded, and the branch passages 42A, 42A, formed at the tip of the bit device 15 are formed. Excavation is performed by jetting compressed air from 42A. When excavation at a predetermined depth is completed, the device 6 is rotated in the other direction. By this rotation, the rotation transmission pins 13 and 13 are moved to the slide groove portion 20 side, and when the device 6 is pulled upward, the rotation transmission pins 13 and 13 are moved along the slide groove portion 20 and the expanding blade 23 is reduced while the bit is being reduced. The bit device 15 is accommodated in the casing pipe 2 and can move in the buried pipe 1 and can be lifted to the ground.
[0019]
For example, when excavating a highly viscous layer such as silt clay using such a device that expands the holes, the first groove portions 43, 43, 43 formed on the front end surface of the bit device 15 and the outer periphery of the bit device 15 When the second groove portions 45, 45, 45 formed in the depth are shallow, the excavated clay is first clogged with the first groove portions 43, 43, 43 formed in the tip surface of the bit device 15. No matter how much compressed air is injected from the branch passages 42A, 42A, 42A formed at the tip of the bit device 15, it is difficult to discharge the excavated clay layer to the second grooves 45, 45, 45 side. When the entire length of the second groove portions 45, 45, 45, that is, the length L of the body circumferential surface 32A of the bit device 15, is long, the first groove portions 43, Even if clay is not clogged in the portions 43 and 43, it is clogged in the second groove portions 45, 45 and 45 formed on the outer peripheral surface of the bit device 15, and is discharged to the discharge groove 10 side of the device 6. I can't. However, in this embodiment, the depths S and S1 of the first groove portion 43 formed on the front end surface of the bit device 15 and the second groove portion 45 formed on the outer peripheral surface of the body peripheral surface 32A of the bit device 15 are 17.5 mm. And the length L of the body circumferential surface 32A of the bit device 15 is 30 to 40 mm, which is approximately 37 mm in this embodiment, and is formed from the body circumferential surface 32A to the tapered surface 32. By forming the length L1 of 45 as 47 mm, which is shorter than that of a normal excavator, clogging of clay, earth and sand, etc. in the first groove portion 43 and the second groove portion 45 formed in the bit device 15 is achieved. Can be suppressed. For this reason, the excavated earth and sand or clay is removed from the first groove portion 43 to the second groove portion 45 by the compressed air from the branch passages 42A, 42A, 42A opened in the first groove portion 43 formed in the bit device 15. Therefore, it is possible to discharge to the ground smoothly from the discharge groove 10.
[0020]
As described above, in this embodiment, the pivot shaft 22 penetrated through the enlarged wing 23 is slid into the engagement grooves 24 formed on both side surfaces of the attachment grooves 21 of the engagement grooves 24 to be enlarged to the device 6. Since the wings 23 are pivotally supported, there is no possibility that the strength of the device 6 is reduced by the engagement grooves 24. Therefore, even when a large force is applied to the pivot shaft 22 that pivotally attaches the expansion wing 23 during the rotation of the expansion wing 23, no crack is generated from the engagement concave groove 24. Further, the expansion blade 23 is simply assembled by inserting the pivot shaft 22 to be attached to the expansion blade 23 into the engagement groove 24 formed in the attachment groove 23 from the inside of the device 6 and inserting the expansion blade 23 into the engagement groove. No need for a lock pin or the like to prevent the pivoting shaft 22 from slipping by simply sliding it to the back side (outside of the device 6) along 24, and assembling work of the expansion wing 23 is also easy. . In this state, the pivot shaft 22 of the enlarged wing 23 is not positioned with respect to the engaging groove 24. When the bit device 15 is assembled with the rotation transmission pin 13 on the side, the inward movement of the expanding blade 23 is restricted by the bit device 15, so that the pivot shaft 22 is prevented from coming off from the engaging groove 24. As a result, the expansion wing 23 is retained against the device 6. Further, spherical portions 22A are formed at both ends of a pivot shaft 22 that pivotally mounts the expanding wing 23, and the cross-sectional shape of the engaging groove 24 that pivotally supports the spherical portion 22A is semicircular so as to be fitted to the spherical portion 22A. Since the pivot shaft 22 and the engaging groove 24 are smoothly fitted with each other, the movement of the expansion wing 23 interlocked with the bit device 15 is also smooth.
[0021]
In this embodiment, the three branch passages 42A, 42A, 42A communicating with the compressed air passage 42 of the bit device 15 are opened at the front end surface of the bit device 15, and the three branch passages 42A face the opening of the branch passage 42A. The depth S of the first groove portions 43, 43, 43 and the depth S1 of the second groove portion 45 formed on the outer peripheral surface of the body peripheral surface 32A of the bit device 15 are 7-15 of the diameter D of the bit device 15. %, In this embodiment in which the diameter of the bit device 15 is formed to 137 mm, the depth L is set to 17.5 mm deep, and the length L of the body circumferential surface 32A of the bit device 15 is 30 to 40 mm, and in this embodiment is as short as approximately 37 mm. By forming, the length L1 of the second groove portions 45, 45, 45 communicating with the first groove portions 43, 43, 43 is as short as 47 mm, thereby excavating a high viscosity layer such as silt clay. Even in the case where the first groove 43 and the second groove 45 are formed in the bit device 15, clay, earth and sand, etc. Since hardly clogged, it can be discharged to the ground smoothly clay and sediment excavated by bits 15 from the first groove part 43 along the discharge groove 10 of the second groove 45 and device 6.
[0022]
As mentioned above, although one Example of this invention was explained in full detail, this invention is not limited to the said Example, A various deformation | transformation Example is possible within the range of the summary of this invention. For example, first formed on the front face of the bit device, such as a second groove shape and number are also those may be appropriately selected. Furthermore, the apparatus of the present invention can be used for lateral excavation, and various types of air hammers can be used.
[0023]
【The invention's effect】
According to the excavation apparatus of the first aspect of the present invention, the longitudinal connection hole is formed at the tip of the device that receives the impact force and the rotational force, and the connection shaft provided at the base end of the bit device is slid into the connection hole. The bit device is inserted into the tip of the device so that the bit device can be moved forward and backward, and a plurality of radially extending wings are pivotally supported at the tip of the device. provided a mounting groove for accommodating the expansion wings to the device side by the retraction to the device, the expansion wings expanded by the advancement against the bit device of the device, the tip of the bit device from the distal end of the buried pipe and the In the excavating apparatus for performing excavation by projecting the expansion blade, a pivot shaft that projects from both sides of the expansion blade is provided, and a pair of left and right engagement concave grooves that pivot both ends of the pivot shaft is provided in the mounting groove. And forming a sidewall surface facing, the engaging recessed groove is opened to the inner surface of the device, both ends of the pivot shaft protrudes from both sides of the expansion wings, the pivot shaft projecting from the larger wing Both end portions are formed into smooth spherical portions, and the cross-sectional shape of the engaging groove engaging with the spherical portion is formed in a substantially semicircular shape, and the pivot shaft of the expanding wing opens to the inner surface of the device The enlarged wing is slidably held along the engaging groove, and the inward movement of the magnifying wing is restricted by the bit device located inside thereof, and is pivotally attached to the engaging groove. Since the shaft is prevented from coming off, cracks will occur at the engaging groove groove even when a large force is applied to the pivot shaft that pivotally mounts the expansion blade during rotation of the expansion blade. Therefore, the durability can be improved and the It is possible to simplify the assembly operation of the blade. In addition, since the expansion wing attached to the device is prevented from coming off by the bit device attached to the inside of the device, it is possible to stably support the expansion wing for a long time, and maintenance work is unnecessary. is there. Further, the pivot shaft and the engaging groove are smoothly fitted, and the movement of the expanding blade is also smooth.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a device and a bit device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of the present invention.
FIG. 3 is a cross-sectional view of an essential part showing an embodiment of the present invention.
FIG. 4 is a cross-sectional view of an enlarged wing showing an embodiment of the present invention.
FIG. 5 is a cross-sectional view of a main part showing a mounting state of an enlarged blade according to an embodiment of the present invention.
FIG. 6 is a plan view of an enlarged wing showing an embodiment of the present invention.
FIG. 7 is a front view of an enlarged wing showing an embodiment of the present invention as seen from the tip side.
FIG. 8 is a cross-sectional view around an enlarged wing showing an embodiment of the present invention.
FIG. 9 is a cross-sectional view around an enlarged wing showing an embodiment of the present invention, showing a state in which the enlarged wing is enlarged.
FIG. 10 is a cross-sectional view showing a compressed air passage on the distal end side of a bit device showing an embodiment of the present invention.
FIG. 11 is a plan view of a bit device showing an embodiment of the present invention.
FIG. 12 is a cross-sectional view showing a compressed air passage on the base end side of the bit device showing an embodiment of the present invention.
FIG. 13 is a cross-sectional view of a main part showing a mounting state of an enlarged wing according to a conventional example.
FIG. 14 is a cross-sectional view showing a compressed air passage on the distal end side of a bit device showing a conventional example.
[Explanation of symbols]
6 devices
10 Discharge groove
12 connecting holes
15-bit device
16 connecting shafts
21 Mounting groove
22 pivot axis
24 Pivoting groove
22A Spherical surface
23 Expanded wing
24 engaging groove
32 Tapered surface
32A waist surface
42 Compressed air passage
42A branch passage
43 First groove
45 Second groove portion D Bit diameter L Bit waist circumference length

Claims (1)

衝撃力及び回転力を受けるデバイスの先端に長さ方向の連結孔を形成すると共に、この連結孔にビット装置の基端に設けた連結軸をスライド可能に挿入して前記デバイスの先端に前記ビット装置を前進及び後退可能に設け、前記デバイスの先端に、放射方向に回動可能な複数の拡大翼を枢支し、前記デバイスの前記ビット装置に対する前記後退により前記拡大翼を前記デバイス側に収納する取付溝を前記デバイスに設け、前記デバイスの前記ビット装置に対する前記前進により前記拡大翼を拡大し、埋設管の先端からビット装置の先端及び前記拡大翼を突出して掘削を行う掘削装置において、前記拡大翼の両側から突出する枢着軸を設け、この枢着軸の両端部を枢着する左右一対の係合凹溝を前記取付溝の対向する側壁面に形成するとともに、前記係合凹溝を前記デバイスの内面に開口させ、前記枢着軸の両端部が前記拡大翼の両側面から突出し、この拡大翼から突出する枢着軸の両端部を滑らかな球面部に形成し、この球面部と係合する前記係合凹溝の断面形状をほぼ半円状に形成し、前記拡大翼の枢着軸は、前記デバイスの内面に開口した前記係合凹溝に沿ってスライド自在に保持されると共に、前記拡大翼は、その内側に位置する前記ビット装置により内側への移動が規制され、前記係合凹溝に対して前記枢着軸が抜け止めされていることを特徴とする掘削装置。 A connecting hole in the length direction is formed at the tip of the device that receives impact force and rotational force, and a connecting shaft provided at the base end of the bit device is slidably inserted into the connecting hole to insert the bit into the tip of the device. provided an apparatus capable advanced and retracted, the distal end of the device, is pivotally supported a plurality of expansion vanes pivotable radially, housing the enlarged wing to the device side by the backward with respect to the bit unit of said device a mounting groove provided in the device to expand the expansion wing by the advance against the bit device of the device, the drilling device to drill from the front end of the buried pipe to protrude the tip and the expanded wings bit device, A pivot shaft that protrudes from both sides of the expansion wing is provided, and a pair of left and right engagement grooves that pivot both ends of the pivot shaft are formed on opposing side wall surfaces of the mounting groove. Formed in the engaging groove is opened to the inner surface of the device protrudes from both sides both ends of the expansion wings of said pivot axis, a smooth spherical surface portion both end portions of the pivot shaft projecting from the larger wing The cross-sectional shape of the engaging groove that engages with the spherical surface portion is formed in a substantially semicircular shape, and the pivot shaft of the expansion wing is along the engaging groove that opens on the inner surface of the device. The expansion wing is held in a slidable manner, and the inward movement of the magnifying wing is restricted by the bit device located inside thereof, and the pivot shaft is prevented from coming off with respect to the engaging groove. Drilling rig characterized.
JP2001088604A 2001-03-26 2001-03-26 Drilling rig Expired - Lifetime JP3706039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088604A JP3706039B2 (en) 2001-03-26 2001-03-26 Drilling rig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088604A JP3706039B2 (en) 2001-03-26 2001-03-26 Drilling rig

Publications (2)

Publication Number Publication Date
JP2002285778A JP2002285778A (en) 2002-10-03
JP3706039B2 true JP3706039B2 (en) 2005-10-12

Family

ID=18943674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088604A Expired - Lifetime JP3706039B2 (en) 2001-03-26 2001-03-26 Drilling rig

Country Status (1)

Country Link
JP (1) JP3706039B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685386B1 (en) * 2004-09-03 2007-02-22 임병덕 A drilling apparatus having in-line extending wings and driving method thereof
KR101229209B1 (en) 2012-08-13 2013-02-01 이수영 Hammer bit
KR101523298B1 (en) * 2013-05-23 2015-05-28 (주)씨엔피텍 Drilling bit
WO2017116001A1 (en) * 2015-12-29 2017-07-06 동림산업 주식회사 Head-enhanced drill bit
KR20200032727A (en) 2017-07-24 2020-03-26 룩 찰랜드 Drilling system and method using same

Also Published As

Publication number Publication date
JP2002285778A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US6450269B1 (en) Method and bit for directional horizontal boring
US6321858B1 (en) Bit for directional drilling
AU2001288875A1 (en) Method and bit for directional horizontal boring
JP3706039B2 (en) Drilling rig
WO2000052294A9 (en) Drill head for directional boring
JP5439073B2 (en) Double pipe drilling tool
JP2710192B2 (en) Drilling rig
JP3465789B2 (en) Drilling rig
JP2580947B2 (en) Drilling rig
JP4043685B2 (en) Drilling rig
JP2007507627A (en) Method and apparatus for drilling holes in ground or rock material
JP3725365B2 (en) Large-diameter drilling method and drilling equipment
JPH094351A (en) Excavating device
JP2002364282A (en) Excavating tool and anchoring method using the same
JP2006152602A (en) Excavator
KR100937766B1 (en) Hammer Bit Apparatus
JP4405043B2 (en) Drilling tools
JP4007216B2 (en) Double pipe drilling tools
JPH08144675A (en) Excavating device
JP4032059B2 (en) Double pipe double packer method
KR100303201B1 (en) Sturcture of a hammerbit for enlarging an excavated cavity
JP3246234B2 (en) Drilling tools
JP3843820B2 (en) Drilling bit
JP3191574B2 (en) Drilling tools
JP2004084390A (en) Drilling tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Ref document number: 3706039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term