JP3701016B2 - Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material - Google Patents

Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material Download PDF

Info

Publication number
JP3701016B2
JP3701016B2 JP2001332061A JP2001332061A JP3701016B2 JP 3701016 B2 JP3701016 B2 JP 3701016B2 JP 2001332061 A JP2001332061 A JP 2001332061A JP 2001332061 A JP2001332061 A JP 2001332061A JP 3701016 B2 JP3701016 B2 JP 3701016B2
Authority
JP
Japan
Prior art keywords
group
fine particles
formula
organic silicone
silanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001332061A
Other languages
Japanese (ja)
Other versions
JP2003128788A (en
Inventor
一平 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2001332061A priority Critical patent/JP3701016B2/en
Publication of JP2003128788A publication Critical patent/JP2003128788A/en
Application granted granted Critical
Publication of JP3701016B2 publication Critical patent/JP3701016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機シリコーン微粒子、有機シリコーン微粒子の製造方法、高分子材料改質剤及び化粧品原料に関する。高分子材料用改質剤、化粧品原料、コーティング材、診断薬用担体、塗料原料等として、有機シリコーン微粒子が広く利用されている。本発明は、かかる有機シリコーン微粒子であって、全体として中空半球状体様を呈する特定形状の有機シリコーン微粒子に関する。
【0002】
【従来の技術】
従来、有機微粒子として、合成高分子系のものや天然高分子系のもの等、各種が知られている。なかでも合成高分子系の有機微粒子である有機シリコーン微粒子については、それが潤滑性、非粘着性、吸油性、分散性、耐熱性、耐溶剤性、撥水性等に優れていることから注目され、1)表面の滑らかな中実球状の有機シリコーン微粒子(特開昭61−159427、特開昭61−159467、特開昭61−194009、特開昭63−15849、特開昭63−8461、特開昭63−77940、特開昭63−297313、特開昭63−312324、特開平1−144423、特開平2−209927、特開平4−337390、特開平6−279589、特開平6−49209、特願平11−116681)、2)表面に多数のくぼみを有する全体としては中実球状の有機シリコーン微粒子(特開2000−191788)、3)断面馬蹄形を呈する有機シリコーン微粒子(特開平2000−191789)等が提案されている。
【0003】
ところが、従来提案されている前記のような有機シリコーン微粒子には、それらを前述したような高分子材料用改質剤や化粧品原料等として使用する場合に幾つかの問題がある。例えば、前記1)の有機シリコーン微粒子を高分子材料に滑性や剥離性を付与するための高分子材料用改質剤として使用する場合、それらがいずれも表面の滑らかな中実球状のものであるため、所望の効果を得るためには多量に使用する必要があり、また使用した有機シリコーン微粒子が高分子材料から脱落し易い。有機シリコーン微粒子は、もともと他の有機微粒子に比べ高価であることもあって、これを多量に使用すれば、それだけ経済的に不利であり、また有機シリコーン微粒子が脱落すれば、それが高分子材料の製造工程や加工工程におけるガイド類にスカムとなって付着し、高分子材料の円滑な製造や加工を妨げる。また例えば、化粧品分野の現状は肌上での使用感触の多様化への対応、液状化粧品成分や紫外線吸収剤等の内包或は吸着による多機能化乃至高機能化への対応が求められているところ、前記1)の有機シリコーン微粒子では、それらがいずれも表面の滑らかな中実球状のものであるため、かかる求めに応えることができない。また前記2)及び3)の有機シリコーン微粒子は、前記1)の有機シリコーン微粒子に比べれば、使用量の軽減、高分子材料からの脱落性の改善、液状化粧品成分や紫外線吸収剤等の内包或は吸着による多機能化乃至高機能化への対応において改善されているものの、特に高分子材料用改質剤として用いた場合の耐脱落性、化粧品原料として用いた場合の肌へののりや密着感において未だ不充分という問題がある。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、例えば高分子材料用改質剤として使用した場合には高分子材料からの脱落が著しく少なく、また例えば化粧品原料として使用した場合には肌へののりや密着感が著しく良い、更に改善された有機シリコーン微粒子を提供する処にある。
【0005】
【課題を解決するための手段】
しかして本発明者らは、上記の課題を解決するべく研究した結果、ポリシロキサン架橋構造体から成り、全体としては中空半球状体様を呈する特定形状の有機シリコーン微粒子が正しく好適であることを見出した。
【0006】
すなわち本発明は、ポリシロキサン架橋構造体から成る有機シリコーン微粒子であって、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体としては中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が0.01〜8μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.05〜10μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.015〜8μmの範囲内にあることを特徴とする有機シリコーン微粒子に係る。また本発明はかかる有機シリコーン微粒子の製造方法、該有機シリコーン微粒子から成る高分子材料用改質剤及び化粧品原料に係る。
【0007】
先ず、本発明に係る有機シリコーン微粒子について説明する。本発明に係る有機シリコーン微粒子は、ポリシロキサン架橋構造体から成るものである。このポリシロキサン架橋構造体は、シロキサン単位が3次元の網目構造を形成した構造体である。本発明はポリシロキサン架橋構造体を構成するシロキサン単位の種類や割合を特に制限するものではないが、かかるシロキサン単位としては下記の式1で示されるシロキサン単位と式2で示されるシロキサン単位とから構成されたものが好ましい。
【0008】
【式1】
SiO
【式2】
SiO1.5
【0009】
式2において、
:ケイ素原子に直結した炭素原子を有する有機基
【0010】
式2で示されるシロキサン単位において、式2中のRは、いずれもケイ素原子に直結した炭素原子を有する有機基であって、反応性基でない有機基又は反応性基を有しない有機基である場合と、反応性基である有機基又は反応性基を有する有機基である場合とがあるが、反応性基である有機基又は反応性基を有する有機基が好ましい。
【0011】
式2中のRにおいて反応性基でない有機基又は反応性基を有しない有機基としては、アルキル基、シクロアルキル基、アリール基、アルキルアリール基、アラルキル基等が挙げられるが、これらのうちではメチル基、エチル基、プロピル基、ブチル基等の炭素数1〜4のアルキル基又はフェニル基が好ましく、メチル基がより好ましい。式2中のRがかかる有機基である場合、式2で示されるシロキサン単位のうちで好ましいシロキサン単位としては、メチルシロキサン単位、エチルシロキサン単位、プロピルシロキサン単位、ブチルシロキサン単位、フェニルシロキサン単位等が挙げられる。
【0012】
式2中のRにおいて、反応性基である有機基又は反応性基を有する有機基としては、エポキシ基、(メタ)アクリロキシ基、アルケニル基、メルカプトアルキル基、アミノアルキル基、ハロアルキル基、グリセロキシ基、ウレイド基、シアノ基等が挙げられるが、なかでも2−グリシドキシエチル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)プロピル基等のエポキシ基を有するアルキル基、3−メタクロキシプロピル基、3−アクリロキシプロピル基等の(メタ)アクリロキシ基、ビニル基、アリル基、イソプロペニル基等のアルケニル基、メルカプトプロピル基、メルカプトエチル基等のメルカプトアルキル基、3−(2−アミノエチル)アミノプロピル基、3−アミノプロピル基、N,N−ジメチルアミノプロピル基等のアミノアルキル基が好ましい。式2中のRがかかる有機基である場合、式2で示されるシロキサン単位としては、1)3−グリシドキシプロピルシロキサン単位、3−グリシドキシプロピルシロキサン単位、2−(3,4−エポキシシクロヘキシル)エチルシロキサン単位、2−グリシドキシエチルシロキサン単位等のエポキシ基を有するシロキサン単位、2)3−メタクロキシプロピルシロキサン単位、3−アクリロキシプロピルシロキサン単位等の(メタ)アクリロキシ基を有するシロキサン単位、3)ビニルシロキサン単位、アリルシロキサン単位、イソプロペニルシロキサン単位等のアルケニル基を有するシロキサン単位、4)メルカプトプロピルシロキサン単位、メルカプトエチルシロキサン単位等のメルカプトアルキル基を有するシロキサン単位、5)3−アミノプロピルシロキサン単位、3−(2−アミノエチル)アミノプロピルシロキサン単位、N,N−ジメチルアミノプロピルシロキサン単位、N,N−ジエチルアミノプロピルシロキサン単位、N,N−ジメチルアミノエチルシロキサン単位等のアミノアルキル基を有するシロキサン単位、6)3−クロロプロピルシロキサン単位、トリフルオロプロピルシロキサン単位等のハロアルキル基を有するシロキサン単位、7)3−グリセロキシプロピルシロキサン単位、2−グリセロキシエチルシロキサン単位等のグリセロキシ基を有するシロキサン単位、8)3−ウレイドプロピルシロキサン単位、2−ウレイドエチルシロキサン単位等のウレイド基を有するシロキサン単位、9)シアノプロピルシロキサン単位、シアノエチルシロキサン単位等のシアノ基を有するシロキサン単位等が挙げられるが、なかでもエポキシ基を有するシロキサン単位、(メタ)アクリロキシ基を有するシロキサン単位、アルケニル基を有するシロキサン単位、メルカプトアルキル基を有するシロキサン単位、アミノアルキル基を有するシロキサン単位が好ましい。
【0013】
ポリシロキサン架橋構造体を前記したようなシロキサン単位で構成する場合、双方のシロキサン単位の構成割合は特に制限されないが、式1で示されるシロキサン単位/式2で示されるシロキサン単位=30/70〜50/50(モル比)の構成割合とするのが好ましい。
【0014】
本発明に係る有機シリコーン微粒子は、以上説明したようにポリシロキサン架橋構造体から成るものであって、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈するものである。言い替えれば、中空球状体を不均等に2分割したときの小分割部側の形状を呈するものである。そして内側小劣弧(11)の端部間の幅(W)の平均値が0.01〜8μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.05〜10μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.015〜8μmの範囲内にあるものであるが、内側小劣弧(11)の端部間の幅(W)の平均値が0.02〜6μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.06〜8μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.03〜6μmの範囲内にあるものが好ましい。本発明において、内側小劣弧(11)の端部間の幅(W)の平均値、外側大劣弧(21)の端部間の幅(W)の平均値、及び外側大劣弧(21)の高さ(H)の平均値はいずれも、本発明の有機シリコーン微粒子の走査電子顕微鏡像から抽出した任意の100個についてそれぞれを測定し、その平均を求めた値である。
【0015】
次に、本発明に係る有機シリコーン微粒子の製造方法について説明する。本発明に係る有機シリコーン微粒子の製造方法は、前記した本発明に係る有機シリコーン微粒子を製造する方法であって、下記の式3で示されるシラノール基形成性ケイ素化合物と下記の式4で示されるシラノール基形成性化合物とを、式3で示されるシラノール基形成性ケイ素化合物/式4で示されるシラノール基形成性化合物=30/70〜50/50(モル比)の割合で用い、これらを触媒を存在させた条件下で水と接触させて加水分解することによりシラノール化合物を生成させ、引き続き生成させたシラノール化合物を縮合反応させて、有機シリコーン微粒子を製造する方法である。
【0016】
【式3】
SiX
【式4】
SiY
【0017】
式3,式4において、
:ケイ素原子に直結した炭素原子を有する有機基
X,Y:炭素数1〜4のアルコキシ基、炭素数1〜4のアルコキシ基を有するアルコキシエトキシ基、炭素数2〜4のアシロキシ基、炭素数1〜4のアルキル基を有するN,N−ジアルキルアミノ基、ヒドロキシル基、ハロゲン原子又は水素原子
【0018】
式3で示されるシラノール基形成性ケイ素化合物は、結果として式1で示されるシロキサン単位を形成することとなる化合物である。式3中のXは、1)メトキシ基やエトキシ基等の、炭素数1〜4のアルコキシ基、2)メトキシエトキシ基やブトキシエトキシ基等の、炭素数1〜4のアルコキシ基を有するアルコキシエトキシ基、3)アセトキシ基やプロピオキシ基等の、炭素数2〜4のアシロキシ基、4)ジメチルアミノ基やジエチルアミノ基等の、炭素数1〜4のアルキル基を有するN,N−ジアルキルアミノ基、5)ヒドロキシル基、6)塩素原子や臭素原子等のハロゲン原子、又は7)水素原子である。
【0019】
具体的に、式3で示されるシラノール基形成性ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、トリメトキシエトキシシシラン、トリブトキシエトキシシラン、テトラアセトキシシラン、テトラプロピオキシシラン、テトラアセトキシシラン、テトラ(ジメチルアミノ)シラン、テトラ(ジエチルアミノ)シラン、シランテトラオール、クロルシラントリオール、ジクロルジシラノール、テトラクロルシラン、クロルトリハイドロジェンシラン等が挙げられるが、なかでもテトラメトキシシラン、テトラエトキシシラン、テトラブトキシシランが好ましい。
【0020】
式4で示されるシラノール基形成性ケイ素化合物は、結果として式2で示されるシロキサン単位を形成することとなる化合物である。式4中のYは前記した式3中のXと同様であり、また式4中のRは前記した式2中のRと同様である。
【0021】
式4中のRが反応性基でない有機基又は反応性基を有しない有機基である場合、かかる式4で示されるシラノール基形成性ケイ素化合物としては、メチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリブトキシシラン、ブチルトリブトキシシラン、フェニルトリメトキシエトキシシラン、メチルトリブトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリプロピオキシシラン、メチルトリアセトキシシラン、メチルトリ(ジメチルアミノ)シラン、メチルトリ(ジエチルアミノ)シラン、メチルシラントリオール、メチルクロルジシラノール、メチルトリクロルシラン、メチルトリハイドロジェンシラン等が挙げられるが、なかでも式2中のRについて前記したように、結果としてメチルシロキサン単位、エチルシロキサン単位、プロピルシロキサン単位、ブチルシロキサン単位又はフェニルシロキサン単位を形成することとなるシラノール基形成性ケイ素化合物が好ましい。
【0022】
また式4中のRが反応性基である有機基又は反応性基を有する有機基である場合、式4で示されるシラノール基形成性ケイ素化合物としては、1)3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基を有するシラン化合物、2)3−メタクロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシ基を有するシラン化合物、3)ビニルトリメトキシシラン、アリルトリメトキシシラン、イソプロピルトリメトキシシラン等のアルケニル基を有するシラン化合物、4)メルカプトプロピルトリメトキシシラン、メルカプトエチルトリメトキシシラン等のメルカプト基を有するシラン化合物、5)3−アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、N,N−ジメチルアミノプロピル・トリメトキシシラン、N,N−ジメチルアミノエチルトリメトキシシラン等のアミノアルキル基を有するシラン化合物、6)3−クロロプロピルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン等のハロアルキル基を有するシラン化合物、7)3−グリセロキシプロピルトリメトキシシラン等のグリセロキシ基を有するシラン化合物、8)3−ウレイドプロピルトリメトキシシラン等のウレイド基を有するシラン化合物、9)シアノプロピルトリメトキシシラン等のシアノ基を有するシラン化合物等が挙げられるが、なかでもエポキシ基を有するシラン化合物、(メタ)アクリロキシ基を有するシラン化合物、アルケニル基を有するシラン化合物、メルカプト基を有するシラン化合物、アミノアルキル基を有するシラン化合物が好ましい。
【0023】
本発明に係る有機シリコーン微粒子の製造法では先ず、以上説明した式3で示されるシラノール基形成性ケイ素化合物と式4で示されるシラノール基形成性化合物とを、式3で示されるシラノール基形成性化合物/式4で示されるシラノール基形成性化合物=30/70〜50/50(モル比)、好ましくは35/65〜45/55(モル比)の割合で用い、双方を触媒存在下で、水と接触させて加水分解し、シラノール化合物を生成させる。加水分解するための触媒は従来公知のものを用いることができる。これには例えば、塩基性触媒として、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基類や、アンモニア、トリメチルアミン、トリエチルアミン、テトラエチルアンモニウムハイドロオキサイド、ドデシルジメチルヒドロキシエチルアンモニウムハイドロオキサイド、ナトリウムメトキシド等の有機塩基類が挙げられる。また酸性触媒としては、塩酸、硫酸、リン酸等の無機酸類や、酢酸、クエン酸、メタンスルホン酸、p−トルエンスルホン酸、ドデシルベンゼンスルホン酸、ドデシルスルホン酸等の有機酸類が挙げられる。
【0024】
式3で示されるシラノール基形成性ケイ素化合物と式4で示されるシラノール基形成性化合物とを、触媒存在下で、水と接触させて加水分解する場合、通常、水にシラノール基形成性ケイ素化合物と触媒とを加えて撹拌し、水に不溶のシラノール基形成性化合物が反応系から消失して均一な液層が形成された時点を加水分解の終点とする。シラノール基形成性ケイ素化合物の種類により、本来的な加水分解反応性の他に、水に対する分散性の差に基づく加水分解反応性が異なるため、反応系に加える触媒の種類、その使用量及び反応温度等を適宜選択するが、シラノール基形成性ケイ素化合物と水との接触反応を容易にするため、反応系に界面活性剤を加えることもできる。
【0025】
触媒と共に反応系に加える界面活性剤としては、いずれも公知のノニオン性界面活性剤、アニオン性界面活性剤が好ましい。ノニオン性界面活性剤としては、オキシアルキレン基がオキシエチレン基及び/又はオキシプロピレン基からなる、α−アルキル−ω−ヒドロキシ(ポリオキシアルキレン)、α−(p−アルキルフェニル)−ω−ヒドロキシ(ポリオキシアルキレン)、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンヒマシ油等の、ポリオキシアルキレン基を有するノニオン性界面活性剤が挙げられる。ノニオン性界面活性剤は、反応系に0.001〜0.05重量%の濃度で存在させるのが好ましい。
【0026】
またアニオン性界面活性剤としては、オクチル硫酸塩、セチル硫酸塩、ラウリル硫酸塩等の炭素数8〜18の有機硫酸塩、オクチルスルホン酸塩、セチルスルホン酸塩、ラウリルスルホン酸塩、ステアリルスルホン酸塩、オレイルスルホン酸塩、p−トルエンスルホン酸塩、ドデシルベンゼンスルホン酸塩、オレイルベンゼンスルホン酸塩、ナフチルスルホン酸塩、ジイソプロピルナフチルスルホン酸塩等の炭素数8〜30の有機スルホン酸塩等が挙げられる。アニオン性界面活性剤は、反応系に0.005〜0.55重量%の濃度で存在させるのが好ましい。
【0027】
反応系に界面活性剤を存在させる場合、以上説明したようなノニオン性界面活性剤又はアニオン性界面活性剤を単独で存在させることもできるが、双方を共存させるのが好ましく、双方を共存させる場合、ノニオン性界面活性剤を0.001〜0.05重量%の濃度で、またアニオン性界面活性剤を0.005〜0.55重量%の濃度で存在させるのが好ましい。
【0028】
水/シラノール基形成性ケイ素化合物全量の仕込み割合は、通常、10/90〜70/30(重量比)とする。触媒の使用量は、その種類及びシラノール基形成性ケイ素化合物の種類によっても異なるが、通常、シラノール基形成性ケイ素化合物の全量に対して1重量%以下とするのが好ましい。また反応温度は、通常0〜40℃とするが、加水分解反応によって生成させたシラノール化合物の即製的な縮合反応を避けるために30℃以下とするのが好ましい。
【0029】
式3で示されるシラノール基形成性ケイ素化合物と式4で示されるシラノール基形成性化合物とは、例えば水中へ一度にこれらのシラノール基形成性ケイ素化合物を投入してから加水分解してもよいし、又は遂次投入しつつ加水分解してもよい。用いるシラノール基形成性ケイ素化合物の間で加水分解速度が著しく異なるような場合には、予め加水分解速度の遅いシラノール基形成性ケイ素化合物の加水分解を行ない、次いで加水分解速度の速いシラノール基形成性ケイ素化合物を投入して引き続き加水分解を行なうのが好ましい。
【0030】
本発明に係る有機シリコーン微粒子の製造方法では次に、以上で生成させたシラノール化合物を含有する反応液を引き続き縮合反応に供し、有機シリコーン微粒子を生成させる。本発明において、縮合反応の触媒としては加水分解における前記したような触媒を使用できるので、加水分解させて生成したシラノール化合物を含有する反応液をそのまま或は更に触媒を加え、30〜80℃に加温して反応を続けることにより縮合反応させて、有機シリコーン微粒子をその水性懸濁液として得る。
【0031】
有機シリコーン微粒子は、前記の水性懸濁液から分離し、乾燥することにより得られる。例えば、水性懸濁液を金網を通して抜き取り、遠心分離法、加圧濾過法等により脱水し、その脱水物を100〜250℃で加熱乾燥する方法により得られる、また水性懸濁液をスプレードライヤーにより直接100〜250℃で加熱乾燥する方法によっても得られる。これらの乾燥物は、例えばジェットミル粉砕機を用いて解砕するのが好ましい。以上の水性懸濁液から脱水物を得る過程において、該水性懸濁液を多孔質膜で分別処理すると、大きさのばらつきを少なくした有機シリコーン微粒子を得ることができる。かかる多孔質膜としては、分相法で製造された多孔質セラミックス膜、相転換法や延伸法で製造された高分子メンブランフィルター、高分子延伸糸をワインディングして製造されたカートリッジフィルター、中性子線照射によって得られるポア−フィルター等が挙げられるが、高分子メンブランフィルター、中性子線照射によって得られるポア−フィルターが好ましく、高分子メンブランフィルターがより好ましい。
【0032】
かくして得られる有機シリコーン微粒子は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が0.01〜8μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.05〜10μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.015〜8μmの範囲内にあるものである。前記したように、シラノール化合物を縮合反応させた後、生成した有機シリコーン微粒子の水性懸濁液を高分子メンブランフィルターで分別処理すると、内側小劣弧(11)の端部間の幅(W)の平均値が0.02〜6μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.06〜8μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.03〜6μmの範囲内にあるものとすることができる。
【0033】
本発明に係る有機シリコーン微粒子及び本発明に係る有機シリコーン微粒子の製造方法によって得られる有機シリコーン微粒子は、高分子材料用改質剤、化粧品原料、コーティング材、診断薬用担体、塗料原料等として広く利用できるが、特に高分子材料用改質剤、化粧品原料として有用である。
【0034】
本発明に係る高分子材料用改質剤は、以上説明したような本発明に係る有機シリコーン微粒子又は本発明に係る有機シリコーン微粒子の製造方法によって得られる有機シリコーン微粒子から成るもので、高分子材料に高度の平滑性、撥水性等の表面特性を付与し、とりわけ高分子材料からの脱落が殆どない。本発明に係る高分子材料用改質剤を適用する高分子材料としては、ポリエステル、ナイロン、ポリプロピレン、ポリカプロラクトン、アクリル樹脂等の合成高分子から成形された合成高分子フィルムやシート、同様の合成高分子から成形されたフィラメントヤーンやステープルファイバー等の合成繊維が挙げられる。本発明に係る高分子材料用改質剤は、なかでも合成高分子フィルムやシート、或は合成繊維の滑剤として適用する場合に特に有用である。
【0035】
本発明に係る高分子材料用改質剤を合成高分子フィルムやシートの滑剤として適用する方法には、1)高分子材料用改質剤を合成高分子に含有させた後、フィルムやシートに成形する方法、2)合成高分子フィルムやシートに高分子材料用改質剤を塗布する方法がある。前記1)の方法では、高分子材料用改質剤を、フィルムやシートに成形する合成高分子100重量部当たり、0.01〜5重量部、好ましくは0.05〜3重量部となるように含有させる。高分子材料用改質剤を合成高分子に含有させる方法、高分子材料用改質剤を含有させた合成高分子を溶融製膜してフィルムやシートに成形する方法は特に制限されず、公知の方法を適用できる。また前記2)の方法では、高分子材料用改質剤の水性懸濁液を調製し、これをローラータッチ法、スプレー法等の公知の方法によって合成高分子フィルムやシートの表面に塗布する。塗布する工程は、合成高分子フィルムやシートの製造工程において、これらの溶融押出し直後における延伸配向前の工程、一軸延伸配向後における二軸延伸配向前の工程、二軸延伸配向後の工程のいずれでもよいが、一軸延伸配向後における二軸延伸配向前の工程が好ましく、いずれの工程で塗布する場合でも通常は、高分子材料用改質剤を、合成高分子フィルムやシート1m当たり、0.01〜0.2gとなるように塗布する。
【0036】
本発明に係る高分子材料用改質剤を合成繊維の滑剤として適用する方法には、1)高分子材料用改質剤を合成高分子に含有させた後、合成繊維とする方法、2)合成繊維に紡糸油剤や紡績油剤等と共に高分子材料用改質剤を付着させる方法、3)合成繊維に追油剤として高分子材料用改質剤を付着させる方法等があるが、前記1)の方法が好適である。前記1)の方法では、高分子材料用改質剤を、合成繊維とする合成高分子100重量部当たり、0.01〜2重量部、好ましくは0.05〜1重量部となるように含有させる。高分子材料用改質剤を合成高分子に含有させる方法、高分子材料用改質剤を含有させた合成高分子を合成繊維とする方法は特に制限されず、公知の方法を適用できる。また前記2)の方法では、高分子材料用改質剤の例えば水性液を調製し、これをローラー給油法、ガイド給油法、浸漬給油法等の公知の方法によって合成繊維の表面に付着させる。付着させる工程は、紡糸工程、延伸工程、更には延伸後の各工程等、いずれでもよいが、いずれの工程で付着させる場合でも通常は、高分子材料用改質剤を、合成繊維に対し0.01〜5重量%となるように付着させる。
【0037】
本発明に係る化粧品原料は、前記したような本発明に係る有機シリコーン微粒子又は本発明に係る有機シリコーン微粒子の製造方法によって得られる有機シリコーン微粒子から成るもので、液状化粧品成分や紫外線吸収剤等の内包或は吸着による多機能化乃至高機能化への対応において優れ、とりわけ肌へののりや密着感において優れる。本発明に係る化粧品原料は、粉末原料として、フェイシャル化粧品、メークアップ化粧品、ボディー化粧品、腋臭防止剤等の皮膚外用剤、頭髪化粧品、口腔衛生品、入浴剤、フレグランス等に適用できるが、特に肌上での使用感触の多様化への適応性、更には液状化粧品成分や紫外線吸収剤等の内包や吸着等による多機能化乃至高機能化への適応性の点で、皮膚外用剤に用いる原料として有用である。本発明に係る化粧品原料の使用量は、適用する化粧品の使用形態により適宜選択するが、例えばメークアップ化粧品の場合、プレス状メークアップ化粧品においては1.0〜50重量%とするのが好ましく、また液状メークアップ化粧品においては0.1〜30重量%とするのが好ましい。
【0038】
例えばメークアップ化粧品の場合、本発明に係る化粧品原料と共に用いる他の原料としては、顔料粉体、結合油剤、水、界面活性剤、増粘剤、防腐剤、香料等が挙げられるが、かかるメークアップ化粧品は、本発明に係る化粧品原料と共に他の原料を均一に分散させる公知の方法で調製できる。
【0039】
【発明の実施の形態】
本発明に係る有機シリコーン微粒子の実施形態としては、図1に例示したものが挙げられる。図1は本発明に係る有機シリコーン微粒子10を略示する拡大断面図である。図1に略示した有機シリコーン微粒子10は、縦断面で見て内側小劣弧11とこれを覆う外側大劣弧21と双方の端部間に渡る稜線31とで形成された、全体として中空半球状体様を呈し、内側小劣弧11の端部間の幅Wの平均値が2.64μm、外側大劣弧21の端部間の幅Wの平均値が3.02μm、且つ外側大劣弧21の高さHの平均値が1.43μmの中空半球状体様微粒子である。有機シリコーン微粒子10は、式1で示されるシロキサン単位/式2中のRがメチル基である場合の式2で示されるシロキサン単位=40/60(モル比)の割合で構成されたポリシロキサン架橋構造体から成っている。
【0040】
本発明に係る有機シリコーン微粒子の製造方法の実施形態としては、次の1)〜3)が挙げられる。
1)式3で示されるシラノール基形成性ケイ素化合物としてテトラエトキシシラン及び式4で示されるシラノール基形成性ケイ素化合物としてメチルトリメトキシシランを用い、イオン交換水700gに48%水酸化ナトリウム水溶液0.6gを溶解した溶液に、テトラエトキシシラン83.2g(0.4モル)及びメチルトリメトキシラン81.6g(0.6モル)を加え(この場合、式3中のXはエトキシ基、式4中のRはメチル基、Yはメトキシ基)、14℃に維持して1時間攪拌し、更に10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを加え、同温度で3時間加水分解反応を行なってシラノール化合物を生成させる。引き続き反応系の温度を30〜80℃に維持して5時間縮合反応を行ない、有機シリコーン微粒子を生成させ、これを含有する水性懸濁液を得る。この水性懸濁液から固形分を分離して有機シリコーン微粒子を得る。尚、この有機シリコーン微粒子は、図1について前記した有機シリコーン微粒子である。
【0041】
2)式3で示されるシラノール基形成性ケイ素化合物としてテトラエトキシシラン及び式4で示されるシラノール基形成性ケイ素化合物としてメチルトリメトキシシラン及び3−メタクリロキシプロピルトリメトキシシランを用い、イオン交換水700gに48%水酸化ナトリウム水溶液0.6g及びα−(p−アルキルフェニル)−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が10)の20%水溶液0.25gを溶解した溶液に、メチルトリメトキシシラン54.4g(0.4モル)及び3−メタクリロキシプロピルトリメトキシラン49.7g(0.2モル)及びテトラエトキシシラン83.2g(0.4モル)を加え(この場合、式3中のXはエトキシ基、式4中のRはメチル基と3−メタクリロキシプロピル基、Yはメトキシ基)、14℃に維持して1時間攪拌し、更に10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを加え、同温度で3時間加水分解反応を行なってシラノール化合物を生成させる。引き続き反応系の温度を30〜80℃に維持して5時間縮合反応を行ない、有機シリコーン微粒子を生成させ、これを含有する水性懸濁液を得る。この水性懸濁液から固形分を分離して有機シリコーン微粒子を得る。
【0042】
3)前記1)又は2)における有機シリコーン微粒子を含有する水性懸濁液を高分子メンブランスフィルターで分別処理し、更に分別処理した水性懸濁液から固形分を分離して有機シリコーン微粒子を得る。
【0043】
本発明に係る高分子材料用改質剤の実施形態としては、前記した有機シリコーン微粒子から成る合成高分子フィルム或いは合成繊維用の滑剤が挙げられる。また本発明に係る化粧品原料としては、前記した有機シリコーン微粒子から成る皮膚外用剤用の原料が挙げられる。
【0044】
以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるものではない。尚、以下の実施例及び比較例において、部は重量部を、また%は重量%を意味する。
【0045】
【実施例】
試験区分1(有機シリコーン微粒子の合成)
・実施例1{有機シリコーン微粒子(P−1)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.3gを添加して水溶液とした。この水溶液にメチルトリメトキシシラン81.6g(0.6モル)及びテトラエトキシシラン83.2g(0.4モル)を添加し、温度を13〜15℃に保ちながら1時間加水分解反応を行ない、更に10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを添加し、同温度で3時間加水分解反応を行なった。約4時間でシラノール化合物を含有する透明な反応物を得た。次いで得られた反応物の温度を30〜80℃に保ちながら5時間縮合反応を行なって、有機シリコーン微粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径5μmのアドバンテック社製のメンブランフィルターに通した後、通過液状部を遠心分離機に供して白色微粒子を分離した。分離した白色微粒子を水洗し、150℃で5時間、熱風乾燥を行なって有機シリコーン微粒子(P−1)60.1gを得た。有機シリコーン微粒子(P−1)について、以下の走査型電子顕微鏡による観察、元素分析、ICP発光分光分析、FT−IRスペクトル分析を行なったところ、この有機シリコーン微粒子(P−1)は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が2.64μm、外側大劣弧(21)の端部間の幅(W)の平均値が3.02μm、且つ外側大劣弧(21)の高さ(H)の平均値が1.43μmの有機シリコーン微粒子であって、式1のシロキサン単位/式2のシロキサン単位=40/60(モル比)の割合で有するポリシロキサン架橋構造体から成るものであった。
【0046】
尚、有機シリコーン微粒子(P−1)の形状、内側小劣弧(11)の端部間の幅(W)の平均値、外側大劣弧(21)の端部間の幅(W)の平均値及び外側大劣弧(21)の高さ(H)の平均値は、走査型電子顕微鏡を用い、5,000〜10,000倍で任意の100個の有機シリコーン微粒子(P−1)を観察し、各部位を測定して、その平均を求めた値である。また結合有機基の分析は次のように行なった。有機シリコーン微粒子(P−1)5gを精秤し、0.05Nの水酸化ナトリウム水溶液250mlに加え、有機シリコーン微粒子中の加水分解性基を全て水溶液に抽出処理した。抽出処理液から超遠心分離により有機シリコーン微粒子を分離し、分離した有機シリコーン微粒子を水洗した後、200℃で5時間乾燥したものを、元素分析、ICP発光分光分析、FT−IRスペクトル分析に供して、全炭素含有量及びケイ素含有量を測定すると共に、ケイ素−炭素結合、ケイ素―酸素―ケイ素結合を確認した。これらの分析値と、原料に用いた式4で示されるシラノール形成性ケイ素化合物のRの炭素数より、式1で示されるシロキサン単位/式2で示されるシロキサン単位の割合を算出した。
【0047】
実施例2〜5{有機シリコーン微粒子(P−2)〜(P−5)の合成}
有機シリコーン微粒子(P−1)と同様にして、有機シリコーン微粒子(P−2)〜(P−5)を合成し、測定及び分析等を行なった。
【0048】
・実施例6{有機シリコーン微粒子(P−6)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.6g及びα−(p−ノニルフェニル)−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が10)の20%水溶液0.25gを添加し、よく攪拌して均一な溶液とした。この水溶液の温度を14℃に保ち、この水溶液にメチルトリメトキシシラン54.4g(0.4モル)、3−メタクリロキシプロピルトリメトキシシラン49.7g(0.2モル)及びテトラエトキシシラン83.2g(0.4モル)の混合モノマーを水溶液とモノマー層が混ざらないように徐々に滴下し、滴下終了後、双方の層を維持した層流状態でゆっくり攪拌した。1時間後、10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを添加し、更に3時間、14℃で同様にゆっくり攪拌した。そして、更に30〜80℃で5時間縮合反応を行なって有機シリコーン微粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径2μmのアドバンテック社製のメンブランフィルターに通した後、通過液状部を遠心分離機に供して白色微粒子を分離した。分離した白色微粒子を水洗し、150℃で5時間、熱風乾燥を行なって有機シリコーン微粒子(P−6)60.1gを得た。実施例1と同様の測定及び分析等を行なったところ、この有機シリコーン微粒子(P−6)は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が1.05μm、外側大劣弧(21)の端部間の幅(W)の平均値が1.86μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.99μmの有機シリコーン微粒子であって、式1で示されるシロキサン単位/式2で示されるシロキサン単位=40/60(モル比)の割合で有するポリシロキサン架橋構造体から成るものであった。
【0049】
・実施例7〜9{有機シリコーン微粒子(P−7)〜(P−9)の合成}
有機シリコーン微粒子(P−6)と同様にして、有機シリコーン微粒子(P−7)〜(P−9)を合成し、測定及び分析等を行なった。
【0050】
・実施例10{有機シリコーン微粒子(P−10)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.6g及びα−(p−ノニルフェニル)−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が10)の20%水溶液0.30gを添加し、よく攪拌して均一な溶液とした。この水溶液の温度を14℃に保ち、この水溶液にメチルトリメトキシシラン54.4g(0.4モル)、3−メタクリロキシプロピルトリメトキシシラン49.7g(0.2モル)及びテトラエトキシシラン83.2g(0.4モル)の混合モノマーを水溶液とモノマー層が混ざらないように徐々に滴下し、滴下終了後、双方の層を維持した層流状態で3時間ゆっくり攪拌して加水分解した。次いで反応系の温度を30〜80℃とし、5時間縮合反応を行なって有機シリコーン微粒子を含有する水性懸濁液を得た。この水性懸濁液から遠心分離機により白色微粒子を分離した。分離した白色微粒子を水洗し、150℃で5時間、熱風乾燥を行なって有機シリコーン微粒子(P−10)61.2gを得た。実施例1と同様の測定及び分析等を行なったところ、この有機シリコーン微粒子(P−10)は、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が1.00μm、外側大劣弧(21)の端部間の幅(W)の平均値が1.20μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.55μmの有機シリコーン微粒子であって、式1で示されるシロキサン単位/式2で示されるシロキサン単位=40/60(モル比)の割合で有するポリシロキサン架橋構造体から成るものであった。
【0051】
・実施例11{有機シリコーン微粒子(P−11)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.2gを添加して水溶液とした。この水溶液にメチルトリメトキシシラン81.6g(0.6モル)及びテトラエトキシシラン83.2g(0.4モル)を添加し、温度を13〜15℃に保ちながら4時間加水分解反応を行ない、シラノール化合物を含有する透明な反応物を得た。次いでこの反応物の温度を30〜80℃に保ちながら5時間縮合反応を行なって、有機シリコーン微粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径10μmのアドバンテック社製のメンブランフィルターに通した後、通過液状部を遠心分離機に供して白色微粒子を分離した。分離した白色微粒子を水洗し、150℃で5時間、熱風乾燥を行なって有機シリコーン微粒子(P−11)58gを得た。有機シリコーン微粒子(P−11)について、実施例1と同様に測定及び分析等を行なったところ、この有機シリコーン微粒子(P−11)は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が7.01μm、外側大劣弧(21)の端部間の幅(W)の平均値が8.12μm、且つ外側大劣弧(21)の高さ(H)の平均値が6.50μmの有機シリコーン微粒子であって、式1で示されるシロキサン単位/式2で示されるシロキサン単位=40/60(モル比)の割合で有するポリシロキサン架橋構造体から成るものであった。
【0052】
比較例1{有機シリコーン微粒子(R−1)の合成}
有機シリコーン微粒子(P−11)と同様にして、有機シリコーン微粒子(R−1)を合成し、測定及び分析等を行なった。
【0053】
・比較例2{有機シリコーン微粒子(R−2)の合成}
反応容器にイオン交換水3950g及び28%アンモニア水50gを仕込み、室温下で10分間攪拌して均一なアンモニア水溶液とした。このアンモニア水溶液に、メチルトリメトキシシラン600g(4.41モル)をアンモニア水溶液中に混ざらないように加え、上層にメチルトリメトキシシラン層、下層にアンモニア水溶液層の2層状態となるようにした。次いで2層状態を保ちながらゆっくり攪拌し、メチルトリメトキシシランとアンモニア水溶液との界面において加水分解及び縮合反応を進行させた。反応の進行に伴い、反応物が徐々に沈降して下層は白濁し、上層のメチルトリメトキシシラン層は徐々に層が薄くなり、約3時間で消失した。更に温度を50〜60℃に保ち、同条件で3時間攪拌を行った後、25℃に冷却し、懸濁状に析出した白色微粒子を濾別した。濾別した白色微粒子を水洗し、150℃で3時間、熱風乾燥を行って有機シリコーン微粒子(R−2)266gを得た。実施例1と同様に測定及び分析等を行なったところ、平均粒子径が3.0μm、全体としては中実球状の有機シリコーン微粒子であった。
【0054】
・比較例3{有機シリコーン微粒子(R−3)の合成}
反応容器にイオン交換水1080gを仕込み、酢酸0.2gを添加して均一な水溶液とした。この水溶液にメチルトリメトキシシラン1169.6g(8.6モル)及びテトラエトキシシラン291.2g(1.4モル)を添加し、温度を30℃に保ちながら加水分解反応を行なった。約30分間でシラノール化合物を含有する透明な反応液を得た。別の反応容器にイオン交換水475gとドデシルベンゼンスルホン酸50gをとり、よく溶かした後、温度を80〜85℃にした。これに加水分解反応で得た反応液300gを約2時間かけて滴下し、縮合反応を行なった。15分間熟成後、徐冷し、室温になるまで1時間撹拌した。反応終了後、炭酸ナトリウム水溶液でpH7.0となるように調整し、有機シリコーン微粒子の水性懸濁液を得た。この水性懸濁液から白色微粒子を濾別した。濾別した白色微粒子を水洗し、150℃で3時間、熱風乾燥を行なって有機シリコーン微粒子(R−3)594gを得た。実施例1と同様に測定及び分析等を行なったところ、平均粒子径が2.6μm、全体としては中実球状を呈するものの、その表面にほぼ円形の小さいくぼみを多数有する有機シリコーン微粒子であった。
【0055】
・比較例4{有機シリコーン微粒子(R−4)の合成}
反応容器にイオン交換水1080gを仕込み、酢酸0.2gを添加して均一な水溶液とした。この水溶液にメチルトリメトキシシラン816g(6モル)及びテトラエトキシシラン832g(4モル)を添加し、温度を30℃に保ちながら加水分解反応を行なった。約30分間でシラノール化合物を含有する透明な反応液を得た。別の反応容器にイオン交換水475gとドデシルベンゼンスルホン酸50gをとり、よく溶かした後、温度を80〜85℃にした。これに加水分解反応で得た反応液300gを約2時間かけて滴下し、縮合反応を行なった。15分間熟成後、徐冷し、室温になるまで1時間攪拌した。反応終了後、炭酸ナトリウム水溶液でpH7.0となるように調整し、有機シリコーン微粒子の水性懸濁液を得た。この水性懸濁液から白色微粒子を濾別した。濾別した白色微粒子を水洗し、150℃で3時間、熱風乾燥を行なって有機シリコーン微粒子(R−4)578gを得た。実施例1と同様に測定及び分析等を行なったところ、平均粒子径が4.5μm、全体としては断面馬蹄形の有機シリコーン微粒子であった。
以上で合成した各例の有機シリコーン微粒子について、その内容を表1及び表2にまとめて示した。
【0056】
【表1】

Figure 0003701016
【0057】
表1において、
使用量:モル%
A/B:式1で示されるシロキサン単位/式2で示されるシロキサン単位(モル比)
C/D:式3で示されるシラノール形成性化合物/式4で示されるシラノール形成性化合物(モル比)
S−1:無水ケイ酸単位
S−2:メチルシロキサン単位
S−3:フェニルシロキサン単位
S−4:3−グリシドキシプロピルシロキサン単位
S−5:3−メルカプトプロピルシロキサン単位
S−6:3−メタクリロキシプロピルシロキサン単位
S−7:3−アクリロキシプロピルシロキサン単位
S−8:ビニルシロキサン単位
S−9:3−アミノプロピルシロキサン単位
SM−1:テトラエトキシシラン
SM−2:メチルトリメトキシシラン
SM−3:フェニルトリメトキシシラン
SM−4:3−グリシドキシプロピルトリメトキシシラン
SM−5:3−メルカプトプロピルトリメトキシシラン
SM−6:3−メタクリロキシプロピルトリメトキシシラン
SM−7:3−アクリロキシプロピルトリメトキシシラン
SM−8:ビニルトリメトキシシラン
SM−9:3−アミノプロピルトリメトキシシラン
【0058】
【表2】
Figure 0003701016
【0059】
表2において、
使用量:加水分解の反応系における界面活性剤の濃度(%)
,W,H:単位はμm
範囲:最大値−最小値
A−1:ドデシルベンゼンスルホン酸ナトリウム
A−2:ラウリルスルホン酸ナトリウム
N−1:α−(p−ノニルフェニル)−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が10)
N−2:α−ドデシル−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が12)
*1:全体として中空半球状体
*2:全体として中実球状体
*3:全体として球状を呈するもののその表面に多数の窪みを有する中実球状体
*4:全体として断面馬蹄形
【0060】
試験区分2(合成高分子フィルム用の滑剤としての評価)
・ポリエチレンテレフタレートフィルム試料の作製と評価
試験区分1で合成した有機シリコーン微粒子の表3に記載した所定量をポリエチレンテレフタレートと共に2軸混練機を用いて280℃で溶融押し出しし、未延伸シートを作製した。次に80℃で一方向に3.5倍延伸し、更に110℃で直角方向に3.5倍延伸した後、200℃で5秒間熱固定して厚さ15μmの2軸延伸フィルムを試料として得た。この試料の脱落性、平滑性、透明性(フィルムフェーズ)を下記の条件で測定し、下記の基準で評価した。結果を表3にまとめて示した。
【0061】
・・脱落性
試料を処理温度80℃、走行速度50m/分、線圧200kg/cmの条件でナイロンロールとスチールロールとから成る5段式ミニスーパーカレンダーで2000m処理したときに、ナイロントップロールに脱落する脱落物の量を目視により観察し、下記の基準で評価した。
◎:全く脱落物が認められない。
○:極めて僅かに脱落物が認められる。
△:明らかに脱落物が認められる。
×:極めて多くの脱落物が認められる。
【0062】
・・平滑性
試料を23℃×65%RHの雰囲気にて調湿し、同条件下で梨地表面のステンレス板に対する動摩擦係数を摩擦係数測定機(東洋精機社製のTR型、荷重200g、速度300mm/分)で測定し、下記の基準で評価した。
◎:動摩擦係数が0.3未満、優れている。
○:動摩擦係数が0.3以上0.5未満、良好である。
△:動摩擦係数が0.5以上0.7未満、やや劣る。
×:動摩擦係数が0.7以上、劣る。
【0063】
・・透明性(フィルムフェーズ)
試料を23℃×65%RHの雰囲気にて調湿し、同条件下でフィルムのフェーズをフェーズメーターで測定し、下記の基準で評価した。
◎:フェーズが95以上、優れている。
○:フェーズが95未満90以上、良好である。
△:フェーズが90未満70以上、やや劣る。
×:フェーズが70未満、劣る。
【0064】
【表3】
Figure 0003701016
【0065】
表3において、
P−1〜P−11及びR−1〜R−4:試験区分1で合成した有機シリコーン微粒子
R−5:平均直径5.0μmの球状ポリスチレン微粒子(花王社製)(以下同じ)
使用量:ポリエチレンテレフタレート100重量部に対する有機シリコーン微粒子の重量部
【0066】
・ポリプロピレンフィルム試料の作製と評価
試験区分1で合成した有機シリコーン微粒子の表4に記載した所定量をポリプロピレン(アイソタクチックインデックス97.5%、[h]2.3)と共に2軸混練機を用いて275℃で溶融押し出しし、45℃の冷却ドラムにキャストして未延伸シートを作製した。この未延伸シートを予熱ロール群に導き、138℃に加熱しつつ、5倍長手方向に延伸し、更にテンター内に導き、165℃雰囲気中で9倍に幅方向に延伸した後、150℃で幅方向に9%のリラックスをさせながら熱固定を行ない、単層の2軸延伸ポリプレンフィルム(厚み20μm)を試料として得た。この試料の脱落性、動摩擦係数及び透明性を前記と同様にして評価した。結果を表4にまとめて示した。
【0067】
【表4】
Figure 0003701016
【0068】
表4において、
使用量:ポリプロピレン100重量部に対する有機シリコーン微粒子の重量部
【0069】
試験区分3(合成繊維用の滑剤としての評価)
試験区分1で合成した有機シリコーン微粒子の表5に記載した所定量を固有粘度0.64のポリエステルテレフタレートのチップに加え、常法により乾燥した後、エクストルーダーを用いて295℃で紡糸した。口金から吐出して冷却固化した後の走行糸状に、分子量7000でオキシエチレン単位/オキシプロピレン単位=30/70(モル比)のランダム共重合体であるポリエーテル10部、ウラリルオクタノエート49部、30℃の粘度が2.1×10−5/sの鉱物油16部、ポリオキシエチレン(オキシエチレン単位の繰返し数が20)ひまし油9部、ポリオキシエチレン(オキシエチレン単位の繰返し数が10)オレイルエーテル7部、オクタン酸ジエタノールアミド3部、デシルスルホネートナトリウム塩3部及びラウリルホスフェートカリウム塩3部から成る紡糸油剤の10%水性エマルジョンを、計量ポンプを用いたガイド給油法にて、付着量1.1%となるように付着させた後、表面速度4000m/分で表面温度90℃の第1ゴデットローラーと、表面速度5000m/分で表面温度130℃の第二ゴデットローラーとで延伸後、5000m/分の速度で巻き取り、83デシテックス36フィラメントの延伸糸を得た。得られた延伸糸をチーズ染色用のコーンに200g巻き取り、常法により紡糸油剤を洗浄、除去した。この洗浄済み延伸糸全量を走行速度30m/分、入出角70度で編み針と擦過させて、編み針表面及びその周辺への脱落性を下記の基準で評価した。また前記擦過試験を繰返し10回行なった後の糸を用いて、編み針への進入側張力(T)を10gとして出口側張力(T)の測定から下記の基準で経時的平滑性を評価した。結果を表5にまとめて示した。
【0070】
・脱落性
◎:殆ど脱落物が認められない。
○:僅かに脱落物が認められる。
△:明らかに脱落物が認められる。
×:著しく脱落物が認められる。
【0071】
・経時的平滑性
◎:T/Tが3未満、経時的平滑性が優れている。
○:T/Tが3以上4.5未満、経時的平滑性が良好である。
△:T/Tが4.5以上5.5未満、経時的平滑性がやや劣る。
×:T/Tが5.5以上、経時的平滑性が劣る。
【0072】
【表5】
Figure 0003701016
【0073】
表5において、
使用量:ポリエチレンテレフタレートのチップ100重量部に対する有機シリコーン微粒子の重量部
【0074】
試験区分5(化粧品原料としての評価)
・皮膚外用剤であるファウンデーション原料としての評価
に記載した有機シリコーン微粒子5.0部、酸化チタン15.0部、カオリン35.0部、タルク20.0部、流動パラフィン5.0部、オクタメチルシクロテトラシロキサン5.0部、パルミチン酸イソプロピル3.0部及びグリセリン3.0部を均一混合し、プレス成型したファウンデーションを30人のパネラーの官能試験に供し、密着性と滑りを以下の基準で評価した。結果を表6にまとめて示した。
【0075】
評価基準
◎:優れている。
○:良好である。
△:やや悪い。
×:悪い。
【0076】
【表6】
Figure 0003701016
【0077】
【発明の効果】
既に明らかなように、以上説明した本発明には、高分子材料用改質剤や化粧品原料等として有用な、ポリシロキサン架橋構造体から成る新規の有機シリコーン微粒子を提供することができるという効果がある。
【図面の簡単な説明】
【図1】 本発明に係る有機シリコーン微粒子を略示する拡大断面図。
【符号の説明】
10・・有機シリコーン微粒子、11・・内側小劣弧、21・・外側大劣弧、31・・稜線、W・・内側小劣弧の端部間の幅、W・・外側大劣弧の端部間の幅、H・・外側大劣弧の高さ[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an organic silicone fine particle, a method for producing the organic silicone fine particle, a polymer material modifier, and a cosmetic raw material. Organosilicone fine particles are widely used as modifiers for polymer materials, cosmetic raw materials, coating materials, diagnostic carriers, paint raw materials, and the like. The present invention relates to such organosilicone fine particles having a specific shape and having a hollow hemispherical shape as a whole.
[0002]
[Prior art]
  Conventionally, various kinds of organic fine particles such as synthetic polymer type and natural polymer type are known. Among these, organic silicone fine particles, which are synthetic polymer organic fine particles, are attracting attention because they are excellent in lubricity, non-adhesiveness, oil absorption, dispersibility, heat resistance, solvent resistance, water repellency, etc. 1) Solid spherical organic silicone fine particles having smooth surfaces (JP-A 61-159427, JP-A 61-159467, JP-A 61-194409, JP-A 63-15849, JP-A 63-8461, JP-A-63-77940, JP-A-63-293313, JP-A-63-132324, JP-A-1-144423, JP-A-2-209927, JP-A-4-337390, JP-A-6-279589, JP-A-6-49209 , Japanese Patent Application No. 11-116682), 2) as a whole, solid spherical organic silicone fine particles having a large number of depressions on the surface (Japanese Patent Laid-Open No. 2000-191788), ) Organosilicon fine particles exhibiting a sectional horseshoe (JP-A 2000-191789) have been proposed.
[0003]
  However, the conventionally proposed organic silicone fine particles as described above have several problems when they are used as a polymer material modifier or a cosmetic raw material as described above. For example, when the organic silicone fine particles of 1) are used as a modifier for a polymer material for imparting lubricity and peelability to the polymer material, they are all solid spherical particles with a smooth surface. For this reason, it is necessary to use a large amount in order to obtain a desired effect, and the used organic silicone fine particles are easily dropped from the polymer material. Organosilicone fine particles are originally more expensive than other organic fine particles, and if they are used in large quantities, it is economically disadvantageous. If organosilicone fine particles fall off, it is a polymer material. It adheres as a scum to guides in the manufacturing process and processing process, and prevents smooth manufacture and processing of the polymer material. Also, for example, the current state of the cosmetics field is required to cope with diversification of the feeling of use on the skin, and to cope with multifunctionality or high functionality by inclusion or adsorption of liquid cosmetic ingredients or ultraviolet absorbers. However, since the organic silicone fine particles of 1) are all solid spherical particles having a smooth surface, it is impossible to meet such a demand. In addition, the organosilicone fine particles of 2) and 3) are less used than the organosilicone fine particles of 1), the removal from the polymer material is improved, the inclusion of liquid cosmetic ingredients, UV absorbers, etc. Is improved in response to multi-functionality or high functionality by adsorption, but it is particularly resistant to falling off when used as a modifier for polymer materials, and adheres to and adheres to the skin when used as a cosmetic raw material. There is still a problem that the feeling is still insufficient.
[0004]
[Problems to be solved by the invention]
  The problem to be solved by the present invention is that, for example, when used as a modifier for a polymer material, the dropout from the polymer material is remarkably small, and when used as a cosmetic raw material, for example, glue or adhesion to the skin The present invention provides a further improved organosilicone fine particle having a remarkably good feeling.
[0005]
[Means for Solving the Problems]
  As a result, the present inventors have studied to solve the above problems, and as a result, it is confirmed that organic silicone fine particles having a specific shape, which is composed of a polysiloxane crosslinked structure and exhibits a hollow hemispherical shape as a whole, are suitable and suitable. I found it.
[0006]
  That is, the present invention is an organosilicone fine particle composed of a polysiloxane crosslinked structure, and extends between both ends of the inner minor arc (11) and the outer major arc (21) covering the inner minor arc (21) as viewed in the longitudinal section. The ridgeline (31) and the overall shape of a hollow hemispherical body, the width (W) between the ends of the inner small arc (11)1) Is 0.01 to 8 μm, and the width (W) between the ends of the outer large subarc (21)2) In the range of 0.05 to 10 μm and the average value of the height (H) of the outer large subarc (21) is in the range of 0.015 to 8 μm. The present invention also relates to a method for producing such organosilicon fine particles, a polymer material modifier comprising the organosilicone fine particles, and a cosmetic raw material.
[0007]
  First, the organic silicone fine particles according to the present invention will be described. The organic silicone fine particles according to the present invention are composed of a polysiloxane crosslinked structure. This polysiloxane crosslinked structure is a structure in which siloxane units form a three-dimensional network structure. The present invention does not particularly limit the type and ratio of the siloxane units constituting the polysiloxane crosslinked structure. Examples of such siloxane units include siloxane units represented by the following formula 1 and siloxane units represented by formula 2. What was comprised is preferable.
[0008]
[Formula 1]
  SiO2
[Formula 2]
  R1SiO1.5
[0009]
  In Equation 2,
  R1: Organic group having a carbon atom directly connected to a silicon atom
[0010]
  In the siloxane unit represented by formula 2, R in formula 21Is an organic group having a carbon atom directly connected to a silicon atom, and is an organic group that is not a reactive group or an organic group that does not have a reactive group, and an organic group or a reactive group that is a reactive group. The organic group may be an organic group having a reactive group or an organic group having a reactive group.
[0011]
  R in Formula 21Examples of the organic group that is not a reactive group or an organic group that does not have a reactive group include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group, an aralkyl group, and the like, among these, a methyl group, an ethyl group C1-C4 alkyl groups, such as a propyl group and a butyl group, or a phenyl group is preferable, and a methyl group is more preferable. R in Formula 21In such an organic group, preferred siloxane units among the siloxane units represented by Formula 2 include methylsiloxane units, ethylsiloxane units, propylsiloxane units, butylsiloxane units, and phenylsiloxane units.
[0012]
  R in Formula 21In the present invention, the organic group which is a reactive group or the organic group having a reactive group includes an epoxy group, a (meth) acryloxy group, an alkenyl group, a mercaptoalkyl group, an aminoalkyl group, a haloalkyl group, a glyceroxy group, a ureido group, a cyano group. Groups such as alkyl groups having an epoxy group such as 2-glycidoxyethyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) propyl group, among others, 3-methacryloxy (Meth) acryloxy groups such as propyl group and 3-acryloxypropyl group, alkenyl groups such as vinyl group, allyl group and isopropenyl group, mercaptoalkyl groups such as mercaptopropyl group and mercaptoethyl group, 3- (2-amino Ethyl) aminopropyl group, 3-aminopropyl group, N, N-dimethylaminopropyl Aminoalkyl group such are preferred. R in Formula 21Is an organic group, the siloxane units represented by Formula 2 are as follows: 1) 3-glycidoxypropylsiloxane units, 3-glycidoxypropylsiloxane units, 2- (3,4-epoxycyclohexyl) ethylsiloxane Unit, siloxane unit having epoxy group such as 2-glycidoxyethylsiloxane unit, 2) siloxane unit having (meth) acryloxy group such as 3-methacryloxypropylsiloxane unit, 3-acryloxypropylsiloxane unit, 3) Siloxane units having alkenyl groups such as vinyl siloxane units, allyl siloxane units and isopropenyl siloxane units, 4) siloxane units having mercaptoalkyl groups such as mercaptopropyl siloxane units and mercaptoethyl siloxane units, 5) 3-aminopropyl Aminoalkyl groups such as siloxane units, 3- (2-aminoethyl) aminopropylsiloxane units, N, N-dimethylaminopropylsiloxane units, N, N-diethylaminopropylsiloxane units, N, N-dimethylaminoethylsiloxane units, etc. 6) Siloxane units having haloalkyl groups such as 3-chloropropylsiloxane units and trifluoropropylsiloxane units, 7) Having glyceroxy groups such as 3-glyceroxypropylsiloxane units and 2-glyceroxyethylsiloxane units Siloxane units, 8) Siloxane units having a ureido group such as 3-ureidopropylsiloxane units and 2-ureidoethylsiloxane units, and 9) Cyano such as cyanopropylsiloxane units and cyanoethylsiloxane units. Siloxane units having an epoxy group, siloxane units having an epoxy group, siloxane units having a (meth) acryloxy group, siloxane units having an alkenyl group, siloxane units having a mercaptoalkyl group, siloxane having an aminoalkyl group Units are preferred.
[0013]
  When the polysiloxane crosslinked structure is composed of siloxane units as described above, the constituent ratio of both siloxane units is not particularly limited, but the siloxane unit represented by Formula 1 / siloxane unit represented by Formula 2 = 30/70 to The constituent ratio is preferably 50/50 (molar ratio).
[0014]
  As described above, the organic silicone fine particles according to the present invention are composed of a polysiloxane crosslinked structure, and when viewed in a longitudinal section, an inner small arc (11) and an outer large subarc (21) covering the inner minor arc (21) A hollow hemispherical body is formed as a whole formed by a ridge line (31) extending between both ends. In other words, it presents the shape of the small divided portion when the hollow sphere is divided into two unevenly. And the width (W) between the ends of the inner small arc (11)1) Is 0.01 to 8 μm, and the width (W) between the ends of the outer large subarc (21)2) Has an average value of 0.05 to 10 μm, and the average value of the height (H) of the outer large subarc (21) is in the range of 0.015 to 8 μm. ) Width between the ends (W1) Has an average value of 0.02 to 6 μm, and the width between the ends of the outer large subarc (21) (W2) Having an average value of 0.06 to 8 μm, and an average value of the height (H) of the outer large subarc (21) being preferably 0.03 to 6 μm. In the present invention, the width (W) between the ends of the inner small arc (11)1) Average value, width between the ends of the outer large subarc (21) (W2) And the average value of the height (H) of the outer large subarc (21) are each measured for any 100 samples extracted from the scanning electron microscopic image of the organosilicone fine particles of the present invention, It is the value which calculated | required the average.
[0015]
  Next, the method for producing the organic silicone fine particles according to the present invention will be described. The method for producing organosilicon fine particles according to the present invention is a method for producing the above-described organosilicon fine particles according to the present invention, which is represented by the silanol group-forming silicon compound represented by the following formula 3 and the following formula 4. A silanol group-forming compound is used at a ratio of silanol group-forming silicon compound represented by formula 3 / silanol group-forming compound represented by formula 4 = 30/70 to 50/50 (molar ratio), and these are used as catalysts. In this method, a silanol compound is produced by contact with water under the presence of water to produce a silanol compound, and then the produced silanol compound is subjected to a condensation reaction to produce organic silicone fine particles.
[0016]
[Formula 3]
  SiX4
[Formula 4]
  R2SiY3
[0017]
  In Equation 3 and Equation 4,
  R2: Organic group having a carbon atom directly connected to a silicon atom
  X, Y: N, N- having an alkoxy group having 1 to 4 carbon atoms, an alkoxyethoxy group having an alkoxy group having 1 to 4 carbon atoms, an acyloxy group having 2 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms Dialkylamino group, hydroxyl group, halogen atom or hydrogen atom
[0018]
  The silanol group-forming silicon compound represented by Formula 3 is a compound that results in the formation of the siloxane unit represented by Formula 1. X in Formula 3 is 1) an alkoxyethoxy group having 1 to 4 carbon atoms such as methoxy group or ethoxy group, and 2) an alkoxy group having 1 to 4 carbon atoms such as methoxyethoxy group or butoxyethoxy group. A group, 3) an acyloxy group having 2 to 4 carbon atoms such as an acetoxy group or a propoxy group, and 4) an N, N-dialkylamino group having an alkyl group having 1 to 4 carbon atoms such as a dimethylamino group or a diethylamino group, 5) a hydroxyl group, 6) a halogen atom such as a chlorine atom or a bromine atom, or 7) a hydrogen atom.
[0019]
  Specifically, as the silanol group-forming silicon compound represented by Formula 3, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, trimethoxyethoxysilane, tributoxyethoxysilane, tetraacetoxysilane, tetrapropoxysilane, Examples include tetraacetoxysilane, tetra (dimethylamino) silane, tetra (diethylamino) silane, silanetetraol, chlorosilanetriol, dichlorodisianol, tetrachlorosilane, chlorotrihydrogensilane, and the like. Tetraethoxysilane and tetrabutoxysilane are preferred.
[0020]
  The silanol group-forming silicon compound represented by the formula 4 is a compound that results in the formation of the siloxane unit represented by the formula 2. Y in Formula 4 is the same as X in Formula 3 above, and R in Formula 42Is R in the above-mentioned formula 21It is the same.
[0021]
  R in Formula 42Is an organic group that is not a reactive group or an organic group that does not have a reactive group, the silanol group-forming silicon compound represented by Formula 4 includes methyltrimethoxysilane, ethyltriethoxysilane, propyltributoxysilane, Butyltributoxysilane, phenyltrimethoxyethoxysilane, methyltributoxyethoxysilane, methyltriacetoxysilane, methyltripropoxyoxysilane, methyltriacetoxysilane, methyltri (dimethylamino) silane, methyltri (diethylamino) silane, methylsilanetriol, Examples include methylchlorodisianol, methyltrichlorosilane, methyltrihydrogensilane, etc. Among them, R in formula 21As mentioned above, silanol group-forming silicon compounds that result in the formation of methylsiloxane units, ethylsiloxane units, propylsiloxane units, butylsiloxane units or phenylsiloxane units are preferred.
[0022]
  R in formula 42Is a reactive group or an organic group having a reactive group, the silanol group-forming silicon compound represented by the formula 4 includes 1) 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilaEtc.2) Silane compounds having (meth) acryloxy groups such as 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3) Vinyltrimethoxysilane, allyltrimethoxysilane Silane compounds having an alkenyl group such as isopropyltrimethoxysilane, 4) silane compounds having a mercapto group such as mercaptopropyltrimethoxysilane, mercaptoethyltrimethoxysilane, 5) 3-aminopropyltrimethoxysilane, 3- (2 -Aminoethyl) aminopropyltrimethoxysilane, N, N-dimethylaminopropyl-trimethoxysilane, N, N-dimethylaminoethyltrimethoxysilane and other silane compounds having an aminoalkyl group, 6) 3-chloropropyl Pills trimethoxysilane, silane compound having a haloalkyl group such as trifluoropropyl trimethoxy silane, 7) 3-glycerophosphate propyl trimethoxysilaneEtc.Silane compound having a glyceroxy group, 8) 3-ureidopropyltrimethoxysilaEtc.9) Cyanopropyltrimethoxysila having a ureido groupEtc.Silane compounds having a cyano group, and the like. Among them, silane compounds having an epoxy group, silane compounds having a (meth) acryloxy group, silane compounds having an alkenyl group, silane compounds having a mercapto group, aminoalkyl groups The silane compound which has is preferable.
[0023]
  In the method for producing organosilicon fine particles according to the present invention, first, the silanol group-forming silicon compound represented by the formula 3 and the silanol group-forming compound represented by the formula 4 described above are converted into the silanol group-forming property represented by the formula 3. Compound / silanol group-forming compound represented by formula 4 = 30/70 to 50/50 (molar ratio), preferably 35/65 to 45/55 (molar ratio), both in the presence of a catalyst, It is hydrolyzed by contact with water to produce a silanol compound. A conventionally known catalyst can be used for the hydrolysis. Examples of the basic catalyst include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia, trimethylamine, triethylamine, tetraethylammonium hydroxide, dodecyldimethylhydroxyethylammonium hydroxide, And organic bases such as sodium methoxide. Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, and organic acids such as acetic acid, citric acid, methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and dodecylsulfonic acid.
[0024]
  When the silanol group-forming silicon compound represented by Formula 3 and the silanol group-forming compound represented by Formula 4 are hydrolyzed by contacting with water in the presence of a catalyst, the silanol group-forming silicon compound is usually added to water. And the catalyst are added and stirred, and the time when the silanol group-forming compound insoluble in water disappears from the reaction system and a uniform liquid layer is formed is defined as the end point of hydrolysis. Depending on the type of silanol group-forming silicon compound, in addition to the inherent hydrolysis reactivity, the hydrolysis reactivity based on the difference in dispersibility in water varies, so the type of catalyst added to the reaction system, the amount used and the reaction A temperature or the like is appropriately selected, but a surfactant may be added to the reaction system in order to facilitate the contact reaction between the silanol group-forming silicon compound and water.
[0025]
  As the surfactant added to the reaction system together with the catalyst, any known nonionic surfactant or anionic surfactant is preferable. Nonionic surfactants include α-alkyl-ω-hydroxy (polyoxyalkylene), α- (p-alkylphenyl) -ω-hydroxy (oxyalkylene group consisting of oxyethylene group and / or oxypropylene group). Polyoxyalkylene), polyoxyalkylene fatty acid ester, polyoxyalkylene castor oil and the like, and nonionic surfactants having a polyoxyalkylene group. The nonionic surfactant is preferably present in the reaction system at a concentration of 0.001 to 0.05% by weight.
[0026]
  Examples of the anionic surfactant include organic sulfates having 8 to 18 carbon atoms such as octyl sulfate, cetyl sulfate, and lauryl sulfate, octyl sulfonate, cetyl sulfonate, lauryl sulfonate, and stearyl sulfonate. Organic sulfonates having 8 to 30 carbon atoms such as salts, oleyl sulfonate, p-toluene sulfonate, dodecylbenzene sulfonate, oleyl benzene sulfonate, naphthyl sulfonate, diisopropyl naphthyl sulfonate, etc. Can be mentioned. The anionic surfactant is preferably present in the reaction system at a concentration of 0.005 to 0.55% by weight.
[0027]
  When a surfactant is present in the reaction system, a nonionic surfactant or an anionic surfactant as described above can be present alone, but it is preferable to coexist both, and to coexist both Preferably, the nonionic surfactant is present at a concentration of 0.001 to 0.05% by weight and the anionic surfactant is present at a concentration of 0.005 to 0.55% by weight.
[0028]
  The charging ratio of the total amount of water / silanol group-forming silicon compound is usually 10/90 to 70/30 (weight ratio). The amount of the catalyst used varies depending on the type and the type of silanol group-forming silicon compound, but it is usually preferably 1% by weight or less based on the total amount of silanol group-forming silicon compound. The reaction temperature is usually 0 to 40 ° C., but is preferably 30 ° C. or less in order to avoid an immediate condensation reaction of the silanol compound produced by the hydrolysis reaction.
[0029]
  The silanol group-forming silicon compound represented by the formula 3 and the silanol group-forming compound represented by the formula 4 may be hydrolyzed after, for example, introducing these silanol group-forming silicon compounds into water at once. Alternatively, the hydrolysis may be carried out with continuous addition. If the hydrolysis rate differs significantly between the silanol group-forming silicon compounds to be used, the silanol group-forming silicon compound having a low hydrolysis rate is hydrolyzed in advance, and then the silanol group-forming property having a high hydrolysis rate is used. It is preferable to carry out hydrolysis by adding a silicon compound.
[0030]
  Next, in the method for producing organosilicon fine particles according to the present invention, the reaction liquid containing the silanol compound produced as described above is subsequently subjected to a condensation reaction to produce organosilicone fine particles. In the present invention, since the catalyst as described above in the hydrolysis can be used as the catalyst for the condensation reaction, the reaction solution containing the silanol compound produced by hydrolysis is added as it is or further to the catalyst, and the temperature is increased to 30 to 80 ° C. By continuing the reaction by heating, a condensation reaction is carried out to obtain organic silicone fine particles as an aqueous suspension thereof.
[0031]
  The organic silicone fine particles are obtained by separating from the aqueous suspension and drying. For example, an aqueous suspension is extracted through a wire mesh and dehydrated by a centrifugal separation method, a pressure filtration method, or the like, and the dehydrated product is dried by heating at 100 to 250 ° C. It can also be obtained by a method of directly heating and drying at 100 to 250 ° C. These dried products are preferably pulverized using, for example, a jet mill pulverizer. In the process of obtaining a dehydrated product from the above aqueous suspension, when the aqueous suspension is fractionated with a porous membrane, organosilicone fine particles with reduced size variation can be obtained. Such porous membranes include porous ceramic membranes produced by phase separation methods, polymer membrane filters produced by phase inversion and drawing methods, cartridge filters produced by winding polymer drawn yarns, neutron beams Examples thereof include a pore filter obtained by irradiation, and a polymer membrane filter and a pore filter obtained by neutron irradiation are preferred, and a polymer membrane filter is more preferred.
[0032]
  The organic silicone fine particles thus obtained were formed by an inner small arc (11), an outer large minor arc (21) covering this, and a ridge line (31) extending between both ends when viewed in a longitudinal section. As a hollow hemispherical body, the width between the ends of the inner small arc (11) (W1) Is 0.01 to 8 μm, and the width (W) between the ends of the outer large subarc (21)2) Has an average value of 0.05 to 10 μm, and the average value of the height (H) of the outer large inferior arc (21) is in the range of 0.015 to 8 μm. As described above, after the silanol compound is subjected to a condensation reaction, the generated aqueous suspension of the organic silicone fine particles is subjected to a separation treatment with a polymer membrane filter, so that the width (W) between the ends of the inner small subarc (11) (W)1) Has an average value of 0.02 to 6 μm, and the width between the ends of the outer large subarc (21) (W2) In the range of 0.06 to 8 μm, and the average value of the height (H) of the outer large subarc (21) is in the range of 0.03 to 6 μm.
[0033]
  The organosilicone fine particles according to the present invention and the organosilicone fine particles obtained by the method for producing the organosilicone fine particles according to the present invention are widely used as modifiers for polymer materials, cosmetic raw materials, coating materials, carriers for diagnostic agents, paint raw materials, etc. However, it is particularly useful as a modifier for polymer materials and a raw material for cosmetics.
[0034]
  The modifier for polymer material according to the present invention is composed of the organic silicone fine particles according to the present invention as described above or the organic silicone fine particles obtained by the method for producing the organic silicone fine particles according to the present invention. Imparts high surface properties such as high smoothness and water repellency, and in particular, there is almost no loss from the polymer material. The polymer material to which the modifier for polymer material according to the present invention is applied includes a synthetic polymer film or sheet molded from a synthetic polymer such as polyester, nylon, polypropylene, polycaprolactone, acrylic resin, and the like. Examples thereof include synthetic fibers such as filament yarns and staple fibers formed from a polymer. The modifier for polymer materials according to the present invention is particularly useful when applied as a synthetic polymer film or sheet, or as a lubricant for synthetic fibers.
[0035]
  In the method of applying the modifier for polymer material according to the present invention as a lubricant for synthetic polymer films and sheets, 1) After the modifier for polymer material is contained in the synthetic polymer, the film or sheet is There is a method of molding, and 2) a method of applying a modifier for a polymer material to a synthetic polymer film or sheet. In the method 1), the modifier for polymer material is 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight per 100 parts by weight of the synthetic polymer to be formed into a film or sheet. To contain. There are no particular restrictions on the method of incorporating the polymer material modifier into the synthetic polymer, and the method of melt-forming the synthetic polymer containing the polymer material modifier into a film or sheet is well known. Can be applied. In the method 2), an aqueous suspension of the modifier for the polymer material is prepared, and this is applied to the surface of the synthetic polymer film or sheet by a known method such as a roller touch method or a spray method. In the manufacturing process of the synthetic polymer film or sheet, any of the steps before the stretching orientation immediately after the melt extrusion, the step before the biaxial stretching orientation after the uniaxial stretching orientation, and the step after the biaxial stretching orientation in the manufacturing process of the synthetic polymer film or sheet. However, the step before the biaxial stretching orientation after the uniaxial stretching orientation is preferable, and the modifier for the polymer material is usually added to the synthetic polymer film or sheet 1m in any step.2It applies so that it may become 0.01-0.2g per hit.
[0036]
  The method for applying the polymer material modifier according to the present invention as a synthetic fiber lubricant includes 1) a method of incorporating a polymer material modifier into a synthetic polymer, and then a synthetic fiber. 2) There is a method for attaching a modifier for a polymer material to a synthetic fiber together with a spinning oil or a spinning oil, and 3) a method for attaching a modifier for a polymer material as a lubricant to a synthetic fiber. The method is preferred. In the method 1), the modifier for polymer material is contained in an amount of 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, per 100 parts by weight of the synthetic polymer used as the synthetic fiber. Let There are no particular limitations on the method of incorporating the polymer material modifier into the synthetic polymer, and the method of using the synthetic polymer containing the polymer material modifier as the synthetic fiber, and known methods can be applied. In the method 2), for example, an aqueous liquid of the modifier for the polymer material is prepared, and this is adhered to the surface of the synthetic fiber by a known method such as a roller oiling method, a guide oiling method, or an immersion oiling method. The step of adhering may be any of the spinning step, the drawing step, and each step after drawing, etc., but in any step, the modifier for the polymer material is usually 0% to the synthetic fiber. It is made to adhere so that it may become 0.01 to 5 weight%.
[0037]
  The cosmetic raw material according to the present invention is composed of the organic silicone fine particles according to the present invention as described above or the organic silicone fine particles obtained by the method for producing the organic silicone fine particles according to the present invention, such as liquid cosmetic ingredients and ultraviolet absorbers. It is excellent in dealing with multifunctionality or high functionality by inclusion or adsorption, and in particular, it is excellent in skin adhesion and adhesion. The cosmetic raw material according to the present invention can be applied as a powder raw material to facial cosmetics, makeup cosmetics, body cosmetics, skin external preparations such as anti-odor agents, hair cosmetics, oral hygiene products, bath preparations, fragrances, etc. Ingredients for use in topical skin preparations from the viewpoint of adaptability to diversification of use feeling, and adaptability to multifunctional or high functionality by inclusion or adsorption of liquid cosmetic ingredients or UV absorbers etc. Useful as. The amount of the cosmetic raw material according to the present invention is appropriately selected depending on the usage form of the cosmetic to be applied. For example, in the case of a makeup cosmetic, it is preferably 1.0 to 50% by weight in a press-up makeup cosmetic, In liquid makeup cosmetics, the content is preferably 0.1 to 30% by weight.
[0038]
  For example, in the case of makeup cosmetics, other raw materials used together with the cosmetic raw material according to the present invention include pigment powder, binder oil, water, surfactant, thickener, preservative, fragrance, etc. The up cosmetic can be prepared by a known method in which other raw materials are uniformly dispersed together with the cosmetic raw material according to the present invention.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
  Examples of the organic silicone fine particles according to the present invention include those exemplified in FIG. FIG. 1 is an enlarged cross-sectional view schematically showing an organic silicone fine particle 10 according to the present invention. The organosilicon fine particle 10 schematically shown in FIG. 1 is formed by an inner small inferior arc 11, an outer large inferior arc 21 covering the same, and a ridge line 31 extending between both ends when viewed in a longitudinal section. It has a hemispherical shape and the width W between the ends of the inner small arc 111The average value of 2.64 μm and the width W between the ends of the outer large subarc 212The hollow hemispherical fine particles have an average value of 3.02 μm and an average value of the height H of the outer large subarc 21 of 1.43 μm. Organosilicone fine particles 10 are represented by the following formula: siloxane unit represented by formula 1 / R in formula 21It is composed of a polysiloxane crosslinked structure composed of a siloxane unit represented by the formula 2 in the case where is a methyl group = 40/60 (molar ratio).
[0040]
  Examples of the method for producing the organic silicone fine particles according to the present invention include the following 1) to 3).
  1) Tetraethoxysilane is used as the silanol group-forming silicon compound represented by formula 3 and methyltrimethoxysilane is used as the silanol group-forming silicon compound represented by formula 4, and a 48% sodium hydroxide aqueous solution is added to 700 g of ion-exchanged water. In a solution in which 6 g was dissolved, 83.2 g (0.4 mol) of tetraethoxysilane and methyltrimethoxyShiSilane81.6g (0.6 mol) is added (in this case, X in formula 3 is an ethoxy group, R in formula 4)2Is a methyl group, Y is a methoxy group), maintained at 14 ° C. for 1 hour, further added with 3 g of a 10% aqueous solution of sodium dodecylbenzenesulfonate, and subjected to a hydrolysis reaction at the same temperature for 3 hours to form a silanol compound. . Subsequently, the temperature of the reaction system is maintained at 30 to 80 ° C. to conduct a condensation reaction for 5 hours to produce organic silicone fine particles, and an aqueous suspension containing this is obtained. A solid content is separated from the aqueous suspension to obtain organic silicone fine particles. The organic silicone fine particles are the organic silicone fine particles described above with reference to FIG.
[0041]
  2) Tetraethoxysilane as a silanol group-forming silicon compound represented by Formula 3 and methyltrimethoxysila as a silanol group-forming silicon compound represented by Formula 4And 3-methacryloxypropyltrimethoxysilaneUsed, 0.6 g of 48% aqueous sodium hydroxide and 0.25 g of 20% aqueous solution of α- (p-alkylphenyl) -ω-hydroxy (polyoxyethylene) (the number of oxyethylene units is 10) in 700 g of ion-exchanged water. In a solution in which was dissolved, 54.4 g (0.4 mol) of methyltrimethoxysilane, 49.7 g (0.2 mol) of 3-methacryloxypropyltrimethoxylane, and 83.2 g (0.4 mol) of tetraethoxysilane. (In this case, X in formula 3 is an ethoxy group, R in formula 4 is2Is a methyl group and a 3-methacryloxypropyl group, Y is a methoxy group), maintained at 14 ° C. for 1 hour, and further added with 3 g of 10% sodium dodecylbenzenesulfonate aqueous solution, followed by hydrolysis at the same temperature for 3 hours. In line, a silanol compound is produced. Subsequently, the temperature of the reaction system is maintained at 30 to 80 ° C. to conduct a condensation reaction for 5 hours to produce organic silicone fine particles, and an aqueous suspension containing this is obtained. A solid content is separated from the aqueous suspension to obtain organic silicone fine particles.
[0042]
  3) The aqueous suspension containing the organosilicone fine particles in 1) or 2) above is subjected to a fractionation treatment with a polymer membrane filter, and the solid content is separated from the fractionated aqueous suspension to obtain organosilicone fine particles. .
[0043]
  As an embodiment of the modifier for polymer materials according to the present invention, a synthetic polymer film composed of the above-mentioned organic silicone fine particles or a lubricant for synthetic fibers can be mentioned. Examples of the cosmetic raw material according to the present invention include a raw material for an external preparation for skin comprising the aforementioned organic silicone fine particles.
[0044]
  Hereinafter, examples and the like will be given to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, “part” means “part by weight” and “%” means “% by weight”.
[0045]
【Example】
  Test category 1 (synthesis of organosilicone fine particles)
  Example 1 {Synthesis of organosilicone fine particles (P-1)}
  A reaction vessel was charged with 700 g of ion-exchanged water, and 0.3 g of a 48% sodium hydroxide aqueous solution was added to form an aqueous solution. Methyltrimethoxysilane in this aqueous solution81.6g (0.6 mol) and tetraethoxysilane 83.2 g (0.4 mol) were added, the hydrolysis reaction was carried out for 1 hour while maintaining the temperature at 13 to 15 ° C., and a 10% sodium dodecylbenzenesulfonate aqueous solution. 3 g was added, and a hydrolysis reaction was performed at the same temperature for 3 hours. A transparent reaction product containing a silanol compound was obtained in about 4 hours. Next, a condensation reaction was carried out for 5 hours while maintaining the temperature of the obtained reaction product at 30 to 80 ° C. to obtain an aqueous suspension containing organic silicone fine particles. This aqueous suspension was passed through a membrane filter manufactured by Advantech having a pore size of 5 μm, and then the passing liquid part was subjected to a centrifuge to separate white fine particles. The separated white fine particles were washed with water and dried with hot air at 150 ° C. for 5 hours to obtain 60.1 g of organic silicone fine particles (P-1). The organic silicone fine particles (P-1) were observed by the following scanning electron microscope, elemental analysis, ICP emission spectroscopic analysis, and FT-IR spectral analysis. The inner small inferior arc (11), the outer large inferior arc (21) covering this, and the ridge line (31) between both ends are formed as a hollow hemispherical body as a whole, Width between ends of small inferior arc (11) (W1) Has an average value of 2.64 μm and the width between the ends of the outer large subarc (21) (W2) Is an organosilicone fine particle having an average value of 3.02 μm and an average value of the height (H) of the outer large subarc (21) of 1.43 μm, the siloxane unit of formula 1 / the siloxane unit of formula 2 = It consisted of a polysiloxane crosslinked structure having a ratio of 40/60 (molar ratio).
[0046]
  The shape of the organic silicone fine particles (P-1) and the width between the ends of the inner small subarc (11) (W1) Average value, width between the ends of the outer large subarc (21) (W2) And the average value of the height (H) of the outer large subarc (21) using a scanning electron microscope at an arbitrary magnification of 5,000 to 10,000 times 100 organosilicon fine particles (P- This is a value obtained by observing 1), measuring each part, and calculating the average. The analysis of the bound organic group was performed as follows. 5 g of organic silicone fine particles (P-1) were precisely weighed and added to 250 ml of 0.05N aqueous sodium hydroxide solution, and all hydrolyzable groups in the organic silicone fine particles were extracted into an aqueous solution. The organic silicone fine particles are separated from the extraction processing solution by ultracentrifugation, and the separated organic silicone fine particles are washed with water and then dried at 200 ° C. for 5 hours for elemental analysis, ICP emission spectral analysis, and FT-IR spectral analysis. Then, the total carbon content and silicon content were measured, and silicon-carbon bonds and silicon-oxygen-silicon bonds were confirmed. These analysis values and R of the silanol-forming silicon compound represented by Formula 4 used as a raw material2From the number of carbon atoms, the ratio of the siloxane unit represented by Formula 1 / the siloxane unit represented by Formula 2 was calculated.
[0047]
  Examples 2 to 5 {Synthesis of organosilicone fine particles (P-2) to (P-5)}
  Organosilicone fine particles (P-2) to (P-5) were synthesized in the same manner as the organosilicone fine particles (P-1), and measured and analyzed.
[0048]
  Example 6 {Synthesis of organosilicone fine particles (P-6)}
  A reaction vessel was charged with 700 g of ion-exchanged water, 0.6 g of a 48% aqueous sodium hydroxide solution and a 20% aqueous solution of α- (p-nonylphenyl) -ω-hydroxy (polyoxyethylene) (the number of oxyethylene units was 10). 0.25 g was added and stirred well to make a uniform solution. Keep the temperature of this aqueous solution at 14 ° C.KishiRun 54.4g (0.4mol), 3-methacryloKisii49.7 g (0.2 mol) of propyltrimethoxysilane and tetraethKishi83.2 g (0.4 mol) of the run monomer was gradually added dropwise so that the aqueous solution and the monomer layer were not mixed, and after completion of the addition, the mixture was slowly stirred in a laminar flow state in which both layers were maintained. After 1 hour, 3 g of a 10% aqueous solution of sodium dodecylbenzenesulfonate was added, and the mixture was further slowly stirred at 14 ° C. for 3 hours. Further, a condensation reaction was performed at 30 to 80 ° C. for 5 hours to obtain an aqueous suspension containing organic silicone fine particles. This aqueous suspension was passed through a membrane filter manufactured by Advantech having a pore size of 2 μm, and the passing liquid part was then subjected to a centrifuge to separate white fine particles. The separated white fine particles were washed with water and dried with hot air at 150 ° C. for 5 hours to obtain 60.1 g of organic silicone fine particles (P-6). When the same measurement and analysis as in Example 1 were performed, the organosilicone fine particles (P-6) had an inner small inferior arc (11) and an outer large inferior arc (21) covering it as viewed in the longitudinal section. It is formed by a ridge line (31) extending between both ends, and has a hollow hemispherical shape as a whole, and the width (W between the ends of the inner small inferior arc (11) (W1) Is 1.05 μm, and the width (W) between the ends of the outer large subarc (21)2) Is an organosilicone fine particle having an average value of 1.86 μm and an average value of the height (H) of the outer large subarc (21) of 0.99 μm, represented by a siloxane unit represented by formula 1 / formula 2 The siloxane unit was composed of a polysiloxane crosslinked structure having a ratio of 40/60 (molar ratio).
[0049]
  Examples 7 to 9 {Synthesis of organosilicone fine particles (P-7) to (P-9)}
  In the same manner as the organic silicone fine particles (P-6), organic silicone fine particles (P-7) to (P-9) were synthesized and subjected to measurement, analysis, and the like.
[0050]
  Example 10 {Synthesis of organosilicone fine particles (P-10)}
  A reaction vessel was charged with 700 g of ion-exchanged water, 0.6 g of a 48% aqueous sodium hydroxide solution and a 20% aqueous solution of α- (p-nonylphenyl) -ω-hydroxy (polyoxyethylene) (the number of oxyethylene units was 10). 0.30 g was added and stirred well to make a uniform solution. Keep the temperature of this aqueous solution at 14 ° C.KishiRun 54.4g (0.4mol), 3-methacryloKisii49.7 g (0.2 mol) of propyltrimethoxysilane and tetraethKishiGradually run 83.2 g (0.4 mol) of mixed monomer so that the aqueous solution and the monomer layer do not mix, and after completion of the dropwise addition, slowly stir for 3 hours in a laminar flow state maintaining both layers for hydrolysis. did. Subsequently, the temperature of the reaction system was set to 30 to 80 ° C., and a condensation reaction was performed for 5 hours to obtain an aqueous suspension containing organic silicone fine particles. White fine particles were separated from this aqueous suspension by a centrifuge. The separated white fine particles were washed with water and dried with hot air at 150 ° C. for 5 hours to obtain 61.2 g of organic silicone fine particles (P-10). When the same measurement and analysis as in Example 1 were performed, the organosilicone fine particles (P-10) exhibited a hollow hemispherical shape as a whole, and the width between the end portions of the inner small subarc (11) ( W1) Is an average value of 1.00 μm, and the width (W) between the ends of the outer large subarc (21)2) Is an organosilicone fine particle having an average value of 1.20 μm and an average value of the height (H) of the outer large subarc (21) of 0.55 μm, represented by the siloxane unit represented by formula 1 / formula 2 The siloxane unit was composed of a polysiloxane crosslinked structure having a ratio of 40/60 (molar ratio).
[0051]
  Example 11 {Synthesis of organosilicone fine particles (P-11)}
  The reaction vessel was charged with 700 g of ion-exchanged water, and 0.2 g of a 48% sodium hydroxide aqueous solution was added to form an aqueous solution. In this aqueous solutionKishiRun 81.6 g (0.6 mol) and tetraethKishi83.2 g (0.4 mol) of orchid was added, and the hydrolysis reaction was carried out for 4 hours while maintaining the temperature at 13 to 15 ° C. to obtain a transparent reaction product containing a silanol compound. Subsequently, a condensation reaction was carried out for 5 hours while maintaining the temperature of the reaction product at 30 to 80 ° C. to obtain an aqueous suspension containing organic silicone fine particles. The aqueous suspension was passed through a membrane filter manufactured by Advantech with a pore size of 10 μm, and then the passing liquid part was subjected to a centrifuge to separate white fine particles. The separated white fine particles were washed with water and dried with hot air at 150 ° C. for 5 hours to obtain 58 g of organic silicone fine particles (P-11). The organic silicone fine particles (P-11) were measured and analyzed in the same manner as in Example 1. As a result, the organic silicone fine particles (P-11) were found to have an inner small inferior arc (11) and this. The outer large inferior arc (21) covering the ridge and the ridge line (31) extending between both ends are formed into a hollow hemispherical body as a whole, and the width between the ends of the inner small inferior arc (11) (W1) Is 7.01 μm, and the width (W) between the ends of the outer large subarc (21)2) Is an organosilicone fine particle having an average value of 8.12 μm and an average value of the height (H) of the outer large subarc (21) of 6.50 μm, represented by the siloxane unit of formula 1 / formula 2 The siloxane unit was composed of a polysiloxane crosslinked structure having a ratio of 40/60 (molar ratio).
[0052]
  Comparative Example 1 {Synthesis of organosilicone fine particles (R-1)}
  In the same manner as the organic silicone fine particles (P-11), the organic silicone fine particles (R-1) were synthesized and measured, analyzed, and the like.
[0053]
  Comparative Example 2 {Synthesis of organosilicone fine particles (R-2)}
  A reaction vessel was charged with 3950 g of ion-exchanged water and 50 g of 28% ammonia water, and stirred for 10 minutes at room temperature to obtain a uniform aqueous ammonia solution. To this aqueous ammonia solution, 600 g (4.41 mol) of methyltrimethoxysilane was added so as not to mix in the aqueous ammonia solution, and methyltrimethoate was added to the upper layer.KishiA two-layer state of an aqueous ammonia layer was formed in the run layer and the lower layer. Next, slowly agitate while maintaining the two-layer state, methyltrimetKishiHydrolysis and condensation reactions were allowed to proceed at the interface between the run and the aqueous ammonia solution. As the reaction progressed, the reaction product gradually settled and the lower layer became cloudy, and the upper methyltrimethoxysilane layer gradually became thinner and disappeared in about 3 hours. Further, the temperature was kept at 50 to 60 ° C., and the mixture was stirred for 3 hours under the same conditions, then cooled to 25 ° C., and white fine particles precipitated in a suspended state were separated by filtration. The white fine particles separated by filtration were washed with water and dried with hot air at 150 ° C. for 3 hours to obtain 266 g of organic silicone fine particles (R-2). When measurement and analysis were performed in the same manner as in Example 1, the average particle size was 3.0 μm, and the whole was solid spherical organic silicone fine particles.
[0054]
  Comparative Example 3 {Synthesis of organosilicone fine particles (R-3)}
  A reaction vessel was charged with 1080 g of ion-exchanged water, and 0.2 g of acetic acid was added to obtain a uniform aqueous solution. Methyltrimethoxysilane in this aqueous solution1169.6g (8.6 mol) and 291.2 g (1.4 mol) of tetraethoxysilane were added, and the hydrolysis reaction was carried out while maintaining the temperature at 30 ° C. A transparent reaction solution containing a silanol compound was obtained in about 30 minutes. In a separate reaction vessel, 475 g of ion exchange water and 50 g of dodecylbenzenesulfonic acid were taken and dissolved well, and then the temperature was adjusted to 80 to 85 ° C. To this, 300 g of the reaction solution obtained by the hydrolysis reaction was dropped over about 2 hours to carry out a condensation reaction. After aging for 15 minutes, the mixture was gradually cooled and stirred for 1 hour until it reached room temperature. After completion of the reaction, the pH was adjusted to 7.0 with an aqueous sodium carbonate solution to obtain an aqueous suspension of organic silicone fine particles. White fine particles were filtered off from this aqueous suspension. The white fine particles separated by filtration were washed with water and dried with hot air at 150 ° C. for 3 hours to obtain 594 g of organic silicone fine particles (R-3). When measurement and analysis were performed in the same manner as in Example 1, the average particle size was 2.6 μm, and although it was a solid sphere as a whole, it was an organosilicone fine particle having many small circular indentations on its surface. .
[0055]
  Comparative Example 4 {Synthesis of organosilicone fine particles (R-4)}
  A reaction vessel was charged with 1080 g of ion-exchanged water, and 0.2 g of acetic acid was added to obtain a uniform aqueous solution. In this aqueous solution, 816 g (6 mol) of methyltrimethoxysilane and tetraethKishi832 g (4 mol) of orchid was added, and the hydrolysis reaction was carried out while maintaining the temperature at 30 ° C. A transparent reaction solution containing a silanol compound was obtained in about 30 minutes. In a separate reaction vessel, 475 g of ion exchange water and 50 g of dodecylbenzenesulfonic acid were taken and dissolved well, and then the temperature was adjusted to 80 to 85 ° C. To this, 300 g of the reaction solution obtained by the hydrolysis reaction was dropped over about 2 hours to carry out a condensation reaction. After aging for 15 minutes, the mixture was gradually cooled and stirred for 1 hour until it reached room temperature. After completion of the reaction, the pH was adjusted to 7.0 with an aqueous sodium carbonate solution to obtain an aqueous suspension of organic silicone fine particles. White fine particles were filtered off from this aqueous suspension. The white fine particles separated by filtration were washed with water and dried with hot air at 150 ° C. for 3 hours to obtain 578 g of organic silicone fine particles (R-4). Measurement and analysis were conducted in the same manner as in Example 1. As a result, organic silicone fine particles having an average particle diameter of 4.5 μm and a horseshoe cross section as a whole were obtained.
  The contents of the organosilicon fine particles of each example synthesized above are summarized in Tables 1 and 2.
[0056]
[Table 1]
Figure 0003701016
[0057]
  In Table 1,
  Amount used: mol%
  A / B: Siloxane unit represented by formula 1 / siloxane unit represented by formula 2 (molar ratio)
  C / D: silanol-forming compound represented by formula 3 / silanol-forming compound represented by formula 4 (molar ratio)
  S-1: Silicic anhydride unit
  S-2: Methylsiloxane unit
  S-3: Phenylsiloxane unit
  S-4: 3-glycidoxypropylsiloxane unit
  S-5: 3-mercaptopropylsiloxane unit
  S-6: 3-methacryloxypropylsiloxane unit
  S-7: 3-acryloxypropylsiloxane unit
  S-8: Vinylsiloxane unit
  S-9: 3-aminopropylsiloxane unit
  SM-1: Tetraethoxysilane
  SM-2: Methyltrimethoxysilane
  SM-3: Phenyltrimethoxysilane
  SM-4: 3-glycidoxypropyltrimethoxysilane
  SM-5: 3-mercaptopropyltrimethoxysilane
  SM-6: 3-methacryloxypropyltrimethoxysilane
  SM-7: 3-acryloxypropyltrimethoxysilane
  SM-8: Vinyltrimethoxysilane
  SM-9: 3-aminopropyltrimethoxysilane
[0058]
[Table 2]
Figure 0003701016
[0059]
  In Table 2,
  Amount used: Concentration of surfactant in the hydrolysis reaction system (%)
  W1, W2, H: Unit is μm
  Range: Maximum value-Minimum value
  A-1: Sodium dodecylbenzenesulfonate
  A-2: Sodium lauryl sulfonate
  N-1: α- (p-nonylphenyl) -ω-hydroxy (polyoxyethylene) (number of oxyethylene units is 10)
  N-2: α-dodecyl-ω-hydroxy (polyoxyethylene) (the number of oxyethylene units is 12)
  * 1: Hollow hemisphere as a whole
  * 2: Solid spherical body as a whole
  * 3: A solid spherical body that has a spherical shape as a whole, but has many depressions on its surface.
  * 4: Overall horseshoe cross section
[0060]
  Test Category 2 (Evaluation as a lubricant for synthetic polymer films)
  -Preparation and evaluation of polyethylene terephthalate film samples
  A predetermined amount described in Table 3 of the organic silicone fine particles synthesized in Test Category 1 was melt-extruded at 280 ° C. together with polyethylene terephthalate using a biaxial kneader to prepare an unstretched sheet. Next, the film was stretched 3.5 times in one direction at 80 ° C., and further stretched 3.5 times in the perpendicular direction at 110 ° C., and then heat-fixed at 200 ° C. for 5 seconds to use a biaxially stretched film having a thickness of 15 μm as a sample Obtained. The dropout property, smoothness, and transparency (film phase) of this sample were measured under the following conditions and evaluated according to the following criteria. The results are summarized in Table 3.
[0061]
  ..Drop off
  Dropouts that fall into the nylon top roll when the sample is treated for 2000 m with a five-stage mini-supercalender consisting of a nylon roll and a steel roll under conditions of a processing temperature of 80 ° C, a running speed of 50 m / min, and a linear pressure of 200 kg / cm. Was visually observed and evaluated according to the following criteria.
  (Double-circle): A fallen thing is not recognized at all.
  ○: Excessive fallout is observed.
  (Triangle | delta): A fallen thing is recognized clearly.
  X: An extremely large amount of fallen objects is observed.
[0062]
  ..Smoothness
  The sample was conditioned in an atmosphere of 23 ° C x 65% RH, and under the same conditions, the coefficient of dynamic friction against the stainless steel plate on the satin surface was measured as a friction coefficient measuring machine (TR type manufactured by Toyo Seiki Co., Ltd., load 200 g, speed 300 mm / min) And evaluated according to the following criteria.
  A: The coefficient of dynamic friction is less than 0.3, which is excellent.
  ○: The coefficient of dynamic friction is 0.3 or more and less than 0.5, which is good.
  (Triangle | delta): A dynamic friction coefficient is 0.5 or more and less than 0.7, and is somewhat inferior.
  X: The dynamic friction coefficient is inferior by 0.7 or more.
[0063]
  ..Transparency (film phase)
  The sample was conditioned in an atmosphere of 23 ° C. × 65% RH, the phase of the film was measured with a phase meter under the same conditions, and evaluated according to the following criteria.
  A: The phase is 95 or more and excellent.
  A: The phase is less than 95 and 90 or more, which is good.
  Δ: Phase is less than 90 and 70 or more, slightly inferior.
  ×: Phase is 70Less thanInferior.
[0064]
[Table 3]
Figure 0003701016
[0065]
  In Table 3,
  P-1 to P-11And R-1 to R-4: organosilicone fine particles synthesized in Test Category 1
  R-5: spherical polystyrene fine particles having an average diameter of 5.0 μm (made by Kao Corporation) (hereinafter the same)
  Amount used: parts by weight of organic silicone fine particles to 100 parts by weight of polyethylene terephthalate
[0066]
  ・ Production and evaluation of polypropylene film samples
  Predetermined amounts of organosilicon fine particles synthesized in Test Category 1 were melt extruded at 275 ° C. using a twin-screw kneader together with polypropylene (isotactic index 97.5%, [h] 2.3). The unstretched sheet was produced by casting on a cooling drum at 45 ° C. This unstretched sheet is led to a preheating roll group, heated to 138 ° C., stretched 5 times in the longitudinal direction, further guided into the tenter, and stretched 9 times in the width direction in a 165 ° C. atmosphere, then at 150 ° C. Heat setting was performed while relaxing 9% in the width direction, and a single-layer biaxially stretched polypropylene film (thickness 20 μm) was obtained as a sample. The sample was evaluated for dropout property, dynamic friction coefficient, and transparency in the same manner as described above. The results are summarized in Table 4.
[0067]
[Table 4]
Figure 0003701016
[0068]
  In Table 4,
  Amount used: parts by weight of organic silicone fine particles to 100 parts by weight of polypropylene
[0069]
  Test Category 3 (Evaluation as a lubricant for synthetic fibers)
  A predetermined amount described in Table 5 of the organosilicon fine particles synthesized in Test Category 1 was added to a polyester terephthalate chip having an intrinsic viscosity of 0.64, dried by a conventional method, and then spun at 295 ° C. using an extruder. 10 parts of polyether which is a random copolymer having a molecular weight of 7000 and an oxyethylene unit / oxypropylene unit = 30/70 (molar ratio), uraryl octanoate 49, in the form of a running yarn after cooling and solidifying by discharging from the die Part, viscosity at 30 ° C. is 2.1 × 10-5m2/ S mineral oil 16 parts, polyoxyethylene (oxyethylene unit repeat number 20) castor oil 9 parts, polyoxyethylene (oxyethylene unit repeat number 10) oleyl ether 7 parts, octanoic acid diethanolamide 3 parts, A 10% aqueous emulsion of a spinning oil consisting of 3 parts of decyl sulfonate sodium salt and 3 parts of lauryl phosphate potassium salt was adhered by a guide oiling method using a metering pump so that the adhesion amount was 1.1%. After drawing with a first godet roller having a surface speed of 4000 m / min and a surface temperature of 90 ° C. and a second godet roller having a surface speed of 5000 m / min and a surface temperature of 130 ° C., the film is wound at a speed of 5000 m / min, and 83 dtex. A drawn filament of 36 filaments was obtained. 200 g of the obtained drawn yarn was wound around a cone for cheese dyeing, and the spinning oil was washed and removed by a conventional method. The entire amount of the drawn stretched yarn was rubbed against the knitting needle at a running speed of 30 m / min and an entry / exit angle of 70 degrees, and the detachment property to the knitting needle surface and its periphery was evaluated according to the following criteria. In addition, using the yarn after 10 times of repeated rubbing tests, the entry side tension (T1) Is 10 g and the outlet side tension (T2), The smoothness over time was evaluated according to the following criteria. The results are summarized in Table 5.
[0070]
  ・ Falling property
  A: Almost no fallout is observed.
  ○: Slight dropout is observed.
  (Triangle | delta): A fallen thing is recognized clearly.
  X: Significant dropout is observed.
[0071]
  ・ Smoothness over time
  A: T2/ T1Is less than 3, and the smoothness over time is excellent.
  ○: T2/ T1Is less than 3 and less than 4.5, and the smoothness over time is good.
  Δ: T2/ T1Is 4.5 or more and less than 5.5, and the smoothness over time is slightly inferior.
  X: T2/ T1Is 5.5 or more, and the smoothness over time is inferior.
[0072]
[Table 5]
Figure 0003701016
[0073]
  In Table 5,
  Amount used: parts by weight of organosilicon fine particles to 100 parts by weight of polyethylene terephthalate chip
[0074]
  Test Category 5 (Evaluation as a cosmetic raw material)
  ・ Evaluation as a foundation material that is an external preparation for skin
  table6Organosilicon fine particles 5.0 parts, titanium oxide 15.0 parts, kaolin 35.0 parts, talc 20.0 parts, liquid paraffin 5.0 parts, octamethylcyclotetrasiloxane 5.0 parts, isopropyl palmitate 3.0 parts of glycerin and 3.0 parts of glycerin were uniformly mixed, and the press-molded foundation was subjected to a sensory test of 30 panelists, and adhesion and slip were evaluated according to the following criteria. The results are summarized in Table 6.
[0075]
  Evaluation criteria
  A: Excellent.
  ○: Good.
  Δ: Slightly bad
  X: Bad.
[0076]
[Table 6]
Figure 0003701016
[0077]
【The invention's effect】
  As is apparent from the above, the present invention described above has the effect of being able to provide novel organosilicone fine particles comprising a polysiloxane crosslinked structure, useful as a modifier for polymer materials, cosmetic raw materials, and the like. is there.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view schematically showing organic silicone fine particles according to the present invention.
[Explanation of symbols]
  10 .... Organic silicone fine particles, 11 .... Inner minor arc, 21 ... Outer major arc, 31 ... Ridge line, W1..Width between ends of inner small arc, W2..Width between ends of outer large subarcs, H. Height of outer large subarcs

Claims (16)

ポリシロキサン架橋構造体から成る有機シリコーン微粒子であって、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体としては中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W)の平均値が0.01〜8μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.05〜10μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.015〜8μmの範囲内にあることを特徴とする有機シリコーン微粒子。An organosilicone fine particle comprising a polysiloxane cross-linked structure, as viewed in a longitudinal section, an inner small inferior arc (11), an outer large subordinate arc (21) covering this, and a ridge line (31) extending between both ends Formed as a hollow hemispherical body as a whole, the average value of the width (W 1 ) between the ends of the inner small arc (11) is 0.01 to 8 μm, the outer large arc (21) The average value of the width (W 2 ) between the end portions of the steel is 0.05 to 10 μm, and the average value of the height (H) of the outer large subarc (21) is in the range of 0.015 to 8 μm. Organosilicone fine particles characterized. 内側小劣弧(11)の端部間の幅(W)の平均値が0.02〜6μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.06〜8μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.03〜6μmの範囲内にある請求項1記載の有機シリコーン微粒子。The average value of the width (W 1 ) between the ends of the inner small inferior arc (11) is 0.02 to 6 μm, and the average value of the width (W 2 ) between the ends of the outer large inferior arc (21) is 0.00. The organic silicone fine particles according to claim 1, wherein the average value of the height (H) of the outer large subarc (21) is in the range of 0.03 to 6 µm. ポリシロキサン架橋構造体が、下記の式1で示されるシロキサン単位と式2で示されるシロキサン単位とから構成されたものである請求項1又は2記載の有機シリコーン微粒子。
【式1】
SiO
【式2】
SiO1.5
(式2において、
:ケイ素原子に直結した炭素原子を有する有機基)
The organosilicone fine particles according to claim 1 or 2, wherein the polysiloxane crosslinked structure is composed of a siloxane unit represented by the following formula 1 and a siloxane unit represented by the formula 2.
[Formula 1]
SiO 2
[Formula 2]
R 1 SiO 1.5
(In Equation 2,
R 1 : Organic group having a carbon atom directly connected to a silicon atom)
ポリシロキサン架橋構造体が、式1で示されるシロキサン単位/式2で示されるシロキサン単位=30/70〜50/50(モル比)の割合で有するものである請求項3記載の有機シリコーン微粒子。  4. The organosilicon fine particles according to claim 3, wherein the polysiloxane crosslinked structure has a ratio of siloxane unit represented by formula 1 / siloxane unit represented by formula 2 = 30/70 to 50/50 (molar ratio). 式2で示されるシロキサン単位が、式2中のRが下記の反応性基群から選ばれる反応性基又は該反応性基を有する有機基である場合のものである請求項3又は4記載の有機シリコーン微粒子。
反応性基群:エポキシ基、(メタ)アクリロキシ基、アルケニル基、メルカプトアルキル基、アミノアルキル基
5. The siloxane unit represented by formula 2 is one in which R 1 in formula 2 is a reactive group selected from the following reactive group group or an organic group having the reactive group. Organic silicone fine particles.
Reactive group: epoxy group, (meth) acryloxy group, alkenyl group, mercaptoalkyl group, aminoalkyl group
請求項1記載の有機シリコーン微粒子の製造方法であって、下記の式3で示されるシラノール基形成性ケイ素化合物と式4で示されるシラノール基形成性ケイ素化合物とを、式3で示されるシラノール基形成性ケイ素化合物/式4で示されるシラノール基形成性ケイ素化合物=30/70〜50/50(モル比)の割合で用い、これらを触媒を存在させた条件下で水と接触させて加水分解することによりシラノール化合物を生成させ、引き続き生成させたシラノール化合物を縮合反応させることを特徴とする有機シリコーン微粒子の製造方法。
【式3】
SiX
【式4】
SiY
(式3,式4において、
:ケイ素原子に直結した炭素原子を有する有機基
X,Y:炭素数1〜4のアルコキシ基、炭素数1〜4のアルコキシ基を有するアルコキシエトキシ基、炭素数2〜4のアシロキシ基、炭素数1〜4のアルキル基を有するN,N−ジアルキルアミノ基、ヒドロキシル基、ハロゲン原子又は水素原子)
A manufacturing method of an organic silicone microparticles according to claim 1, and a silanol-forming silicidation compound represented by silanol-forming silicon compound of formula 4 of the formula 3 below, the formula 3 used in a proportion of silanol group forming silicides / silanol group forming silicides of compound of formula 4 = 30/70 to 50/50 (molar ratio), contact with water these under conditions in the presence of a catalyst And producing a silanol compound by hydrolysis, followed by a condensation reaction of the silanol compound thus produced.
[Formula 3]
SiX 4
[Formula 4]
R 2 SiY 3
(In Formula 3 and Formula 4,
R 2 : an organic group having a carbon atom directly connected to a silicon atom X, Y: an alkoxy group having 1 to 4 carbon atoms, an alkoxyethoxy group having an alkoxy group having 1 to 4 carbon atoms, an acyloxy group having 2 to 4 carbon atoms, N, N-dialkylamino group having 1 to 4 carbon atoms, hydroxyl group, halogen atom or hydrogen atom)
シラノール化合物を縮合反応させた後、更に高分子メンブランフィルターで分別処理する請求項6記載の有機シリコーン微粒子の製造方法。  The method for producing organosilicon fine particles according to claim 6, wherein the silanol compound is subjected to a condensation reaction, and further subjected to a separation treatment with a polymer membrane filter. 式4で示されるシラノール基形成性ケイ素化合物が、式4中のRが下記の反応性基群から選ばれる反応性基又は該反応性基を有する有機基である場合のものである請求項6又は7記載の有機シリコーン微粒子の製造方法。
反応性基群:エポキシ基、(メタ)アクリロキシ基、アルケニル基、メルカプトアルキル基、アミノアルキル基
Silanol group forming silicide of compound of formula 4 is one where R 2 in Formula 4 is an organic group having a reactive group or said reactive group selected from reactive groups the following group of The manufacturing method of the organosilicon fine particle of Claim 6 or 7.
Reactive group: epoxy group, (meth) acryloxy group, alkenyl group, mercaptoalkyl group, aminoalkyl group
式3で示されるシラノール基形成性ケイ素化合物と式4で示されるシラノール基形成性ケイ素化合物とを、触媒の他に、更にノニオン性界面活性剤及び/又はアニオン界面活性剤を存在させた条件下で水と接触させる請求項6〜8のいずれか一つの項記載の有機シリコーン微粒子の製造方法。  A condition in which a silanol group-forming silicon compound represented by the formula 3 and a silanol group-forming silicon compound represented by the formula 4 are further present in addition to a catalyst and a nonionic surfactant and / or an anionic surfactant. The method for producing organosilicon fine particles according to any one of claims 6 to 8, wherein the organosilicon fine particles are brought into contact with water. 請求項1〜5のいずれか一つの項記載の有機シリコーン微粒子から成ることを特徴とする高分子材料用改質剤。  A polymer material modifier comprising the organic silicone fine particles according to any one of claims 1 to 5. 請求項6〜9のいずれか一つの項記載の有機シリコーン微粒子の製造方法によって得られる有機シリコーン微粒子から成ることを特徴とする高分子材料用改質剤。  A modifying agent for a polymer material, comprising organic silicone fine particles obtained by the method for producing organic silicone fine particles according to any one of claims 6 to 9. 合成高分子フィルム用の滑剤である請求項10又は11記載の高分子材料用改質剤。  The polymer material modifier according to claim 10 or 11, which is a lubricant for a synthetic polymer film. 合成繊維用の滑剤である請求項10又は11記載の高分子材料用改質剤。  The polymer material modifier according to claim 10 or 11, which is a lubricant for synthetic fibers. 請求項1〜5のいずれか一つの項記載の有機シリコーン微粒子から成ることを特徴とする化粧品原料。  A cosmetic raw material comprising the organic silicone fine particles according to any one of claims 1 to 5. 請求項6〜9のいずれか一つの項記載の有機シリコーン微粒子の製造方法によって得られる有機シリコーン微粒子から成ることを特徴とする化粧品原料。  A cosmetic raw material comprising organic silicone fine particles obtained by the method for producing organic silicone fine particles according to any one of claims 6 to 9. 皮膚外用剤に用いるものである請求項14又は15記載の化粧品原料。  The cosmetic raw material according to claim 14 or 15, which is used for a skin external preparation.
JP2001332061A 2001-10-30 2001-10-30 Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material Expired - Fee Related JP3701016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332061A JP3701016B2 (en) 2001-10-30 2001-10-30 Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332061A JP3701016B2 (en) 2001-10-30 2001-10-30 Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material

Publications (2)

Publication Number Publication Date
JP2003128788A JP2003128788A (en) 2003-05-08
JP3701016B2 true JP3701016B2 (en) 2005-09-28

Family

ID=19147538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332061A Expired - Fee Related JP3701016B2 (en) 2001-10-30 2001-10-30 Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material

Country Status (1)

Country Link
JP (1) JP3701016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530961A3 (en) * 2003-11-13 2006-03-08 L'oreal Emulsion containing hollow organosilicon particles
CN102471589A (en) * 2010-03-31 2012-05-23 竹本油脂株式会社 Light-diffusing resin composition and light-diffusing molded article

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118218A1 (en) * 2003-11-13 2005-06-02 L'oreal Emulsion containing organosilicon-based portions of hollow spheres
FR2867676B1 (en) * 2004-03-22 2006-06-02 Oreal COSMETIC COMPOSITION COMPRISING CONCAVED PARTICLES
FR2867677B1 (en) * 2004-03-22 2006-06-09 Oreal COSMETIC STICK COMPRISING A STRUCTURING AGENT AND CONCRETE PARTICLES
FR2867675B1 (en) * 2004-03-22 2006-06-02 Oreal COSMETIC COMPOSITION COMPRISING CONCAVED PARTICLES
FR2876026B1 (en) * 2004-10-04 2007-02-09 Oreal HAIR-BASED COSMETIC COMPOSITION BASED ON HOLLOW PARTICLES AND NON-SILICONE FIXING POLYMER
FR2876025B1 (en) * 2004-10-04 2007-02-09 Oreal HAIR COSMETIC COMPOSITION BASED ON HOLLOW PARTICLES AND SILICONE FIXING POLYURETHANE
FR2877839B1 (en) 2004-11-12 2008-09-26 Oreal COSMETIC COMPOSITION WITH LIGHTENING EFFECT
US7780955B2 (en) 2004-11-12 2010-08-24 L'oreal Cosmetic composition with a lightening effect
US8440763B2 (en) 2005-06-09 2013-05-14 L'oreal S.A. Cosmetic composition comprising silicone particles
FR2886939B1 (en) * 2005-06-09 2007-08-24 Oreal COSMETIC COMPOSITION CONTAINING SILICONE PARTICLES
JP4680012B2 (en) * 2005-09-05 2011-05-11 株式会社松風 Hemispherical hollow microcapsules
FR2891145B1 (en) * 2005-09-27 2007-11-02 Oreal KIT COMPRISING TWO COSMETIC COMPOSITIONS
FR2894815B1 (en) * 2005-12-21 2009-07-10 Oreal COSMETIC COMPOSITION COMPRISING CONCAVED PARTICLES AND A DISPERSANT, METHODS AND USES
WO2007099814A1 (en) * 2006-03-02 2007-09-07 Kaneka Corporation Process for production of hollow silicone fine particles
FR2902648B1 (en) * 2006-06-22 2018-05-18 L'oreal AQUEOUS PHOTOPROTECTIVE COMPOSITION CONTAINING PAINTED OR ANNULAR PARTICLES OF SILICONE MATERIAL AND AT LEAST ONE UV FILTER
FR2905070B1 (en) 2006-08-22 2008-10-17 Oreal L' COSMETIC COMPOSITION FOR THE CUTTING OR HOMOGENIZATION OF DYE
FR2906714A1 (en) * 2006-10-04 2008-04-11 Oreal CLEANING COMPOSITION CONTAINING HEMISPHERIC HOLLOW PARTICLES
FR2908655B1 (en) * 2006-11-21 2009-02-06 Oreal USE AS DEODORING ACTIVE INGREDIENTS OF CONCRETE OR ANNULAR PARTICLES OF SILICONE MATERIAL; METHOD OF TREATING BODY ODORS
FR2909555B1 (en) 2006-12-11 2009-01-30 Oreal E / H EMULSION WITH CORRECTIVE EFFECT FOR SKIN
JP5103985B2 (en) * 2007-03-29 2012-12-19 大日本印刷株式会社 Curable resin composition for antiglare layer and antiglare film
JP4931242B2 (en) * 2007-11-07 2012-05-16 竹本油脂株式会社 Method for producing colored organic silicone fine particles
JP5177755B2 (en) * 2008-12-18 2013-04-10 竹本油脂株式会社 Dilatancy composition
JP4994474B2 (en) 2009-05-21 2012-08-08 竹本油脂株式会社 Hollow irregular fine particles, production method thereof, cosmetic raw material containing hollow irregular fine particles and resin composition
FR2947725A1 (en) 2009-07-07 2011-01-14 Oreal METHOD FOR SMOOTHING THE SKIN BY FILLING HOLLOW PORTIONS
FR2947726A1 (en) 2009-07-07 2011-01-14 Oreal METHOD FOR SMOOTHING THE SKIN BY FILLING HOLLOW PORTIONS
EP2462199B1 (en) * 2009-08-04 2015-05-20 L'Oréal Composite pigment and method for preparation thereof
US8882902B2 (en) 2009-08-04 2014-11-11 L'oreal Composite pigment and method for preparation thereof
KR101618155B1 (en) 2009-12-15 2016-05-12 다케모토 유시 가부시키 가이샤 Organosilicone fine particles, method of producing same, and cosmetics, resin compositions and development toners containing same
WO2011111179A1 (en) * 2010-03-10 2011-09-15 竹本油脂株式会社 Organic silicone particles, method of producing organic silicone particles, and cosmetic, resin composition and coating composition containing organic silicone particles
US20130001482A1 (en) * 2010-03-31 2013-01-03 Chiaki Saito Method of producing optical diffusive resin compositions and optical diffusive moldings
WO2012085835A2 (en) 2010-12-20 2012-06-28 L'oreal Sterile liquid composition for filling wrinkles
BR112014026795B1 (en) 2012-04-26 2020-03-10 L'oreal COSMETIC PROCESS TO TREAT SKIN
JP2014118444A (en) * 2012-12-14 2014-06-30 Takemoto Oil & Fat Co Ltd Polyolefin microporous membrane, method for manufacturing a polyolefin microporous membrane, and separator for a lithium ion battery
FR3008617B1 (en) 2013-07-18 2016-09-23 Oreal OIL / OIL PICKERING EMULSIONS INCLUDING CURVED BREAKING PARTICLES, COMPOSITIONS COMPRISING THE SAME, AND USE OF THE PARTICLES FOR STABILIZING PICKERING H / H EMULSIONS
FR3011740B1 (en) 2013-10-11 2015-10-23 Oreal COSMETIC COMPOSITION FOR COATING KERATINIC FIBERS
FR3011741B1 (en) 2013-10-11 2015-10-23 Oreal COSMETIC COMPOSITION FOR COATING KERATINIC FIBERS
FR3021533B1 (en) 2014-05-28 2017-09-15 Oreal COSMETIC COMPOSITION OF GEL TYPE
FR3025096B1 (en) 2014-08-28 2016-12-23 Oreal GEL / GEL COMPOSITION CONTAINING ANTI-TRANSPARENT ACTIVE INGREDIENT
FR3025075A1 (en) 2014-08-28 2016-03-04 Oreal NEW CARE AND / OR MAKE-UP DEVICE COMPRISING A GEL / GEL ARCHITECTURE COMPOSITION
WO2016030839A1 (en) 2014-08-28 2016-03-03 L'oreal Gel composition and gel comprising a uv filter
FR3025100B1 (en) 2014-08-28 2016-12-09 Oreal GEL-TYPE COSMETIC COMPOSITION IMPROVED
FR3030263A1 (en) 2014-12-18 2016-06-24 Oreal COMPOSITION COMPRISING POLYMER PARTICLES, HYDROCARBON OIL AND SILICONE RESIN AND PROCESS FOR IMPLEMENTING THE SAME
FR3031306B1 (en) 2015-01-05 2020-01-10 L'oreal COMPOSITION, IN PARTICULAR COSMETIC FOR MAKE-UP AND / OR CARE, COMPRISING A LIPOPHILIC CLAY, OF 1 TO 10% MICA WEIGHT, AND AT LEAST ONE NON-CYCLIC SILICONE OIL
WO2016116492A1 (en) 2015-01-21 2016-07-28 L'oreal Oil/oil emulsion comprising solid microparticles, at least a first oily phase, at least a second oily phase and at least a third oily phase that are mutually immiscible
JP6651321B2 (en) * 2015-10-01 2020-02-19 株式会社日本触媒 Polymer fine particles
CN108601716B (en) 2015-12-17 2021-11-16 莱雅公司 Gel/gel-type composition based on pigments coated with hydrophobic substances and liquid fatty acid and/or diol compounds
JP6750016B2 (en) 2015-12-17 2020-09-02 ロレアル Water-in-oil emulsion with a moisturizing effect containing a hydrophobically coated pigment and a high content of water phase
WO2017109192A2 (en) 2015-12-23 2017-06-29 Oreal Spiculisporic acid-based composition
FR3048179B1 (en) 2016-02-29 2019-08-23 L'oreal COMPOSITION COMPRISING ALKYL ETHER OF ALKYL POLYSACCHARIDE AND INCOMPATIBLE SILICONE OR FLUORINE OILS AND METHOD FOR CARRYING OUT SAID METHOD
FR3048178A1 (en) 2016-02-29 2017-09-01 Oreal COMPOSITION COMPRISING POLYSACCHARIDE ALKYL ETHER AND INCOMPATIBLE OILS AND PROCESS FOR CARRYING OUT THE SAME
FR3052035B1 (en) 2016-06-02 2020-10-09 Oreal COSMETIC PRODUCT DISTRIBUTION SYSTEM
FR3061002B1 (en) 2016-12-23 2019-05-24 L'oreal COMPOSITION COMPRISING HYDROXYETHYLPIPERAZINE ETHANE SULFONIC ACID AND AT LEAST ONE ALKYLPOLYGLUCOSIDE
FR3067595B1 (en) 2017-06-15 2020-01-17 L'oreal WATER-IN-OIL EMULSION BASED ON NON-THICKENING NON-INTERFERENTIAL FILLERS, NON-VOLATILE OIL, HYDROPHOBIC FILM-FORMING POLYMER, EMULSIFYING SILICONE ELASTOMER AND PIGMENTS
FR3075053B1 (en) 2017-12-15 2020-07-10 L'oreal PIGMENT-BASED GEL / GEL-LIKE COMPOSITION OF AT LEAST ONE C3-C8 SATURATED LINEAR DIHYDROXYALKANE, OF SALICYLIC ACID IN FREE FORM
FR3075041B1 (en) 2017-12-20 2019-11-15 L'oreal AQUEOUS COLORED DISPERSION OF PARTICLES COMPRISING AT LEAST ONE PARTICULATE COLORING MATTER, A MATIFFING LOAD, FILMOGENEOUS POLYMER PARTICLES, A THICKENING AGENT AND A IONIC POLYMERIC DISPERSING AGENT
WO2019243613A1 (en) 2018-06-22 2019-12-26 L' Oreal Emulsion comprising an alkylpolyglycoside and nacres, and makeup and/or care process using same
FR3111799B1 (en) 2020-06-30 2022-06-24 Oreal Composition comprising a combination of polyglycerol esters
FR3115457B1 (en) 2020-10-23 2022-10-21 Oreal Photoprotective composition
FR3117789A1 (en) 2020-12-22 2022-06-24 L'oreal Cosmetic composition comprising at least one clay, at least one crystallizable fatty substance and at least one fat-soluble UV filter
FR3117794B1 (en) 2020-12-23 2023-07-28 Oreal Aqueous dispersion of a specific copolymer and its cosmetic applications
WO2022136110A1 (en) 2020-12-23 2022-06-30 L'oreal Cosmetic composition comprising polymer particles based on acetoacetate functions
WO2022136114A1 (en) 2020-12-23 2022-06-30 L'oreal Aqueous dispersion of a specific copolymer, and cosmetic uses thereof
WO2022136104A1 (en) 2020-12-23 2022-06-30 L'oreal Cosmetic composition comprising a copolymer based on acetoacetate functions
FR3117854B1 (en) 2020-12-23 2024-03-15 Oreal Cosmetic composition comprising polymeric particles based on acetoacetate functions
FR3117856B1 (en) 2020-12-23 2024-05-10 Oreal Cosmetic composition comprising a block copolymer based on acetoacetate functions
FR3117852B1 (en) 2020-12-23 2023-06-23 Oreal Cosmetic composition comprising a copolymer based on acetoacetate functions
FR3128878B1 (en) 2021-11-09 2024-08-30 Oreal LIQUID COMPOSITION COMPRISING NATURAL COLORANTS
FR3128877B1 (en) 2021-11-09 2024-07-19 Oreal LIQUID COMPOSITION COMPRISING NATURAL DYES, LIQUID POLYESTER AND TRIHYDROXYSTEARIN
WO2023083858A1 (en) 2021-11-09 2023-05-19 L'oreal Liquid composition comprising natural dyes
FR3130133B1 (en) 2021-12-09 2023-11-24 Oreal Composition comprising a combination of polyglycerol esters and a filler
FR3130560A1 (en) 2021-12-17 2023-06-23 L'oreal Composition comprising a combination of polyglycerol esters, a mineral UV filter and a liposoluble or specific hydrophobic particulate coloring matter
FR3130596A1 (en) 2021-12-17 2023-06-23 L'oreal Cosmetic and/or dermatological composition comprising at least one merocyanine and at least ascorbic acid and/or one of its derivatives
FR3130595A1 (en) 2021-12-17 2023-06-23 L'oreal Cosmetic or dermatological composition comprising at least one merocyanine and one hydrotrope
FR3131529A1 (en) 2021-12-31 2023-07-07 L'oreal Customization kit for a cosmetic composition
FR3136659A1 (en) 2022-06-20 2023-12-22 L'oreal Composition comprising at least one glycolipid, at least one liquid linear or branched fatty alcohol, at least one non-silicone oil and at least one surfactant, use and process using the composition
FR3136663A1 (en) 2022-06-20 2023-12-22 Loreal Composition comprising at least one glycolipid, at least one liquid linear or branched fatty alcohol and at least two polysaccharides, use and method using the composition
FR3141063A1 (en) 2022-10-21 2024-04-26 L'oreal SEMI-SOLID VEGAN COSMETIC COMPOSITION
WO2024015451A1 (en) 2022-07-14 2024-01-18 L'oreal Vegan semi-solid cosmetic composition
FR3138312A1 (en) 2022-07-29 2024-02-02 L'oreal SOLID ANHYDROUS COMPOSITION COMPRISING ETHYLCELLULOSE, AN ALKYLBENZOATE, A PHENYLATED SILICONE OIL AND METHOD USING SAME
FR3145092A1 (en) 2023-01-19 2024-07-26 L'oreal METHOD FOR TREATMENT OF KERATINOUS FIBERS COMPRISING THE APPLICATION OF GUANIDINE CARBONATE, ALKALINE AND/OR ALKALINE EARTH METAL HYDROXIDE AND FATTY ACID TRIGLYCERIDE (C6-C16)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530961A3 (en) * 2003-11-13 2006-03-08 L'oreal Emulsion containing hollow organosilicon particles
CN102471589A (en) * 2010-03-31 2012-05-23 竹本油脂株式会社 Light-diffusing resin composition and light-diffusing molded article

Also Published As

Publication number Publication date
JP2003128788A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3701016B2 (en) Organic silicone fine particles, method for producing organic silicone fine particles, polymer material modifier and cosmetic raw material
JP2000191789A (en) Organic silicone particulate, its production, polymer material modifier and cosmetic raw material consisting of organic silicone particulate
JP3701017B2 (en) Organic silicone fine particles, method for producing organic silicone fine particles, and modifier for polymer material
JP3846667B2 (en) Organosilicone fine particles, process for producing the same, polymer material modifier comprising organosilicone fine particles and cosmetic raw material
US7393911B2 (en) Organosilicon fine particles and method of producing same
US8545823B2 (en) Cosmetic nanocomposites based on in-situ crosslinked POSS materials
JP5619754B2 (en) Method for producing silicate shell microcapsules
JP5898620B2 (en) Personal care composition comprising a mucous silicone fluid
JP6837989B2 (en) Mucous silicone emulsion
JP5630993B2 (en) Cosmetics
KR101604405B1 (en) Irregular-shaped microparticles, process for production of irregular-shaped microparticles, and cosmetics and resin compositions containing irregular-shaped microparticles
JP2008253983A (en) Core/shell particle based on silicone compound
WO2012029643A1 (en) Composite particles, method for producing same and use of same
JP5608566B2 (en) Silicone polymer dispersion and method for forming the same
CN114729125B (en) Composition for preparing anti-sticking coating
JP2006188592A (en) Composite silicone rubber powder, its manufacturing method, paint, and cosmetic
EP3953427B1 (en) Composition for preparing a release coating
KR102516926B1 (en) Method of preparing functionalized particles
JPH0725727A (en) Complex globular powder and cosmetic containing the same
TW202103672A (en) Compositions and methods for application over skin
JP3904938B2 (en) Cosmetic composition
JPH1112152A (en) Cosmetic
CN114341271A (en) Oil-in-water emulsions and uses thereof
TW202133838A (en) Composition for skin external application
JP2016504267A (en) A method for reducing the appearance of skin pores and matting the skin, and an aqueous composition comprising fusiform particles for skin care

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees