JP3701406B2 - Heat ray shielding material - Google Patents

Heat ray shielding material Download PDF

Info

Publication number
JP3701406B2
JP3701406B2 JP23014296A JP23014296A JP3701406B2 JP 3701406 B2 JP3701406 B2 JP 3701406B2 JP 23014296 A JP23014296 A JP 23014296A JP 23014296 A JP23014296 A JP 23014296A JP 3701406 B2 JP3701406 B2 JP 3701406B2
Authority
JP
Japan
Prior art keywords
heat ray
ray shielding
shielding material
phthalocyanine
ultraviolet absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23014296A
Other languages
Japanese (ja)
Other versions
JPH1077360A (en
Inventor
賢 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP23014296A priority Critical patent/JP3701406B2/en
Publication of JPH1077360A publication Critical patent/JPH1077360A/en
Application granted granted Critical
Publication of JP3701406B2 publication Critical patent/JP3701406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Greenhouses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可視光線透過性が良好で、熱線の遮蔽性に優れ、かつ耐候性が著しく改善された熱線遮蔽層を形成し得る熱線遮蔽用組成物に関するものであり、この組成物は、基材に塗布して熱線遮蔽用のコーティング膜を形成したり、あるいは該組成物を成形することにより熱線遮蔽材自体を製造することもできる。また本発明は、可視光線透過性が良好で、熱線の遮蔽性に優れ、かつ耐候性が著しく改善された熱線遮蔽材にも関するものであり、テニスコートやプールの屋根材や壁材、アーケード、天井ドーム等の建材用途や、オフィス・店舗用、農業用、自動車用、窓用フィルムなどに、板状、シート状、フィルム状等様々の形態として広く活用し得るものである。
【0002】
【従来の技術】
近年、各種建築物や車輛の窓材等の分野では、可視光線を充分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する熱線遮蔽材の需要が急増してきており、現に何種類かの熱線遮蔽材が市販されている。
【0003】
代表的な熱線遮蔽材としては、透明樹脂フィルムに金属粒子を蒸着した熱線反射フィルムを透明基材と積層したもの等があるが、非常に高価であるばかりでなく、概して透明基材と反射フィルムの接着性が良くないので、加工時に反射フィルムが剥離することがあり、また熱加工が困難であるため曲面を有する窓材等への適用がむずかしい。さらに可視光透過能が不充分であるといった問題もある。
一方、例えば特公昭43−25335号公報等にみられるように、有機色素からなる赤外線吸収剤を使用することによって、赤外線をカットするという熱線遮蔽材も提案されている。赤外線吸収剤を使用した熱線遮蔽材は、透明感があり、加工性も良好である。しかしながら、一般的な赤外線吸収剤として使用される化合物は耐熱性が低く、熱線遮蔽材を樹脂素材で製造するとき、200℃を超える温度に達すると、赤外線吸収剤が分解してしまうという問題があった。
【0004】
そこで特開平3−16144号において、成形温度の低い透明樹脂に耐熱温度の低い赤外線吸収剤を添加して、キャスト重合でフィルム状にし、予め成形しておいた耐熱性のある樹脂板と熱ラミネートする方法が提案されたが、製法が煩雑であり、低コスト化が困難である。
【0005】
このような従来技術の問題を解決するものとして、本願出願人は、特開平7−173327号において、耐熱性が良好で汎用透明樹脂の成形温度でも分解せず、しかも熱線吸収性能に優れたフタロシアニン化合物を用いた熱線遮蔽材を提案した。この発明に係る熱線遮蔽材は、成形可能であるため、安価に大量生産ができるという利点を有しているため、建材用途等にも広く利用されている。
【0006】
しかし、熱線遮蔽層がフィルムやコーティング膜のように薄い場合、あるいは紫外線の透過率のよい樹脂を熱線遮蔽材用の基材として使用すると、耐候性が不充分であり、屋外で使用すると熱線遮蔽性能が劣化することがわかってきた。
【0007】
【発明が解決しようとする課題】
本発明は、上記の様な事情に着目し、高い熱線遮蔽能を発揮すると共に、耐候性に優れた熱線遮蔽用組成物および熱線遮蔽材を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明の熱線遮蔽用組成物は、フタロシアニン系赤外線吸収剤と紫外線吸収剤を含んでなる熱線遮蔽用組成物が、フタロシアニン系赤外線吸収剤の10倍以上の重量の紫外線吸収剤を含有するものであるところに要旨を有する。熱線遮蔽用組成物中には、フタロシアニン系赤外線吸収剤が0.0005〜9重量%含有されているものであることが好ましい。熱線遮蔽用組成物がマトリックスとして透明性樹脂を含むことが好ましく、塗料のバインダーとして使用できる樹脂、粘着剤あるいは接着剤として使用できる樹脂、または成形してフィルムあるいは板状の熱線遮蔽材として使用できる樹脂等を用いることが推奨される。
【0009】
特に、耐熱性および赤外線吸収性、樹脂への相溶性に優れている点で、フタロシアニン系赤外線吸収剤が、下記一般式(I)で示される化合物であることも本発明の好ましい実施態様である。
【0010】
【化2】

Figure 0003701406
【0011】
(ただし、式中、Xは独立して水素原子、ハロゲン原子、−SR1 または−OR2 を表し、Yは−NHR3 、−SR4 または−OR5 を表し、R1 、R2 、R4 、R5 はそれぞれ独立して、置換基を有していてもよいフェニル基または炭素原子数1〜20個のアルキル基を表し、R3 は置換基を有していてもよいフェニル基または炭素原子数1〜8個のアルキル基を表し、aは1〜4の整数、bは0〜4の整数、かつaとbの合計が1以上4以下の整数であり、Mは無金属、金属、金属酸化物または金属ハロゲン化物を表す。)。
【0012】
本発明には、上記熱線遮蔽用組成物からなる熱線遮蔽層を有する熱線遮蔽材、すなわち熱線遮蔽層をコーティング層または粘着剤層として基材に積層した形態の熱線遮蔽材が含まれる。
【0013】
またさらに、熱線遮蔽材中に、フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方もしくは両方が含まれている層が2以上の個別の層として存在しており、紫外線吸収剤を含む層が他の層より熱線の入側に存在する熱線遮蔽材も本発明に含まれる。この場合、公知のクリア層等が最表(最下)層や層間に存在していてもよい。要するに、熱線遮蔽材の熱線の入側には、必ず紫外線吸収剤を含む層(紫外線吸収剤のみを含む層あるいは紫外線吸収剤とフタロシアニン系赤外線吸収剤の両方を含む層がある)を設け、フタロシアニン系赤外線吸収剤を含む他の層はこれより下側(熱線の出側)に設けることにより、効果的に耐候性を向上させるための構成である。
【0014】
熱線遮蔽材中に、フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方もしくは両方が含まれている層が2以上の個別の層として存在しており、熱線の入側からの投影面積中の重量で、すなわち熱線遮蔽材の熱線通過経路において、該経路中に含まれる紫外線吸収剤の量が、フタロシアニン系赤外線吸収剤の量の10倍以上である熱線遮蔽材も、本発明の範囲に含まれるものとする。紫外線吸収剤の含まれていない層が、各層の間、または最表(または下)層に存在していてもよいが、熱線遮蔽材の熱線の入側から出側に向けて紫外線吸収剤量が段階的にまたは連続的に減少するように各層が設けられていると、耐候性向上に効果的である。本発明の熱線遮蔽材では、フタロシアニン系赤外線吸収剤の量は、熱線の入側からの投影面積中の重量で、0.06〜2.4g/m2 とすることが推奨される。
【0015】
【発明の実施の形態】
本発明者らは、熱線遮蔽材の耐候性の向上を目指して検討し、厚さ数ミリといった比較的厚板の熱線遮蔽材において耐候性促進試験を行った場合には良好な結果が得られても、500μm以下のフィルム状の熱線遮蔽材や、コーティング膜レベルの厚さである数十μmの熱線遮蔽層を設けた熱線遮蔽材にすると同組成であっても性能が劣化してしまうことを把握した。そしてさらに検討を続けた結果、フタロシアニン系赤外線吸収剤と紫外線吸収剤を特定比率で熱線遮蔽材中に存在させることによって、耐候性が著しく改善されることを見出し、本発明を完成させたものである。
【0016】
まず本発明に係る熱線遮蔽用組成物について説明する。本発明の熱線遮蔽用組成物は、必須成分としてフタロシアニン系赤外線吸収剤と紫外線吸収剤を含有し、かつ、紫外線吸収剤の含有量がフタロシアニン系赤外線吸収剤の量の10倍(重量)以上であるところに最大のポイントを有する。フタロシアニン系赤外線吸収剤に対して、紫外線吸収剤が10倍未満では、耐候性の改善効果が認められず、本発明の課題を達成することができない。紫外線吸収剤の上限は特に限定されないが、あまり多すぎても耐候性改善効果が飽和してしまうので、100倍以下にすることが推奨される。
【0017】
フタロシアニン系赤外線吸収剤は、組成物中0.0005〜9重量%とすることが熱線遮蔽のために適切な量である。より好ましいフタロシアニン系赤外線吸収剤の濃度は、0.0015〜5重量%である。紫外線吸収剤は、フタロシアニン系赤外線吸収剤の量に応じて適宜変更すべきであり、組成物中の赤外線吸収剤が多いときは紫外線吸収剤を10倍量とし、赤外線吸収剤の量が少ないときは紫外線吸収剤をより多くすることが好ましい。
【0018】
紫外線吸収剤としては、290〜400nmの紫外線を吸収することができれば特に限定はされない。具体的には、2,4−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン等のベンゾフェノン系;2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、メチル−3−[3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル]プロピオネート、2,2’−メチレンビス[4−(1,1,3,3−テトラチルブチル)]−6−(2H−ベンゾトリアゾール等のベンゾトリアゾール系;フェニルサリシレート等のサリチル酸系;2−エチルヘキシル−2−シアノ−3,3’−ジフェニルアクリレート等のシアノアクリレート系等の紫外線吸収剤が挙げられ、これらのうち1種または2種以上を混合して使用することができる。反応性のある紫外線吸収剤を、後述する透明性樹脂の高分子主鎖に共重合や側鎖反応で組み込んでもよい。また、液状の紫外線吸収剤を使用すると熱線遮蔽用組成物を製造するときに均一に混合でき、大量に配合することも可能である。紫外線吸収剤と共に、HALSとして知られるヒンダードアミン系光安定剤を併用することも耐候性向上に効果的である。
【0019】
フタロシアニン系赤外線吸収剤としては、良好な耐熱性および熱線遮蔽性を示すフタロシアニン構造を有するものが利用可能であるが、置換基を有するフタロシアニン系赤外線吸収剤が、特に種々の樹脂に対して相溶性がよいことから好ましい。中でも、下記一般式(I)で示される化合物が、樹脂への相溶性が良好なため好ましく利用できる。
【0020】
【化3】
Figure 0003701406
【0021】
(ただし、式中、Xは独立して水素原子、ハロゲン原子、−SR1 または−OR2 を表し、Yは−NHR3 、−SR4 または−OR5 を表し、R1 、R2 、R4 、R5 はそれぞれ独立して、置換基を有していてもよいフェニル基または炭素原子数1〜20個のアルキル基を表し、R3 は置換基を有していてもよいフェニル基または炭素原子数1〜8個のアルキル基を表し、aは1〜4の整数、bは0〜4の整数、かつaとbの合計が1以上4以下の整数であり、Mは無金属、金属、金属酸化物または金属ハロゲン化物を表す。)。
【0022】
上記一般式(I)において、ハロゲン原子としては、フッ素、塩素、臭素原子等が挙げられ、これらハロゲン原子の中でもフッ素原子が、透明性樹脂との相溶性向上のために好ましい。
【0023】
炭素原子数1〜8個のアルキル基とは、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、直鎖または分鎖のペンチル、ヘキシル、ヘプチル、オクチル等であり、炭素原子数1〜20個のアルキル基とはこれらの他に、ノニル、デシル、ドデシル、ウンデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノイデシル、エイコシル等が挙げられる。
【0024】
置換基を有するフェニル基としては、炭素原子数1〜4個のアルキル基で1〜3個置換されたフェニル基、炭素原子数1〜4個のアルコキシ基で1〜2個置換されたフェニル基、あるいは塩素、フッ素等のハロゲン原子で1〜5個置換されたフェニル基等が挙げられる。
【0025】
フタロシアニンの中心のMは、銅、亜鉛、コバルト、ニッケル、鉄、バナジウム、チタン、インジウム、錫等の金属、これらのフッ化物、塩化物、臭化物、ヨウ化物等の金属ハロゲン化物、または酸化物を示す。またMが「無金属」とは、金属以外の原子、例えば2個の水素原子であることを意味する。Mとしては、銅、亜鉛、コバルト、ニッケル、鉄、バナジル、チタニル、クロロインジウム、ジクロロ錫が好ましく、なかでも銅、亜鉛、コバルト、バナジル、ジクロロ錫が最も好ましい。
【0026】
Yとして示される−NHR3 は、置換基を有していてもよいフェニルアミノ基またはアルキルアミノ基を表し、−NHR3 はフタロシアニン骨格に4〜8個導入するのが好ましい。残位には、▲1▼−SR1 で表される置換基を有していてもよいフェニルチオ基もしくはアルキルチオ基、▲2▼−OR2 で表されてる置換基を有していてもよいフェニルオキシ基もしくはアルキルオキシ基、▲3▼水素原子、および▲4▼ハロゲン原子、から選ばれた置換基が導入される。これらの置換基の中でも、▲1▼の置換基を有していてもよいフェニルチオ基、アルキルチオ基か、▲2▼の置換基を有していてもよいフェニルオキシ基、アルキルオキシ基か、▲4▼の中のフッ素原子が好ましいものとして挙げられる。
【0027】
−NHR3 が導入されない場合には、▲1▼−SR1 で表される置換基を有していてもよいフェニルチオ基もしくはアルキルチオ基、▲2▼−OR2 で表されてる置換基を有していてもよいフェニルオキシ基もしくはアルキルオキシ基、▲3▼水素原子、および▲4▼ハロゲン原子、から選ばれた置換基を、フタロシアニン骨格に4〜16個導入することが好ましい。これらの置換基の中でも、▲1▼の置換基を有していてもよいフェニルチオ基、アルキルチオ基か、▲2▼の置換基を有していてもよいフェニルオキシ基、アルキルオキシ基か、▲4▼の中のフッ素原子が好ましいものとして挙げられる。
【0028】
上記フタロシアニン系化合物は、1種類または2種類以上を混合して使用することも可能であり、吸収波長の異なるものを2種以上混合すると、熱線遮蔽効果が向上することがある。また本発明の熱線遮蔽用組成物には、必要に応じてカーボンブラックを添加してもよい。フタロシアニン系化合物と熱線遮蔽性能を有するカーボンブラックを併用することによって熱線遮蔽効果が向上するので、フタロシアニン系化合物の使用量を半分以下に低減させることもできる。また、染料とフタロシアニン系化合物の併用も可能であるが、熱線遮蔽性能向上効果は、カーボンブラックの方が優れている。
【0029】
本発明の熱線遮蔽用組成物は、上記フタロシアニン系赤外線吸収剤と紫外線吸収剤を必須成分とするものであるが、この組成物を利用して熱線遮蔽層を作る場合、あるいは組成物を成形することによりフィルムまたは板状等の熱線遮蔽材を製造する場合のいずれにおいても、組成物がマトリックスとして透明性樹脂を含むことが好ましい。熱線遮蔽層とするときには、熱線遮蔽用組成物を粘着剤層または接着剤層として熱線遮蔽材に設けて、他の部材に貼付して使用できるようにしたパターンや、熱線遮蔽材用の基材に熱線遮蔽用組成物を塗布して乾燥・硬化させるパターン等があり、用途に応じて、適切な樹脂を選択するとよい。
【0030】
例えば、粘着剤層または接着剤層として熱線遮蔽層を設ける場合には、組成物の主成分を、天然ゴムやSBR、NR、IR等のゴム系、SIS、SIBS等のホットメルト系、ポリアクリル酸エステル等のアクリル系、ポリ酢酸ビニル系、ポリウレタン系、メラミン樹脂系、ユリア樹脂系、オレフィン樹脂系等公知の接着性のある透明な樹脂を主成分とすることができる。
【0031】
組成物自体を成形して熱線遮蔽材とする場合には、組成物の主成分を、ポリメチルメタクリレート等のアクリル樹脂、ポリスチレン、AS樹脂、ABS、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルブチラール等のビニル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリカーボネート、飽和ポリエステル、ポリアミド、ポリスルホン、ポリフェニレンスルフィド等の熱可塑性樹脂や、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、ポリウレタン等の熱硬化性樹脂等の透明な樹脂が選択できる。好ましいものは、ポリカーボネート、飽和ポリエステル、アクリル樹脂、ポリエチレン、ポリスチレン等である。
【0032】
硬化塗膜として熱線遮蔽層を設ける場合も、これらの樹脂をバインダーとして用いることができる。なお、粘着剤層または接着剤層や硬化塗膜として熱線遮蔽層を設ける場合には、基材として、上記成形可能な樹脂として例示したものからなるフィルム、平板、波板等や、板ガラス等を選択すればよい。
【0033】
熱線遮蔽用組成物中には、上記例示した樹脂と共に、これらの樹脂の用途に応じて必要とされる公知の各種添加剤、例えば、粘着付与剤、架橋剤、可塑剤、難燃剤、酸化防止剤、強化繊維、充填剤、増容剤、着色剤、帯電防止剤、離型剤等を加えてもよい。
【0034】
本発明の熱線遮蔽用組成物を用いて熱線遮蔽材を製造するには、押出し成形、射出成形、注型重合、種々の方法が採用できる。また、熱線遮蔽用組成物を熱線遮蔽材用基材にコーティングするときは、ロールコーティング法、ディッピング法、スプレーコーティング法、刷毛塗り法等が挙げられる。熱線遮蔽層を予めフィルム等にコーティングして予め製造した後、熱線遮蔽材用基材に積層(ホットラミネート、接着、プレス等)する方法や、共押出し法(コエクストルージョン法)を採用して熱線遮蔽材を製造してもよい。なお熱線遮蔽層もしくは熱線遮蔽材において、熱線の入側から出側に向かって、フタロシアニン系赤外線吸収剤と紫外線吸収剤の濃度勾配を付けてもよい。
【0035】
以上、本発明の熱線遮蔽用組成物であるフタロシアニン系赤外線吸収剤と紫外線吸収剤の両者が含まれている組成物を用いて熱線遮蔽材を製造する場合について説明を行ったが、本発明には、フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方または両方を含む層が2以上の個別の層として存在している熱線遮蔽材も含まれる。
【0036】
すなわち本発明のポイントは、フタロシアニン系赤外線吸収剤と紫外線吸収剤を併用することによって、熱線遮蔽材の耐候性を著しく改善することにあるので、フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方または両方を含む層が2以上の個別の層として存在していてもよいのである。
【0037】
ここで、「フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方または両方を含む層が2以上の個別の層として存在している熱線遮蔽材」とは、フタロシアニン系赤外線吸収剤のみを含有する層、紫外線吸収剤のみを含有する層、両者を含有する層、のうち2以上が別々の層として存在している熱線遮蔽材である。この場合、公知のクリア層等が最表(最下)層や層間に存在することを妨げない。フタロシアニン系赤外線吸収剤と紫外線吸収剤を共に含む層として、混合比が異なる2以上の層を設けることもできる。
【0038】
本発明では、熱線遮蔽材の好ましい構成として、紫外線吸収剤を含む層が他の層より熱線の入側に存在する熱線遮蔽材が挙げられる。熱線遮蔽材の熱線の入側には、必ず紫外線吸収剤を含む層(紫外線吸収剤のみを含む層あるいは紫外線吸収剤とフタロシアニン系赤外線吸収剤の両方を含む層がある)を設け、フタロシアニン系赤外線吸収剤を含む他の層はこれより下側(熱線の出側)に設けることにより、効果的に耐候性を向上させることができる。
【0039】
より具体的には、熱線遮蔽材の熱線の入側から出側(表層から下層)にかけて、紫外線吸収剤量が段階的にまたは連続的に減少するように各層を積層することが好ましい。なお、クリア層等の紫外線吸収剤やフタロシアニン系赤外線吸収剤のどちらも含まない層は、「段階的または連続的に減少する」というときには考慮しない。紫外線吸収剤のみを含む(または多く含む)層が熱線遮蔽材の最も熱戦の入側に設けられることが好ましい。例えば、フタロシアニン系赤外線吸収剤のみをP%(層中の重量比率)含有する層(A層とする)、紫外線吸収剤のみがX%含まれる層(B層とする)、両者を含有し、紫外線吸収剤がY%(X>Y)、フタロシアニン系赤外線吸収剤がQ%含まれる層(C層とする)を積層して熱線遮蔽材を製造するときには、B−C−Aの順で積層すると、より効果的に耐候性を向上させることができる。そして、B−C−Aの各層に含まれる紫外線吸収剤の量(X+Y)が、フタロシアニン系赤外線吸収剤の総量(P+Q)の10倍以上であれば、耐候性の良好な本発明に係る熱線遮蔽材となるのである。ただし、この順に積層されていなくても、熱線の入側からの投影面積中の重量で、紫外線吸収剤の量がフタロシアニン系赤外線吸収剤の10倍以上存在していれば、従来のものに比べ耐候性が改善されるため、やはり本発明の熱線遮蔽材に含まれる。
【0040】
熱線遮蔽材の形状には格別の制限はなく、最も一般的な平板状やフィルム状のほか波板状、球面状、ドーム状等様々な形状のものが包含される。熱線の入側からの投影面積中の重量とは、熱線遮蔽材の任意の領域において光が入射して透過する際に投影される経路に存在する各吸収剤の総量を意味し、入射側からの任意の熱線通過経路における各吸収剤の総量ということもできる。本発明の熱線遮蔽材では、熱線の入側からの投影面積中、フタロシアニン系赤外線吸収剤の量が0.06〜2.4g/m2 であることが好ましく、この範囲であれば、熱線遮蔽材の厚みにかかわらず、良好な熱線遮蔽効果を発現させることができる。より好ましい範囲は、0.1〜1.2g/m2 である。
【0041】
本発明の熱線遮蔽材では、通常、熱線遮蔽材中、マトリックスである透明性樹脂に対して、フタロシアニン系赤外線吸収剤が0.0005〜9重量%の範囲であれば熱線遮蔽効果が発現する。目的とする可視および近赤外域の透過率の設定および熱線遮蔽材の所望厚みに応じて、フタロシアニン系赤外線吸収剤の量を適宜変更することが推奨される。例えば、厚みが0.5mm以下の比較的薄型の熱線遮蔽材では、充分な熱線遮蔽効果を上げるためには、フタロシアニン系赤外線吸収剤を0.01〜5重量%、より好ましくは0.05〜5重量%存在させるとよい。例えば熱線遮蔽材の厚みが0.5mmのときのフタロシアニン系赤外線吸収剤の最適濃度は、0.01〜0.4重量%、より好ましくは0.03〜0.2重量%である。
【0042】
さらに薄い熱線遮蔽材(もしくは層)、例えば厚さ100μmのものでは、フタロシアニン系赤外線吸収剤を0.05〜2重量%、より好ましくは0.15〜1重量%とし、厚さ10μmの熱線遮蔽材(もしくは層)の場合には、0.5〜9重量%、より好ましい濃度は1.5〜5重量%である。
【0043】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、「部」、「%」とあるのは特に言及しない限り重量基準である。
【0044】
実施例1
ポリカーボネート樹脂100部をジクロロメタンに溶かし、3,6−オクタフルオロ−(4,5−オクタキスアニリノ)オキシバナジウムフタロシアニン(以下赤外線吸収剤1とする。)を0.1部と、紫外線吸収剤として「チヌビン234」(チバガイギー社製;2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール)を1.0部添加して均一に分散させた。樹脂溶液を型に流し込み、溶媒が揮発するまで静置して、厚み0.13mmの熱線遮蔽フィルムを得た。
【0045】
実施例2〜5および比較例1〜5
表1に示したように、赤外線吸収剤の種類と濃度、紫外線吸収剤の濃度、熱線遮蔽フィルムの厚みを変えた以外は実施例1と同様にして熱線遮蔽フィルムを得た。なお、表中の赤外線吸収剤の濃度(g/m2 )は、ポリカーボネートの比重を1.2として計算した数値である。
【0046】
実施例および比較例で作製した熱線遮蔽フィルムの初期の分光光度(透過率)および耐候促進試験を24時間および48時間行った後の分光光度は、島津製作所社製の「UV−3100PC」を使用し、JIS R 3106に準拠して測定した。耐候促進試験は、アイスーパーUVテスター(岩崎電気製)を用いて、紫外線照射強度90mW/cm2 、湿度50%、ブラックパネル温度63℃の条件で行った。初期および24時間後の分光チャートを図1〜4に示した。なお、図中、実線が初期の透過率、破線が耐候促進試験24時間後の透過率であり、実施例5および比較例5のチャートは省略した。
【0047】
また耐候性を示す基準として、保持率(%)を算出した。すなわち、各フィルムの赤外線の吸収のピークの波長の透過率の初期値をTB 、耐候促進試験24時間後の透過率をT24としたときの24時間後の保持率(%)は(100−T24)/(100−TB )×100と、同様に耐候促進試験48時間後の透過率をT48とすると48時間後の保持率(%)は、(100−T48)/(100−TB )×100として表す。
【0048】
各例の組成、フィルム厚、透過率、保持率のデータを表1に示した。なお、表1における赤外線吸収剤1〜3は下記の通りである。
赤外線吸収剤1(フタロシアニン系)
3,6−オクタフルオロ−(4,5−オクタキスアニリノ)オキシバナジウムフタロシアニン
赤外線吸収剤2
2,5−シクロヘキサジエン−1,4−ジイリデン−ビス[N,N−ビス(4−ジブチルアミノフェニル)アンモニウム)]ビス(ヘキサフルオロアンチモネート)
赤外線吸収剤3
N,N−ビス(4−ジブチルアミノフェニル)−N−[4−{N,N−ビス(4−ジブチルアミノフェニル)アミノ}フェニル]−アミニウムヘキサフルオロアンチモネート
【0049】
【表1】
Figure 0003701406
【0050】
表および図から明らかなように、フタロシアニン系赤外線吸収剤(赤外線吸収剤の1)を用い、かつ赤外線吸収剤の10倍量以上の紫外線吸収剤を使用した本発明実施例のものは、いずれも耐候促進試験24時間後や48時間後においても高い保持率を示し、優れた熱線吸収能を長時間に亙って保持し得ることが確認された。しかし、紫外線吸収剤を併用しなかった比較例1、あるいは5倍量の紫外線吸収剤を用いている比較例2は、保持率が実施例より低く、耐候性が劣っている。また、フタロシアニン系ではない赤外線吸収剤(2および3)を用いると、紫外線吸収剤を用いない比較例3では耐候性が極めて悪く、紫外線吸収剤を用いても(比較例4および5)、耐候性が不充分であることが明らかである。
【0051】
【発明の効果】
本発明は以上の様に構成されており、0.5mm以下といった薄い熱線遮蔽材であっても、熱線遮蔽材中にフタロシアニン系赤外線吸収剤と紫外線吸収剤を共存させることによって、特に赤外線吸収剤の10倍量以上の紫外線吸収剤を共存させることによって、長時間熱線遮蔽効果を保持することができるようになり、耐候性に優れた熱線遮蔽材を提供し得ることになった。
【図面の簡単な説明】
【図1】実施例1および実施例2で得られた熱線遮蔽フィルムの初期の分光光度(透過率)および耐候促進試験24時間後の分光光度のチャートである。
【図2】実施例3および実施例4で得られた熱線遮蔽フィルムの初期の分光光度(透過率)および耐候促進試験24時間後の分光光度のチャートである。
【図3】比較例1および比較例2で得られた熱線遮蔽フィルムの初期の分光光度(透過率)および耐候促進試験24時間後の分光光度のチャートである。
【図4】比較例3および比較例4で得られた熱線遮蔽フィルムの初期の分光光度(透過率)および耐候促進試験24時間後の分光光度のチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat ray shielding composition capable of forming a heat ray shielding layer having good visible light transmittance, excellent heat ray shielding properties, and significantly improved weather resistance. It can be applied to a material to form a coating film for heat ray shielding, or the heat ray shielding material itself can be produced by molding the composition. The present invention also relates to a heat ray shielding material having good visible light transmittance, excellent heat ray shielding properties, and significantly improved weather resistance, and is used for roofing and wall materials for tennis courts and pools, arcades, and the like. It can be widely used in various forms such as plate, sheet, and film for building materials such as ceiling dome, office / store use, agriculture, automobile, and window film.
[0002]
[Prior art]
In recent years, in the fields of various buildings and vehicle window materials, there has been a rapid increase in demand for heat ray shielding materials that shield the heat rays while taking in enough visible light and maintain the brightness while suppressing the temperature rise in the room. In fact, several types of heat ray shielding materials are commercially available.
[0003]
As a typical heat ray shielding material, there is a heat ray reflective film in which metal particles are vapor-deposited on a transparent resin film and laminated with a transparent base material. However, it is not only very expensive, but generally transparent base material and reflective film. Since the adhesive film is not good, the reflective film may be peeled off during processing, and it is difficult to apply to a window material having a curved surface because heat processing is difficult. Further, there is a problem that the visible light transmission ability is insufficient.
On the other hand, for example, Japanese Patent Publication No. 43-25335 discloses a heat ray shielding material that cuts infrared rays by using an infrared absorber made of an organic dye. The heat ray shielding material using an infrared absorber has a sense of transparency and good workability. However, the compound used as a general infrared absorber has low heat resistance, and when the heat ray shielding material is manufactured from a resin material, when the temperature exceeds 200 ° C., the infrared absorber is decomposed. there were.
[0004]
Therefore, in JP-A-3-16144, a heat-resistant resin plate and a heat laminate, which are formed into a film by cast polymerization by adding an infrared absorber having a low heat-resistant temperature to a transparent resin having a low molding temperature, and formed into a film by cast polymerization. However, the manufacturing method is complicated and it is difficult to reduce the cost.
[0005]
In order to solve such a problem of the prior art, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 7-173327 is a phthalocyanine having good heat resistance, not decomposing even at the molding temperature of general-purpose transparent resin, and excellent in heat ray absorption performance. A heat ray shielding material using a compound was proposed. Since the heat ray shielding material according to the present invention can be molded, it has the advantage that it can be mass-produced at a low cost, and is therefore widely used for building materials.
[0006]
However, if the heat ray shielding layer is thin like a film or a coating film, or if a resin having a high ultraviolet ray transmittance is used as a base material for the heat ray shielding material, the weather resistance is insufficient. It has been found that performance is degraded.
[0007]
[Problems to be solved by the invention]
The present invention is intended to provide a heat ray shielding composition and a heat ray shielding material exhibiting high heat ray shielding ability and excellent weather resistance while paying attention to the above circumstances.
[0008]
[Means for Solving the Problems]
In the heat ray shielding composition of the present invention, the heat ray shielding composition comprising a phthalocyanine infrared absorber and an ultraviolet absorber contains an ultraviolet absorber having a weight 10 times or more that of the phthalocyanine infrared absorber. It has a gist at some point. The heat ray shielding composition preferably contains 0.0005 to 9% by weight of a phthalocyanine-based infrared absorber. The heat ray shielding composition preferably contains a transparent resin as a matrix, and can be used as a resin that can be used as a binder for paints, a resin that can be used as an adhesive or an adhesive, or a molded or film-like heat ray shielding material. It is recommended to use resin.
[0009]
It is also a preferred embodiment of the present invention that the phthalocyanine-based infrared absorber is a compound represented by the following general formula (I), particularly in terms of excellent heat resistance, infrared absorptivity, and resin compatibility. .
[0010]
[Chemical formula 2]
Figure 0003701406
[0011]
(In the formula, X is independently a hydrogen atom, a halogen atom, -SR. 1 Or -OR 2 Y represents —NHR Three , -SR Four Or -OR Five Represents R 1 , R 2 , R Four , R Five Each independently represents an optionally substituted phenyl group or an alkyl group having 1 to 20 carbon atoms; Three Represents an optionally substituted phenyl group or an alkyl group having 1 to 8 carbon atoms, a is an integer of 1 to 4, b is an integer of 0 to 4, and the sum of a and b is 1. It is an integer of 4 or more and M represents no metal, metal, metal oxide, or metal halide. ).
[0012]
The present invention includes a heat ray shielding material having a heat ray shielding layer comprising the above-mentioned heat ray shielding composition, that is, a heat ray shielding material in a form in which the heat ray shielding layer is laminated on a substrate as a coating layer or an adhesive layer.
[0013]
Furthermore, in the heat ray shielding material, a layer containing one or both of a phthalocyanine-based infrared absorber and an ultraviolet absorber is present as two or more separate layers, and the layer containing the ultraviolet absorber is present. The present invention also includes a heat ray shielding material present on the heat ray entrance side from other layers. In this case, a known clear layer or the like may be present between the outermost (lowermost) layer and the interlayer. In short, a layer containing an ultraviolet absorber (a layer containing only an ultraviolet absorber or a layer containing both an ultraviolet absorber and a phthalocyanine-based infrared absorber) must be provided on the heat ray entrance side of the heat ray shielding material. The other layer including the system infrared absorber is provided on the lower side (outside of the heat ray) to effectively improve the weather resistance.
[0014]
In the heat ray shielding material, a layer containing one or both of a phthalocyanine-based infrared absorber and an ultraviolet absorber exists as two or more individual layers, and the projected area from the entrance side of the heat ray Also included in the scope of the present invention is a heat ray shielding material whose weight, that is, in the heat ray passage route of the heat ray shielding material, the amount of the ultraviolet absorber contained in the route is 10 times or more the amount of the phthalocyanine infrared absorber. Shall be. A layer that does not contain an ultraviolet absorber may be present between each layer or in the outermost (or lower) layer, but the amount of the ultraviolet absorber from the entry side to the exit side of the heat ray of the heat ray shielding material If each layer is provided so that the value decreases stepwise or continuously, it is effective for improving the weather resistance. In the heat ray shielding material of the present invention, the amount of the phthalocyanine-based infrared absorber is 0.06 to 2.4 g / m in weight in the projected area from the entry side of the heat ray. 2 It is recommended that
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied with the aim of improving the weather resistance of the heat ray shielding material, and when a weather resistance promotion test is performed on a relatively thick heat ray shielding material having a thickness of several millimeters, good results are obtained. However, if a heat ray shielding material having a film thickness of 500 μm or less or a heat ray shielding material having a coating film level thickness of several tens of μm is used, the performance deteriorates even with the same composition. I figured out. And as a result of further investigation, it was found that the weather resistance was remarkably improved by making the phthalocyanine-based infrared absorber and the ultraviolet absorber present in the heat ray shielding material at a specific ratio, and the present invention was completed. is there.
[0016]
First, the heat ray shielding composition according to the present invention will be described. The heat ray shielding composition of the present invention contains a phthalocyanine-based infrared absorber and an ultraviolet absorber as essential components, and the content of the ultraviolet absorber is at least 10 times (by weight) the amount of the phthalocyanine-based infrared absorber. There is a maximum point at some point. If the ultraviolet absorber is less than 10 times the phthalocyanine infrared absorber, the effect of improving the weather resistance is not recognized, and the object of the present invention cannot be achieved. The upper limit of the ultraviolet absorber is not particularly limited, but if it is too much, the effect of improving weather resistance is saturated, so it is recommended to make it 100 times or less.
[0017]
The amount of the phthalocyanine-based infrared absorber is 0.0005 to 9% by weight in the composition is an appropriate amount for heat ray shielding. A more preferable concentration of the phthalocyanine-based infrared absorber is 0.0015 to 5% by weight. The ultraviolet absorber should be appropriately changed according to the amount of the phthalocyanine infrared absorber. When the amount of the infrared absorber in the composition is large, the amount of the ultraviolet absorber is 10 times the amount, and the amount of the infrared absorber is small. It is preferable to increase the amount of the ultraviolet absorber.
[0018]
The ultraviolet absorber is not particularly limited as long as it can absorb ultraviolet rays of 290 to 400 nm. Specifically, benzophenone series such as 2,4-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone; 2- (2′-hydroxy-5′-methylphenyl) ) Benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethyl) Benzyl) phenyl] -2H-benzotriazole, methyl-3- [3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl] propionate, 2,2′-methylenebis [4- (1,1,3,3-tetratylbutyl)]-6- (benzotriazoles such as 2H-benzotriazole; phenyl salicylate UV absorbers such as salicylic acid type such as 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, etc. are used, and one or more of these are used as a mixture A reactive ultraviolet absorber may be incorporated into the polymer main chain of the transparent resin, which will be described later, by copolymerization or side chain reaction, and when a liquid ultraviolet absorber is used, a composition for heat ray shielding. When the product is produced, it can be mixed uniformly and can be blended in a large amount.It is also effective to improve weather resistance by using a hindered amine light stabilizer known as HALS together with an ultraviolet absorber.
[0019]
As phthalocyanine-based infrared absorbers, those having a phthalocyanine structure exhibiting good heat resistance and heat ray shielding properties can be used, but phthalocyanine-based infrared absorbers having substituents are particularly compatible with various resins. Is preferable because it is good. Among these, a compound represented by the following general formula (I) can be preferably used because of its good compatibility with the resin.
[0020]
[Chemical 3]
Figure 0003701406
[0021]
(In the formula, X is independently a hydrogen atom, a halogen atom, -SR. 1 Or -OR 2 Y represents —NHR Three , -SR Four Or -OR Five Represents R 1 , R 2 , R Four , R Five Each independently represents a phenyl group which may have a substituent or an alkyl group having 1 to 20 carbon atoms; Three Represents an optionally substituted phenyl group or an alkyl group having 1 to 8 carbon atoms, a is an integer of 1 to 4, b is an integer of 0 to 4, and the sum of a and b is 1. It is an integer of 4 or more and M represents no metal, metal, metal oxide, or metal halide. ).
[0022]
In the general formula (I), examples of the halogen atom include fluorine, chlorine, bromine atom, etc. Among these halogen atoms, the fluorine atom is preferable for improving the compatibility with the transparent resin.
[0023]
The alkyl group having 1 to 8 carbon atoms is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, linear or branched pentyl, hexyl, heptyl, octyl, etc. In addition to these, the alkyl group having 1 to 20 carbon atoms includes nonyl, decyl, dodecyl, undecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nodecyl, eicosyl and the like.
[0024]
Examples of the phenyl group having a substituent include a phenyl group substituted by 1 to 3 alkyl groups having 1 to 4 carbon atoms, and a phenyl group substituted by 1 to 2 alkoxy groups having 1 to 4 carbon atoms. Or a phenyl group substituted with 1 to 5 halogen atoms such as chlorine and fluorine.
[0025]
M at the center of phthalocyanine is a metal such as copper, zinc, cobalt, nickel, iron, vanadium, titanium, indium or tin, a metal halide such as fluoride, chloride, bromide or iodide, or oxide. Show. M means “metal-free” means an atom other than a metal, for example, two hydrogen atoms. M is preferably copper, zinc, cobalt, nickel, iron, vanadyl, titanyl, chloroindium, or dichlorotin, and most preferably copper, zinc, cobalt, vanadyl, or dichlorotin.
[0026]
-NHR shown as Y Three Represents a phenylamino group or an alkylamino group which may have a substituent, and —NHR Three Is preferably introduced into the phthalocyanine skeleton in an amount of 4-8. For the rest, (1) -SR 1 A phenylthio group or an alkylthio group which may have a substituent represented by formula (2) -OR 2 A substituent selected from phenyloxy group or alkyloxy group, (3) hydrogen atom, and (4) halogen atom, which may have a substituent represented by formula (1), is introduced. Among these substituents, a phenylthio group and an alkylthio group which may have a substituent (1), a phenyloxy group and an alkyloxy group which may have a substituent (2), The fluorine atom in 4 is mentioned as a preferable thing.
[0027]
-NHR Three When is not introduced, (1) -SR 1 A phenylthio group or an alkylthio group which may have a substituent represented by formula (2) -OR 2 4 to 16 substituents selected from phenyloxy group or alkyloxy group, (3) hydrogen atom, and (4) halogen atom, which may have a substituent represented by formula (1), are introduced into the phthalocyanine skeleton. It is preferable to do. Among these substituents, a phenylthio group and an alkylthio group which may have a substituent (1), a phenyloxy group and an alkyloxy group which may have a substituent (2), The fluorine atom in 4 is mentioned as a preferable thing.
[0028]
The phthalocyanine compounds may be used alone or in combination of two or more. When two or more compounds having different absorption wavelengths are mixed, the heat ray shielding effect may be improved. Moreover, you may add carbon black to the heat ray shielding composition of this invention as needed. Since the heat ray shielding effect is improved by using the phthalocyanine compound and carbon black having heat ray shielding performance in combination, the amount of the phthalocyanine compound used can be reduced to half or less. In addition, although a dye and a phthalocyanine compound can be used in combination, the effect of improving the heat ray shielding performance is better with carbon black.
[0029]
The heat ray shielding composition of the present invention comprises the above phthalocyanine-based infrared absorber and ultraviolet absorber as essential components. When a heat ray shielding layer is formed using this composition, or the composition is molded. Thus, in any case where a heat ray shielding material such as a film or a plate is produced, the composition preferably contains a transparent resin as a matrix. When the heat ray shielding layer is used, the heat ray shielding composition is provided on the heat ray shielding material as an adhesive layer or an adhesive layer and can be used by being attached to other members, or a substrate for the heat ray shielding material There is a pattern in which a heat ray shielding composition is applied and dried and cured, and an appropriate resin may be selected depending on the application.
[0030]
For example, when a heat ray shielding layer is provided as an adhesive layer or an adhesive layer, the main component of the composition is natural rubber, rubber systems such as SBR, NR, IR, hot melt systems such as SIS, SIBS, and polyacrylic. A known adhesive transparent resin such as an acrylic ester such as an acid ester, polyvinyl acetate, polyurethane, melamine resin, urea resin, or olefin resin can be used as a main component.
[0031]
When the composition itself is molded into a heat ray shielding material, the main component of the composition is acrylic resin such as polymethyl methacrylate, polystyrene, AS resin, ABS, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, Thermosetting resins such as vinyl resins such as polyvinyl butyral, polyolefin resins such as polyethylene and polypropylene, thermoplastic resins such as polycarbonate, saturated polyester, polyamide, polysulfone and polyphenylene sulfide, urea resins, melamine resins, diallyl phthalate resins and polyurethanes A transparent resin such as a resin can be selected. Preferred are polycarbonate, saturated polyester, acrylic resin, polyethylene, polystyrene and the like.
[0032]
Also when providing a heat ray shielding layer as a cured coating film, these resins can be used as a binder. In addition, when providing a heat ray shielding layer as a pressure-sensitive adhesive layer or an adhesive layer or a cured coating film, a film, a flat plate, a corrugated plate, etc., a plate glass, etc. made of those exemplified as the moldable resin as a base material. Just choose.
[0033]
In the heat ray shielding composition, together with the above-exemplified resins, various known additives required according to the use of these resins, for example, tackifiers, crosslinking agents, plasticizers, flame retardants, antioxidants An agent, reinforcing fiber, filler, bulking agent, colorant, antistatic agent, release agent and the like may be added.
[0034]
In order to produce a heat ray shielding material using the heat ray shielding composition of the present invention, extrusion molding, injection molding, cast polymerization, and various methods can be employed. Moreover, when coating the heat ray shielding composition on the heat ray shielding material substrate, a roll coating method, a dipping method, a spray coating method, a brush coating method and the like can be mentioned. After pre-manufacturing with a heat-ray shielding layer coated in advance on a film, etc., a method of laminating (hot laminating, bonding, pressing, etc.) or a co-extrusion method (co-extrusion method) on a heat-ray shielding base material is adopted. A heat ray shielding material may be manufactured. In the heat ray shielding layer or the heat ray shielding material, a concentration gradient of the phthalocyanine infrared absorber and the ultraviolet absorber may be provided from the entry side to the exit side of the heat ray.
[0035]
The case where the heat ray shielding material is produced using the composition containing both the phthalocyanine-based infrared absorber and the ultraviolet absorber, which is the heat ray shielding composition of the present invention, has been described above. Includes a heat ray shielding material in which a layer containing one or both of a phthalocyanine-based infrared absorber and an ultraviolet absorber is present as two or more separate layers.
[0036]
That is, the point of the present invention is to significantly improve the weather resistance of the heat ray shielding material by using a phthalocyanine-based infrared absorber and an ultraviolet absorber in combination, so either one of the phthalocyanine-based infrared absorber and the ultraviolet absorber. Or the layer containing both may exist as two or more separate layers.
[0037]
Here, “the heat ray shielding material in which a layer containing one or both of a phthalocyanine-based infrared absorber and an ultraviolet absorber exists as two or more separate layers” includes only the phthalocyanine-based infrared absorber. It is a heat ray shielding material in which two or more of a layer, a layer containing only an ultraviolet absorber, and a layer containing both are present as separate layers. In this case, a known clear layer or the like is not prevented from existing between the outermost (lowermost) layer or the interlayer. As the layer containing both the phthalocyanine-based infrared absorber and the ultraviolet absorber, two or more layers having different mixing ratios may be provided.
[0038]
In the present invention, as a preferable configuration of the heat ray shielding material, a heat ray shielding material in which a layer containing an ultraviolet absorber is present on the heat ray entrance side than other layers can be mentioned. A layer containing an ultraviolet absorber (a layer containing only an ultraviolet absorber or a layer containing both an ultraviolet absorber and a phthalocyanine-based infrared absorber) must be provided on the heat ray entrance side of the heat-shielding material. By providing the other layer containing the absorbent on the lower side (outside of the heat ray), the weather resistance can be effectively improved.
[0039]
More specifically, it is preferable to laminate each layer so that the amount of the ultraviolet absorber is decreased stepwise or continuously from the entry side to the exit side (from the surface layer to the lower layer) of the heat ray of the heat ray shielding material. It should be noted that a layer containing neither an ultraviolet absorber such as a clear layer nor a phthalocyanine-based infrared absorber is not considered when “decreases stepwise or continuously”. It is preferable that the layer containing only (or containing many) the ultraviolet absorber is provided on the most heat battle entrance side of the heat ray shielding material. For example, a layer containing P% (weight ratio in the layer) containing only phthalocyanine-based infrared absorber (referred to as layer A), a layer containing only X% ultraviolet absorber (referred to as layer B), and both. When a heat ray shielding material is manufactured by laminating a layer (referred to as C layer) containing Y% (X> Y) of the ultraviolet absorber and Q% of the phthalocyanine-based infrared absorber, the layers are laminated in the order of B-C-A. Then, weather resistance can be improved more effectively. If the amount (X + Y) of the ultraviolet absorber contained in each layer of B-C-A is 10 times or more the total amount (P + Q) of the phthalocyanine-based infrared absorber, the heat ray according to the present invention having good weather resistance It becomes a shielding material. However, even if the layers are not laminated in this order, the weight in the projected area from the entrance side of the heat ray, if the amount of the ultraviolet absorber is more than 10 times that of the phthalocyanine-based infrared absorber, compared to the conventional one. Since the weather resistance is improved, it is also included in the heat ray shielding material of the present invention.
[0040]
The shape of the heat ray shielding material is not particularly limited, and includes various shapes such as a corrugated plate shape, a spherical shape, and a dome shape in addition to the most common flat plate shape and film shape. The weight in the projected area from the entrance side of the heat ray means the total amount of each absorbent present in the path projected when light enters and passes through an arbitrary region of the heat ray shielding material. It can also be said that the total amount of each absorbent in any of the heat ray passage paths. In the heat ray shielding material of the present invention, the amount of the phthalocyanine-based infrared absorber is 0.06 to 2.4 g / m in the projected area from the entrance side of the heat ray. 2 In this range, a good heat ray shielding effect can be exhibited regardless of the thickness of the heat ray shielding material. A more preferable range is 0.1 to 1.2 g / m. 2 It is.
[0041]
In the heat ray shielding material of the present invention, the heat ray shielding effect is usually exhibited if the phthalocyanine-based infrared absorber is in the range of 0.0005 to 9% by weight with respect to the transparent resin as a matrix in the heat ray shielding material. It is recommended that the amount of the phthalocyanine-based infrared absorber be appropriately changed according to the desired visible and near-infrared transmittance settings and the desired thickness of the heat ray shielding material. For example, in a relatively thin heat ray shielding material having a thickness of 0.5 mm or less, in order to increase a sufficient heat ray shielding effect, the phthalocyanine-based infrared absorber is 0.01 to 5% by weight, more preferably 0.05 to 5%. 5% by weight should be present. For example, when the thickness of the heat ray shielding material is 0.5 mm, the optimum concentration of the phthalocyanine-based infrared absorber is 0.01 to 0.4% by weight, more preferably 0.03 to 0.2% by weight.
[0042]
Further, in the case of a thinner heat ray shielding material (or layer), for example, having a thickness of 100 μm, the phthalocyanine-based infrared absorber is 0.05 to 2% by weight, more preferably 0.15 to 1% by weight, and the heat ray shielding is 10 μm thick. In the case of a material (or layer), 0.5 to 9% by weight, more preferably 1.5 to 5% by weight.
[0043]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. These are all included in the technical scope of the present invention. “Parts” and “%” are based on weight unless otherwise specified.
[0044]
Example 1
100 parts of polycarbonate resin is dissolved in dichloromethane, 0.1 part of 3,6-octafluoro- (4,5-octakisanilino) oxyvanadium phthalocyanine (hereinafter referred to as infrared absorber 1) is used as an ultraviolet absorber. 1.0 part of “Tinuvin 234” (manufactured by Ciba Geigy; 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole) was added and dispersed uniformly. . The resin solution was poured into a mold and allowed to stand until the solvent volatilized to obtain a heat ray shielding film having a thickness of 0.13 mm.
[0045]
Examples 2-5 and Comparative Examples 1-5
As shown in Table 1, a heat ray shielding film was obtained in the same manner as in Example 1 except that the type and concentration of the infrared absorber, the concentration of the ultraviolet absorber, and the thickness of the heat ray shielding film were changed. In addition, the density | concentration (g / m) of the infrared absorber in a table | surface 2 ) Is a numerical value calculated with the specific gravity of the polycarbonate being 1.2.
[0046]
“UV-3100PC” manufactured by Shimadzu Corporation was used for the initial spectrophotometer (transmittance) and the spectrophotometer after the weather resistance promotion test was conducted for 24 hours and 48 hours for the heat ray shielding films prepared in Examples and Comparative Examples. And measured in accordance with JIS R 3106. The weather resistance acceleration test uses an i-super UV tester (manufactured by Iwasaki Electric Co., Ltd.), and the ultraviolet irradiation intensity is 90 mW / cm. 2 And under conditions of humidity 50% and black panel temperature 63 ° C. Spectral charts at the initial stage and after 24 hours are shown in FIGS. In the figure, the solid line indicates the initial transmittance, and the broken line indicates the transmittance after 24 hours of the weathering acceleration test, and the charts of Example 5 and Comparative Example 5 are omitted.
[0047]
Further, the retention rate (%) was calculated as a standard indicating weather resistance. That is, the initial value of the transmittance of the wavelength of the infrared absorption peak of each film is T B The transmittance after 24 hours of the weathering acceleration test is expressed as T twenty four The retention rate (%) after 24 hours is (100-T twenty four ) / (100-T B ) × 100, and similarly, the transmittance after 48 hours of the weathering acceleration test is T 48 Then, the retention rate (%) after 48 hours is (100-T 48 ) / (100-T B ) × 100.
[0048]
Table 1 shows data on the composition, film thickness, transmittance, and retention rate of each example. In addition, the infrared absorbers 1-3 in Table 1 are as follows.
Infrared absorber 1 (phthalocyanine)
3,6-octafluoro- (4,5-octakisanilino) oxyvanadium phthalocyanine
Infrared absorber 2
2,5-cyclohexadiene-1,4-diylidene-bis [N, N-bis (4-dibutylaminophenyl) ammonium)] bis (hexafluoroantimonate)
Infrared absorber 3
N, N-bis (4-dibutylaminophenyl) -N- [4- {N, N-bis (4-dibutylaminophenyl) amino} phenyl] -aminium hexafluoroantimonate
[0049]
[Table 1]
Figure 0003701406
[0050]
As is apparent from the table and the drawings, all of the examples of the present invention using a phthalocyanine-based infrared absorber (infrared absorber 1) and using an ultraviolet absorber 10 times or more the amount of the infrared absorber. A high retention rate was exhibited even after 24 hours or 48 hours after the accelerated weathering test, and it was confirmed that excellent heat ray absorption ability could be retained for a long time. However, the comparative example 1 which did not use an ultraviolet absorber together, or the comparative example 2 which uses a 5 times amount ultraviolet absorber has a retention rate lower than an Example, and its weather resistance is inferior. When infrared absorbers (2 and 3) that are not phthalocyanine-based are used, the weather resistance is very poor in Comparative Example 3 in which no ultraviolet absorber is used, and even if an ultraviolet absorber is used (Comparative Examples 4 and 5), the weather resistance It is clear that the sex is insufficient.
[0051]
【The invention's effect】
The present invention is configured as described above, and even if the heat ray shielding material is as thin as 0.5 mm or less, by making the phthalocyanine-based infrared absorber and the ultraviolet absorber coexist in the heat ray shielding material, particularly the infrared ray absorber. By coexisting 10 times or more of the UV absorber, the heat ray shielding effect can be maintained for a long time, and a heat ray shielding material having excellent weather resistance can be provided.
[Brief description of the drawings]
FIG. 1 is a chart of the initial spectrophotometer (transmittance) of the heat ray shielding films obtained in Example 1 and Example 2 and the spectrophotometer after 24 hours of the weather resistance acceleration test.
FIG. 2 is a chart of the initial spectrophotometer (transmittance) and spectrophotometer after 24 hours of the weathering accelerated test of the heat ray shielding films obtained in Example 3 and Example 4.
FIG. 3 is a chart of the initial spectrophotometer (transmittance) of the heat ray shielding films obtained in Comparative Example 1 and Comparative Example 2 and the spectrophotometer after 24 hours of the weathering accelerated test.
FIG. 4 is a chart of the initial spectrophotometry (transmittance) and spectrophotometry after 24 hours of the weathering accelerated test of the heat ray shielding films obtained in Comparative Example 3 and Comparative Example 4.

Claims (4)

熱線遮蔽材中に、フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方もしくは両方が含まれている層が2以上の個別の層として存在しており、紫外線吸収剤を含む層が他の層より熱線の入側に存在していることを特徴とする熱線遮蔽材。  In the heat ray shielding material, a layer containing one or both of a phthalocyanine-based infrared absorber and an ultraviolet absorber exists as two or more separate layers, and the layer containing the ultraviolet absorber is another layer. A heat ray shielding material characterized by being present on the entry side of the heat ray. 熱線遮蔽材中に、フタロシアニン系赤外線吸収剤と紫外線吸収剤のいずれか一方もしくは両方が含まれている層が2以上の個別の層として存在しており、熱線の入側からの投影面積中の重量で、紫外線吸収剤の量がフタロシアニン系赤外線吸収剤の量の10倍以上であることを特徴とする熱線遮蔽材。  In the heat ray shielding material, a layer containing one or both of a phthalocyanine-based infrared absorber and an ultraviolet absorber exists as two or more individual layers, and the projected area from the entrance side of the heat ray A heat ray shielding material, characterized in that, by weight, the amount of the ultraviolet absorber is at least 10 times the amount of the phthalocyanine-based infrared absorber. フタロシアニン系赤外線吸収剤が、下記一般式(I)で示される化合物である請求項1または2に記載の熱線遮蔽材。
Figure 0003701406
(ただし、式中、Xは独立して水素原子、ハロゲン原子、−SR1または−OR2を表し、Yは−NHR3、−SR4または−OR5を表し、R1、R2、R4、R5はそれぞれ独立して、置換基を有していてもよいフェニル基または炭素原子数1〜20個のアルキル基を表し、R3は置換基を有していてもよいフェニル基または炭素原子数1〜8個のアルキル基を表し、aは1〜4の整数、bは0〜4の整数、かつaとbの合計が1以上4以下の整数であり、Mは、2個の水素原子、金属、金属酸化物または金属ハロゲン化物を表す。)
The heat ray shielding material according to claim 1 or 2, wherein the phthalocyanine-based infrared absorber is a compound represented by the following general formula (I).
Figure 0003701406
(Wherein, X independently represents a hydrogen atom, a halogen atom, —SR 1 or —OR 2 , Y represents —NHR 3 , —SR 4 or —OR 5 , R 1 , R 2 , R 4 and R 5 each independently represents a phenyl group which may have a substituent or an alkyl group having 1 to 20 carbon atoms, and R 3 represents a phenyl group which may have a substituent or Represents an alkyl group having 1 to 8 carbon atoms, a is an integer of 1 to 4, b is an integer of 0 to 4, and the sum of a and b is an integer of 1 to 4, and M is 2 Represents a hydrogen atom, a metal, a metal oxide or a metal halide.)
フタロシアニン系赤外線吸収剤の量が、熱線の入側からの投影面積中の重量で0.06〜2.4g/m2である請求項1〜3のいずれかに記載の熱線遮蔽材。The heat ray shielding material according to any one of claims 1 to 3, wherein the amount of the phthalocyanine-based infrared absorber is 0.06 to 2.4 g / m 2 by weight in the projected area from the entrance side of the heat ray.
JP23014296A 1996-08-30 1996-08-30 Heat ray shielding material Expired - Fee Related JP3701406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23014296A JP3701406B2 (en) 1996-08-30 1996-08-30 Heat ray shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23014296A JP3701406B2 (en) 1996-08-30 1996-08-30 Heat ray shielding material

Publications (2)

Publication Number Publication Date
JPH1077360A JPH1077360A (en) 1998-03-24
JP3701406B2 true JP3701406B2 (en) 2005-09-28

Family

ID=16903251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23014296A Expired - Fee Related JP3701406B2 (en) 1996-08-30 1996-08-30 Heat ray shielding material

Country Status (1)

Country Link
JP (1) JP3701406B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325958B2 (en) * 1998-12-16 2009-09-02 株式会社日本触媒 Ultraviolet and heat ray shielding laminate
JP2002225195A (en) * 2000-11-29 2002-08-14 Fuji Photo Film Co Ltd Ultraviolet/infrared ray absorbing film
DE10117785A1 (en) * 2001-04-10 2002-10-17 Bayer Ag Heat absorbing layer system containing IR and UV absorbers useful for heat insulation in automobile and building industries has outstanding long term weather resistance and excellent transparency and glaze
DE10117786A1 (en) * 2001-04-10 2002-10-17 Bayer Ag Heat absorbing layer system useful for heat radiation screening of synthetic plastic displacement (sic) elements having outstanding long term weathering resistance, and high transparency, glaze and heat resistance
BR0207116A (en) 2001-12-10 2004-02-25 Bayer Ag Dyed Weatherproof Multilayer Plate
JP4412895B2 (en) * 2002-12-05 2010-02-10 株式会社日本触媒 Pressure sensitive adhesive composition
JP2006045307A (en) * 2004-08-03 2006-02-16 Konica Minolta Opto Inc Optical film, and polarizing plate obtained using the same
US20080160299A1 (en) * 2006-12-27 2008-07-03 Achilles Corporation Heat shielding sheet
RU2540569C2 (en) 2009-08-24 2015-02-10 Секисуй Кемикал Ко., Лтд. Intermediate film for laminated glass and laminated glass
MX2018003735A (en) 2015-09-30 2018-06-27 Sekisui Chemical Co Ltd Interlayer film for laminated glass and laminated glass.
JP6972524B2 (en) * 2016-09-14 2021-11-24 三菱ケミカル株式会社 Polyester film
WO2019124373A1 (en) 2017-12-19 2019-06-27 積水化学工業株式会社 Laminated glass
JP7053285B2 (en) * 2018-01-25 2022-04-12 株式会社日本触媒 Phthalocyanine compound

Also Published As

Publication number Publication date
JPH1077360A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
JP3701406B2 (en) Heat ray shielding material
JP5963210B2 (en) Polymer composition having heat absorption properties and high weatherability stability
KR100518493B1 (en) Stabilization of fluorescent dyes in vinyl articles using hindered amine light stabilizers
US6663957B1 (en) Adhesive transparent resin and a composite including the same
US20040191485A1 (en) Plastic body having low thermal conductivity, high light transmission and a capacity for absorption in the near-infrared region
JP5441697B2 (en) Heat ray shielding sheet
KR20120111728A (en) Coating composition and sheet using same
CN100569508C (en) Color sheet with light-shielding property
JP2005047179A (en) Heat ray shielding resin sheet
JP2664630B2 (en) Heat ray shielding material
CN102395642A (en) Near infrared ray-absorbable adhesive composition
JP3959143B2 (en) Novel phthalocyanine compound, method for producing the same, and near-infrared absorbing material
JP2003268048A (en) Resin composition for forming ultraviolet shielding layer and ultraviolet shielding laminate
US7132465B2 (en) Near-infrared absorbing coat film and near-infrared absorbing resin composition
JPH1062620A (en) Near infrared absorption filter
JP2001019895A (en) Fluororesin-containing coating composition
JP4403473B2 (en) Near-infrared absorbing compound and near-infrared absorbing filter
JP2006501336A (en) Polycarbonate or polyester carbonate containing optical brightener
JP3940786B2 (en) Infrared absorption filter and filter for plasma display panel
JPH09164638A (en) (meth)acrylic ester type resin film and (meth)acrylic ester type resin laminated film
JP4353024B2 (en) Color correction heat welding film and near infrared cut filter with heat welding function using the same
JP2002139619A (en) Infrared-ray absorbing filter and filter for plasma display panel
JP6156786B2 (en) Heat ray shielding material
JPH0795122B2 (en) Light control heat ray absorber
JPH10217412A (en) Matte polycarbonate resin laminate plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees