JP3699633B2 - Steel material excellent in toughness of heat affected zone and its manufacturing method - Google Patents

Steel material excellent in toughness of heat affected zone and its manufacturing method Download PDF

Info

Publication number
JP3699633B2
JP3699633B2 JP2000132434A JP2000132434A JP3699633B2 JP 3699633 B2 JP3699633 B2 JP 3699633B2 JP 2000132434 A JP2000132434 A JP 2000132434A JP 2000132434 A JP2000132434 A JP 2000132434A JP 3699633 B2 JP3699633 B2 JP 3699633B2
Authority
JP
Japan
Prior art keywords
less
steel
toughness
amount
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000132434A
Other languages
Japanese (ja)
Other versions
JP2001026839A (en
Inventor
明人 清瀬
明彦 児島
隆雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000132434A priority Critical patent/JP3699633B2/en
Publication of JP2001026839A publication Critical patent/JP2001026839A/en
Application granted granted Critical
Publication of JP3699633B2 publication Critical patent/JP3699633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する分野】
本発明は溶接熱影響部(Heat Affected Zone:HAZ)靭性の優れた鋼材に関するものである。本発明の鋼材は、小入熱溶接から超大入熱溶接までの広範な溶接条件において良好なHAZ靭性を有するので、建築、橋梁、造船、ラインパイプ、建設機械、海洋構造物、タンクなどの各種溶接鋼構造物に用いられる。
【0002】
【従来の技術】
HAZにおいては、溶融線に近づくほど溶接時の加熱温度は高くなり、特に溶融線近傍の1400℃以上に加熱される領域では加熱オーステナイト(γ)が著しく粗大化してしまい、冷却後のHAZ組織が粗大化して靭性が劣化する。この傾向は溶接入熱量が大きくなるほど顕著である。
【0003】
このような問題点を解決する手段として、特開昭60−245768号公報、特開昭60−152626号公報、特開昭63−210235号公報、特開昭63−210235号公報、特開平2−250917号公報、特開平1−73320号公報は、粗大なγ粒の内部に、Ti酸化物やTiNとMnSの複合析出物を核とした粒内変態フェライトを積極的に生成させ、HAZ靭性の向上を図ってきた。しかしながら、これらの技術によって製造された鋼も、溶接入熱量が20kJ/mmを超えるような大入熱溶接HAZにおいては十分な靭性を得ることは困難であった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、溶接入熱量が20kJ/mmを超えるような大入熱溶接においても、良好なHAZ靭性を有する鋼材およびその製造方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、溶接入熱量が20kJ/mmを超える大入熱溶接HAZ靭性の向上を狙いとして、▲1▼加熱γ粒成長抑制、▲2▼適正なTiとNの存在形態について鋭意研究し、新たな金属学的効果を知見して本発明に至った。
【0006】
本発明の要旨は、以下の通りである。
【0007】
(1) 質量%で、
C:0.03%〜0.2%、
Si:0.4%以下、
Mn:0.5〜2%、
P:0.015%以下、
S:0.006%以下、
Al:0.01%超〜0.03%以下、
Ti:0.007%〜0.02%、
Mg:0.001%超〜0.006%以下、
O:0.001〜0.004%、
N:0.0025〜0.006%を含有し、
さらに、Ca:0.004%以下、REM:0.003%以下のいずれか一方あるいは両方を含有し、
残部がFeおよび不可避的不純物からなる化学成分を有し、MgとAlから成る酸化物を内包する0.01以上0.5μm未満のTiNが10000個/mm以上存在し、さらに、0.5〜5μmの大きさの酸化物中のMg含有量とAl含有量との和の平均値が質量%で30%以上で、さらに、質量%を用いて下記の(1)式あるいは(2)式で計算される有効Ti量が−0.01%〜+0.005%の範囲としたことを特徴とする
溶接熱影響部靭性の優れた鋼材。
O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al≧0の場合、
有効Ti量=Ti−2×(O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al)−3.4×N ・ ・ ・(1)
O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al<0の場合、
有効Ti量=Ti−3.4×N ・ ・ ・(2)
【0008】
(2) 質量%で、さらに、
Cu:1.5%以下、
Ni:1.5%以下、
Mo:1%以下、
Cr:1%以下、
Nb:0.05%以下、
V:0.05%以下、
B:0.002%以下
の1種または2種以上を含有することを特徴とする上記(1)項記載の溶接熱影響部靭性の優れた鋼材。
【0011】
) MgおよびCa添加前のスラグ中T.Fe+MnOが10質量%以下であることを特徴とする上記(1)または(2)に記載の溶接熱影響部靭性の優れた鋼材の製造方法。
【0012】
) Mg、Ca以外の元素を添加した後にMg、Caを添加することを特徴とする上記(1)または(2)に記載の溶接熱影響部靭性の優れた鋼材の製造方法。」
【0013】
【発明の実施の形態】
本発明で知見した新たな金属学的効果について以下に説明する。
【0014】
まず、加熱γ粒成長抑制について説明する。溶接線近傍HAZは加熱温度が1400℃にも及ぶため、炭化物や窒化物が溶解・粗大化することでγ粒界の移動をピンニングする力が著しく低下し、γ粒の成長を避けることはできなかった。そこで、1400℃以上の高温でも熱的に安定である酸化物によるピンニングによってγ粒成長を抑制することを検討した。その結果、鋼中に微量のMgとAlを含有させることで、0.01〜0.1μmの大きさの従来にない極めて微細なMgとAlとから成る酸化物が多量に生成することを見いだした。さらに、0.01以上0.5μm未満の大きさの微細なTiNがこのMgとAlとから成る酸化物上に複合析出し、1400℃以上の高温で従来にない非常に強力なピンニング力を発揮することを明らかにした。なお、TiN複合粒子は0.01超0.2μm以下とすることが好ましい。
【0015】
このMgとAlとから成る酸化物はTiNとの格子整合性がよいため、TiNの析出核として有効に作用する。そして0.01〜0.1μmのMgとAlとから成る酸化物にTiNが複合することでその表面積が増し、より強力なピンニング力が発現される。図1は溶接冷却時の800℃から500℃までの冷却時間が330sである場合のHAZ靭性に及ぼすγ粒径の影響を示す。この冷却時間は板厚80mmの鋼材の約70kJ/mmの溶接入熱量でエレクトロスラグ溶接した場合に相当する。図1からγ粒の細粒化に伴いHAZ靭性が向上する。これは、γ粒の細粒化に伴ってγ粒界から変態する粒界フェライトやフェライトサイドプレートが小さくなり、HAZ組織が微細化されるためである。このような効果はγ粒径が150μm以下の時に顕著である。図2は1400℃で30s間保持した場合のγ粒に及ぼす0.01μm以上0.5μm未満の複合析出TiNの個数の影響を示す。この加熱条件は、板厚80mmの鋼材を約70kJ/mmの溶接入熱量でエレクトロスラグ溶接した時の溶融線近傍HAZに相当する。図2から複合析出TiNの個数が10000個/mm2未満の場合にはγ粒径が150μm以上になり、HAZ組織が十分に微細化されないために良好な靭性は得られない。γ粒成長抑制に有効なこのような複合析出TiNの分散状態は、Mg、Al、Ti、O、Nの量を本発明の範囲に制御することで達成される。
【0016】
次に、0.5〜5μmの酸化物組成と、0.01μm以上0.5μm未満の複合析出TiNの個数との関係について説明する。図3は、0.5〜5μmの酸化物組成の内、質量%で表したMg含有量とAl含有量との和、Mg+Alと0.01μm以上0.5μm未満の複合析出TiNの個数との関係を示す。Mg+Alが30%以上の場合、複合析出TiNの個数が10000個/mm2以上になる。溶鋼中のAlとMgが本発明の範囲である場合、0.5〜5μmの酸化物中のMg+Alを上げることにより、このサイズの酸化物中のMgが増加するが、それと同時に、0.01〜0.5μmのMgとAlとから成る酸化物の個数が増加するためである。
【0017】
次に各々の化学成分の限定理由について説明する。
【0018】
Cの下限は母材および溶接部の強度、靭性を確保するための最小量の0.03%である。しかし、Cが多すぎると母材およびHAZの靭性を低下させるとともに溶接性を劣化させるため、その上限を0.2%とする。
【0019】
Siは脱酸のために鋼に含有されるが、多すぎると溶接性およびHAZ靭性が劣化するため、上限を0.4%とする。本発明の脱酸はTiだけでも十分可能であり、良好なHAZ靭性を得るためにはSiを0.3%以下にするのが望ましい。
【0020】
Mnは母材および溶接部の強度、靭性の確保に不可欠であり、下限を0.5%とする。しかし、Mnが多すぎるとHAZ靭性を劣化させたり、スラブの中心偏析を助長し、溶接性を劣化させるため上限を2%とする。
【0021】
Pは本発明鋼において不純物元素であり、0.015%以下とする。Pの低減はスラブ中心偏析の軽減を通じて母材およびHAZの機械的性質を改善し、さらには、HAZの粒界破壊を抑制する。
【0022】
Sは多すぎると中心偏析を助長したり、延伸したMnSが多量に生成したりするため、母材およびHAZの機械的性質が劣化する。したがって、上限を0.006%とする。
【0023】
Alは、γ粒成長のピンニング粒子である複合析出TiNの析出核である0.01〜0.1μmのMgとAlとから成る酸化物の個数を制御する上で重要である。Alが0.01%未満の場合、0.5〜5μmの酸化物中のMg+Alが30%未満となり、0.01〜0.1μmのMgとAlとから成る酸化物の個数が10000個/mm2以下となり、複合析出TiNの個数が不足することでγ粒が十分に細粒化されず、良好なHAZ靭性が得られない。一方、0.03%を超えてAlを添加しても、その効果は飽和する。したがって、Alは0.01%超0.03%以下とする。
【0024】
Tiは、ピンニング粒子としての複合析出TiNの分散状態を制御する上で重要であり、後述する有効Ti濃度の適正範囲と相俟って狭い範囲に限定されなければならない。Tiが0.007%未満の場合、MgとAlとから成る酸化物上に複合析出するTiNの個数が10000個/mm2未満となり、HAZ靭性向上に必要なγ粒成長抑制効果が得られない。一方、Tiが0.02%を超える場合、有効Tiが適正範囲内にあっても実質的にTiCが過剰に生成し、HAZ靭性が低下する。TiNは厚板圧延でのスラブ加熱時のγ粒成長抑制を通じて母材組織を微細化し、鋼材の強度と靭性を向上させることにも貢献する。
【0025】
ここで、適正なTiとNの存在形態について説明する。鋼中のTiはOと結合して酸化物を生成し、残りのTiはNと結合してTiNを形成し、さらに残ったTiが存在すれば、Cと結合してTiCを形成するが、TiCは析出脆化をもたらす。一方、鋼中のTiが酸化物およびTiNとしてすべて消費されれば、Tiと結合できなかった過剰なNが地鉄中に固溶するが、固溶Nもまた脆化をもたらす。このように、酸化物および窒化物として消費された残りのTiが存在するか否かによってTiとNの存在形態が異なり、このことが靭性に大きな影響を及ぼす。本発明では、酸化物および窒化物として消費された残りのTi量を「有効Ti量」として質量%を用いて(1)式および(2)式で定義する。
【0026】
O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al≧0の場合、

Figure 0003699633
O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al<0の場合、
有効Ti量=Ti−3.4×N ・ ・ ・(2)
【0027】
(1)式および(2)式の各元素の係数は想定される酸化物および窒化物から化学量論的に決定された値である。1400℃を超えるような溶融線近傍HAZでは、TiとNの存在形態はさらに複雑である。その理由は、溶接加熱時にTiCとTiNの多くが地鉄中に一旦固溶し、固溶したTi、N、Cは溶接冷却時にTiNあるいはTiCとして再析出するとともに、一部は固溶のまま存在するからである。このようなTiとNの存在形態を制御してHAZ靭性の向上を目指すためには、TiとNの各々の量を規定するとともに、有効Tiの概念を用いて他の成分とのバランスを図ることが重要である。図4は溶接入熱量が50kJ/mmの場合をシミュレートした1400℃加熱再現HAZ靭性に及ぼす有効Ti量の影響を示す。有効Ti濃度が−0.01%〜+0.005%の範囲で良好な靭性を示す。すなわち、この範囲がTiCの析出脆化とNの固溶脆化の両方を回避できる適正な成分範囲であることを示している。有効Ti量g−0.01%未満の婆は固溶N量が過剰となり、有効Ti量が+0.005%を超える場合にはTiC析出量が過剰となり、HAZ靭性が劣化する。
【0028】
このように有効Tiを考慮することにより、さらに良好なHAZ靭性が得られる。
【0029】
Mgは本発明の特徴的な元素であり、最も重要な役割を有する。Mgを適量含有することで本発明における酸化物の分散状態を達成することができる。Mgが0.001%以下の場合、Mgは0.5〜5μmの酸化物に消費され、TiNの析出核であるMgとAlとから成る酸化物の個数が不足する。一方、酸化物として消費されるMgは0.006%あれば十分であり、これを超えるMgが金属的に何ら効果をもたらさない。Mgは蒸気圧が高くて酸化力が強い非常に活性な元素であることから、必要以上に鋼中に含有させることは製造コストの上昇を招き好ましくない。
【0030】
Oは、TiNの析出核であるMgとAlとから成る酸化物の個数を確保する上で必要である。Oが0.001%未満の場合、酸化物の個数が不足し、HAZ靭性が劣化する。一方、Oが0.004%を超える場合、鋼の清浄度が低下して機械的性質が劣化する。
【0031】
Nは、ピンニング粒子である複合析出TiNの個数を確保する上で重要であり、有効Ti量の適正範囲と相俟って狭い範囲に限定されなければならない。Nが0.0025%未満の場合、TiNの個数が確保できない。一方、Nが0.006%を超える場合、有効Ti量が適正範囲内にあっても実質的に固溶Nが過剰となり、HAZ靭性が低下する。
【0032】
続いて、Cu、Ni、Mo、Cr、Nb、V、B、Ca、REMを添加する理由について説明する。
【0033】
Cu、Niは溶接性およびHAZ靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。しかし、1.5%を超えると溶接性およびHAZ靭性が劣化する。
【0034】
Mo、Crは母材の強度、靭性を向上させる。しかし、1%を超えると母材の靭性、溶接性およびHAZ靭性が劣化する。
【0035】
Nbは母材組織の微細化に有効な元素であり、母材の機械的性質を控除させる。しかし、0.05%を超えるとHAZ靭性が劣化する。
【0036】
Vは母材の靭性を向上させる。しかし0.05%を超えると溶接性およびHAZ靭性が劣化する。
【0037】
Bは焼き入れ正を高めて母材やHAZの機械的性質を向上させる。しかし、0.002%を超えて添加するとはZ靭性や溶接性が劣化する。
【0038】
CaとREMは酸化物や硫化物を形成して材質を改善する。ここで、REMとは、La、Ceなどの希土類金属元素を示す。Caを0.004%を超えて添加しても材質改善効果が飽和する。REMを0.003%を超えて添加しても同様に材質改善効果が飽和する。必要以上に添加することは製造コストの増加を招き好ましくない。 CaとREMの両方を添加しても効果は同等である。
【0039】
本発明鋼は、鉄鋼業の製鋼工程において所定の化学成分に調整し、連続鋳造を行い、鋳片を再加熱した後に圧延によって形状と母材材質を付与することで製造される。必要に応じ、鋼材に各種の熱処理を施して母材の材質を制御することも行われる。鋳片を再加熱することなく、ホットチャージ圧延することも可能である。
【0040】
本発明で規定した酸化物の分散状態は、例えば、以下にような方法で定量的に測定される。0.01以上0.5μm未満のMgとAlとから成る酸化物とTiNの複合析出物の分散状態は、母材鋼材の任意の場所から抽出レプリカ試料を作製し、これを透過電子顕微鏡(TEM)を用いて10000〜50000倍の倍率で少なくとも1000μm2以上の面積にわたって観察し、対象となる大きさの複合析出物の個数を測定し、単位面積当たりの個数に換算する。この時、MgとAlとから成る酸化物とTiNの同定は、TEMに付属のエネルギー分散型X線分光法(EDS)による組成分析と、TEMによる電子線回折像の結晶構造解析によって行われる。このような同定を測定するすべての複合析出物に対して行うことが煩雑な場合、簡易的に次の手順による。まず、四角い形状の析出物をTiNとみなし、対象となる大きさのTiN中に酸化物が複合しているものの個数を上記の要領で測定する。次のこのような方法で個数を測定した複合析出物の内少なくとも10個以上について上記の要領で同定を行い、MgとAlとから成る酸化物とTiNが複合的に存在している割合を算出する。そして、はじめに測定された複合析出物の個数にこの割合を掛け合わせる。鋼中の炭化物が以上のTEM観察を邪魔する場合、500℃以下の熱処理によって炭化物を凝集・粗大化させ、対象となる複合析出物の観察を容易にすることができる。
【0041】
0.5〜5μmの酸化物の組成の測定例を次に示す。母材鋼材の任意の場所から小片試料を切り出し、これを1400〜1450℃で10分間以上保持することで酸化物以外の0.5〜5μmの介在物を溶体化させ、その後水冷する。これを鏡面研磨し、光学顕微鏡を用いて1000倍の倍率で少なくとも1mm2以上の面積にわたって観察する。対象となる酸化物の内少なくとも10個以上についてX線マイクロアナライザー(EPMA)に付属の波長分散型分光法(WDS)を用いて組成を分析し、酸化物の平均組成におけるMgとAlの含有量を質量%で求める。介在物の時、酸化物の分析値に地鉄のFeが検出される場合は、分析値からFeを除外して酸化物の平均組成を求める。
【0042】
MgとCaは酸素との親和力が強く、蒸気圧も高いため、酸化され、酸化物として溶鋼中から除去されたり、蒸発してロスする。そのため添加歩留まりが低い。歩留まりを向上させるためには、酸化ロスと蒸発ロスを極力抑制することが重要である。
【0043】
酸化ロスを小さくするためには、MgやCa添加前の溶鋼中の酸素やスラグ中のFeO濃度とMnO濃度を低減することが重要である。本発明の鋼材には、Si、Mn、Al、Tiなどの脱酸元素が含まれており、これらの元素を添加した後にMgやCaを添加することによって、酸化ロスを小さくすることができる。すなわち、MgやCa以外の元素を添加し、溶鋼中の酸素濃度を低下させるため、MgやCaの酸化ロスが低減する。
【0044】
スラグからの酸素供給によってMgやCaが酸化ロスするのを抑制するため、スラグ中のFeO濃度とMnO濃度を低減することが有効である。MgやCaの添加前のスラグ中のT.Fe+MnOを質量%で10%を超えるとMgやCaの歩留まりが著しく低下する。したがって、T.Fe+MnOを10%以下とする。この値は小さいほど、Mgの酸化ロス防止には有効であり、5%以下が望ましい。
【0045】
MgやCaの蒸発ロスを抑制するため、できるだけ精錬工程の末期に添加することが有利である。したがって、精錬工程で他の元素を添加したのちに、添加するのがよい。これは上述のように酸化ロスを抑制することからも有利である。ただし、成分の微調整のため、Mg、Ca添加後に、Mg、Ca以外の元素を少量添加しても構わない。
【0046】
Mgを溶鋼に添加するには、Mg含有合金、MgO含有酸化物の1種もしくは、2種以上を用いる。
【0047】
Mg含有合金、MgO含有酸化物を溶鋼に添加する方法は、粉状にしたMg合金、MgO含有酸化物を不活性ガスを搬送ガスとして取鍋内の溶鋼中に吹き込む方法、塊状のものを取鍋内溶鋼、RH、DH等の真空槽内溶鋼に上方添加する方法、粉状のものを例えば鉄で被覆しワイヤ状にしたものを取鍋内溶鋼または/およびタンディッシュ内溶鋼または/およびモールド内溶鋼に添加する方法が考えられる。これらのいずれの方法を用いてもよく、その効果は同等である。さらに、これらの方法を組み合わせてもよい。
【0048】
CaはCaを含有する合金であれば何を用いても構わない。一般的にはCa−Si合金が用いられる。
【0049】
Mgの添加時期は、Ca添加前、Ca添加と同時、Ca添加後のいずれか、または、これらの組み合わせのいずれでもよい。
【0050】
MgとCaを同時に添加する場合は、Mg含有合金または/およびMgO含有酸化物をCa含有合金と混合して添加する方法、MgとCaの両方を含有する合金を添加する方法のいずれの方法でもよく、その効果は同等である。
【0051】
【実施例】
(実施例1)
表1に鋼材の化学成分と介在物の分散状態を、表2に鋼材の製造条件と機械的性質を示す。
【0052】
表1のピンニング粒子の個数の測定は、鋼材母材の板厚中心部から抽出レプリカ試料を作製し、これを、30000倍の倍率で2000μm2の面積にわたってTEM観察することで行った。また、表1の0.5〜5μmの大きさの酸化物の個数の測定は、同じく、鋼材母材の板厚中心部から小片を切り出して1400℃で20分間保定した後に水冷し、鏡面研磨面を1000倍の倍率で4mm2の面積にわたって光学顕微鏡観察することで行った。さらに、EPMA−WDSによって、0.5〜5μmの20個の酸化物について組成を分析し、地鉄(Fe)の分析値を差し引いて平均組成を求め、Mg+Alの値を求めた。
【0053】
本発明鋼は溶接入熱量が20〜100kJ/mmのエレクトロガス溶接部あるいはエレクトロスラグ溶接部の溶融線において従来にない良好なHAZ靭性を有する。本発明鋼は、Al、Ti、Mg、O、Nの量を厳密に制御し、有効Ti量なる概念を用いてHAZにおけるTiとNの存在形態を適正化し、さらに、γ粒成長抑制に有効な酸化物の分散状態を有することで大入熱溶接においても良好なHAZ靭性を達成している。一方、比較鋼は化学成分や酸化物の分散状態が適正でないため、母材およびHAZの機械的性質が劣っている。
【0054】
鋼12は、Cの量が低すぎるために、鋼13はC量が高すぎるために、母材およびHAZの靭性が劣る。鋼14は、Si量が高すぎるためにHAZ靭性が劣る。鋼15はMn量が低すぎるために、鋼16はMn量が高すぎるために、母材およびHAZの靭性が劣る。鋼17はP量が高すぎるために、母材およびHAZの靭性が劣る。鋼18は、S量が高すぎるために、母材およびHAZの靭性が劣る。鋼19はAl量が低すぎるために0.5〜5μmの酸化物中のMg+Alが低く、ピンニング粒子の個数が少ないため、HAZ靭性が劣る。鋼20はTi量が低すぎるため、ピンニング粒子であるTiNの個数が少なく、HAZ組織が著しく粗大化してHAZ靭性が劣る。鋼21はTi量が高すぎるため、有効Ti量が適正範囲から外れ、TiC析出脆化によってHAZ靭性が劣る。鋼22はMg量が低すぎるため、TiNの析出核であるMgとAlとから成る酸化物の個数が少なく、γ粒が粗大化してHAZ靭性が劣る。鋼23は、O量が低すぎるため、MgとAlとから成る酸化物の個数が少なく、γ粒が粗大化してHAZ靭性が劣る。鋼24はO量が高すぎるため、鋼の清浄度が悪くなり、破壊起点が増えてHAZ靭性が劣る。鋼25はN量が低すぎるためピンニング粒子であるTiNの個数が少なく、HAZ組織が著しく粗大化してHAZ靭性が劣る。鋼26はN量が高すぎるため、有効Ti量の適正範囲から外れ、固溶Nが過剰となりHAZ靭性が劣る。鋼27と鋼28は各々の元素は適正範囲にあるが、有効Ti量が不適当であるため、TiC析出脆化あるいは固溶N脆化によりHAZ靭性が劣る。
【0055】
【表1】
Figure 0003699633
【0056】
【表2】
Figure 0003699633
【0057】
(実施例2)
表1の本発明鋼1の組成の鋼を溶製するに際して、Mg添加前の取鍋スラグ中のT.Fe+MnO濃度を種々変化させた。その時の成品におけるMgの歩留まりを図5に示す。Mgの歩留まりは、T.Fe+MnO濃度が低いほど高い。T.Fe+MnO濃度を質量%で10%以下望ましくは5%以下にすることでMg歩留まりは著しく向上する。
【0058】
(実施例3)
表1の本発明鋼1の組成の鋼を溶製するに際して、Si、Mn、Ti、Al、Mg、Caの添加時期を変化させた。その時の成品におけるMgとCaの歩留まりを比較した結果を表3に示す。Mg添加前のスラグ中T.Fe+MnO濃度はいずれも2%であった。
【0059】
Mg、Ca以外の元素を添加した後に、MgやCaを添加した場合には、MgとCaの両方の歩留まりが10%以上で良好であるのに対して、Mg、Ca以外の元素をMgやCaの添加後に添加した場合には、Mg、Caのいずれかまたは、両方の歩留まりが低い。
【0060】
【表3】
Figure 0003699633
【0061】
【発明の効果】
本発明により、大入熱溶接においても良好なHAZ靭性を有する鋼材の製造が可能となり、各種の溶接構造物の安全性が格段に向上した。また、本発明鋼を使用することで高能率溶接の適用範囲が広がり、溶接施工コストを大幅に低減することが可能となった。
【図面の簡単な説明】
【図1】HAZ靭性に及ぼすγ粒径の影響を示す図である。
【図2】1400℃加熱γ粒径に及ぼすピンニング粒子個数の影響を示す図である。
【図3】ピンニング粒子個数に及ぼす0.5〜5μmの大きさの酸化物中Mg+Alの影響を示す図である。
【図4】1400℃加熱HAZ靭性に及ぼす有効Ti量の影響を示す図である。
【図5】Mgの添加歩留まりに及ぼすスラグ中のT.Fe+MnO濃度の影響を示す図である。[0001]
[Field of the Invention]
The present invention relates to a steel material having excellent heat-affected zone (HAZ) toughness. Since the steel material of the present invention has good HAZ toughness in a wide range of welding conditions from small heat input welding to ultra-high heat input welding, various steels such as buildings, bridges, shipbuilding, line pipes, construction machinery, offshore structures, tanks, etc. Used for welded steel structures.
[0002]
[Prior art]
In HAZ, the closer to the melting line, the higher the heating temperature at the time of welding. Particularly in the region heated to 1400 ° C. or more near the melting line, the heated austenite (γ) becomes extremely coarse, and the HAZ structure after cooling becomes It becomes coarse and deteriorates toughness. This tendency becomes more prominent as the welding heat input increases.
[0003]
As means for solving such problems, JP-A-60-245768, JP-A-60-152626, JP-A-63-1210235, JP-A-63-1210235, JP-A-2 JP-A-250917 and JP-A-1-73320 actively generate intragranular transformed ferrite with a core of Ti oxide or a composite precipitate of TiN and MnS inside coarse γ grains, and HAZ toughness. Has been trying to improve. However, it has been difficult to obtain sufficient toughness in the high heat input welding HAZ in which the heat input by welding exceeds 20 kJ / mm in the steel manufactured by these techniques.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a steel material having good HAZ toughness and a method for producing the same even in high heat input welding in which the welding heat input exceeds 20 kJ / mm.
[0005]
[Means for Solving the Problems]
With the aim of improving high heat input welding HAZ toughness with a welding heat input exceeding 20 kJ / mm, the present inventors have made extensive studies on (1) suppression of heated γ grain growth and (2) appropriate forms of Ti and N. The present inventors have found a new metallurgical effect and have arrived at the present invention.
[0006]
The gist of the present invention is as follows.
[0007]
(1) In mass%,
C: 0.03% to 0.2%,
Si: 0.4% or less,
Mn: 0.5-2%
P: 0.015% or less,
S: 0.006% or less,
Al: more than 0.01% to 0.03% or less,
Ti: 0.007% to 0.02%,
Mg: more than 0.001% to 0.006% or less,
O: 0.001 to 0.004%,
N: 0.0025 to 0.006% is contained,
Furthermore, it contains either one or both of Ca: 0.004% or less, REM: 0.003% or less,
Balance has a chemical composition consisting of Fe and unavoidable impurities, TiN of 0.01 or more and less than 0.5μm enclosing the oxide composed of Mg and Al are present 10000 / mm 2 or more, further, 0.5 The average value of the sum of the Mg content and the Al content in the oxide having a size of ˜5 μm is 30% or more by mass% , and further using the mass%, the following formula (1) or (2) A steel material having an excellent weld heat-affected zone toughness, characterized in that the effective Ti amount calculated in (1) is in the range of -0.01% to + 0.005% .
When O-0.17 × REM-0.4 × Ca-0.66 × Mg-0.89 × Al ≧ 0,
Effective Ti amount = Ti-2 × (O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al) −3.4 × N (1)
In the case of O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al <0,
Effective Ti amount = Ti-3.4 × N (2)
[0008]
(2) In mass%,
Cu: 1.5% or less,
Ni: 1.5% or less,
Mo: 1% or less,
Cr: 1% or less,
Nb: 0.05% or less,
V: 0.05% or less,
B: A steel material having excellent weld heat affected zone toughness as described in the above item (1), comprising one or more of 0.002% or less.
[0011]
( 3 ) T. in slag before addition of Mg and Ca. Fe + MnO is 10 mass% or less, The manufacturing method of the steel material excellent in the weld heat affected zone toughness as described in said (1) or (2) characterized by the above-mentioned .
[0012]
( 4 ) The method for producing a steel material having excellent weld heat affected zone toughness according to (1) or (2) above , wherein elements other than Mg and Ca are added and then Mg and Ca are added. "
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The new metallurgical effect discovered by this invention is demonstrated below.
[0014]
First, suppression of heated γ grain growth will be described. Because the heating temperature of the HAZ near the weld line reaches 1400 ° C, the ability to pin the movement of the γ grain boundary is significantly reduced by the dissolution and coarsening of carbides and nitrides, and the growth of γ grains can be avoided. There wasn't. Therefore, it was studied to suppress γ grain growth by pinning with an oxide that is thermally stable even at a high temperature of 1400 ° C. or higher. As a result, it has been found that by containing a small amount of Mg and Al in the steel, a large amount of an oxide composed of extremely fine Mg and Al having a size of 0.01 to 0.1 μm is produced in a large amount. It was. Furthermore, fine TiN with a size of 0.01 or more and less than 0.5 μm is deposited on the oxide of Mg and Al, and exhibits a very strong pinning force at a high temperature of 1400 ° C. or higher. Clarified what to do. The TiN composite particles are preferably more than 0.01 and 0.2 μm or less.
[0015]
Since this Mg and Al oxide has good lattice matching with TiN, it effectively acts as a TiN precipitation nucleus. And , when TiN is combined with an oxide composed of 0.01 to 0.1 μm of Mg and Al , the surface area is increased, and a stronger pinning force is expressed. FIG. 1 shows the influence of γ grain size on the HAZ toughness when the cooling time from 800 ° C. to 500 ° C. during welding cooling is 330 s. This cooling time corresponds to a case where electroslag welding is performed on a steel material having a plate thickness of 80 mm with a welding heat input of about 70 kJ / mm. As shown in FIG. 1, the HAZ toughness is improved as the γ grains are refined. This is because the grain boundary ferrite and ferrite side plate transformed from the γ grain boundary become smaller as the γ grain becomes finer, and the HAZ structure is refined. Such an effect is remarkable when the γ particle size is 150 μm or less. FIG. 2 shows the influence of the number of composite precipitated TiN of 0.01 μm or more and less than 0.5 μm on the γ grains when held at 1400 ° C. for 30 s. This heating condition corresponds to the vicinity of the melt line HAZ when electroslag welding is performed on a steel material having a plate thickness of 80 mm with a welding heat input of about 70 kJ / mm. From FIG. 2, when the number of composite precipitated TiN is less than 10,000 / mm 2 , the γ grain size becomes 150 μm or more, and the HAZ structure is not sufficiently refined, so that good toughness cannot be obtained. Such a dispersion state of the composite precipitated TiN effective for suppressing the γ grain growth can be achieved by controlling the amounts of Mg, Al, Ti, O, and N within the range of the present invention.
[0016]
Next, the relationship between the oxide composition of 0.5 to 5 μm and the number of composite precipitated TiN of 0.01 μm or more and less than 0.5 μm will be described. FIG. 3 shows the sum of Mg content and Al content expressed in mass% in the oxide composition of 0.5 to 5 μm, and Mg + Al and the number of composite precipitated TiN of 0.01 μm or more and less than 0.5 μm. Show the relationship. When Mg + Al is 30% or more, the number of composite precipitated TiN is 10,000 pieces / mm 2 or more. When Al and Mg in the molten steel are within the scope of the present invention, increasing Mg + Al in the oxide of 0.5 to 5 μm increases the Mg in the oxide of this size. This is because the number of oxides composed of Mg and Al of .about.0.5 .mu.m increases.
[0017]
Next, the reasons for limiting each chemical component will be described.
[0018]
The lower limit of C is 0.03% of the minimum amount for securing the strength and toughness of the base material and the welded portion. However, too much C lowers the toughness of the base metal and the HAZ and degrades the weldability, so the upper limit is made 0.2%.
[0019]
Si is contained in steel for deoxidation, but if it is too much, weldability and HAZ toughness deteriorate, so the upper limit is made 0.4%. The deoxidation of the present invention can be sufficiently performed with Ti alone, and in order to obtain good HAZ toughness, it is desirable to make Si 0.3% or less.
[0020]
Mn is indispensable for ensuring the strength and toughness of the base material and the welded portion, and the lower limit is 0.5%. However, if there is too much Mn, the upper limit is made 2% in order to deteriorate the HAZ toughness, promote the center segregation of the slab, and deteriorate the weldability.
[0021]
P is an impurity element in the steel of the present invention, and is made 0.015% or less. The reduction of P improves the mechanical properties of the base metal and the HAZ through the reduction of slab center segregation, and further suppresses HAZ grain boundary fracture.
[0022]
If the amount of S is too large, center segregation is promoted or a large amount of stretched MnS is generated, so that the mechanical properties of the base material and the HAZ are deteriorated. Therefore, the upper limit is made 0.006%.
[0023]
Al is important in controlling the number of oxides composed of 0.01 to 0.1 μm Mg and Al, which are precipitation nuclei of composite precipitated TiN that is pinning particles for γ grain growth. When Al is less than 0.01%, Mg + Al in the oxide of 0.5 to 5 μm is less than 30%, and the number of oxides of 0.01 to 0.1 μm of Mg and Al is 10,000 / mm. Since the number of composite precipitated TiN is insufficient, the γ grains are not sufficiently finely divided, and good HAZ toughness cannot be obtained. On the other hand, even if Al is added over 0.03%, the effect is saturated. Therefore, Al is more than 0.01% and 0.03% or less.
[0024]
Ti is important in controlling the dispersion state of the composite precipitated TiN as pinning particles, and must be limited to a narrow range in combination with an appropriate range of effective Ti concentration described later. When Ti is less than 0.007%, the number of TiN compositely deposited on the oxide composed of Mg and Al is less than 10,000 / mm 2, and the effect of suppressing the growth of γ grains necessary for improving the HAZ toughness cannot be obtained. . On the other hand, when Ti exceeds 0.02%, even if the effective Ti is within an appropriate range, TiC is substantially excessively generated, and the HAZ toughness is lowered. TiN contributes to improving the strength and toughness of steel by refining the base metal structure through the suppression of γ grain growth during slab heating in thick plate rolling.
[0025]
Here, an appropriate form of Ti and N will be described. Ti in the steel combines with O to form an oxide, the remaining Ti combines with N to form TiN, and if there is any remaining Ti, it combines with C to form TiC, TiC causes precipitation embrittlement. On the other hand, if all Ti in the steel is consumed as an oxide and TiN, excess N that could not be combined with Ti is dissolved in the ground iron, but the solid solution N also causes embrittlement. Thus, the presence forms of Ti and N differ depending on whether or not the remaining Ti consumed as oxides and nitrides exists, and this greatly affects the toughness. In the present invention, the remaining Ti amount consumed as oxides and nitrides is defined by the formulas (1) and (2) using the mass% as the “effective Ti amount”.
[0026]
When O-0.17 × REM-0.4 × Ca-0.66 × Mg-0.89 × Al ≧ 0,
Figure 0003699633
In the case of O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al <0,
Effective Ti amount = Ti-3.4 × N (2)
[0027]
The coefficient of each element in the formulas (1) and (2) is a value determined stoichiometrically from the assumed oxide and nitride. In the vicinity of the melting line HAZ exceeding 1400 ° C., the existence form of Ti and N is further complicated. The reason for this is that most of TiC and TiN are once dissolved in the ground iron during welding and heating, and Ti, N, and C that are dissolved again reprecipitate as TiN or TiC during welding cooling, and some of them remain in solid solution. Because it exists. In order to improve the HAZ toughness by controlling the existence forms of Ti and N, the amounts of Ti and N are specified, and the concept of effective Ti is used to balance with other components. This is very important. FIG. 4 shows the effect of the effective Ti amount on 1400 ° C. heating reproduction HAZ toughness simulating the case where the welding heat input is 50 kJ / mm. Good toughness is exhibited when the effective Ti concentration is in the range of -0.01% to + 0.005%. That is, this range is an appropriate component range that can avoid both precipitation embrittlement of TiC and solid solution embrittlement of N. When the effective Ti amount is less than g-0.01%, the amount of solid solution N is excessive, and when the effective Ti amount exceeds + 0.005%, the TiC precipitation amount is excessive and the HAZ toughness is deteriorated.
[0028]
Thus, by considering the effective Ti, further better HAZ toughness can be obtained.
[0029]
Mg is a characteristic element of the present invention and has the most important role. By containing an appropriate amount of Mg, the oxide dispersion state in the present invention can be achieved. When Mg is 0.001% or less, Mg is consumed in an oxide of 0.5 to 5 μm, and the number of oxides composed of Mg and Al, which are TiN precipitation nuclei, is insufficient. On the other hand, 0.006% of Mg consumed as an oxide is sufficient, and Mg exceeding this has no metallic effect. Since Mg is a very active element having a high vapor pressure and strong oxidizing power, inclusion in the steel more than necessary causes an increase in manufacturing costs and is not preferable.
[0030]
O is necessary for securing the number of oxides composed of Mg and Al, which are TiN precipitation nuclei. When O is less than 0.001%, the number of oxides is insufficient, and the HAZ toughness deteriorates. On the other hand, when O exceeds 0.004%, the cleanliness of the steel decreases and the mechanical properties deteriorate.
[0031]
N is important in securing the number of composite precipitated TiNs that are pinning particles, and must be limited to a narrow range in combination with an appropriate range of effective Ti amount. When N is less than 0.0025%, the number of TiN cannot be secured. On the other hand, when N exceeds 0.006%, even if the effective Ti amount is within an appropriate range, the solid solution N is substantially excessive, and the HAZ toughness is lowered.
[0032]
Next, the reason for adding Cu, Ni, Mo, Cr, Nb, V, B, Ca, and REM will be described.
[0033]
Cu and Ni improve the strength and toughness of the base material without adversely affecting the weldability and the HAZ toughness. However, if it exceeds 1.5%, weldability and HAZ toughness deteriorate.
[0034]
Mo and Cr improve the strength and toughness of the base material. However, if it exceeds 1%, the toughness, weldability and HAZ toughness of the base metal deteriorate.
[0035]
Nb is an effective element for refining the base material structure, and deducts the mechanical properties of the base material. However, if it exceeds 0.05%, the HAZ toughness deteriorates.
[0036]
V improves the toughness of the base material. However, if it exceeds 0.05%, weldability and HAZ toughness deteriorate.
[0037]
B enhances the quenching positive and improves the mechanical properties of the base material and HAZ. However, if added over 0.002%, the Z toughness and weldability deteriorate.
[0038]
Ca and REM improve the material by forming oxides and sulfides. Here, REM indicates a rare earth metal element such as La or Ce. Even if Ca is added in excess of 0.004%, the material improvement effect is saturated. Even if REM is added in excess of 0.003%, the material improvement effect is saturated similarly. Adding more than necessary is undesirable because it increases the production cost. The effect is equivalent even when both Ca and REM are added.
[0039]
The steel of the present invention is manufactured by adjusting the chemical composition to a predetermined chemical component in the steelmaking process of the steel industry, performing continuous casting, reheating the slab, and then giving the shape and base material by rolling. If necessary, various heat treatments are performed on the steel material to control the material of the base material. Hot charge rolling is also possible without reheating the slab.
[0040]
The oxide dispersion state defined in the present invention is quantitatively measured, for example, by the following method. The dispersion state of the composite precipitates of oxide and TiN composed of Mg and Al of 0.01 or more and less than 0.5 μm is obtained by preparing an extracted replica sample from an arbitrary place of the base steel, and using a transmission electron microscope (TEM). ) Is observed over an area of at least 1000 μm 2 at a magnification of 10,000 to 50,000 times, and the number of composite precipitates of a target size is measured and converted to the number per unit area. At this time, the identification of oxide and TiN composed of Mg and Al is performed by composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to TEM and crystal structure analysis of electron diffraction image by TEM. When it is complicated to perform such identification on all the composite precipitates to be measured, the following procedure is simply performed. First, a square-shaped precipitate is regarded as TiN, and the number of oxides in a target size of TiN is measured as described above. At least 10 or more of the composite precipitates whose number was measured by the following method are identified as described above, and the ratio of the composite of Mg and Al oxide and TiN is calculated. To do. Then, this ratio is multiplied by the number of composite precipitates measured first. When the carbide in steel interferes with the above TEM observation, the carbide can be aggregated and coarsened by a heat treatment at 500 ° C. or less, and the target composite precipitate can be easily observed.
[0041]
An example of measuring the composition of an oxide of 0.5 to 5 μm is shown below. A small piece sample is cut out from an arbitrary place of the base steel material, and this is held at 1400 to 1450 ° C. for 10 minutes or more to form 0.5 to 5 μm inclusions other than oxides, and then water-cooled. This is mirror-polished and observed over an area of at least 1 mm 2 at a magnification of 1000 using an optical microscope. At least 10 or more of the target oxides are analyzed for composition using wavelength dispersion spectroscopy (WDS) attached to an X-ray microanalyzer (EPMA), and the contents of Mg and Al in the average composition of the oxides Is determined by mass%. In the case of inclusions, when Fe of iron is detected in the analysis value of the oxide, the average composition of the oxide is obtained by excluding Fe from the analysis value.
[0042]
Since Mg and Ca have a strong affinity for oxygen and a high vapor pressure, they are oxidized and removed as oxides from the molten steel, or evaporated and lost. Therefore, the addition yield is low. In order to improve the yield, it is important to suppress oxidation loss and evaporation loss as much as possible.
[0043]
In order to reduce the oxidation loss, it is important to reduce the oxygen in the molten steel before the addition of Mg and Ca and the FeO concentration and the MnO concentration in the slag. The steel material of the present invention contains deoxidizing elements such as Si, Mn, Al, and Ti. By adding these elements and then adding Mg and Ca, the oxidation loss can be reduced. That is, since elements other than Mg and Ca are added to lower the oxygen concentration in the molten steel, the oxidation loss of Mg and Ca is reduced.
[0044]
It is effective to reduce the FeO concentration and the MnO concentration in the slag in order to suppress the oxidation loss of Mg and Ca due to the oxygen supply from the slag. T. in slag before addition of Mg or Ca. If the Fe + MnO content exceeds 10% by mass, the yield of Mg or Ca is significantly reduced. Therefore, T.W. Fe + MnO is 10% or less. The smaller this value is, the more effective it is for preventing oxidation loss of Mg, and 5% or less is desirable.
[0045]
In order to suppress the evaporation loss of Mg and Ca, it is advantageous to add as much as possible at the end of the refining process. Therefore, it is preferable to add after adding other elements in the refining process. This is also advantageous from suppressing oxidation loss as described above. However, a small amount of elements other than Mg and Ca may be added after adding Mg and Ca for fine adjustment of the components.
[0046]
In order to add Mg to molten steel, one or more of Mg-containing alloys and MgO-containing oxides are used.
[0047]
The Mg-containing alloy and MgO-containing oxide are added to the molten steel by a powdered Mg alloy, MgO-containing oxide being blown into the molten steel in the ladle using an inert gas as a carrier gas, Method of adding upward to the molten steel in the vacuum chamber, such as molten steel in the pan, RH, DH, etc., the powdered material coated with iron, for example, in the form of a wire, the molten steel in the pan and / or the molten steel in the tundish or / and the mold A method of adding to the inner molten steel is conceivable. Any of these methods may be used, and the effects are equivalent. Furthermore, these methods may be combined.
[0048]
As long as Ca is an alloy containing Ca, anything may be used. Generally, a Ca—Si alloy is used.
[0049]
The timing of adding Mg may be before Ca addition, at the same time as Ca addition, after Ca addition, or any combination thereof.
[0050]
When adding Mg and Ca at the same time, either a method of adding an Mg-containing alloy or / and an MgO-containing oxide mixed with a Ca-containing alloy or a method of adding an alloy containing both Mg and Ca Well, the effect is equivalent.
[0051]
【Example】
(Example 1)
Table 1 shows the chemical composition of steel materials and the dispersion state of inclusions, and Table 2 shows the manufacturing conditions and mechanical properties of the steel materials.
[0052]
The number of pinning particles shown in Table 1 was measured by preparing an extracted replica sample from the center of the plate thickness of the steel base material, and observing this with a 30,000 magnification over an area of 2000 μm 2 . In addition, the number of oxides having a size of 0.5 to 5 μm in Table 1 is similarly measured by cutting out a small piece from the center part of the thickness of the steel base material and holding it at 1400 ° C. for 20 minutes, followed by water cooling and mirror polishing. The surface was observed by optical microscope observation over an area of 4 mm 2 at a magnification of 1000 times. Further, the composition of 20 oxides of 0.5 to 5 μm was analyzed by EPMA-WDS, and the average composition was determined by subtracting the analysis value of ground iron (Fe), and the value of Mg + Al was determined.
[0053]
The steel according to the present invention has a good HAZ toughness that has not been seen in the past in the melt line of an electrogas weld or electroslag weld having a welding heat input of 20 to 100 kJ / mm. The steel of the present invention strictly controls the amount of Al, Ti, Mg, O, N, optimizes the existence form of Ti and N in HAZ using the concept of effective Ti amount, and is also effective in suppressing γ grain growth As a result of having a stable oxide dispersion, good HAZ toughness is achieved even in high heat input welding. On the other hand, since the comparative steel is not suitable for chemical components and oxide dispersion, the mechanical properties of the base material and HAZ are inferior.
[0054]
Since the amount of C in the steel 12 is too low and the amount of C in the steel 13 is too high, the toughness of the base material and the HAZ is inferior. Steel 14 is inferior in HAZ toughness because the amount of Si is too high. Steel 15 has an excessively low Mn content, and steel 16 has an excessively high Mn content, so that the toughness of the base material and HAZ is inferior. Since the steel 17 has an excessively high P content, the toughness of the base material and the HAZ is inferior. Steel 18 is inferior in the toughness of the base material and HAZ because the amount of S is too high. Since the steel 19 has an Al amount that is too low, Mg + Al in the oxide of 0.5 to 5 μm is low, and the number of pinning particles is small, so that the HAZ toughness is inferior. Since the amount of Ti in the steel 20 is too low, the number of TiN as pinning particles is small, the HAZ structure becomes extremely coarse, and the HAZ toughness is inferior. Since the steel 21 has an excessively high amount of Ti, the effective amount of Ti deviates from the appropriate range, and the HAZ toughness is inferior due to TiC precipitation embrittlement. Since the amount of Mg in the steel 22 is too low , the number of oxides composed of Mg and Al, which are TiN precipitation nuclei, is small, and the γ grains become coarse and the HAZ toughness is inferior. Since the amount of O in the steel 23 is too low , the number of oxides composed of Mg and Al is small, the γ grains are coarsened, and the HAZ toughness is inferior. Since the amount of O in the steel 24 is too high, the cleanliness of the steel is deteriorated, the fracture starting point is increased, and the HAZ toughness is inferior. In Steel 25, since the amount of N is too low, the number of TiN as pinning particles is small, the HAZ structure becomes extremely coarse, and the HAZ toughness is inferior. Since the amount of N in the steel 26 is too high, it deviates from the appropriate range of the effective Ti amount, so that the solute N becomes excessive and the HAZ toughness is inferior. In Steel 27 and Steel 28, each element is in an appropriate range, but since the effective Ti amount is inappropriate, the HAZ toughness is inferior due to TiC precipitation embrittlement or solute N embrittlement.
[0055]
[Table 1]
Figure 0003699633
[0056]
[Table 2]
Figure 0003699633
[0057]
(Example 2)
When melting the steel of the composition of the present invention steel 1 in Table 1, T.O. in the ladle slag before addition of Mg. Various changes were made to the Fe + MnO concentration. The yield of Mg in the product at that time is shown in FIG. The yield of Mg is T.W. The lower the Fe + MnO concentration, the higher. T.A. When the Fe + MnO concentration is 10% or less by mass%, desirably 5% or less, the Mg yield is remarkably improved.
[0058]
(Example 3)
When melting steel of the composition of the present invention steel 1 in Table 1, the addition time of Si, Mn, Ti, Al, Mg, Ca was changed. Table 3 shows the result of comparing the yields of Mg and Ca in the product at that time. T. in slag before Mg addition. The Fe + MnO concentration was 2% in all cases.
[0059]
When elements other than Mg and Ca are added and then Mg and Ca are added, the yield of both Mg and Ca is good at 10% or more, whereas elements other than Mg and Ca are Mg or Ca. When added after the addition of Ca, the yield of either or both of Mg and Ca is low.
[0060]
[Table 3]
Figure 0003699633
[0061]
【The invention's effect】
According to the present invention, it is possible to produce a steel material having good HAZ toughness even in high heat input welding, and the safety of various welded structures is greatly improved. Further, the use of the steel of the present invention broadens the application range of high-efficiency welding, and can greatly reduce the welding construction cost.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of γ particle size on HAZ toughness.
FIG. 2 is a diagram showing the influence of the number of pinning particles on the 1400 ° C. heated γ particle size.
FIG. 3 is a diagram showing the influence of Mg + Al in an oxide having a size of 0.5 to 5 μm on the number of pinning particles.
FIG. 4 is a diagram showing the effect of effective Ti amount on 1400 ° C. heated HAZ toughness.
FIG. 5 shows the effect of T. in slag on the yield of addition of Mg. It is a figure which shows the influence of Fe + MnO density | concentration.

Claims (4)

質量%で、
C:0.03%〜0.2%、
Si:0.4%以下、
Mn:0.5〜2%、
P:0.015%以下、
S:0.006%以下、
Al:0.01%超〜0.03%以下、
Ti:0.007%〜0.02%、
Mg:0.001%超〜0.006%以下、
O:0.001〜0.004%、
N:0.0025〜0.006%を含有し、
さらに、Ca:0.004%以下、REM:0.003%以下のいずれか一方あるいは両方を含有し、
残部がFeおよび不可避的不純物からなる化学成分を有し、MgとAlから成る酸化物を内包する0.01以上0.5μm未満のTiNが10000個/mm以上存在し、さらに、0.5〜5μmの大きさの酸化物中のMg含有量とAl含有量との和の平均値が質量%で30%以上で、さらに、質量%を用いて下記の(1)式あるいは(2)式で計算される有効Ti量が−0.01%〜+0.005%の範囲としたことを特徴とする
溶接熱影響部靭性の優れた鋼材。
O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al≧0の場合、
有効Ti量=Ti−2×(O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al)−3.4×N ・ ・ ・(1)
O−0.17×REM−0.4×Ca−0.66×Mg−0.89×Al<0の場合、
有効Ti量=Ti−3.4×N ・ ・ ・(2)
% By mass
C: 0.03% to 0.2%,
Si: 0.4% or less,
Mn: 0.5-2%
P: 0.015% or less,
S: 0.006% or less,
Al: more than 0.01% to 0.03% or less,
Ti: 0.007% to 0.02%,
Mg: more than 0.001% to 0.006% or less,
O: 0.001 to 0.004%,
N: 0.0025 to 0.006% is contained,
Furthermore, it contains either one or both of Ca: 0.004% or less, REM: 0.003% or less,
Balance has a chemical composition consisting of Fe and unavoidable impurities, TiN of 0.01 or more and less than 0.5μm enclosing the oxide composed of Mg and Al are present 10000 / mm 2 or more, further, 0.5 The average value of the sum of the Mg content and the Al content in the oxide having a size of ˜5 μm is 30% or more by mass% , and further, using the mass%, the following formula (1) or formula (2) A steel material having an excellent weld heat-affected zone toughness, characterized in that the effective Ti amount calculated in (1) is in the range of -0.01% to + 0.005% .
When O-0.17 × REM-0.4 × Ca-0.66 × Mg-0.89 × Al ≧ 0,
Effective Ti amount = Ti-2 × (O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al) −3.4 × N (1)
In the case of O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al <0,
Effective Ti amount = Ti-3.4 × N (2)
質量%で、さらに、Cu:1.5%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、Nb:0.05%以下、V:0.05%以下、B:0.002%以下の1種または2種以上を含有することを特徴とする請求項1記載の溶接熱影響部靭性の優れた鋼材。  In addition, Cu: 1.5% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, Nb: 0.05% or less, V: 0.05% or less, B: The steel material excellent in weld heat affected zone toughness according to claim 1, characterized by containing one or more of 0.002% or less. MgおよびCa添加前のスラグ中T.Fe+MnOが10質量%以下であることを特徴とする請求項1または2に記載の溶接熱影響部靭性の優れた鋼材の製造方法。T. in slag before addition of Mg and Ca. Fe + MnO is 10 mass% or less, The manufacturing method of the steel material excellent in the weld heat affected zone toughness of Claim 1 or 2 characterized by the above-mentioned. Mg、Ca以外の元素を添加した後にMg、Caを添加することを特徴とする請求項1または2に記載の溶接熱影響部靭性の優れた鋼材の製造方法。The method for producing a steel material having excellent weld heat affected zone toughness according to claim 1 or 2 , wherein Mg and Ca are added after adding elements other than Mg and Ca.
JP2000132434A 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method Expired - Fee Related JP3699633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132434A JP3699633B2 (en) 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-126678 1999-05-07
JP12667899 1999-05-07
JP2000132434A JP3699633B2 (en) 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001026839A JP2001026839A (en) 2001-01-30
JP3699633B2 true JP3699633B2 (en) 2005-09-28

Family

ID=26462826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132434A Expired - Fee Related JP3699633B2 (en) 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3699633B2 (en)

Also Published As

Publication number Publication date
JP2001026839A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP6245417B1 (en) Steel
CN111433381B (en) High Mn steel and method for producing same
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP3699639B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP2003342675A (en) Steel material having excellent toughness at base material and heat affected zone
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP3699630B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3476999B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3699624B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3699631B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3728130B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3699633B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JPH08325635A (en) Production of high strength and high toughness steel excellent in hic resistance
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP2002371338A (en) Steel superior in toughness at laser weld
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP6627536B2 (en) Steel with excellent toughness in weld heat affected zone and method of manufacturing steel with excellent toughness in weld heat affected zone
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP4054139B2 (en) Steel material excellent in fire resistance and weld heat-affected zone toughness and its manufacturing method
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP4264179B2 (en) Low carbon steel continuous cast slab with small austenite grains during heating
JP3477054B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3522564B2 (en) Steel plate with excellent toughness in weld heat affected zone
JP3507339B2 (en) Steel plate with excellent toughness in weld heat affected zone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050708

R151 Written notification of patent or utility model registration

Ref document number: 3699633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees