JP3477054B2 - Steel sheet with excellent toughness of weld heat affected zone - Google Patents

Steel sheet with excellent toughness of weld heat affected zone

Info

Publication number
JP3477054B2
JP3477054B2 JP30506597A JP30506597A JP3477054B2 JP 3477054 B2 JP3477054 B2 JP 3477054B2 JP 30506597 A JP30506597 A JP 30506597A JP 30506597 A JP30506597 A JP 30506597A JP 3477054 B2 JP3477054 B2 JP 3477054B2
Authority
JP
Japan
Prior art keywords
less
haz
steel
toughness
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30506597A
Other languages
Japanese (ja)
Other versions
JPH11124652A (en
Inventor
明彦 児島
義之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30506597A priority Critical patent/JP3477054B2/en
Publication of JPH11124652A publication Critical patent/JPH11124652A/en
Application granted granted Critical
Publication of JP3477054B2 publication Critical patent/JP3477054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は溶接熱影響部(He
at Affected zone:HAZ)靭性の優
れた鋼板であり、建築、橋梁、造船、ラインパイプ、建
設機械、海洋構造物、タンクなどの各種溶接構造物に用
いられる。 【0002】 【従来の技術】溶接熱影響部(HAZ)においては溶融
線に近づくほど溶接時の加熱温度は高くなり、特に溶融
線近傍の1400℃以上に加熱される領域では加熱オー
ステナイト(γ)が著しく粗大化してしまうため、冷却
後のHAZ組織が粗大化して靭性が劣化してしまう。鋼
の加熱γ粒を細粒化する方法として、「鉄と鋼」第62
年(1976)第9号p.1209−p.1218「低
炭素・低合金鋼のオーステナイト粒度に及ぼすTiNの
分散状態の影響」に記載されているように、TiNなど
の高温で安定な析出物を鋼中に微細分散させてγ粒の成
長をピンニングすることは一般に広く知られている。し
かしながら、各種の炭化物・窒化物の中で鋼中で最も高
い温度までピンニング効果があるとされるTiNでも、
その溶解度積から判断されるように1400℃以上の高
温ではTiNの粗大化・溶解によってその効果の大部分
を失う。 【0003】従って、HAZの溶融線近傍のように14
00℃を超えて加熱される領域でのγ粒成長抑制の手段
は従来なく、この領域でのHAZ脆化が大きな問題であ
った。このような問題点を解決する手段として、特開昭
60−245768号公報、特開昭60−152626
号公報、特開昭63−210235号公報、特開平2−
250917号公報などは、粗大γ粒内に粒内変態フェ
ライト(lntraGranuler Ferrit
e:IGF)を積極的に生成させることでHAZ靭性の
向上をはかってきた。このような場合、γ粒界からは粒
界フェライト(Grain Bundary Ferr
ite:GBF)や粗大なフェライトサイドプレート
(Ferrite Side Plate:FSP)が
粗大に生成しやすいため、これらの脆化組織とIGFと
の生成が競合する。 【0004】粗大なGBFやFSPの生成を抑制するた
めにはγ粒界の焼入性を高めることが必要であるが、過
度に焼入性を高めると島状マルテンサイトを含有する粗
大な上部ベイナイト(Upper Bainite:B
U)が生成しHAZ靭性が劣化してしまう。一方で母材
の機械的性質の観点からも焼入性は考慮されなければな
らない。従って、両者を十分に満足する化学成分を選定
することは困難でありHAZ高靭化にも限界があった。
そこで、広範な溶接条件および母材材質(強度レベル)
において良好なHAZ靭性を有する鋼板が求められてい
た。 【0005】 【発明が解決しようとする課題】本発明は、広範な溶接
条件において良好なHAZ靭性を有する引張強度が40
0MPa以上の鋼板を提供することである。 【0006】 【課題を解決するための手段】本発明の要旨は、重量%
で C :0.02〜0.20%、 Si :0.4%以下、 Mn :0.5〜2.0%、 P:0.015%以下 S :0.006%以下、 Al :0.03%超〜0.08%、 Ti :0.005〜0.03%、 Mg :0.0005〜0.005%、 O :0.002〜0.006%、 を含有し、さらに必要に応じて、 Cu :l.5%以下、 Ni :l.5%以下、 Cr :0.5%以下、 Mo :0.5%以下、 Nb :0.05%以下、 V :0.05%以下、 Ca :0.005%以下、 REM:0.005%以下、 B :0.0015%以下、 N :0.001〜0.005%、 の内の一種以上を含有し、残部が鉄及び不可避的不純物
からなる鋼板中に、0.5μm以上5μm以下の大きさ
でTiとMgの含有量の和が15重量%以上であるTi
−Mg系酸化物が30個/mm2以上存在し、同時に
0.05μm以上0.5μm未満の大きさの酸化物が5
000個/mm2以上存在することを特徴とする溶接熱
影響部靭性の優れた鋼板である。 【0007】 【発明の実施の形態】広範な溶接条件および母材材質に
おいて良好なHAZ靭性を達成するためには、HAZ組
織を十分に微細化することが基本的な考え方である。H
AZ組織微細化のためには、(1)加熱γ細粒化によっ
てGBFやFSPのサイズを小さくすること、(2)I
GF分率を高めること、が必要である。(1)の達成に
は1400℃以上でも安定な酸化物を微細分散すること
によって加熱γ粒をピンニングすることが、(2)の達
成にはIGFの生成核となる酸化物を増加させるととも
にその核生成能を高めることが望まれる。発明者らは酸
化物の分散状態・組成とHAZにおける加熱γ粒径およ
びIGF分率との関係について定量的に検討し、HAZ
組織微細化に関して以下の新しい知見を得た。 【0008】図1は1450℃加熱γ粒径に及ぼす酸化
物個数の影響を示す図である。図1に示すように、0.
05〜0.5μmの酸化物が5000個/mm2以上の
ときにγ細粒化は顕著となり平均γ粒径がl50μm以
下となる。このようなサイズの酸化物はTi系酸化物が
主体であり、一部にTi−Mg系酸化物が存在する。こ
のようなサイズの酸化物の個数が5000個/mm2
満であるとHAZの加熱γ粒は細粒化が不十分である。 【0009】図2はGBFあるいはFSPのサイズに及
ぼす1450℃加熱γ粒径の影響を示す図である。γ粒
径がl50μm以下のときにGBFあるいはFSPの細
粒化が顕著となる。 【0010】図3は1450℃加熱γ粒径が150μm
程度であるときのIGF分率に及ぼす酸化物個数および
酸化物組成の影響を示す図である。ここで、IGF生成
核となる酸化物は0.5〜5μmの大きさが大半であ
り、40%以上の高いlGF分率を発現するためには、
0.5〜5μmの大きさの酸化物において、その組成が
TiとMgの含有量の和か15重量%以上で、かつその
個数が30個/mm2以上である必要がある。このサイ
ズのTi−Mg系酸化物において、その組成がTiとM
gの含有量の和か15重量%未満であったり、その個数
が30個/mm2未満であったりすると高いIGF分率
が得られずHAZ組織は微細化しない。 【0011】図4は酸化物個数に及ぼすMg量の影響を
示す図である。0.05〜0.5μmの酸化物および
0.5〜5μmの酸化物ともに、Mg量の増加によって
個数が増加する。Mgによる酸化物微細分散効果は低A
lにおいて顕著であり、Mg量が5ppm以上の場合に
0.05〜0.5μmの酸化物個数が5000個/mm
2以上、0.5〜5μmの酸化物個数が30個/mm2
上となって、十分なHAZ組織微細化が達成される。M
g量が50ppm程度になるとこれらの効果は飽和す
る。従来鋼(例えば前述した特開昭60−245768
号公報、特開昭60−152626号公報、特開昭63
−210235号公報、特開平2−250917号公報
など)ではIGF生成核となるTi系酸化物は10−2
0個/mm2程度と少ないため150μm程度の細粒な
γではIGFはほとんど生成しなかった。しかしなが
ら、図4に示されるようにTiとMgを複合添加した鋼
ではIGF核として作用するTi−Mg系酸化物の個数
が増加し、図3に示されるように細粒γにおいてもIG
Fが顕著に生成してHAZ組織を微細化することができ
る。 【0012】このように、TiとMgを複合的に添加す
ることにより、鋼中に0.05〜0.5μmの酸化物を
多数分散させて加熱γを細粒化しGBFおよびFSPの
微細化をはかり、同時に、0.5〜5μmのTi−Mg
系酸化物を多数分散させて細粒なγにおいても高いIG
F分率を達成し、広範な溶接条件および母材材質におい
て良好なHAZ靭性を有することが本発明の特徴であ
る。 【0013】以下、化学成分の限定理由について説明す
る。 【0014】Cの下限は母材及び溶接部の強度、籾性を
確保するための最小量である。しかし、Cが多すぎると
母材及びHAZの靭性を低下させるとともに溶接性を劣
化させるのでその上限を0.20%とした。 【0015】Siは脱酸のために鋼に含有されるが、多
すぎると溶接性およびHAZ靭性が劣化するため、上限
を0.4%とした。鋼の脱酸はTiだけでも十分可能で
あり、良好なHAZ靭性を得るためには0.3%以下の
Siとするのが望ましい。 【0016】Mnは母材及び溶接部の強度、靭性を確保
するために不可欠であるため下限を0.5%とした。し
かし、Mnが多すぎるとHAZ靭性を劣化させ、スラブ
の中心偏析を助長し、溶接性を劣化させるので上限を
2.0%とした。 【0017】本発明鋼において不純物元素であるP、S
をそれぞれ0.15%以下、0.006%以下とした理
由はスラブ中心偏折の軽減などを通じて母材およびHA
Zの機械的性質を改善するためである。Pの低減はHA
Zの粒界破壊を抑制し、Sの低減はMnSの減少を通じ
て母材およびHAZの板厚方向材質を向上させる。好ま
しいP、Sはそれぞれ0.01%以下、0.003%以
下である。 【0018】A1は脱酸作用があるが、0.03%超に
ついて調査を重ねた結果、0.08%を超えるとクラス
ター状の酸化物系介在物が増加し、母材材質に悪影響を
及ぼすことを見い出した。したがって、Alは0.03
%超から0.08%以下とした。 【0019】Tiは本発明の必須元素であり、HAZ組
織微細化に有効なTi系あるいはTi−Mg系酸化物、
およびTiNを形成するために0.005%以上必要で
ある。本発明では、低温加熱域でより一層の加熱γ細粒
化をはかるため、酸化物に加えてTiNも最大限に活用
し、1350℃以下で強力なピンニング効果を発現させ
る。Tiの上限は過剰のTiCの析出によるHAZ脆化
を防止するためであり、0.03%とした。 【0020】Mgは本発明の最も重要な元素であり、例
えばNi−Mg合金、Fe−Si−Mg合金、Si−M
g合金として低Al鋼へTiと複合的に添加することで
酸化物微細分散効果が発現される。Mg量の下限は、H
AZ組織微細化のために必要な酸化物の最低個数を確保
するため、ならびにIGF生成核である酸化物中のMg
含有量を高めるために5ppmと規定される。一方、M
g量の上限はこれらの効果が飽和する量である。上限を
超えるMg量は合金コストの上昇を伴うだけで好ましく
ない。 【0021】OはMgやTiと結びついて微細な酸化物
を形成するために必須である。下限は十分な量の酸化物
を確保するための最小量であり、上限は鋼の清浄度を確
保して機械的性質の劣化を回避するための最大量であ
る。 【0022】つぎにCu、Ni、Mo、Cr、Nb、
V、Ca、REM、B、Nの内の一種以上を添加する理
由について説明する。 【0023】Cu、Niは溶接性およびHAZ靭性に悪
影響を及ぼすことなく母材の強度、靭性を向上させる。
各元素の上限は溶接性およびHAZ靭性の劣化を防止す
るためである。 【0024】Moは母材の強度、靭性を向上させる。し
かしその添加量が0.5%を超えると母材靭性、溶接性
およびHAZ靭性を損なう。 【0025】Crは母材の強度を向上させる。しかしそ
の添加量が0.5%を超えると母材靭性、溶接性および
HAZ靭性を損なう。 【0026】Nbは母材組織の微細化に有効な元素であ
り、鋼の強度、靭性を向上させる。しかし、その添加量
が0.05%を超えるとHAZ靭性が劣化する。 【0027】Vは母材の強度を向上させるが0.05%
を超えると溶接性およびHAZ靭性を損なう。 【0028】Ca、REMを添加するのは延伸介在物
(MnS)の形態を制御して靭性を向上させるためであ
る。しかしながら、これらのそれぞれの添加量が0.0
05%を超えると粗大な酸化物が多量に生成して母材お
よびHAZの靭性を劣化させる。 【0029】Bは焼入性を向上させて、母材やHAZの
強度、靭性を向上させる。しかし0.0015%を超え
て添加するとHAZ靭性や溶接性を劣化させる。 【0030】NはTiNを形成してHAZ靭性を向上さ
せる。下限は十分な量のTiNを確保するための最小量
であり、上限は固溶NによるHAZ脆化を防止するため
の量である。 【0031】本発明は、例えば、製鋼工程の溶鋼取鍋や
連続鋳造のタンディッシュあるいはモールドにおいて溶
鋼中にMg合金を添加し、Mg量をはじめ規定の化学成
分を有するスラブを連続鋳造によって造り、これを12
50℃以下に再加熱して制御圧延、加速冷却、焼入、焼
戻などの加工熱処理することで達成される。 【0032】 【実施例】表lに連続鋳造した鋼の化学成分を、表2に
鋼板中の酸化物の分散状態および組成を、表3に母材材
質およびHAZ靭性を示す。種々の溶接条件で鋼板を溶
接し、HAZの最脆化部である溶融線(FL)のシャル
ピー衝撃特性を調査した。本発明鋼はTSが450〜8
20MPaでvTrsが−80℃以下である良好な母材
材質を有し、溶接入熱量が30〜1000kJ/cmで
あるFL近傍にて良好なHAZ靭性を有する。一方、比
較鋼は化学成分および酸化物の分散状態・組成が適当で
ないためにHAZ靭性が劣っている。鋼6はTiが少な
いために0.005〜0.5μmのTi系酸化物の個数
が少なくHAZ加熱γ粒の粗大化にともなってGBFや
FSPも粗大化してしまい、さらに0.5〜5μmの酸
化物におけるTiとMgの含有量の和か小さいためにI
GF分率が低く、HAZ靭性が劣化している。鋼7はT
iが多いためl400℃を超えて加熱されるHAZで固
溶したTiが冷却過程でTiCとして析出しHAZを脆
化させる。鋼8はMgが少ないためにピンニング粒子あ
るいはIGF生成核となる酸化物の個数が少なく、HA
Z組織が十分に微細化されずにHAZ靭性が劣化してい
る。このとき、0.5〜5μmの酸化物におけるTiと
Mgの含有量の和が小さいこともIGF分率を低める原
因となっている。鋼9はOが少ないためにピンニングや
IGF生成に必要な酸化物個数が得られず、HAZ組織
が粗大化してHAZ靭性劣化している。鋼10はOが多
いために鋼の清浄度が低下し、破壊の起点となるような
粗大な酸化物が増加してHAZ靭性が劣化している。 【0033】 【表1】【0034】 【表2】 【0035】 【表3】 【0036】 【発明の効果】本発明によって広範な溶接条件および母
材材質において良好なHAZ靭性が達成され、各種の溶
接構造物の安全性が格段に向上した。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding heat affected zone (He).
at Affected zone (HAZ) is a steel plate having excellent toughness, and is used for various welded structures such as architecture, bridges, shipbuilding, line pipes, construction machinery, marine structures, and tanks. 2. Description of the Related Art In a heat affected zone (HAZ), the heating temperature at the time of welding becomes higher as the temperature becomes closer to the melting line, and particularly in a region near the melting line which is heated to 1400 ° C. or more, heated austenite (γ). Is remarkably coarsened, so that the HAZ structure after cooling is coarsened and the toughness is deteriorated. As a method of refining the heated γ grains of steel, “Iron and Steel” No. 62
Year (1976), No. 9, p. 1209-p. 1218, "Effect of TiN dispersion state on austenite grain size of low carbon and low alloy steel", high temperature stable precipitates such as TiN are finely dispersed in steel to increase the growth of γ grains. Pinning is generally widely known. However, TiN, which is said to have a pinning effect up to the highest temperature in steel among various carbides and nitrides,
At a high temperature of 1400 ° C. or higher, most of the effect is lost due to coarsening and dissolution of TiN as judged from the solubility product. Therefore, as in the vicinity of the melting line of HAZ, 14
There has been no conventional means for suppressing the growth of γ grains in a region heated above 00 ° C., and HAZ embrittlement in this region has been a serious problem. As means for solving such problems, JP-A-60-245768 and JP-A-60-152626 are known.
JP, JP-A-63-210235, JP-A-2-210
JP-A-250917 discloses an intragranular transformed ferrite (IntraGranuler Ferrit) in coarse gamma grains.
e: IGF) has been positively generated to improve HAZ toughness. In such a case, a grain boundary ferrite (Grain Boundary Ferr) is formed from the γ grain boundary.
item: GBF) and a coarse ferrite side plate (FSP) are likely to be coarsely generated, and the generation of these embrittlement structures and IGFs compete with each other. [0004] In order to suppress the formation of coarse GBF and FSP, it is necessary to enhance the hardenability of the γ grain boundary. However, if the hardenability is excessively increased, the coarse upper part containing island-like martensite is required. Bainite (Upper Bainite: B
U) is formed and HAZ toughness is deteriorated. On the other hand, hardenability must be considered from the viewpoint of the mechanical properties of the base material. Therefore, it is difficult to select a chemical component that satisfies both requirements sufficiently, and there is a limit in increasing the HAZ toughness.
Therefore, a wide range of welding conditions and base material (strength level)
In addition, a steel sheet having good HAZ toughness has been demanded. SUMMARY OF THE INVENTION [0005] The present invention relates to a method for producing a steel sheet having a tensile strength of 40 with good HAZ toughness under a wide range of welding conditions.
The purpose is to provide a steel sheet of 0 MPa or more. SUMMARY OF THE INVENTION The gist of the present invention is to provide a method for measuring weight%
, C: 0.02 to 0.20%, Si: 0.4% or less, Mn: 0.5 to 2.0%, P: 0.015% or less, S: 0.006% or less, Al: 0. More than 03% to 0.08%, Ti: 0.005 to 0.03%, Mg: 0.0005 to 0.005%, O: 0.002 to 0.006%, and if necessary Cu: l. 5% or less, Ni: l. 5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, V: 0.05% or less, Ca: 0.005% or less, REM: 0.005% B: 0.0015% or less, N: 0.001 to 0.005%, and at least one of the following, the balance being iron and unavoidable impurities: sum of the contents of Ti and Mg in size is 15 wt% or more Ti
30 or more Mg-based oxides / mm 2 , and at the same time, 5 μm or more and less than 0.5 μm
It is a steel sheet having excellent toughness of a weld heat-affected zone characterized by being present in an amount of 000 pieces / mm 2 or more. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to achieve good HAZ toughness under a wide range of welding conditions and base material, the basic idea is to sufficiently refine the HAZ structure. H
In order to refine the AZ structure, (1) reducing the size of GBF or FSP by heating γ refinement, (2) I
It is necessary to increase the GF fraction. To achieve (1), pinning the heated γ grains by finely dispersing an oxide that is stable even at 1400 ° C. or higher, and to achieve (2), increase the oxides serving as IGF generation nuclei and increase the It is desired to increase the nucleation ability. The inventors quantitatively examined the relationship between the dispersion state and composition of the oxide and the heated γ particle size and the IGF fraction in the HAZ, and
The following new findings were obtained regarding the refinement of the structure. FIG. 1 is a graph showing the effect of the number of oxides on the 1450 ° C. heated γ particle size. As shown in FIG.
When the number of oxides having a particle size of from 0.5 to 0.5 μm is 5,000 / mm 2 or more, the γ-graining becomes remarkable and the average γ particle size becomes 150 μm or less. An oxide having such a size is mainly composed of a Ti-based oxide, and a Ti-Mg-based oxide is partially present. When the number of oxides having such a size is less than 5000 / mm 2 , the heated γ grains of the HAZ are insufficiently refined. FIG. 2 is a diagram showing the effect of the γ particle size at 1450 ° C. on the size of GBF or FSP. When the γ particle size is 150 μm or less, the refining of GBF or FSP becomes remarkable. FIG. 3 shows a 1450 ° C. heated γ particle size of 150 μm.
It is a figure which shows the influence of the number of oxides and the oxide composition on IGF fraction when it is about. Here, most of the oxides serving as IGF-producing nuclei have a size of 0.5 to 5 μm, and in order to express a high lGF fraction of 40% or more,
It is necessary that the composition of the oxide having a size of 0.5 to 5 μm is not less than the sum of the contents of Ti and Mg or not less than 15% by weight and the number thereof is not less than 30 / mm 2 . In a Ti-Mg based oxide of this size, the composition is Ti and M
If the total content of g is less than 15% by weight or the number is less than 30 / mm 2 , a high IGF fraction cannot be obtained and the HAZ structure does not become fine. FIG. 4 shows the effect of the amount of Mg on the number of oxides. The number of both the oxide of 0.05 to 0.5 μm and the oxide of 0.5 to 5 μm increases as the amount of Mg increases. Low oxide fine dispersion effect due to Mg
l, the number of oxides of 0.05 to 0.5 μm is 5000 / mm when the amount of Mg is 5 ppm or more.
When the number of oxides of 2 or more and 0.5 to 5 μm is 30 or more / mm 2 or more, sufficient miniaturization of the HAZ structure is achieved. M
These effects are saturated when the amount of g becomes about 50 ppm. Conventional steel (for example, as described in JP-A-60-245768 described above)
JP, JP-A-60-152626, JP-A-63
In JP-A-210235 and JP-A-2-250917, a Ti-based oxide serving as an IGF-producing nucleus is 10-2.
Since the number of particles was as small as about 0 / mm 2 , almost no IGF was generated with fine γ of about 150 μm. However, as shown in FIG. 4, the number of Ti—Mg-based oxides acting as IGF nuclei increases in the steel in which Ti and Mg are added in a complex manner, and as shown in FIG.
F is remarkably generated and the HAZ structure can be refined. As described above, by adding Ti and Mg in a complex manner, a large number of oxides of 0.05 to 0.5 μm are dispersed in the steel to make the heating γ finer, thereby making the GBF and FSP finer. Scale, at the same time, 0.5-5 μm Ti-Mg
High IG even with fine γ by dispersing a large number of oxides
It is a feature of the present invention to achieve an F fraction and have good HAZ toughness in a wide range of welding conditions and base metal materials. The reasons for limiting the chemical components will be described below. [0014] The lower limit of C is a minimum amount for securing the strength and the paddy properties of the base material and the welded portion. However, if the amount of C is too large, the toughness of the base material and HAZ is reduced and the weldability is deteriorated. Therefore, the upper limit is set to 0.20%. [0015] Si is contained in steel for deoxidation, but if it is too much, weldability and HAZ toughness deteriorate, so the upper limit was made 0.4%. Deoxidation of steel is sufficiently possible with Ti alone, and in order to obtain good HAZ toughness, it is desirable to use 0.3% or less of Si. Since Mn is indispensable for securing the strength and toughness of the base material and the welded portion, the lower limit is set to 0.5%. However, if the Mn content is too large, the HAZ toughness is degraded, the center segregation of the slab is promoted, and the weldability is degraded. Therefore, the upper limit is set to 2.0%. In the steel of the present invention, P and S which are impurity elements
Are set to 0.15% or less and 0.006% or less, respectively.
This is for improving the mechanical properties of Z. Reduction of P is HA
Suppressing the intergranular fracture of Z, and reducing S improves the material in the thickness direction of the base material and HAZ through reduction of MnS. P and S are preferably 0.01% or less and 0.003% or less, respectively. A1 has a deoxidizing effect, but as a result of repeated investigations on more than 0.03%, if it exceeds 0.08%, cluster-like oxide-based inclusions increase, which adversely affects the base material. I found something. Therefore, Al is 0.03
% To 0.08% or less. Ti is an essential element of the present invention, and is a Ti-based or Ti-Mg-based oxide effective for refining the HAZ structure.
And 0.005% or more to form TiN. In the present invention, in order to further refine the heating γ in the low-temperature heating region, TiN in addition to the oxide is utilized to the utmost, and a strong pinning effect is exhibited at 1350 ° C. or less. The upper limit of Ti is set to 0.03% to prevent HAZ embrittlement due to precipitation of excessive TiC. Mg is the most important element of the present invention, for example, Ni-Mg alloy, Fe-Si-Mg alloy, Si-M
The oxide fine dispersion effect is exhibited by adding the Ti and the low alloy steel as a g alloy in combination with Ti. The lower limit of the amount of Mg is H
In order to secure the minimum number of oxides necessary for the refinement of the AZ structure, and to reduce the Mg content in the oxides that are IGF-forming
It is specified as 5 ppm to increase the content. On the other hand, M
The upper limit of the amount of g is an amount at which these effects are saturated. An Mg content exceeding the upper limit is not preferred because it involves an increase in alloy cost. O is essential for forming fine oxides by combining with Mg and Ti. The lower limit is the minimum amount for securing a sufficient amount of oxide, and the upper limit is the maximum amount for securing the cleanliness of the steel and avoiding deterioration of mechanical properties. Next, Cu, Ni, Mo, Cr, Nb,
The reason for adding one or more of V, Ca, REM, B, and N will be described. Cu and Ni improve the strength and toughness of the base material without adversely affecting weldability and HAZ toughness.
The upper limit of each element is for preventing deterioration of weldability and HAZ toughness. Mo improves the strength and toughness of the base material. However, if the addition amount exceeds 0.5%, the base material toughness, weldability and HAZ toughness are impaired. Cr improves the strength of the base material. However, if the addition amount exceeds 0.5%, the base material toughness, weldability and HAZ toughness are impaired. Nb is an element effective for refining the base metal structure, and improves the strength and toughness of steel. However, if the addition amount exceeds 0.05%, the HAZ toughness deteriorates. V improves the strength of the base material but is 0.05%
If it exceeds, weldability and HAZ toughness are impaired. The reason why Ca and REM are added is to control the form of the elongated inclusion (MnS) to improve the toughness. However, the amount of each of these is 0.0
If it exceeds 05%, a large amount of coarse oxides are generated, and the toughness of the base material and HAZ is deteriorated. B improves the hardenability and improves the strength and toughness of the base material and HAZ. However, if added in excess of 0.0015%, HAZ toughness and weldability deteriorate. N forms TiN to improve HAZ toughness. The lower limit is the minimum amount for securing a sufficient amount of TiN, and the upper limit is the amount for preventing HAZ embrittlement due to solid solution N. According to the present invention, for example, a Mg alloy is added to molten steel in a molten steel ladle in a steelmaking process, a tundish or a mold of continuous casting, and a slab having a specified chemical composition such as the amount of Mg is produced by continuous casting. This is 12
It is achieved by reheating to 50 ° C. or lower and performing a working heat treatment such as controlled rolling, accelerated cooling, quenching, and tempering. EXAMPLES Table 1 shows the chemical composition of continuously cast steel, Table 2 shows the dispersion state and composition of oxides in the steel sheet, and Table 3 shows the base material and HAZ toughness. The steel sheets were welded under various welding conditions, and the Charpy impact characteristics of the molten wire (FL), which was the most embrittled portion of the HAZ, were investigated. The steel of the present invention has a TS of 450 to 8
It has a good base material having a vTrs of −80 ° C. or less at 20 MPa, and has a good HAZ toughness in the vicinity of FL where the welding heat input is 30 to 1000 kJ / cm. On the other hand, the comparative steel is inferior in HAZ toughness because the dispersion state and composition of the chemical components and oxides are not appropriate. Since the steel 6 has a small amount of Ti, the number of Ti-based oxides of 0.005 to 0.5 μm is small and the HBF-heated γ grains are coarsened, so that the GBF and FSP are also coarsened. Because of the small sum of the contents of Ti and Mg in the oxide,
The GF fraction is low, and the HAZ toughness is deteriorated. Steel 7 is T
Due to the large number of i, Ti dissolved in HAZ heated above 1400 ° C. precipitates as TiC in the cooling process and embrittles HAZ. Steel 8 has a small number of pinning particles or oxides serving as IGF-forming nuclei due to a low content of Mg.
The HAZ toughness is degraded without sufficiently refining the Z structure. At this time, the small sum of the contents of Ti and Mg in the oxide of 0.5 to 5 μm also causes a decrease in the IGF fraction. In Steel 9, the number of oxides necessary for pinning and IGF generation was not obtained because of a small amount of O, and the HAZ structure was coarsened to degrade HAZ toughness. Since the steel 10 has a large amount of O, the cleanliness of the steel is reduced, and coarse oxides that may be the starting points of fracture increase, and the HAZ toughness is deteriorated. [Table 1] [Table 2] [Table 3] According to the present invention, good HAZ toughness is achieved in a wide range of welding conditions and base metal materials, and the safety of various welded structures has been significantly improved.

【図面の簡単な説明】 【図1】1450℃加熱γ粒径に及ぼす0.05〜0.
5μm酸化物の個数の影響を示す図である。 【図2】GBFあるいはFSPの粒径に及ぼす1450
℃加熱γ粒径の影響を示す図である。 【図3】IGF分率に及ぼす0.5〜5μm酸化物の個
数および組成の影響を示す図である。 【図4】酸化物個数に及ぼす鋼中Mg量の影響を示す図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the effect of 0.05-0.
It is a figure which shows the influence of the number of 5 micrometers oxide. FIG. 2. Effect of 1450 on particle size of GBF or FSP
It is a figure which shows the influence of ° C heating γ particle size. FIG. 3 is a graph showing the influence of the number and composition of 0.5 to 5 μm oxide on the IGF fraction. FIG. 4 is a graph showing the effect of the amount of Mg in steel on the number of oxides.

Claims (1)

(57)【特許請求の範囲】 【請求項l】 重量%で C :0.02〜0.20%、 Si :0.4%以下、 Mn :0.5〜2.0%、 P :0.015%以下、 S :0.006%以下、 Al :0.03%超〜0.08%、 Ti :0.005〜0.03%、 Mg :0.0005〜0.005%、 O :0.002〜0.006%、 を含有し、残部が鉄及び不可避的不純物からなる鋼板中
に、0.5μm以上5μm以下の大きさでTiとMgの
含有量の和が15重量%以上であるTi−Mg系酸化物
が30個/mm2以上存在し、同時に0.05μm以上
0.5μm未満の大きさの酸化物が5000個/mm2
以上存在することを特徴とする溶接熱影響部靭性の優れ
た鋼板。 【請求項2】 重量%で C :0.02〜0.20%、 Si :0.4%以下、 Mn :0.5〜2.0%、 P :0.015%以下、 S :0.006%以下、 Al :0.03%超〜0.08%、 Ti :0.005〜0.03%、 Mg :0.0005〜0.005%、 O :0.002〜0.006%、 を含有し、さらに、 Cu :1.5%以下、 Ni :l.5%以下、 Cr :0.5%以下、 Mo :0.5%以下、 Nb :0.05%以下、 V :0.05%以下、 Ca :0.005%以下、 REM:0.005%以下、 B :0.0015%以下、 N :0.001〜0.005%、 の内の一種以上を含有し、残部が鉄及び不可避的不純物
からなる鋼板中に、0.5μm以上5μm以下の大きさ
でTiとMgの含有量の和が15重量%以上であるTi
−Mg系酸化物が30個/mm2以上存在し、同時に
0.05μm以上0.5μm未満の大きさの酸化物が5
000個/mm2以上存在することを特徴とする溶接熱
影響部靭性の優れた鋼板。
(57) [Claims 1] C: 0.02 to 0.20%, Si: 0.4% or less, Mn: 0.5 to 2.0%, P: 0 by weight% 0.015% or less, S: 0.006% or less, Al: more than 0.03% to 0.08%, Ti: 0.005 to 0.03%, Mg: 0.0005 to 0.005%, O: In a steel sheet comprising 0.002 to 0.006%, the balance being iron and unavoidable impurities, when the sum of the contents of Ti and Mg in a size of 0.5 μm or more and 5 μm or less is 15% by weight or more, there is Ti-Mg-based oxide 30 / mm 2 or more, at the same time oxides of magnitude of less than 0.05μm or 0.5μm is 5000 / mm 2
A steel sheet having excellent toughness in the heat-affected zone of a weld, characterized in that it exists as described above. 2. C: 0.02 to 0.20% by weight, Si: 0.4% or less, Mn: 0.5 to 2.0%, P: 0.015% or less, S: 0. 006% or less, Al: more than 0.03% to 0.08%, Ti: 0.005 to 0.03%, Mg: 0.0005 to 0.005%, O: 0.002 to 0.006%, , Cu: 1.5% or less, Ni: l. 5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, V: 0.05% or less, Ca: 0.005% or less, REM: 0.005% B: 0.0015% or less, N: 0.001 to 0.005%, and at least one of the following, the balance being iron and unavoidable impurities: sum of the contents of Ti and Mg in size is 15 wt% or more Ti
30 or more Mg-based oxides / mm 2 , and at the same time, 5 μm or more and less than 0.5 μm
A steel sheet having excellent toughness in the heat affected zone of the weld, wherein the steel sheet is present in an amount of 000 pieces / mm 2 or more.
JP30506597A 1997-10-21 1997-10-21 Steel sheet with excellent toughness of weld heat affected zone Expired - Fee Related JP3477054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30506597A JP3477054B2 (en) 1997-10-21 1997-10-21 Steel sheet with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30506597A JP3477054B2 (en) 1997-10-21 1997-10-21 Steel sheet with excellent toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH11124652A JPH11124652A (en) 1999-05-11
JP3477054B2 true JP3477054B2 (en) 2003-12-10

Family

ID=17940704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30506597A Expired - Fee Related JP3477054B2 (en) 1997-10-21 1997-10-21 Steel sheet with excellent toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3477054B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020041022A (en) * 2000-11-25 2002-06-01 이구택 Structural steel with superior welding property
CN113234999B (en) * 2021-04-27 2022-05-20 南京钢铁股份有限公司 Efficient welding bridge steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11124652A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
CN111433381B (en) High Mn steel and method for producing same
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP3378433B2 (en) Manufacturing method of steel sheet with excellent toughness of weld heat affected zone
JP3476999B2 (en) Steel sheet with excellent toughness of weld heat affected zone
WO2016060141A1 (en) Steel for high-energy-input welding
CN111788325B (en) High Mn steel and method for producing same
EP1520912B1 (en) Steel excellent in toughness of weld heat-affected zone
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JP3477054B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JPH08325635A (en) Production of high strength and high toughness steel excellent in hic resistance
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
JP3503148B2 (en) Steel with excellent toughness in the heat affected zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2002371338A (en) Steel superior in toughness at laser weld
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees