JP3704671B2 - Half-duplex air membrane structure - Google Patents

Half-duplex air membrane structure Download PDF

Info

Publication number
JP3704671B2
JP3704671B2 JP31889796A JP31889796A JP3704671B2 JP 3704671 B2 JP3704671 B2 JP 3704671B2 JP 31889796 A JP31889796 A JP 31889796A JP 31889796 A JP31889796 A JP 31889796A JP 3704671 B2 JP3704671 B2 JP 3704671B2
Authority
JP
Japan
Prior art keywords
membrane
cable
air
roof
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31889796A
Other languages
Japanese (ja)
Other versions
JPH10159392A (en
Inventor
智久 奥野
裕 安部
公彦 最上
吉雄 丹野
康三 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP31889796A priority Critical patent/JP3704671B2/en
Publication of JPH10159392A publication Critical patent/JPH10159392A/en
Application granted granted Critical
Publication of JP3704671B2 publication Critical patent/JP3704671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tents Or Canopies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、膜材を用いて膜屋根を形成し、この膜屋根及び外壁に囲まれた屋内の空気圧を高めて前記膜屋根を張力状態となし屋根荷重及び外力に抵抗する構造の空気膜構造物(低ライズケーブル補強空気膜構造物)に係り、更に言えば、屋内の空気圧はできるだけ低く保ち、膜屋根が形成する空気室の圧力を高めて同膜屋根の安定性と剛性を保つ技術の分野に属する。
【0002】
【従来の技術】
近年、膜構造により無柱の大規模な施設を作る建築技術の研究が盛んであり、空気膜構造物は東京ドームとして実現し供用されている。空気膜構造物は、図8A,Bに概念図を示したように、気密性構造の外壁1に囲まれた上面に、平面図が図8Bのようなコンプレッションリング7の面内に2次元の格子状に組まれたケーブル2の上に膜材3を止着した構成の膜屋根4を架設し、空気圧により前記膜屋根4を押し上げて支える構造が特徴であり、屋根の軽快さと屋内の明るさが利点として広く認識されている。また、デフレート状態(自由懸垂状態、膜面が収縮し吊り下げられた状態)での施工が可能であるため、仮設資材の少量化を図れ、施工性に優れることも特徴である。
【0003】
卑近な先行技術例として、特開平5−18148号公報に記載された空気膜構造物は、保冷、保温能力の向上を目的として膜屋根を内外に独立した複数層の空気室で形成した二重膜構造物であり、外側の空気室には当該膜屋根に張力を保持できる程度の空気圧を付与し、内側の空気室には屋内の設定温度の冷風又は温風を送風、循環させる構成とされている。
【0004】
【本発明が解決しようとする課題】
空気膜構造物は、屋内の空気圧で膜屋根を押し上げて屋根荷重を支持する原理の構造物であり、外気圧よりも屋内の空気圧(常時空気圧)を常に高くしておく必要があり、建物の内部と外部は完全に遮断されている。積雪時や強風、台風時には、それらの外力に抵抗するまで屋内圧力を昇圧させることにより膜屋根の剛性、安定性を高めて対処している。膜屋根を支持する屋内圧力の配分を分析すると、屋根自重を支持する働きの割合は屋内圧力(常時空気圧=30mm水柱)のおよそ半分程度であり、これ以外の圧力は通例範囲の風による膜屋根の振動(揺れ)を防止する働きに割かれている。
【0005】
上述した空気膜構造物の技術的な問題点を整理すると、次のようである。
▲1▼ 屋内圧力をかけるための送風加圧装置(ファン)及び関連の送風設備に要
するイニシャルコスト、並びにランニングコストが高い。
▲2▼ 風や雪の負荷に対応して膜屋根の適正な架設状態を保つために必要な24時間体制の管理と、前記管理に応答するコンピュ−タ応用の屋内圧力制御の
コストが高い。
【0006】
▲3▼ 屋内圧力を維持、管理するために必要な気密性の高い建具(ドア、窓サッシ)が必要であり、また、衛生設備も高価である(例えばトイレのU字管部に作用する排水圧力の設定値が高いため高価となる)。更に強風、積雪時に屋内圧力を昇圧させると人の出入り時の漏気による風圧や耳鳴りなどの不快
感が問題となる等々。
【0007】
いずれも高い屋内空気圧力が作用することに起因する問題点である。しかも、それぞれの構成要素は屋内の最高圧力を前提として設計、製作されるため、飛躍的なコスト増をもたらすことが大きな問題点になっている。
この点、上記した特開平5−18148号公報に記載された空気膜構造物のように二重膜構造とした場合は、屋内を格別加圧する必要はないが、二重膜構造の膜屋根が梁の如き働きをするために剛性が低く、膜屋根のせいが大きなものとなって屋内の有効スペースが制限される問題がある。
【0008】
本発明の目的は、一重空気膜構造(膜屋根)の利点である軽量性、柔軟性を損なうことなく、二重空気膜構造の利点を採用したもので、屋内圧力(常時圧力)を昇圧させることなく、膜屋根の剛性、安定性を保てるように改良することである。
【0009】
【課題を解決するための手段】
上述の課題を解決するための手段として、請求項1に記載した発明に係る半二重空気膜構造物は、
膜材を用いて膜屋根を形成し、この膜屋根及び外壁に囲まれた屋内の空気圧を高めて前記膜屋根を張力状態となし屋根荷重及び外力に抵抗する構造の空気膜構造物において、
前記膜屋根は、前記外壁の上部に設置したコンプレッションリングに端部を支持された上側ケーブルと下側ケーブル、およびこれら上下のケーブルの中間部位を垂直方向に連結する繋ぎケーブルで構成された補強ケーブルにおける上側ケーブルの上面側に外気と接する外膜を、下側ケーブルの下面側に屋内側の内膜を取り付けた二重膜の構成、又はコンプレッションリングに端部を支持された上弦材ケーブルと下弦材ケーブル、及び前記上下のケーブルを垂直方向に連結する繋ぎケーブル、並びに前記連結点を斜めに連結したブレースケーブルとで構成されたケーブルトラス、若しくは上弦材ケーブルと下弦材ケーブルの間をブレースケーブルが上下にジグザグの三角形状に連結された構成のケーブルトラスにおける上弦材ケーブルの上面側に外気と接する外膜を、下弦材ケーブルの下面側に屋内側の内膜を取り付けた二重膜の構成で、各膜材の膨脹状態の形状拘束と安定性の保持が行われており、且つ前記外膜と内膜の間に屋内とは独立した空気室が形成されていること、
前記膜屋根の空気室及び屋内の空気圧を共通に又は個別に設定し或いは調節する手段として、送風機の吐出管を途中で膜屋根の空気室と屋内に分岐して接続し、前記分岐点に風量制御装置としてのダンパーが設置され、又は屋内と膜屋根の空気室との連通孔に風量制御装置としてのダンパーが設置され、送風機の吐出管が膜屋根の空気室にのみ接続され、若しくは膜屋根の空気室と屋内とにそれぞれ専用の送風機の吐出管が接続され、前記ダンパーを中立位置とし又は開閉する操作が行われ膜屋根の安定性と剛性を保つことを特徴とする。
【0011】
請求項2に記載した発明は、請求項1に記載した半二重空気膜構造物において、
膜屋根の空気室と屋内とは、平常時は両者の前記連通孔又は吐出管の分岐点に設置したダンパーを中立位置として同一圧力に保ち、強風時又は積雪時等にはダンパーを閉止するか又は膜屋根の空気室の方へ送風の大部分が配分される位置に傾けて膜屋根の空気室の圧力を昇圧させることを特徴とする。
【0012】
【発明の実施形態及び実施例】
本願発明は、図8の従来例と同様に、膜材3を用いて膜屋根4を形成し、この膜屋根4及び外壁1に囲まれた屋内6の空気圧を高めて前記膜屋根4を張力状態となし屋根荷重及び外力に抵抗する構造の空気膜構造物に実施される。
具体的には、図1と図2に概念図を示したように、前記膜屋根4は、外気に接する外膜3aと屋内側の内膜3bとの二重膜で形成され、外壁1の上部のコンプレッションリング7上に架設されている。前記外膜3aと内膜3bとの間に屋内6の空間とは独立した空気室8が形成されている。前記外膜3aと内膜3bとは中間部を複数の繋ぎ材9で垂直方向に連結され、もって各膜材の膨張状態の形状拘束と安定性の保持が行われている。そして、膜屋根4の前記空気室8と屋内6とは、平常時は図1のように連通孔10等を開放して両者を共通に同一圧力の状態に保つ。強風時或いは積雪時等には、図2のように前記連通孔10を遮断して両者を独立させ、膜屋根4の空気室8のみその空気圧を外力に抵抗するまで昇圧させ、膜屋根の安定性と剛性を保ち、揺れ(振動)を防ぐ対策が講じられる。従って、この半二重空気膜構造物は、屋内6の空気圧が従前の数値(例えば30mm水柱)よりもかなり低くても(例えば20mm水柱程度)、外力に対して膜屋根4の安定性と剛性を十分に保てる。
【0013】
前記膜屋根4の構築は、大別して図3A〜Dのように実施される。図3Aの実施例は、両端をコンプレッションリング7に支持された補強ケーブル2が、上側ケーブル2aと下側ケーブル2b、及びこれらの中間部位を垂直方向に連結する繋ぎケーブル9とで構成されている。そして、前記上側ケーブル2aの上面側に外膜3aが、下側ケーブル2bの下面側に膜3bが、それぞれ前記繋ぎケーブル9の各連結点を利用して取り付けられている。
【0014】
図3Bは基本的に図3Aと同じく補強ケーブル2を使用した実施例であるが、各繋ぎケーブル9の配置ピッチの中間部に更に中間繋ぎ11を複数連結して、外膜3aと内膜3bとの形状拘束の効果を高めた実施例を示している。
図3Cは、補強ケーブルに代わるケーブルトラス5を採用した実施例を示している。図3Cのケーブルトラス5は、上弦材ケーブル5aと下弦材ケーブル5b及びこれらを垂直方向に連結する繋ぎ材9、並びに隣合う繋ぎ材9の各連結点を斜めに連結するブレースケーブル5cとで構成されている。上弦材ケーブル5aの上面側に外膜3aが、下弦材ケーブル5bの下面側に膜3bが、それぞれ前記繋ぎ材9の各連結点を利用して取り付けられている。
【0015】
図4は更に具体的に、図3Cのケーブルトラス5の構成と各膜材の取付け構造の詳細を示している。上弦材5a,5a同士及び下弦材5b,5b同士はそれぞれ上下に対称な構造で連結されている。即ち、一方向のケーブル5aの上下を挟む一対のケーブルホルダー12、12は垂直方向に配置したボルト13と膜取付け金物14とで連結される。前記ボルト13と膜取付け金物14との結合部には、膜押さえ15を介して外膜3a又は内膜3bがそれぞれ上下に対称な構成で取り付けられている。一方、上下に相対峙する関係のケーブルホルダー12に設けた繋ぎ材連結部16、16の間に、繋ぎ材ケーブル9の上下両端が連結されている。更に、各方向のブレースケーブル5cの端部も前記繋ぎ材連結部16に連結されている。
【0016】
次に、図3Dは同じくケーブルトラス5を使用した実施例であるが、このケーブルトラス5は繋ぎ材9を使用せず、ブレースケーブル5cが上・下弦材の間でジグザグの三角形状に連結された構成を示している。
次に、図5〜図7は膜屋根4の空気室8と屋内6の空気圧を共通に又は個別に設定し或いは調節する手段の異なる実施例を示している。
【0017】
まず図5は、1台の送風機20を共通に使用する例で、吸い込み管22で屋外の空気を取り入れる送風機20の吐出管21は、途中で屋内行き管21Aと屋根空気室行き管21Bとに分岐され、その分岐点に切替えと風量制御装置を兼ねたダンパー23が設置されている。図5Aは平常時を示し、ダンパー23は中立位置とされ、送風機20の送風は屋内6と屋根の空気室8とへ平等に分配され、両室は同一の空気圧に保たれている。この時の平常時空気圧は20mm水柱程度で十分である。図5Bは強風時又は積雪時など膜屋根4に作用する外力に抵抗して振動防止、安定性の向上が必要な時で、前記ダンパー23は屋根空気室行き管21Bの側に傾けられ、送風機20による送風の大部分は屋根の空気室8へ配分され、必然的に空気室8の空気圧は例えば30mm水柱程度に高められている。他方、屋内行き管21Aへは漏気を補償する程度の分量の送風が行われ、依然として前記の平常時空気圧(例えば20mm水柱程度)が保たれる。
【0018】
次に、図6もまた、1台の送風機20を共通に使用する実施例であるが、屋外の空気を取り入れる送風機20の吐出管21は膜屋根4の空気室8とのみ接続されている。一方、屋内6と空気室8との連通孔24に風量制御装置としてのダンパー23が設置されている。図6Aは平常時を示し、連通孔24のダンパー23は中立位置とされ、送風機20による送風は一旦空気室8へ供給されるが、全開の連通孔24を通じて屋内6へも分配され、両室は同一の空気圧に保たれている。図5Bは強風時又は積雪時など膜屋根4に作用する外力に抵抗して振動防止、安定性の向上などが必要な時で、前記ダンパー23は閉鎖近傍の位置とされ、送風機20の送風の大部分は屋根の空気室8へ配分され、必然的に空気室8の空気圧は例えば30mm水柱程度に高められている。他方、若干開いている連通孔24からは屋内6の漏気を補償する程度の分量の通風が行われ、屋内6は依然として前記の平常時空気圧程度が保たれる。
【0019】
次に、図7は、屋内用と膜屋根用に専用する2台の送風機20A、20Bを使用する実施例を示している。それぞれ屋外の空気を取り入れることに変わりないが、屋内用の送風機20Aはその能力が平常時圧力(例えば20mm水柱)を達成する程度のものとされ、その吐出管21は屋内6にのみ接続されている。膜屋根用の送風機20Bは、その能力が積雪時などの外力に抵抗して膜屋根の揺れを防ぎ或いは必要な剛性、安定性を保つのに必要な空気圧(例えば30mm水柱)を達成する程度のものとされ、その吐出管21は膜屋根4の空気室8とのみ接続されている。そして、屋内6と空気室8との連通孔24に風量制御装置としてのダンパー23が設置されている。図7Aは平常時を示している。このとき連通孔24のダンパー23は中立位置とされ、屋内用の送風機20Aのみが運転され、その送風は一端屋内6へ供給されるが、全開の連通孔24を通じて膜屋根の空気室8へも分配され、両室は同一の空気圧に保たれている。図7Bは強風時又は積雪時など膜屋根4に作用する外力に抵抗して振動防止、安定性の向上などが必要な時で、前記ダンパー23は完全に閉鎖され、2台の送風機20A と20Bが同時に運転され、各送風機の働きにより空気室8の空気圧は30mm水柱程度に高められ、屋内6へは漏気を補償する程度の送風が行われ平常時の空気圧程度が保たれている。
【0020】
【本発明が奏する効果】
本発明の半二重空気膜構造物によれば、空気膜構造物本来の特長、即ち、軽量性と柔軟性、或いは屋内の明るさを失うことなく、強風時或いは積雪時などには膜屋根4の空気室8の空気圧のみの調整によって、屋内6の空気圧は従前の約2/3程度(20mm水柱程度)の平常時空気圧に保持したまま、外力に十分抵抗して膜屋根の剛性、安定性を保つことが出来る。従って、屋内圧力を付与するための送風加圧装置(ファン)及び関連の送風設備の能力をかなり格下げ出来、それらに要するイニシャルコスト、ランニングコストの低減が可能である。また、強風や積雪の負荷に対応して膜屋根の適正な架設状態を保つために必要とされる24時間体制の管理もかなり緩和され、前記管理に応答するコンピュ−タ応用の屋内圧力制御の頻度も著しく軽減化され、制御を省ける時間の割合が支配的となるので、その分コストが低減される。更に、屋内圧力を維持、管理するために必要な気密性の性能が緩和された建具(ドア、窓サッシ)の使用、或いは圧力の設定値が緩和された衛生設備の使用が可能となり、それらのコストダウンが図れる。強風、積雪時に屋内圧力を昇圧させる度合いが少ないから、必然、人の出入りにも支障が少ない空気膜構造物を提供出来る。
【図面の簡単な説明】
【図1】 本発明に係る半二重空気膜構造物の平常状態を概念的に示した立面図である。
【図2】 本発明に係る半二重空気膜構造物の強風、積雪時などの状態を概念的に示した立面図である。
【図3】 Aは補強ケーブルの構成と膜材の取付け構造を概念的に示した立面図、Bはやはり補強ケーブルの構成と膜材の取付け構造の異なる例を概念的に示した立面図、Cはケーブルトラスの構成と膜材の取付け構造を概念的に示した立面図、Dはやはりケーブルトラスの構成と膜材の取付け構造の異なる例を概念的に示した立面図である。
【図4】 図3Cの構造詳細を示した主要部の立面図である。
【図5】 AとBは平常時と積雪時などに膜屋根の空気室と屋内の空気圧を共通に又は個別に調整する手段を概念的に示した立面図である。
【図6】 AとBは平常時と積雪時などに膜屋根の空気室と屋内の空気圧を共通に又は個別に調整する手段の異なる例を概念的に示した立面図である。
【図7】 AとBは平常時と積雪時などに膜屋根の空気室と屋内の空気圧を共通に又は個別に調整する手段の異なる例を概念的に示した立面図である。
【図8】 Aは従来の空気膜構造物を概念的に示した立面図、Bは平面図である。
【符号の説明】
4 膜屋根
1 外壁
6 屋内
3a 外膜
3b 内膜
8 空気室
9 繋ぎ材
2 補強ケーブル
2a 上側ケーブル
2b 下側ケーブル
5 ケーブルトラス
5a 上弦材ケーブル
5b 下弦材ケーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention forms a membrane roof using a membrane material, and raises the air pressure in the room surrounded by the membrane roof and the outer wall to make the membrane roof in a tension state and to resist the roof load and external force. For example, a technology that maintains the stability and rigidity of the membrane roof by keeping the indoor air pressure as low as possible and increasing the pressure of the air chamber formed by the membrane roof. Belonging to the field.
[0002]
[Prior art]
In recent years, there has been a great deal of research on building technology that creates large-scale facilities with no pillars using a membrane structure, and the air membrane structure has been realized and used as a Tokyo Dome. As shown in the conceptual diagram in FIGS. 8A and 8B, the air membrane structure is two-dimensional on the upper surface surrounded by the outer wall 1 of the airtight structure and in the plane of the compression ring 7 as shown in FIG. 8B. It is characterized by a structure in which a membrane roof 4 having a structure in which a membrane material 3 is fixedly mounted on a cable 2 assembled in a lattice shape and supported by pushing up the membrane roof 4 by air pressure. Is widely recognized as an advantage. Further, since the construction can be performed in a deflated state (a free suspension state, a state in which the film surface is contracted and suspended), the amount of temporary materials can be reduced, and the workability is excellent.
[0003]
As a familiar prior art example, the air membrane structure described in Japanese Patent Laid-Open No. 5-18148 is a double-layered air chamber formed with a plurality of layers of air chambers independent on the inside and outside for the purpose of cooling and keeping warm. It is a membrane structure, and the outer air chamber is provided with an air pressure that can maintain the tension on the membrane roof, and the inner air chamber is configured to blow and circulate indoor or cold air at a set temperature. ing.
[0004]
[Problems to be solved by the present invention]
The air membrane structure is a structure based on the principle of supporting the roof load by pushing up the membrane roof with the indoor air pressure, and the indoor air pressure (always air pressure) must always be higher than the outside air pressure. The inside and outside are completely shut off. During snowfall, strong winds, and typhoons, the indoor pressure is increased until it resists these external forces to increase the rigidity and stability of the membrane roof. When analyzing the distribution of indoor pressure that supports the membrane roof, the proportion of the work that supports the roof weight is about half of the indoor pressure (always air pressure = 30mm water column), and other pressures are usually due to wind in the range of the membrane roof It is devoted to the function of preventing the vibration (sway).
[0005]
The technical problems of the air film structure described above are summarized as follows.
(1) The initial cost and running cost required for the air pressure device (fan) for applying the indoor pressure and the related air equipment are high.
{Circle around (2)} The cost of managing the 24-hour system necessary to maintain the proper erection state of the membrane roof in response to wind and snow loads and the indoor pressure control for computer applications that respond to the management are high.
[0006]
(3) Highly airtight fittings (doors, window sashes) necessary for maintaining and managing indoor pressure are required, and sanitary facilities are also expensive (for example, drainage that acts on the U-shaped pipe part of a toilet) It is expensive because the pressure setting is high). Furthermore, when the indoor pressure is increased during strong winds and snowfall, uncomfortable feelings such as wind pressure and tinnitus due to air leaks when people enter and leave are problematic.
[0007]
Both are problems caused by high indoor air pressure. Moreover, since each component is designed and manufactured on the premise of the highest indoor pressure, it is a big problem to bring about a dramatic increase in cost.
In this regard, in the case of a double membrane structure like the air membrane structure described in JP-A-5-18148 described above, it is not necessary to pressurize indoors, but the membrane roof of the double membrane structure Since it works like a beam, its rigidity is low and the membrane roof is so large that the effective space in the room is limited.
[0008]
The object of the present invention is to adopt the advantage of the double air membrane structure without impairing the light weight and flexibility which are the advantages of the single air membrane structure (membrane roof), and increase the indoor pressure (normal pressure). It is to improve so that the rigidity and stability of the membrane roof can be maintained.
[0009]
[Means for Solving the Problems]
As a means for solving the above-mentioned problem, a half-duplex air membrane structure according to the invention described in claim 1 is:
In an air membrane structure having a structure in which a membrane roof is formed using a membrane material, and the indoor air pressure enclosed by the membrane roof and the outer wall is increased to make the membrane roof in a tension state and resists load and external force.
The membrane roof is composed of an upper cable and a lower cable whose ends are supported by a compression ring installed at the upper part of the outer wall, and a reinforcing cable composed of a connecting cable that vertically connects intermediate portions of these upper and lower cables. A double membrane structure with an outer membrane in contact with the outside air on the upper surface side of the upper cable and an indoor inner membrane on the lower surface side of the lower cable, or an upper chord cable and lower chord supported at the end by a compression ring A cable truss composed of a material cable, a connecting cable that vertically connects the upper and lower cables, and a brace cable that obliquely connects the connection points, or a brace cable between the upper chord material cable and the lower chord material cable Upper surface side of upper chord material cable in cable truss configured to be connected in a zigzag triangular shape vertically In the configuration of a double membrane in which the inner membrane on the lower surface of the lower chord material cable is attached to the outer membrane in contact with the outside air, the shape restraint and stability of the expanded state of each membrane material are maintained, and An air chamber independent of the interior is formed between the outer membrane and the inner membrane,
As a means for setting or adjusting the air pressure of the membrane roof air chamber and the indoor in common or individually, a discharge pipe of a blower is branched and connected to the air chamber of the membrane roof in the middle and the air volume at the branch point A damper as a control device is installed, or a damper as an air volume control device is installed in the communication hole between the indoor and the air chamber of the membrane roof, and the discharge pipe of the blower is connected only to the air chamber of the membrane roof, or the membrane roof A discharge pipe of a dedicated blower is connected to each of the air chamber and the indoor space, and the operation to open or close the damper is performed to maintain the stability and rigidity of the membrane roof.
[0011]
The invention described in claim 2 is the half-duplex air membrane structure according to claim 1,
The air chamber and the indoor of the membrane roof are normally used to maintain the same pressure with the damper installed at the branch point of the communication hole or the discharge pipe of both of them at the neutral position, and to close the damper at the time of strong wind or snow Alternatively, the pressure of the air chamber of the membrane roof is increased by tilting to a position where most of the air flow is distributed toward the air chamber of the membrane roof.
[0012]
Embodiments and Examples of the Invention
In the present invention, the membrane roof 4 is formed using the membrane material 3 in the same manner as the conventional example of FIG. 8, and the air pressure in the indoor 6 surrounded by the membrane roof 4 and the outer wall 1 is increased to tension the membrane roof 4. Implemented on air film structures that are structured to resist state and none roof loads and external forces.
Specifically, as shown in the conceptual diagrams of FIGS. 1 and 2, the membrane roof 4 is formed of a double membrane of an outer membrane 3 a in contact with the outside air and an inner membrane 3 b on the indoor side, It is constructed on the upper compression ring 7. An air chamber 8 independent of the space of the indoor 6 is formed between the outer membrane 3a and the inner membrane 3b. The outer membrane 3a and the inner membrane 3b are connected to each other in the vertical direction by a plurality of connecting members 9 at the intermediate portion, so that the shape of each membrane material is constrained and its stability is maintained. Then, the air chamber 8 and the indoor 6 of the membrane roof 4 are normally kept at the same pressure by opening the communication hole 10 and the like as shown in FIG. When the wind is strong or when there is snow, etc., the communication hole 10 is blocked and the two are made independent as shown in FIG. 2, and only the air chamber 8 of the membrane roof 4 is pressurized until it resists an external force. Measures are taken to maintain vibration and rigidity and prevent shaking. Therefore, this half-duplex air membrane structure has stability and rigidity of the membrane roof 4 against external force even if the air pressure of the indoor 6 is considerably lower than the previous value (eg, 30 mm water column) (for example, about 20 mm water column). Can be kept enough.
[0013]
The membrane roof 4 is constructed roughly as shown in FIGS. In the embodiment of FIG. 3A, the reinforcing cable 2 supported at both ends by the compression ring 7 is composed of an upper cable 2a, a lower cable 2b, and a connecting cable 9 that connects these intermediate portions in the vertical direction. . The outer membrane 3a is attached to the upper surface side of the upper cable 2a, and the inner membrane 3b is attached to the lower surface side of the lower cable 2b using the connection points of the connecting cable 9, respectively.
[0014]
FIG. 3B is an embodiment basically using the reinforcing cable 2 as in FIG. 3A. However, a plurality of intermediate joints 11 are further connected to the intermediate portion of the arrangement pitch of each connecting cable 9, and the outer membrane 3a and the inner membrane 3b. The embodiment which heightened the effect of shape restraint is shown.
FIG. 3C shows an embodiment in which a cable truss 5 is used instead of the reinforcing cable. The cable truss 5 in FIG. 3C includes an upper chord material cable 5a, a lower chord material cable 5b, a connecting material 9 that connects them in the vertical direction, and a brace cable 5c that connects each connecting point of adjacent connecting materials 9 at an angle. Has been. An outer membrane 3a is attached to the upper surface side of the upper chord material cable 5a, and an inner membrane 3b is attached to the lower surface side of the lower chord material cable 5b using the connection points of the connecting material 9, respectively.
[0015]
FIG. 4 more specifically shows the configuration of the cable truss 5 of FIG. 3C and the details of the attachment structure of each membrane material. The upper chord members 5a and 5a and the lower chord members 5b and 5b are connected in a vertically symmetrical structure. That is, the pair of cable holders 12, 12 sandwiching the upper and lower sides of the cable 5 a in one direction are connected by the bolt 13 and the membrane mounting hardware 14 arranged in the vertical direction. An outer membrane 3 a or an inner membrane 3 b is attached to the joint portion between the bolt 13 and the membrane attachment metal 14 via a membrane presser 15 in a vertically symmetrical configuration. On the other hand, the upper and lower ends of the connecting material cable 9 are connected between the connecting material connecting portions 16 and 16 provided in the cable holder 12 having a relationship of being vertically opposed. Furthermore, the end portion of the brace cable 5c in each direction is also connected to the connecting material connecting portion 16.
[0016]
Next, FIG. 3D shows an embodiment in which the cable truss 5 is also used. The cable truss 5 does not use the connecting material 9 and the brace cable 5c is connected in a zigzag triangular shape between the upper and lower chords. Shows the configuration.
5 to 7 show different embodiments of means for setting or adjusting the air pressure of the air chamber 8 and the indoor 6 of the membrane roof 4 in common or individually.
[0017]
First, FIG. 5 is an example in which one blower 20 is used in common. The discharge pipe 21 of the blower 20 that takes in outdoor air through the suction pipe 22 is divided into an indoor pipe 21A and a roof air chamber pipe 21B. A damper 23 that serves as a switching and air flow control device is installed at the branch point. FIG. 5A shows a normal state, the damper 23 is in a neutral position, and the air blown from the blower 20 is equally distributed to the indoor 6 and the air chamber 8 on the roof, and both chambers are kept at the same air pressure. At this time, a normal air pressure of about 20 mm water column is sufficient. FIG. 5B shows a case where it is necessary to prevent vibration and improve stability by resisting an external force acting on the membrane roof 4 such as during strong winds or snow, and the damper 23 is tilted toward the roof air chamber pipe 21B. Most of the air blown by 20 is distributed to the air chamber 8 on the roof, and the air pressure of the air chamber 8 is inevitably increased to, for example, about 30 mm water column. On the other hand, air is blown to the indoor pipe 21A to compensate for air leakage, and the normal air pressure (for example, about 20 mm water column) is still maintained.
[0018]
Next, FIG. 6 is also an embodiment in which one blower 20 is used in common, but the discharge pipe 21 of the blower 20 that takes in outdoor air is connected only to the air chamber 8 of the membrane roof 4. On the other hand, a damper 23 as an air volume control device is installed in the communication hole 24 between the indoor 6 and the air chamber 8. 6A shows a normal state, the damper 23 of the communication hole 24 is in a neutral position, and the air blown by the blower 20 is once supplied to the air chamber 8, but is also distributed to the indoor 6 through the fully open communication hole 24. Are kept at the same air pressure. FIG. 5B shows a case where it is necessary to prevent vibration and improve stability by resisting an external force acting on the membrane roof 4 such as during strong winds or snow, and the damper 23 is positioned near the closed position. Most of the air is distributed to the air chamber 8 on the roof, and the air pressure of the air chamber 8 is inevitably increased to, for example, about 30 mm. On the other hand, through the slightly open communication hole 24, ventilation of an amount that compensates for leakage in the indoor 6 is performed, and the indoor 6 is still maintained at the normal air pressure level.
[0019]
Next, FIG. 7 shows an embodiment in which two fans 20A and 20B dedicated for indoor use and membrane roof use are used. Each of them takes in outdoor air, but the indoor blower 20A has a capability of achieving a normal pressure (for example, 20 mm water column), and its discharge pipe 21 is connected only to the indoor 6. Yes. The blower 20B for the membrane roof has such an ability that it resists external forces such as during snowfall and prevents the membrane roof from shaking, or achieves the necessary air pressure (eg, 30mm water column) to maintain the necessary rigidity and stability. The discharge pipe 21 is connected only to the air chamber 8 of the membrane roof 4. A damper 23 as an air volume control device is installed in the communication hole 24 between the indoor 6 and the air chamber 8. FIG. 7A shows a normal time. At this time, the damper 23 of the communication hole 24 is set to the neutral position, and only the indoor blower 20A is operated, and the air is supplied to the indoor 6 at one end, but also to the air chamber 8 of the membrane roof through the fully open communication hole 24. Distributed and both chambers are kept at the same air pressure. FIG. 7B shows a case where it is necessary to prevent vibration and improve stability by resisting an external force acting on the membrane roof 4 such as during strong wind or snow. The damper 23 is completely closed and the two fans 20A and 20B are closed. Are operated at the same time, and the air pressure of the air chamber 8 is increased to about 30 mm by the action of each blower, and the air pressure is compensated for air leakage into the indoor 6 to maintain the normal air pressure level.
[0020]
[Effects of the present invention]
According to the half-duplex air membrane structure of the present invention, the original features of the air membrane structure, that is, the light and flexibility, or the roof of the membrane in strong winds or snowfall without losing the indoor brightness. By adjusting only the air pressure of the air chamber 8, the air pressure of the indoor 6 is kept at a normal pressure of about 2/3 (about 20mm water column) and the membrane roof is rigid and stable enough to resist external force. You can keep the sex. Therefore, the ability of the air pressure device (fan) for applying the indoor pressure and the related air supply equipment can be considerably downgraded, and the initial cost and running cost required for them can be reduced. In addition, the management of the 24-hour system required to maintain the proper erection state of the membrane roof in response to heavy wind and snow loads is considerably eased, and the indoor pressure control for computer applications that respond to the management is greatly relaxed. The frequency is remarkably reduced, and the proportion of time for which control can be omitted becomes dominant, and the cost is reduced accordingly. Furthermore, it becomes possible to use fittings (doors, window sashes) with reduced airtightness necessary to maintain and manage indoor pressure, or use sanitary equipment with reduced pressure settings. Cost can be reduced. Since there is little degree to increase the indoor pressure during strong winds and snowfall, it is inevitably possible to provide an air film structure with less obstacles for people to enter and exit.
[Brief description of the drawings]
FIG. 1 is an elevation view conceptually showing a normal state of a half-duplex air membrane structure according to the present invention.
FIG. 2 is an elevation view conceptually showing a state of the half-duplex air membrane structure according to the present invention during strong winds, snowfall, and the like.
FIG. 3A is an elevation view conceptually showing the configuration of a reinforcing cable and the attachment structure of a membrane material, and B is an elevation view conceptually showing different examples of the configuration of the reinforcement cable and the attachment structure of the membrane material. Fig. C is an elevation view conceptually showing the structure of the cable truss and the attachment structure of the membrane material, and D is an elevation view conceptually showing different examples of the structure of the cable truss and the attachment structure of the membrane material. is there.
4 is an elevational view of the main part showing the structural details of FIG. 3C. FIG.
FIGS. 5A and 5B are elevational views conceptually showing means for adjusting the air pressure inside the membrane roof and the indoor air pressure in common or individually during normal times and during snowfall.
FIGS. 6A and 6B are elevational views conceptually showing different examples of means for adjusting the air pressure in the membrane roof and the indoor air pressure in common or individually during normal times and during snowfall.
FIGS. 7A and 7B are elevational views conceptually showing different examples of means for adjusting the air pressure in the membrane roof and the indoor air pressure in common or individually during normal times and during snowfall.
FIG. 8A is an elevation view conceptually showing a conventional air film structure, and B is a plan view.
[Explanation of symbols]
4 Membrane roof 1 Outer wall 6 Indoor 3a Outer membrane 3b Inner membrane 8 Air chamber 9 Connecting material 2 Reinforcing cable 2a Upper cable 2b Lower cable 5 Cable truss 5a Upper chord cable 5b Lower chord cable

Claims (2)

膜材を用いて膜屋根を形成し、この膜屋根と外壁に囲まれた屋内の空気圧を高めて前記膜屋根を張力状態となし屋根荷重及び外力に抵抗する構造の空気膜構造物において、
前記膜屋根は、前記外壁の上部に設置したコンプレッションリングに端部を支持された上側ケーブルと下側ケーブル、およびこれら上下のケーブルの中間部位を垂直方向に連結する繋ぎケーブルで構成された補強ケーブルにおける上側ケーブルの上面側に外気と接する外膜を、下側ケーブルの下面側に屋内側の内膜を取り付けた二重膜の構成、又はコンプレッションリングに端部を支持された上弦材ケーブルと下弦材ケーブル、及び前記上下のケーブルを垂直方向に連結する繋ぎケーブル、並びに前記連結点を斜めに連結したブレースケーブルとで構成されたケーブルトラス、若しくは上弦材ケーブルと下弦材ケーブルの間をブレースケーブルが上下にジグザグの三角形状に連結された構成のケーブルトラスにおける上弦材ケーブルの上面側に外気と接する外膜を、下弦材ケーブルの下面側に屋内側の内膜を取り付けた二重膜の構成で、各膜材の膨脹状態の形状拘束と安定性の保持が行われており、且つ前記外膜と内膜の間に屋内とは独立した空気室が形成されていること、
前記膜屋根の空気室及び屋内の空気圧を共通に又は個別に設定し或いは調節する手段として、送風機の吐出管を途中で膜屋根の空気室と屋内に分岐して接続し、前記分岐点に風量制御装置としてのダンパーが設置され、又は屋内と膜屋根の空気室との連通孔に風量制御装置としてのダンパーが設置され、送風機の吐出管が膜屋根の空気室にのみ接続され、若しくは膜屋根の空気室と屋内とにそれぞれ専用の送風機の吐出管が接続され、前記ダンパーを中立位置とし又は開閉する操作が行われ膜屋根の安定性と剛性を保つことを特徴とする、半二重空気膜構造物。
In an air membrane structure having a structure in which a membrane roof is formed using a membrane material, the indoor air pressure enclosed by the membrane roof and the outer wall is increased, the membrane roof is in a tension state, and the roof load and the external force are resisted.
The membrane roof is composed of an upper cable and a lower cable whose ends are supported by a compression ring installed at the upper part of the outer wall, and a reinforcing cable composed of a connecting cable that vertically connects intermediate portions of these upper and lower cables. A double membrane structure with an outer membrane in contact with the outside air on the upper surface side of the upper cable and an indoor inner membrane on the lower surface side of the lower cable, or an upper chord cable and lower chord supported at the end by a compression ring A cable truss composed of a material cable, a connecting cable that vertically connects the upper and lower cables, and a brace cable that obliquely connects the connection points, or a brace cable between the upper chord material cable and the lower chord material cable Upper surface side of upper chord material cable in cable truss configured to be connected in a zigzag triangular shape vertically In the configuration of a double membrane in which the inner membrane on the lower surface of the lower chord material cable is attached to the outer membrane in contact with the outside air, the shape restraint and stability of the expanded state of each membrane material are maintained, and An air chamber independent of the interior is formed between the outer membrane and the inner membrane,
As a means for setting or adjusting the air pressure of the membrane roof air chamber and the indoor in common or individually, a discharge pipe of a blower is branched and connected to the air chamber of the membrane roof in the middle and the air volume at the branch point A damper as a control device is installed, or a damper as an air volume control device is installed in the communication hole between the indoor and the air chamber of the membrane roof, and the discharge pipe of the blower is connected only to the air chamber of the membrane roof, or the membrane roof Half-duplex air, characterized in that a discharge pipe of a dedicated blower is connected to each of the air chamber and indoor, and the operation to open or close the damper is performed to maintain the stability and rigidity of the membrane roof Membrane structure.
膜屋根の空気室と屋内とは、平常時は両者の前記連通孔又は吐出管の分岐点に設置したダンパーを中立位置として同一圧力に保ち、強風時又は積雪時等にはダンパーを閉止するか又は膜屋根の空気室の方へ送風の大部分が配分される位置に傾けて膜屋根の空気室の圧力を昇圧させることを特徴とする、請求項1に記載した半二重空気膜構造物。The air chamber and the indoor of the membrane roof are normally used to maintain the same pressure with the damper installed at the branch point of the communication hole or the discharge pipe of both of them at the neutral position, and to close the damper at the time of strong wind or snow The half-duplex air membrane structure according to claim 1, wherein the pressure of the air chamber of the membrane roof is increased by tilting to a position where most of the air flow is distributed toward the air chamber of the membrane roof. .
JP31889796A 1996-11-29 1996-11-29 Half-duplex air membrane structure Expired - Fee Related JP3704671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31889796A JP3704671B2 (en) 1996-11-29 1996-11-29 Half-duplex air membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31889796A JP3704671B2 (en) 1996-11-29 1996-11-29 Half-duplex air membrane structure

Publications (2)

Publication Number Publication Date
JPH10159392A JPH10159392A (en) 1998-06-16
JP3704671B2 true JP3704671B2 (en) 2005-10-12

Family

ID=18104196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31889796A Expired - Fee Related JP3704671B2 (en) 1996-11-29 1996-11-29 Half-duplex air membrane structure

Country Status (1)

Country Link
JP (1) JP3704671B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565037C (en) * 2003-08-01 2009-12-02 旭硝子株式会社 Solar power system is with lining material and sprawled the solar power system of this material
US20090260301A1 (en) * 2008-04-22 2009-10-22 Prueitt Melvin L Compressed-Air Rigid Building Blocks
KR100974832B1 (en) * 2009-11-19 2010-08-11 주식회사 타이가 Lens type double membrane air structure
KR101371770B1 (en) * 2012-09-11 2014-03-11 조병욱 Lens type double membrane air structure
CN109779029B (en) * 2019-03-12 2020-09-11 哈尔滨工业大学 Construction method of aluminum alloy cable membrane structure for space base

Also Published As

Publication number Publication date
JPH10159392A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US8397434B2 (en) Greenhouse insulation system
US20060059788A1 (en) Tensioned inflatable cover module
US4672888A (en) Inflatable greenhouse vent cover
JP3704671B2 (en) Half-duplex air membrane structure
JPH0672836B2 (en) Specimen dynamic pressure tester
US4285175A (en) Thermalized awning
CN207230837U (en) The comprehensive air-exchanging structure of pneumatic membrane building
CN201003304Y (en) Thermal insulation gas-filled tent
JP2008184816A (en) Curtain wall
JPH08172211A (en) Wall panel with solar cell
PL204009B1 (en) Sealing system for a heat recuperation chember
CN212534510U (en) Boundary connecting assembly for ETFE air pillow type membrane structure
CN106703450A (en) Air-film-structure performance venue
US20070227530A1 (en) Greenhouse insulation system
CN214786483U (en) Membrane building structure
JP2002010713A (en) Air tent house
CN205955297U (en) Air film structure performance venue
JPH10159391A (en) Air film structure
CN220726152U (en) Wind pipe external window penetrating structure in high-energy-efficiency building
Quirouette The air barrier defined.
JP2574763Y2 (en) Double membrane structure
CN207230834U (en) Pneumatic membrane building air-exchanging structure
JP2000324956A (en) Greenhouse
JP2730362B2 (en) Thermal insulation structure of roof membrane
WO2023082331A1 (en) Prefabricated photovoltaic integrated panel comprising moisture management system, and assembly-type photovoltaic enclosure system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees