JP3705896B2 - SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE - Google Patents

SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE Download PDF

Info

Publication number
JP3705896B2
JP3705896B2 JP15528797A JP15528797A JP3705896B2 JP 3705896 B2 JP3705896 B2 JP 3705896B2 JP 15528797 A JP15528797 A JP 15528797A JP 15528797 A JP15528797 A JP 15528797A JP 3705896 B2 JP3705896 B2 JP 3705896B2
Authority
JP
Japan
Prior art keywords
electrode
element body
insulating member
semiconductor
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15528797A
Other languages
Japanese (ja)
Other versions
JPH113908A (en
Inventor
康郎 松崎
正夫 中野
康宏 藤井
心之介 鎌田
誠 柳沢
豊修 山田
正巳 松岡
浩由 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15528797A priority Critical patent/JP3705896B2/en
Priority to US09/030,349 priority patent/US6063640A/en
Priority to TW087103831A priority patent/TW393710B/en
Priority to KR1019980009068A priority patent/KR100294396B1/en
Publication of JPH113908A publication Critical patent/JPH113908A/en
Application granted granted Critical
Publication of JP3705896B2 publication Critical patent/JP3705896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子及びその電極形態変更方法に係り、特に種々のパッケージに搭載される半導体素子及びその電極形態変更方法に関する。
近年、半導体装置は種々の電子機器に搭載されるようになってきており、これに伴いパッケージ構造も搭載される電子機器の装置搭載スペースに対応するよう種々のものが提供されている。よって、半導体装置に内設される半導体素子も、パッケージ構造に適合した構成とする必要がある。
【0002】
【従来の技術】
上記のように、パッケージ構造が多様化すると、パッケージ内に配設される半導体素子(半導体チップ)が同一であっても、半導体パッケージの構造が異なる場合が発生する。これは、特に汎用の半導体装置においてよく発生することである。
【0003】
具体例を図6及び図7を用いて説明する。図6に示す半導体装置1Aは、リード6が矩形状とされた樹脂パッケージ4Aの短辺側から延出するよう構成されたパッケージ構造とされている(以下、この構造の樹脂パッケージを横長パッケージ4Aという)。
これに対し、図7に示す半導体装置1Bは、リード6が矩形状とされた樹脂パッケージ4Bの長辺側から延出するよう構成されたパッケージ構造とされている(以下、この構造の樹脂パッケージを縦長パッケージ4Bという)。しかるに、各樹脂パッケージ4A,4B内に搭載される半導体素子2A,2Bは機能的に同一の半導体素子である。
【0004】
続いて、上記した半導体装置1A,1Bの半導体素子2A,2Bとリード6との接続構造について図8及び図9を用いて説明する。
図8は、横長パッケージ4Aにおける半導体素子2Aとリード6との接続構造を示している。同図に示すように、パッケージが横長形状とされた横長パッケージ4Aでは、内設する半導体素子2Aも横長となるよう配設する必要がある。
【0005】
また、半導体素子2Aに形成された電極8Aとリード6とはワイヤ9により電気的に接続されるが、このワイヤ9の長さは損失低減を図る面からなるべく短くする必要がある。このため、従来の横長パッケージ4Aでは、半導体素子2Aの短辺側に電極8Aを配設することが行なわれていた。
一方、図9は、縦長パッケージ4Bにおける半導体素子2Bとリード6との接続構造を示している。同図に示すように、パッケージが縦長形状とされた縦長パッケージ4Bでは、内設する半導体素子2Bも横長となるよう配設する必要がある。また、前記のようにワイヤ9の長さは損失低減を図る面からなるべく短くする必要があるため、従来の縦長パッケージ4Bでは半導体素子2Bの長辺側に電極8Bを配設することが行なわれていた。
【0006】
【発明が解決しようとする課題】
上記したように、図6及び図8に示す半導体素子2Aと、図7及び図9に示す半導体装置2Bは同一機能を有した半導体素子である。しかるに、従来の構成では、パッケージ構造が異なると、これに伴い電極8A,8Bの形成位置が異なってしまい、よって別個の構成とされた半導体素子2A,2Bを夫々製造する必要があった。このように、従来では電極8A,8B以外は同一の構成であるにも拘わらず、単に電極8A,8Bの形成位置の違いのみで夫々半導体素子2A,2Bを形成せねばならず製造効率が悪いという問題点があった。
【0007】
また、製造された半導体装置の在庫管理上では、次のような問題点があった。即ち、顧客からの受注に対し、短納期で製品を出荷するためには需要を見込んで半導体装置を工場に仕込んでおく必要があるが、パッケージ構造によって異なる半導体素子を搭載する従来構成では、見込みを間違えた場合には、不良在庫や、或いは在庫不良が発生してしまう。よって、上記の見込みの判断が非常に難しくなり、在庫管理の面からも従来構成の半導体装置は望ましくなかった。
【0008】
一方、上記の問題点を解決する手段として、半導体素子上に、横長パッケージ用の電極(横長用電極)と、縦長用パッケージ用の電極(縦長用電極)を共に配設する構成とすることが考えられる。
しるかに、単に半導体素子の同一面上に横長用電極と縦長用電極とを併せて形成した構成では、従来の半導体素子2A,2Bに対し電極数が2倍となってしまい、これに伴い電極形成スペースが大きくなり半導体素子が大型化してしまうという新たな問題点が生じてしまう。
【0009】
本発明は上記の点に鑑みてなされたものであり、各種パッケージ構造に容易に対応しうる半導体素子及びその電極形態変更方法及び半導体装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題は、次に述べる各種手段を講じることにより解決することができる。
請求項1記載の発明に係る半導体素子では、
電子回路が形成された素子本体と、
該素子本体の表面上に第1の配置形態で形成された第1の電極と、
前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、
該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、
前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段と、
前記絶縁部材と前記素子本体との間に配設されており、前記絶縁部材と前記素子本体との剥離を容易とするための剥離剤と、を具備することを特徴とするものである。
【0011】
また、請求項2記載の発明では、
前記請求項1記載の半導体素子において、
前記電極接続手段が、
前記絶縁部材に形成されており、前記第1の電極と対向する位置に形成されたスルーホール電極と、
前記絶縁部材に形成されており、一端が前記第2の電極に接続すると共に、他端が前記スルーホール電極に接続された配線と、
により構成されることを特徴とするものである。
【0012】
また、請求項3記載の発明では、
前記請求項1または2記載の半導体装置において、
前記絶縁部材を多層構造とし、各層間に内層配線を形成したことを特徴とするものである。
また、請求項4記載の発明では、
電子回路が形成された素子本体と、該素子本体の表面上に第1の配置形態で形成された第1の電極と、前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段とを具備する半導体素子において、前記素子本体から前記絶縁部材を剥離することにより電極形態を変更する半導体素子の電極形態変更方法であって、
前記絶縁部材を機械的手段を用いて前記素子本体から剥離させることを特徴とするものである。
【0013】
また、請求項5記載の発明では、
電子回路が形成された素子本体と、
該素子本体の表面上に第1の配置形態で形成された第1の電極と、
前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、
該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、
前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段とを具備してなる半導体素子において、前記素子本体から前記絶縁部材を剥離することにより電極形態を変更する半導体素子の電極形態変更方法であって、
前記絶縁部材を化学的手段を用いて前記素子本体から剥離させることを特徴とするものである。
また、請求項6記載の発明では、
半導体素子と、
前記半導体素子と電気的に接続されたリードと、
前記半導体素子を封止するパッケージとを具備する半導体装置において、
前記半導体素子を、
電子回路が形成された素子本体と、
該素子本体の表面上に第1の配置形態で形成された第1の電極と、
前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、
該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、
前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段と、
前記絶縁部材と前記素子本体との間に配設されており、前記絶縁部材と前記素子本体との剥離を容易とするための剥離剤とを具備する構成としたことを特徴とするものである。
【0016】
上記した各手段は、次のように作用する。
請求項1記載の発明によれば、
素子本体上には第1の電極が形成され、またこの素子本体上に形成された絶縁部材上には第2の電極が形成される。よって、第1の電極と第2の電極は絶縁部材を介して積層された構成となり、第1及び第2の電極を設けても素子本体の面積が増大することはなく小型化を図ることができる。
【0017】
また、絶縁部材が素子本体に配設された状態において第1の電極と第2の電極とは電極接続手段により電気的に接続されている。よって、絶縁部材が素子本体に配設された状態では、第2の電極に外部端子(例えばリード)を接続することにより、電気的接続手段によりこの外部端子は半導体素子と接続された構成となる。
【0018】
一方、絶縁部材は素子本体に剥離可能な構成で配設されており、また電気的接続手段は素子本体から絶縁部材が剥離することにより、第1の電極と第2の電極との電気的接続を解除する構成とされている。よって、絶縁部材が素子本体から剥離した状態では、第1の電極が素子本体上に露出して存在する構成となり、外部端子を第1の電極に接続することにより、外部端子と半導体素子とは電気的に接続された構成となる。
【0019】
即ち、絶縁部材が配設された状態と、絶縁部材が素子本体から剥離された状態とで、電極の配設形態を異ならせることができる。よって、パッケージ構造に応じて電極の形成位置を変更する必要がある場合であっても、絶縁部材をそのまま配設した状態にするか、或いは絶縁部材を素子本体から剥離するのみで容易にパッケージ構造に対応した電極形態を実現することができる。
また、絶縁部材と素子本体との間に剥離剤を配設することにより、絶縁部材を素子本体から剥離する処理を容易に行なうことができる。
【0020】
また、請求項2記載の発明によれば、
第1の電極と対向する位置に形成されたスルーホール電極と、一端が第2の電極に接続すると共に他端がスルーホール電極に接続された配線とにより電気的接続手段を構成したことにより、簡単な構成で第1の電極と第2の電極を電気的に接続することができる。
【0021】
また、スルーホール電極及び配線は、いずれも絶縁部材に配設されているため、絶縁部材を素子本体から剥離し排除することにより、電気的接続手段も併せて排除される。よって、絶縁部材を素子本体から剥離した後に、電気的接続手段が第1の電極と外部端子との接続に悪影響を及ぼすようなことはない。
また、請求項3記載の発明によれば、
絶縁部材を多層構造とすると共に各層間に内層配線を形成したことにより、各層毎に電極の配設形態を設定できるため、複数のパッケージ形態(即ち、電極の配設形態)に容易に対応することができる。具体的には、絶縁部材が5層構造であり、その3層目に所望する配設形態で電極が形成されていた場合には、上部の2層のみを剥離させることにより、所望の電極の配設形態を実現することができる。
【0023】
また、請求項4または請求項5記載の発明によれば、
絶縁部材を機械的手段或いは化学的手段を用いて素子本体から剥離させる方法を採用したことにより、比較的簡単な設備で容易に絶縁部材を素子本体から剥離させることができる。
また、請求項6記載の発明に係る半導体装置によれば、
導体素子とリードとの離間距離を最小距離とすることができ、電気的損失の発生を抑制することができる。また、電極の配設形態がパッケージ構造に対応しているため、半導体装置の小型化を図ることができる。
【0024】
【発明の実施の形態】
次に本発明の実施の形態について図面と共に説明する。
図1乃至図3は、本発明の一実施例である半導体素子10及び半導体装置12A,12Bを説明するための図である。図1は、先に図6を用いて説明した横長パッケージに半導体素子10を適用した半導体装置12Aを示しており、また図2は先に図7を用いて説明した縦長パッケージに半導体素子10を適用した半導体装置12Bを示している。まず、図1及び図3を用いて、半導体素子10の構成について説明する。
【0025】
半導体素子10は、大略すると素子本体14,第1の電極16,第2の電極18,スルーホール電極20,配線22,及び絶縁膜30(図1では梨地で示す)等により構成されている。
素子本体14は半導体装置10の基板となるものであり、例えばシリコン基板或いはガリウム−砒素基板上に回路形成領域32を有した構成とされている。本実施例に係る素子本体14は、短辺と長辺を有した長方形状とされている。
【0026】
第1の電極16は素子本体14の上面に形成されると共に、図示しない配線により回路形成領域32に形成された電子回路に接続されている。この第1の電極16は、図3に示されるように素子本体14の上面に直接形成されている。また、第1の電極16は、図1に示されるように、素子本体14の長辺に沿って形成されている。本実施例では、この素子本体14の長辺に沿って第1の電極16が配設された形態を電極の第1の配設形態というものとする。
【0027】
第2の電極18は、絶縁膜30(絶縁部材)に形成されている。この第2の電極18は、図3に示されるように絶縁膜30の上面に形成されている。また、第2の電極18は、図1に示されるように、素子本体14の短辺に沿って形成されている。本実施例では、この素子本体14の短辺に沿って第2の電極18が配設された形態を電極の第2の配設形態というものとする。
【0028】
絶縁膜30は、例えばオレフィン系樹脂を主成分とし、エポキシ樹脂が所定の濃度に混入されている組成の膜であり、素子本体14の全面を覆うよう形成されている。エポキシ含有のオレフィン系樹脂は、エポキシ樹脂の分解温度以上に加熱することで離型作用を発揮する。よって、絶縁膜30と素子本体14との強力な密着は阻害されており、従って絶縁膜30は素子本体14に対し剥離可能な構成となっている。
【0029】
また、絶縁膜30の素子本体14からの剥離性をより高めるためには、例えば図3に示すように素子本体14と絶縁膜30との界面に剥離剤36を塗布しておいてもよい。この剥離剤36としては、例えばエポキシ含有のオレフィン樹脂を用いることが考えられる。
但し、上記の絶縁膜30と素子本体14の接合力は、外部から剥離力を加えなければ絶縁膜30が素子本体14から剥離しない程度の強さを維持するよう構成されている。しかるに、後述するように剥離力を加えて意図的に剥離させようとした場合には、絶縁膜30は素子本体14から剥離する構成とされている。尚、上記の絶縁膜30としては、エポキシ含有のオレフィン系樹脂に代えてエポキシを含有したポリイミドを用いることも可能である。
【0030】
スルーホール電極20及び配線22は、前記した電極接続手段として機能するものであり、第1の電極16と第2の電極18を電気的に接続する機能を奏するものである。スルーホール電極20は絶縁膜30に上下に貫通形成された孔の内部に導電膜を形成した構成とされており、よって絶縁膜30の上面と下面を電気的に接続する機能を有している。このスルーホール電極20は、絶縁膜30の第1の電極16と対向する位置に夫々形成されている。
【0031】
また、配線22は、絶縁膜30の上面に所定のパターンで形成されている。この配線22の一端は第2の電極18に接続されており、また他端は前記したスルーホール電極20の上端部に電気的に接続された構成とされている。
図1に示されるように、配線22は第1の電極16と第2の電極18とを接続する機能を奏している。よって、第1の電極16と第2の電極18とは、上記のスルーホール電極20及び配線22により、一対一の対応で電気的に接続された構成となっている。具体例としては、第1の電極16aはスルーホール電極20a及び配線22aにより第2の電極18aに接続された構成となっており、これにより第1の電極16aと第2の電極18aとは対応して接続された構成となっている。
【0032】
上記したスルーホール電極20及び配線22は、半導体製造技術として確立した周知の方法により形成することができる。また、第1の電極16と第2の電極18は、スルーホール電極20と配線22とよりなる電気的接続手段により接続されるため、簡単な構成で各電極16,18を電気的に接続することができる。
ここで、図1に示される半導体装置12Aに注目する。
【0033】
半導体装置12Aは、絶縁膜30が配設された状態の半導体素子10が搭載されたものである。この半導体装置12Aは、図6に示されるような横長パッケージ構造を有した半導体装置である。よって、樹脂パッケージ28Aは横長なパッケージ構造とされており、リード24は樹脂パッケージ28Aの短辺側から外部に延出する構成となっている。
【0034】
また、横長パッケージ構造に半導体素子10を搭載する場合、樹脂パッケージ28A内に無駄な空間部の発生を抑制する面から、半導体素子10も横長となる向きで搭載される。このように横長となるよう半導体素子10を樹脂パッケージ28Aに搭載した場合、各リード24は半導体素子10の短辺側と対向した状態となる。
【0035】
本実施例に係る半導体素子10は、絶縁膜30が配設された状態では、第2の電極18が最上面に位置した状態となっており、よって外部との電気的接続が可能な状態となっている。また、本実施例では第2の電極18は、素子本体14の短辺に沿った状態で形成された構成とされている。
従って、第2の電極18とリード24とをワイヤ26で接続することにより、リード24は第2の電極18,配線22,スルーホール20,及び第1の電極16を介して半導体素子14に電気的に接続された状態となる。この際、第2の電極18とリード24とは対向した状態となっているため、第2の電極18とリード24との離間距離は短くなる。このため、半導体装置12Aの小型化を図ることができ、またワイヤ長も短くすることができるため、ワイヤ26で発生する電気的損失を低減することができる。
【0036】
続いて、図2に示される半導体装置12Bに注目する。
半導体装置12Bは、絶縁膜30が剥離された状態の半導体素子10が搭載されたものである。ここで、半導体装置12Bの構成説明に先立ち、絶縁膜30を素子本体14から剥離する方法について図4及び図5を用いて説明する。
図4は、機械的手段により絶縁膜30を素子本体14から剥離する方法を示している。ここで、機械的手段とは、絶縁膜30に剥離力を印加することにより剥離を行なうことをいう。
【0037】
具体的には、本実施例では絶縁膜30の端部(図示の例では右端部)を治具等を用いて把持し、これを上方に持ち上げる処理を行なう。この際、前記したように絶縁膜30はエポキシ含有のオレフィン系樹脂により形成されているため、エポキシ樹脂の分解温度以上に加熱することで離型作用を発揮する。
よって、剥離作業はエポキシ樹脂の分解温度以上に加熱した環境下において実施され、これにより容易に絶縁膜30を素子本体14から剥離することができる。また、素子本体14と絶縁膜30との界面に剥離剤36を塗布した構成では、更に容易に絶縁膜30を素子本体14から剥離することができる。
【0038】
図5は、化学的手段により絶縁膜30を素子本体14から剥離する方法を示している。ここで、化学的手段とは、上記したような外力(剥離力)を絶縁膜30に直接印加することなく、化学反応を利用して絶縁膜30を素子本体14から剥離する方法をいう。
具体的には、本実施例ではエッチング法を用いて絶縁膜30を除去する方法を採用している。即ち、エッチング液34として、第2の電極18,配線22,及び絶縁膜30については溶解するが、素子本体14及び第1の電極16については溶解作用を及ぼさないものを選定する。よって、このエッチング液34を用いてエッチングすることにより、絶縁膜30を素子本体14から剥離(除去)することができる。
【0039】
上記のように、絶縁部材30を機械的手段或いは化学的手段を用いて素子本体14から剥離させる方法を採用したことにより、比較的簡単な設備で容易に絶縁部材30を素子本体14から剥離させることができる。また、前記のようにスルーホール電極20及び配線22は、いずれも絶縁部材30に配設されているため、絶縁部材30を素子本体14から剥離し排除することにより、スルーホール電極20及び配線22も併せて排除される。よって、絶縁部材30を素子本体14から剥離した後に、これらが第1の電極16とリード24との接続に悪影響を及ぼすようなことはない。
【0040】
ここで、再び図2に戻り、半導体装置12Bについて説明する。
半導体装置12Bは、図7に示されるような縦長パッケージ構造を有した半導体装置である。よって、樹脂パッケージ28Bも縦長なパッケージ構造とされており、リード24は樹脂パッケージ28Bの長辺側から外部に延出する構成となっている。
【0041】
また、縦長パッケージ構造に半導体素子10を搭載する場合、樹脂パッケージ28B内に無駄な空間部の発生を抑制する面から、半導体素子10も縦長となる向きで搭載される。このように縦長となるよう半導体素子10を樹脂パッケージ28Aに搭載した場合、各リード24は半導体素子10の長辺側と対向した状態となる。
【0042】
本実施例に係る半導体素子10は、上記のように絶縁膜30が剥離(除去)されているため、第1の電極16が素子本体14上に露出した状態となっている。また、本実施例では第1の電極16は、素子本体14の長辺に沿った状態で形成された構成とされている。
従って、第1の電極16とリード24とをワイヤ26で直接接続することが可能となり、ワイヤ26を接続した状態でリード24と半導体素子10は電気的に接続された状態となる。この際、半導体装置12Bにおいても、第1の電極16とリード24とは対向した状態となっているため、第1の電極16とリード24との離間距離は短くなり、半導体装置12Bの小型化を図ることができる。また、ワイヤ長も短くすることができるため、ワイヤ26で発生する電気的損失を低減することができる。
【0043】
上記のように、本実施例に係る半導体素子10では、素子本体14上には第1の電極16が形成され、またこの素子本体14上に形成された絶縁膜30上には第2の電極18が形成される。よって、第1の電極16と第2の電極18は絶縁膜30を介して積層された構成となり、第1及び第2の電極16,18を設けても素子本体14の面積が増大することはなく小型化を図ることができる。
【0044】
また、図1及び図3に示す例では、説明及び図示の便宜上、第1の電極16と第2の電極18とが上下方向に重ならない構成としたが、第1の電極16と第2の電極18とを重ねて形成することも可能であり、この場合には更に半導体素子10の小型化を図ることができる。
また、上記説明から明らかなように、本実施例に係る半導体素子10は、絶縁膜30が配設された状態と、絶縁膜30が素子本体14から剥離された状態とで、電極16,18の配設形態を異ならせることができる。
【0045】
よって、パッケージ構造に応じて電極16,18の形成位置を変更する必要がある場合であっても、絶縁膜30をそのまま配設した状態にするか、或いは絶縁膜30を素子本体14から剥離するのみで容易にパッケージ構造に対応した電極形態を実現することができる。これにより、従来のように顧客からの受注に対応すべく見込み製造を行なう必要はなくなり、半導体装置12A,12Bの在庫管理を容易に行なうことができる。
【0046】
尚、上記した実施例では、絶縁膜30を単層した構成を例に挙げて説明したが、絶縁部材を多層構造とすることも可能である。このように、絶縁部材を多層構造とした場合、各層間に内層配線を形成することができる。
この構成では、各層毎に電極の配設形態を設定できるため、複数のパッケージ形態(即ち、電極の配設形態)に容易に対応することが可能となる。具体的には、絶縁部材が5層構造であり、その3層目に所望する配設形態で電極が形成されていた場合には、上部の2層のみを剥離させることにより、所望の電極の配設形態を実現することができる。
【0047】
【発明の効果】
上述の如く本発明によれば、次に述べる種々の効果を実現することができる。請求項1記載の発明によれば、第1の電極と第2の電極は絶縁部材を介して積層された構成となり、第1及び第2の電極を設けても素子本体の面積が増大することはなく小型化を図ることができる。
【0048】
また、絶縁部材が配設された状態と絶縁部材が素子本体から剥離された状態とで電極の配設形態を異ならせることができるため、パッケージ構造に応じて電極の形成位置を変更する必要がある場合であっても、絶縁部材をそのまま配設した状態にするか、或いは絶縁部材を素子本体から剥離するのみで容易にパッケージ構造に対応した電極形態を実現することができる。また、絶縁部材を素子本体から剥離する処理を容易に行うことができる。
【0049】
また、請求項2記載の発明によれば、絶縁部材が配設された状態においては、簡単な構成で第1の電極と第2の電極を電気的に接続することができる。また、絶縁部材を素子本体から剥離し排除することにより電気的接続手段も併せて排除されるため、絶縁部材を素子本体から剥離した後において、電気的接続手段が第1の電極と外部端子との接続に悪影響を及ぼすようなことはない。
【0050】
また、請求項3記載の発明によれば、各層毎に電極の配設形態を設定できるため、複数のパッケージ形態(即ち、電極の配設形態)に容易に対応することができる。
【0051】
また、請求項4または請求項5記載の発明によれば、比較的簡単な設備で容易に絶縁部材を素子本体から剥離させることができる。
また、請求項6記載の発明に係る半導体装置によれば、半導体素子とリードとの離間距離を最小距離とすることができ、電気的損失の発生を抑制することができると共に、電極の配設形態がパッケージ構造に対応しているため半導体装置の小型化を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例である半導体素子を搭載した半導体装置を示す図であり、電極が第1の配設形態である状態を示す図である。
【図2】本発明の一実施例である半導体素子を搭載した半導体装置を示す図であり、電極が第2の配設形態である状態を示す図である。
【図3】電極が第1の配設形態である状態の半導体素子の断面図である。
【図4】絶縁膜を機械的手段により剥離する方法を説明するための図である。
【図5】絶縁膜を化学的手段により剥離する方法を説明するための図である。
【図6】横長パッケージを説明するための図である。
【図7】縦長パッケージを説明するための図である。
【図8】従来の半導体素子の一例を説明するための図である。
【図9】従来の半導体素子の一例を説明するための図である。
【符号の説明】
10 半導体素子
12A,12B 半導体装置
14, 素子本体
16 第1の電極
18 第2の電極
20 スルーホール
22 配線
24 リード
26 ワイヤ
28A,28B 樹脂パッケージ
30 絶縁膜
32 回路形成領域
34 エッチング液
36 剥離剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device and an electrode configuration changing method thereof, and more particularly to a semiconductor device mounted on various packages and an electrode configuration changing method thereof.
In recent years, semiconductor devices have been mounted on various electronic devices, and accordingly, various devices have been provided so as to correspond to the device mounting space of electronic devices on which a package structure is also mounted. Therefore, the semiconductor element provided in the semiconductor device also needs to have a configuration suitable for the package structure.
[0002]
[Prior art]
As described above, when the package structure is diversified, even if the semiconductor elements (semiconductor chips) arranged in the package are the same, the structure of the semiconductor package may be different. This often occurs particularly in general-purpose semiconductor devices.
[0003]
A specific example will be described with reference to FIGS. The semiconductor device 1A shown in FIG. 6 has a package structure in which the leads 6 extend from the short side of the rectangular resin package 4A (hereinafter, the resin package of this structure is referred to as a horizontally long package 4A). Called).
On the other hand, the semiconductor device 1B shown in FIG. 7 has a package structure in which the leads 6 extend from the long side of the resin package 4B having a rectangular shape (hereinafter, the resin package having this structure). Is referred to as a vertically long package 4B). However, the semiconductor elements 2A and 2B mounted in the resin packages 4A and 4B are functionally identical semiconductor elements.
[0004]
Next, a connection structure between the semiconductor elements 2A and 2B of the semiconductor devices 1A and 1B and the leads 6 will be described with reference to FIGS.
FIG. 8 shows a connection structure between the semiconductor element 2A and the leads 6 in the horizontally long package 4A. As shown in the figure, in the horizontally long package 4A in which the package has a horizontally long shape, it is necessary to dispose the semiconductor element 2A to be horizontally long.
[0005]
The electrode 8A formed on the semiconductor element 2A and the lead 6 are electrically connected by a wire 9, and the length of the wire 9 needs to be as short as possible from the viewpoint of reducing loss. For this reason, in the conventional horizontally long package 4A, the electrode 8A is disposed on the short side of the semiconductor element 2A.
On the other hand, FIG. 9 shows a connection structure between the semiconductor element 2B and the lead 6 in the vertically long package 4B. As shown in the figure, in a vertically long package 4B having a vertically long package, it is necessary to dispose the semiconductor element 2B to be horizontally long. Further, as described above, since the length of the wire 9 needs to be as short as possible from the viewpoint of reducing loss, in the conventional vertically long package 4B, the electrode 8B is disposed on the long side of the semiconductor element 2B. It was.
[0006]
[Problems to be solved by the invention]
As described above, the semiconductor element 2A shown in FIGS. 6 and 8 and the semiconductor device 2B shown in FIGS. 7 and 9 are semiconductor elements having the same function. However, in the conventional configuration, when the package structure is different, the formation positions of the electrodes 8A and 8B are different accordingly. Therefore, it is necessary to manufacture the semiconductor elements 2A and 2B having different configurations. As described above, the semiconductor elements 2A and 2B have to be formed only by the difference in the formation positions of the electrodes 8A and 8B in spite of having the same configuration except for the electrodes 8A and 8B. There was a problem.
[0007]
Moreover, there are the following problems in inventory management of manufactured semiconductor devices. In other words, in order to ship products with short delivery times in response to orders from customers, it is necessary to prepare semiconductor devices in the factory in anticipation of demand. If a mistake is made, defective stock or bad stock will occur. Therefore, it is very difficult to determine the above-mentioned prospect, and the semiconductor device having the conventional configuration is not desirable from the viewpoint of inventory management.
[0008]
On the other hand, as a means for solving the above-described problems, a configuration in which an electrode for a horizontally long package (a horizontally long electrode) and an electrode for a vertically long package (vertically long electrode) are disposed on a semiconductor element. Conceivable.
However, in the configuration in which the horizontally long electrode and the vertically long electrode are formed together on the same surface of the semiconductor element, the number of electrodes is doubled compared to the conventional semiconductor elements 2A and 2B. Along with this, a new problem arises in that the electrode formation space is increased and the semiconductor element is increased in size.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor element, a method for changing an electrode form thereof, and a semiconductor device that can easily cope with various package structures.
[0010]
[Means for Solving the Problems]
  The above problem can be solved by taking the following various means.
  In the semiconductor device according to the invention of claim 1,
  An element body in which an electronic circuit is formed;
  A first electrode formed in a first arrangement on the surface of the element body;
  An insulating member formed so as to cover the surface and disposed in a configuration that can be peeled from the element body;
  A second electrode formed on the insulating member in a second arrangement form different from the first arrangement form;
  Electrode connection means for electrically connecting the first electrode and the second electrode in a state where the insulating member is disposed in the element body.When,
A release agent that is disposed between the insulating member and the element body, and for facilitating peeling between the insulating member and the element body;It is characterized by comprising.
[0011]
In the invention according to claim 2,
The semiconductor device according to claim 1,
The electrode connecting means is
A through-hole electrode formed on the insulating member and formed at a position facing the first electrode;
A wiring formed on the insulating member, having one end connected to the second electrode and the other end connected to the through-hole electrode;
It is characterized by comprising.
[0012]
  In the invention according to claim 3,
  In the semiconductor device according to claim 1 or 2,
  The insulating member has a multilayer structure, and inner layer wiring is formed between the respective layers.
  In the invention according to claim 4,
An element body in which an electronic circuit is formed, a first electrode formed in a first arrangement form on the surface of the element body, and formed so as to cover the surface, and can be peeled off from the element body An insulating member arranged in a simple configuration; a second electrode formed on the insulating member in a second arrangement form different from the first arrangement form; and the insulating member arranged in the element body. A semiconductor device comprising electrode connecting means for electrically connecting the first electrode and the second electrode in a state where the electrode configuration is changed by peeling the insulating member from the device body The electrode shape changing method of
The insulating member is separated from the element body using mechanical means.
[0013]
  In the invention according to claim 5,
An element body in which an electronic circuit is formed;
A first electrode formed in a first arrangement on the surface of the element body;
An insulating member formed so as to cover the surface and disposed in a configuration that can be peeled from the element body;
A second electrode formed on the insulating member in a second arrangement form different from the first arrangement form;
In a semiconductor element comprising electrode connecting means for electrically connecting the first electrode and the second electrode in a state where the insulating member is disposed in the element body, the insulation from the element body A method for changing an electrode form of a semiconductor element, wherein the electrode form is changed by peeling a member,
The insulating member is separated from the element body using chemical means.
  In the invention according to claim 6,
A semiconductor element;
A lead electrically connected to the semiconductor element;
In a semiconductor device comprising a package for sealing the semiconductor element,
The semiconductor element;
An element body in which an electronic circuit is formed;
A first electrode formed in a first arrangement on the surface of the element body;
An insulating member formed so as to cover the surface and disposed in a configuration that can be peeled from the element body;
A second electrode formed on the insulating member in a second arrangement form different from the first arrangement form;
Electrode connecting means for electrically connecting the first electrode and the second electrode in a state where the insulating member is disposed in the element body;
It is disposed between the insulating member and the element body, and includes a release agent for facilitating peeling between the insulating member and the element body. .
[0016]
Each means described above operates as follows.
According to invention of Claim 1,
A first electrode is formed on the element body, and a second electrode is formed on the insulating member formed on the element body. Therefore, the first electrode and the second electrode are stacked via the insulating member, and even if the first and second electrodes are provided, the area of the element main body is not increased and the size can be reduced. it can.
[0017]
Further, the first electrode and the second electrode are electrically connected by the electrode connecting means in a state where the insulating member is disposed in the element body. Therefore, in a state where the insulating member is disposed in the element body, an external terminal (for example, a lead) is connected to the second electrode, whereby the external terminal is connected to the semiconductor element by the electrical connection means. .
[0018]
On the other hand, the insulating member is arranged to be peelable from the element body, and the electrical connection means is an electrical connection between the first electrode and the second electrode by peeling the insulating member from the element body. It is set as the structure which cancels | releases. Therefore, when the insulating member is peeled from the element body, the first electrode is exposed on the element body, and the external terminal and the semiconductor element are connected by connecting the external terminal to the first electrode. It becomes the structure electrically connected.
[0019]
  That is, the arrangement form of the electrodes can be different between the state in which the insulating member is disposed and the state in which the insulating member is peeled from the element body. Therefore, even when it is necessary to change the electrode formation position according to the package structure, the package structure can be easily formed by simply placing the insulating member as it is or by peeling the insulating member from the element body. Can be realized.
Moreover, the process which peels an insulation member from an element main body can be easily performed by arrange | positioning a peeling agent between an insulation member and an element main body.
[0020]
According to the invention of claim 2,
By configuring the electrical connection means by a through-hole electrode formed at a position facing the first electrode, and a wiring having one end connected to the second electrode and the other end connected to the through-hole electrode, The first electrode and the second electrode can be electrically connected with a simple configuration.
[0021]
In addition, since the through-hole electrode and the wiring are both disposed on the insulating member, the electrical connecting means is also eliminated by removing the insulating member from the element body. Therefore, the electrical connecting means does not adversely affect the connection between the first electrode and the external terminal after the insulating member is peeled from the element body.
According to the invention of claim 3,
Since the insulating member has a multi-layer structure and the inner layer wiring is formed between the respective layers, the electrode arrangement form can be set for each layer, so that it can easily cope with a plurality of package forms (that is, electrode arrangement forms). be able to. Specifically, when the insulating member has a five-layer structure and the electrode is formed in the desired arrangement form on the third layer, only the upper two layers are peeled off, so that the desired electrode An arrangement form can be realized.
[0023]
  Also,Claim 4 or claim 5According to the described invention,
  By adopting a method in which the insulating member is peeled off from the element body using mechanical means or chemical means, the insulating member can be easily peeled off from the element body with relatively simple equipment.
  Also,Claim 6According to the semiconductor device according to the described invention,
  HalfThe distance between the conductor element and the lead can be made the minimum distance, and the occurrence of electrical loss can be suppressed. In addition, since the arrangement form of the electrodes corresponds to the package structure, the semiconductor device can be reduced in size.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
1 to 3 are views for explaining a semiconductor element 10 and semiconductor devices 12A and 12B according to an embodiment of the present invention. FIG. 1 shows a semiconductor device 12A in which the semiconductor element 10 is applied to the horizontally long package previously described with reference to FIG. 6, and FIG. 2 shows the semiconductor element 10 in the vertically long package previously described with reference to FIG. The applied semiconductor device 12B is shown. First, the configuration of the semiconductor element 10 will be described with reference to FIGS. 1 and 3.
[0025]
The semiconductor element 10 is roughly composed of an element body 14, a first electrode 16, a second electrode 18, a through-hole electrode 20, a wiring 22, an insulating film 30 (shown as a matte surface in FIG. 1), and the like.
The element body 14 serves as a substrate of the semiconductor device 10 and has a circuit forming region 32 on, for example, a silicon substrate or a gallium arsenide substrate. The element body 14 according to the present embodiment has a rectangular shape having a short side and a long side.
[0026]
The first electrode 16 is formed on the upper surface of the element body 14 and is connected to an electronic circuit formed in the circuit formation region 32 by wiring (not shown). The first electrode 16 is directly formed on the upper surface of the element body 14 as shown in FIG. Moreover, the 1st electrode 16 is formed along the long side of the element main body 14, as FIG. 1 shows. In the present embodiment, the form in which the first electrode 16 is disposed along the long side of the element body 14 is referred to as a first electrode disposition form.
[0027]
The second electrode 18 is formed on the insulating film 30 (insulating member). The second electrode 18 is formed on the upper surface of the insulating film 30 as shown in FIG. Moreover, the 2nd electrode 18 is formed along the short side of the element main body 14, as FIG. 1 shows. In the present embodiment, a form in which the second electrode 18 is arranged along the short side of the element body 14 is referred to as a second arrangement form of the electrode.
[0028]
The insulating film 30 is a film having a composition in which, for example, an olefin resin is a main component and an epoxy resin is mixed in a predetermined concentration, and is formed so as to cover the entire surface of the element body 14. Epoxy-containing olefin resins exhibit a release action by heating to a temperature above the decomposition temperature of the epoxy resin. Therefore, the strong adhesion between the insulating film 30 and the element body 14 is hindered, and thus the insulating film 30 is configured to be peelable from the element body 14.
[0029]
In order to further improve the peelability of the insulating film 30 from the element body 14, a release agent 36 may be applied to the interface between the element body 14 and the insulating film 30 as shown in FIG. 3, for example. For example, an epoxy-containing olefin resin may be used as the release agent 36.
However, the bonding force between the insulating film 30 and the element body 14 is configured to maintain such a strength that the insulating film 30 does not peel from the element body 14 unless a peeling force is applied from the outside. However, as will be described later, when the peeling force is applied to intentionally peel off the insulating film 30, the insulating film 30 is peeled off from the element body 14. In addition, as said insulating film 30, it is also possible to use the polyimide containing epoxy instead of the epoxy-containing olefin resin.
[0030]
The through-hole electrode 20 and the wiring 22 function as the above-described electrode connecting means, and have a function of electrically connecting the first electrode 16 and the second electrode 18. The through-hole electrode 20 has a structure in which a conductive film is formed in a hole formed vertically through the insulating film 30, and thus has a function of electrically connecting the upper surface and the lower surface of the insulating film 30. . The through-hole electrode 20 is formed at a position facing the first electrode 16 of the insulating film 30.
[0031]
The wiring 22 is formed in a predetermined pattern on the upper surface of the insulating film 30. One end of the wiring 22 is connected to the second electrode 18, and the other end is electrically connected to the upper end of the through-hole electrode 20.
As shown in FIG. 1, the wiring 22 has a function of connecting the first electrode 16 and the second electrode 18. Accordingly, the first electrode 16 and the second electrode 18 are electrically connected in a one-to-one correspondence by the through-hole electrode 20 and the wiring 22 described above. As a specific example, the first electrode 16a is configured to be connected to the second electrode 18a by the through-hole electrode 20a and the wiring 22a, so that the first electrode 16a and the second electrode 18a correspond to each other. And connected to each other.
[0032]
The above-described through-hole electrode 20 and wiring 22 can be formed by a well-known method established as a semiconductor manufacturing technique. In addition, since the first electrode 16 and the second electrode 18 are connected by an electrical connection means including the through-hole electrode 20 and the wiring 22, the electrodes 16 and 18 are electrically connected with a simple configuration. be able to.
Here, attention is focused on the semiconductor device 12A shown in FIG.
[0033]
The semiconductor device 12A includes the semiconductor element 10 in which the insulating film 30 is disposed. This semiconductor device 12A is a semiconductor device having a horizontally long package structure as shown in FIG. Therefore, the resin package 28A has a horizontally long package structure, and the lead 24 is configured to extend to the outside from the short side of the resin package 28A.
[0034]
Further, when the semiconductor element 10 is mounted in the horizontally long package structure, the semiconductor element 10 is also mounted in the horizontally long direction from the aspect of suppressing the generation of useless space in the resin package 28A. When the semiconductor element 10 is mounted on the resin package 28 </ b> A so as to be horizontally long in this way, each lead 24 faces the short side of the semiconductor element 10.
[0035]
In the semiconductor element 10 according to the present embodiment, the second electrode 18 is positioned on the uppermost surface in the state where the insulating film 30 is disposed, and thus the electrical connection with the outside is possible. It has become. In the present embodiment, the second electrode 18 is formed in a state along the short side of the element body 14.
Therefore, by connecting the second electrode 18 and the lead 24 with the wire 26, the lead 24 is electrically connected to the semiconductor element 14 through the second electrode 18, the wiring 22, the through hole 20, and the first electrode 16. Connected state. At this time, since the second electrode 18 and the lead 24 are opposed to each other, the distance between the second electrode 18 and the lead 24 is shortened. For this reason, the semiconductor device 12A can be miniaturized and the wire length can be shortened, so that the electrical loss generated in the wire 26 can be reduced.
[0036]
Next, attention is focused on the semiconductor device 12B shown in FIG.
The semiconductor device 12B is mounted with the semiconductor element 10 with the insulating film 30 peeled off. Here, prior to the description of the configuration of the semiconductor device 12B, a method of peeling the insulating film 30 from the element body 14 will be described with reference to FIGS.
FIG. 4 shows a method of peeling the insulating film 30 from the element body 14 by mechanical means. Here, the mechanical means means performing peeling by applying a peeling force to the insulating film 30.
[0037]
Specifically, in this embodiment, the end portion (right end portion in the illustrated example) of the insulating film 30 is gripped using a jig or the like, and a process of lifting it upward is performed. At this time, since the insulating film 30 is formed of the epoxy-containing olefin resin as described above, the mold release action is exhibited by heating the insulating film 30 to a temperature higher than the decomposition temperature of the epoxy resin.
Therefore, the peeling operation is performed in an environment heated to a temperature equal to or higher than the decomposition temperature of the epoxy resin, whereby the insulating film 30 can be easily peeled from the element body 14. Further, in the configuration in which the release agent 36 is applied to the interface between the element body 14 and the insulating film 30, the insulating film 30 can be peeled off from the element body 14 more easily.
[0038]
FIG. 5 shows a method of peeling the insulating film 30 from the element body 14 by chemical means. Here, the chemical means refers to a method of peeling the insulating film 30 from the element body 14 using a chemical reaction without directly applying the external force (peeling force) as described above to the insulating film 30.
Specifically, in this embodiment, a method of removing the insulating film 30 using an etching method is employed. That is, an etching solution 34 is selected that dissolves the second electrode 18, the wiring 22, and the insulating film 30 but does not exert a dissolving action on the element body 14 and the first electrode 16. Therefore, the insulating film 30 can be peeled (removed) from the element body 14 by etching using the etching solution 34.
[0039]
As described above, by adopting the method of peeling the insulating member 30 from the element body 14 using mechanical means or chemical means, the insulating member 30 can be easily peeled off from the element body 14 with relatively simple equipment. be able to. Since the through-hole electrode 20 and the wiring 22 are both disposed on the insulating member 30 as described above, the through-hole electrode 20 and the wiring 22 are removed by removing the insulating member 30 from the element body 14. Are also eliminated. Therefore, after the insulating member 30 is peeled from the element body 14, they do not adversely affect the connection between the first electrode 16 and the lead 24.
[0040]
Here, returning to FIG. 2 again, the semiconductor device 12B will be described.
The semiconductor device 12B is a semiconductor device having a vertically long package structure as shown in FIG. Therefore, the resin package 28B also has a vertically long package structure, and the lead 24 is configured to extend to the outside from the long side of the resin package 28B.
[0041]
Further, when the semiconductor element 10 is mounted in the vertically long package structure, the semiconductor element 10 is also mounted in a vertically long direction from the viewpoint of suppressing the generation of useless space in the resin package 28B. When the semiconductor element 10 is mounted on the resin package 28 </ b> A so as to be vertically long in this way, each lead 24 is in a state of facing the long side of the semiconductor element 10.
[0042]
In the semiconductor element 10 according to this example, since the insulating film 30 is peeled (removed) as described above, the first electrode 16 is exposed on the element body 14. In the present embodiment, the first electrode 16 is formed along the long side of the element body 14.
Therefore, the first electrode 16 and the lead 24 can be directly connected by the wire 26, and the lead 24 and the semiconductor element 10 are electrically connected in a state where the wire 26 is connected. At this time, since the first electrode 16 and the lead 24 are also opposed to each other in the semiconductor device 12B, the distance between the first electrode 16 and the lead 24 is shortened, and the semiconductor device 12B is downsized. Can be achieved. Further, since the wire length can be shortened, the electrical loss generated in the wire 26 can be reduced.
[0043]
As described above, in the semiconductor element 10 according to this embodiment, the first electrode 16 is formed on the element body 14, and the second electrode is formed on the insulating film 30 formed on the element body 14. 18 is formed. Therefore, the first electrode 16 and the second electrode 18 are stacked via the insulating film 30, and the area of the element body 14 is increased even if the first and second electrodes 16 and 18 are provided. The size can be reduced.
[0044]
In the example shown in FIGS. 1 and 3, the first electrode 16 and the second electrode 18 are not overlapped in the vertical direction for convenience of explanation and illustration. However, the first electrode 16 and the second electrode 18 are not overlapped. It is also possible to overlap the electrode 18 and in this case, the semiconductor element 10 can be further reduced in size.
Further, as is clear from the above description, the semiconductor element 10 according to this example includes the electrodes 16 and 18 in the state where the insulating film 30 is disposed and the state where the insulating film 30 is peeled off from the element body 14. The arrangement form can be varied.
[0045]
Therefore, even if it is necessary to change the formation positions of the electrodes 16 and 18 according to the package structure, the insulating film 30 is left as it is or the insulating film 30 is peeled off from the element body 14. It is possible to easily realize an electrode configuration corresponding to the package structure. This eliminates the need for prospective manufacturing to respond to orders from customers as in the prior art, and makes it possible to easily manage inventory of the semiconductor devices 12A and 12B.
[0046]
In the above-described embodiments, the configuration in which the insulating film 30 is formed as a single layer has been described as an example. However, the insulating member may have a multilayer structure. Thus, when the insulating member has a multilayer structure, inner layer wiring can be formed between the respective layers.
In this configuration, since the electrode arrangement form can be set for each layer, it is possible to easily cope with a plurality of package forms (that is, electrode arrangement forms). Specifically, when the insulating member has a five-layer structure and the electrode is formed in the desired arrangement form on the third layer, only the upper two layers are peeled off, so that the desired electrode An arrangement form can be realized.
[0047]
【The invention's effect】
As described above, according to the present invention, various effects described below can be realized. According to the first aspect of the present invention, the first electrode and the second electrode are laminated via the insulating member, and the area of the element body increases even if the first and second electrodes are provided. It can be reduced in size.
[0048]
  In addition, since the arrangement form of the electrodes can be different between the state in which the insulating member is disposed and the state in which the insulating member is peeled from the element body, it is necessary to change the electrode formation position according to the package structure. Even in some cases, an electrode configuration corresponding to the package structure can be easily realized by simply placing the insulating member as it is, or simply peeling the insulating member from the element body.Moreover, the process which peels an insulating member from an element main body can be performed easily.
[0049]
According to the second aspect of the present invention, the first electrode and the second electrode can be electrically connected with a simple configuration in a state where the insulating member is disposed. In addition, since the electrical connection means is also eliminated by peeling and removing the insulating member from the element body, the electrical connection means is connected to the first electrode and the external terminal after peeling the insulating member from the element body. Will not adversely affect your connection.
[0050]
  Further, according to the invention described in claim 3, since the electrode arrangement form can be set for each layer, it is possible to easily cope with a plurality of package forms (that is, electrode arrangement forms).The
[0051]
  Also,Claim 4 or claim 5According to the described invention, the insulating member can be easily separated from the element body with relatively simple equipment.
  Also,Claim 6According to the semiconductor device according to the invention described above, the distance between the semiconductor element and the lead can be set to the minimum distance, generation of electrical loss can be suppressed, and the arrangement form of the electrodes can be a package structure. Therefore, the semiconductor device can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a view showing a semiconductor device on which a semiconductor element according to an embodiment of the present invention is mounted, and is a view showing a state in which electrodes are in a first arrangement form.
FIG. 2 is a diagram showing a semiconductor device on which a semiconductor element according to an embodiment of the present invention is mounted, and a diagram showing a state in which electrodes are in a second arrangement form.
FIG. 3 is a cross-sectional view of a semiconductor element in a state where electrodes are in a first arrangement form.
FIG. 4 is a diagram for explaining a method of peeling an insulating film by mechanical means.
FIG. 5 is a diagram for explaining a method of peeling an insulating film by chemical means.
FIG. 6 is a diagram for explaining a horizontally long package;
FIG. 7 is a diagram for explaining a vertically long package;
FIG. 8 is a diagram for explaining an example of a conventional semiconductor element.
FIG. 9 is a diagram for explaining an example of a conventional semiconductor element.
[Explanation of symbols]
10 Semiconductor elements
12A, 12B Semiconductor device
14. Element body
16 First electrode
18 Second electrode
20 Through hole
22 Wiring
24 leads
26 wires
28A, 28B resin package
30 Insulating film
32 Circuit formation area
34 Etching solution
36 Release agent

Claims (6)

電子回路が形成された素子本体と、
該素子本体の表面上に第1の配置形態で形成された第1の電極と、
前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、
該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、
前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段と、
前記絶縁部材と前記素子本体との間に配設されており、前記絶縁部材と前記素子本体との剥離を容易とするための剥離剤と、を具備することを特徴とする半導体素子。
An element body in which an electronic circuit is formed;
A first electrode formed in a first arrangement on the surface of the element body;
An insulating member formed so as to cover the surface and disposed in a peelable configuration with respect to the element body;
A second electrode formed on the insulating member in a second arrangement form different from the first arrangement form;
Electrode connecting means for electrically connecting the first electrode and the second electrode in a state where the insulating member is disposed in the element body ;
A semiconductor element comprising: a release agent that is disposed between the insulating member and the element body and that facilitates peeling between the insulating member and the element body .
請求項1記載の半導体素子において、
前記電極接続手段は、
前記絶縁部材に形成されており、前記第1の電極と対向する位置に形成されたスルーホール電極と、
前記絶縁部材に形成されており、一端が前記第2の電極に接続すると共に、他端が前記スルーホール電極に接続された配線と、
により構成されることを特徴とする半導体素子。
The semiconductor device according to claim 1,
The electrode connecting means includes
A through-hole electrode formed on the insulating member and formed at a position facing the first electrode;
A wiring formed on the insulating member, having one end connected to the second electrode and the other end connected to the through-hole electrode;
A semiconductor device comprising:
請求項1または2記載の半導体装置において、
前記絶縁部材を多層構造とし、各層間に内層配線を形成したことを特徴とする半導体素子。
The semiconductor device according to claim 1 or 2,
A semiconductor element characterized in that the insulating member has a multi-layer structure, and an inner layer wiring is formed between the respective layers.
電子回路が形成された素子本体と、該素子本体の表面上に第1の配置形態で形成された第1の電極と、前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段とを具備する半導体素子において、前記素子本体から前記絶縁部材を剥離することにより電極形態を変更する半導体素子の電極形態変更方法であって、  An element body in which an electronic circuit is formed, a first electrode formed in a first arrangement form on the surface of the element body, and formed so as to cover the surface, and can be peeled off from the element body An insulating member arranged in a simple configuration, a second electrode formed on the insulating member in a second arrangement form different from the first arrangement form, and the insulating member arranged in the element body. In a semiconductor element comprising an electrode connection means for electrically connecting the first electrode and the second electrode in a state where the first electrode and the second electrode are electrically connected, a semiconductor element that changes an electrode configuration by peeling the insulating member from the element body The electrode shape changing method of
前記絶縁部材を機械的手段を用いて前記素子本体から剥離させることを特徴とする半導体素子の電極形態変更方法。  A method for changing an electrode configuration of a semiconductor element, wherein the insulating member is peeled off from the element body using mechanical means.
電子回路が形成された素子本体と、  An element body in which an electronic circuit is formed;
該素子本体の表面上に第1の配置形態で形成された第1の電極と、  A first electrode formed in a first arrangement on the surface of the element body;
前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、  An insulating member formed so as to cover the surface and disposed in a configuration that can be peeled from the element body;
該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、  A second electrode formed on the insulating member in a second arrangement form different from the first arrangement form;
前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段とを具備してなる半導体素子において、前記素子本体から前記絶縁部材を剥離することにより電極形態を変更する半導体素子の電極形態変更方法であって、  In a semiconductor element comprising electrode connecting means for electrically connecting the first electrode and the second electrode in a state where the insulating member is disposed in the element body, the insulation from the element body A method for changing the electrode form of a semiconductor element, wherein the electrode form is changed by peeling a member,
前記絶縁部材を化学的手段を用いて前記素子本体から剥離させることを特徴とする半導体素子の電極形態変更方法。  A method for changing an electrode configuration of a semiconductor element, wherein the insulating member is peeled off from the element body using chemical means.
半導体素子と、  A semiconductor element;
前記半導体素子と電気的に接続されたリードと、  A lead electrically connected to the semiconductor element;
前記半導体素子を封止するパッケージとを具備する半導体装置において、  In a semiconductor device comprising a package for sealing the semiconductor element,
前記半導体素子を、  The semiconductor element;
電子回路が形成された素子本体と、  An element body in which an electronic circuit is formed;
該素子本体の表面上に第1の配置形態で形成された第1の電極と、  A first electrode formed in a first arrangement on the surface of the element body;
前記表面を覆うように形成されると共に、前記素子本体に対し剥離可能な構成で配設された絶縁部材と、  An insulating member formed so as to cover the surface and disposed in a configuration that can be peeled from the element body;
該絶縁部材上に前記第1の配置形態と異なる第2の配置形態で形成された第2の電極と、  A second electrode formed on the insulating member in a second arrangement form different from the first arrangement form;
前記絶縁部材が前記素子本体に配設された状態において前記第1の電極と第2の電極とを電気的に接続する電極接続手段と、  Electrode connecting means for electrically connecting the first electrode and the second electrode in a state where the insulating member is disposed in the element body;
前記絶縁部材と前記素子本体との間に配設されており、前記絶縁部材と前記素子本体との剥離を容易とするための剥離剤とを具備する構成としたことを特徴とする半導体装置。  A semiconductor device comprising a release agent that is disposed between the insulating member and the element body and that facilitates peeling between the insulating member and the element body.
JP15528797A 1997-03-18 1997-06-12 SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE Expired - Lifetime JP3705896B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15528797A JP3705896B2 (en) 1997-06-12 1997-06-12 SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE
US09/030,349 US6063640A (en) 1997-03-18 1998-02-25 Semiconductor wafer testing method with probe pin contact
TW087103831A TW393710B (en) 1997-03-18 1998-03-16 Semiconductor wafer testing method with improved probe pin contact
KR1019980009068A KR100294396B1 (en) 1997-03-18 1998-03-17 Semiconductor wafer inspection method with improved probe pin contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15528797A JP3705896B2 (en) 1997-06-12 1997-06-12 SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE

Publications (2)

Publication Number Publication Date
JPH113908A JPH113908A (en) 1999-01-06
JP3705896B2 true JP3705896B2 (en) 2005-10-12

Family

ID=15602609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15528797A Expired - Lifetime JP3705896B2 (en) 1997-03-18 1997-06-12 SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE

Country Status (1)

Country Link
JP (1) JP3705896B2 (en)

Also Published As

Publication number Publication date
JPH113908A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
CN1716587B (en) Interposer, method of fabricating the same, and semiconductor device using the same
KR100838440B1 (en) Electronic device substrate, electronic device and methods for making same
KR100537972B1 (en) Chip scale ball grid array for integrated circuit package
US5373627A (en) Method of forming multi-chip module with high density interconnections
US6291271B1 (en) Method of making semiconductor chip package
JPS6324647A (en) Semiconductor package
KR20000057331A (en) Tab tape ball grid array package with vias laterally offset from solder ball bond sites
KR20080062225A (en) Smart power module
JP2006196709A (en) Semiconductor device and manufacturing method thereof
TW201631701A (en) Polymer member based interconnect
JPH09232508A (en) Multichip package including pattern metal layer and insulating layer and using lead frame
JP2008181977A (en) Package, manufacturing method thereof, semiconductor device using the same, and manufacturing method of semiconductor device using the same
US20110045668A1 (en) Method of manufacturing wafer level device package
JP2002217354A (en) Semiconductor device
JP3731420B2 (en) Manufacturing method of semiconductor device
CN107770946A (en) Printed wiring board and its manufacture method
JP3705896B2 (en) SEMICONDUCTOR ELEMENT, ELECTRODE FORM CHANGE METHOD, AND SEMICONDUCTOR DEVICE
CN105244327A (en) Electronic device module and method of manufacturing the same
JP2001015629A (en) Semiconductor device and its manufacture
JP3757766B2 (en) SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
CN106024755A (en) Semiconductor device
JP3490601B2 (en) Film carrier and laminated mounting body using the same
EP0117211B1 (en) Method for fabricating a package for an integrated circuit
JP2006339293A (en) Circuit module
JPH02343A (en) Substrate for mounting electronic parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term