JP2001026839A - Steel product excellent in toughness in weld-heat affected zone, and its manufacture - Google Patents

Steel product excellent in toughness in weld-heat affected zone, and its manufacture

Info

Publication number
JP2001026839A
JP2001026839A JP2000132434A JP2000132434A JP2001026839A JP 2001026839 A JP2001026839 A JP 2001026839A JP 2000132434 A JP2000132434 A JP 2000132434A JP 2000132434 A JP2000132434 A JP 2000132434A JP 2001026839 A JP2001026839 A JP 2001026839A
Authority
JP
Japan
Prior art keywords
less
toughness
steel
haz
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000132434A
Other languages
Japanese (ja)
Other versions
JP3699633B2 (en
Inventor
Akito Kiyose
明人 清瀬
Akihiko Kojima
明彦 児島
Takao Nakajima
隆雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000132434A priority Critical patent/JP3699633B2/en
Publication of JP2001026839A publication Critical patent/JP2001026839A/en
Application granted granted Critical
Publication of JP3699633B2 publication Critical patent/JP3699633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel product having superior HAZ toughness even at large heat input welding where weld heat input exceeds 20 kJ/mm. SOLUTION: The steel product has a chemical composition consisting of, by mass, 0.03 to 0.2% C, <=0.4% Si, 0.5 to 2% Mn, <=0.015% P, <=0.006% S, >0.01 to 0.03% Al, 0.007 to 0.02% Ti, >0.001 to 0.006% Mg, 0.001 to 0.004% O, 0.0025 to 0.006% N, and the balance Fe with inevitable impurities. In this steel product, the number of TiN of 0.01 to <0.5 μm, containing an Mg- and Al-bearing oxide, is regulated to >=10000 pieces/mm2, and further, the mean value of the sum of Mg content and Al content in the oxide of 0.5 to 5 μm is regulated to >=30%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は溶接熱影響部(Heat
Affected Zone:HAZ)靭性の優れた
鋼材に関するものである。本発明の鋼材は、小入熱溶接
から超大入熱溶接までの広範な溶接条件において良好な
HAZ靭性を有するので、建築、橋梁、造船、ラインパ
イプ、建設機械、海洋構造物、タンクなどの各種溶接鋼
構造物に用いられる。
The present invention relates to a heat affected zone (Heat).
(Affected Zone: HAZ) It relates to a steel material having excellent toughness. Since the steel material of the present invention has good HAZ toughness under a wide range of welding conditions from small heat input welding to very large heat input welding, it can be used for various types of construction, bridges, shipbuilding, line pipes, construction machinery, marine structures, tanks, etc. Used for welded steel structures.

【0002】[0002]

【従来の技術】HAZにおいては、溶融線に近づくほど
溶接時の加熱温度は高くなり、特に溶融線近傍の140
0℃以上に加熱される領域では加熱オーステナイト
(γ)が著しく粗大化してしまい、冷却後のHAZ組織
が粗大化して靭性が劣化する。この傾向は溶接入熱量が
大きくなるほど顕著である。
2. Description of the Related Art In a HAZ, the heating temperature at the time of welding becomes higher as it approaches the melting line.
In a region heated to 0 ° C. or higher, the heated austenite (γ) is significantly coarsened, and the HAZ structure after cooling is coarsened to deteriorate toughness. This tendency is more remarkable as the welding heat input increases.

【0003】このような問題点を解決する手段として、
特開昭60−245768号公報、特開昭60−152
626号公報、特開昭63−210235号公報、特開
昭63−210235号公報、特開平2−250917
号公報、特開平1−73320号公報は、粗大なγ粒の
内部に、Ti酸化物やTiNとMnSの複合析出物を核
とした粒内変態フェライトを積極的に生成させ、HAZ
靭性の向上を図ってきた。しかしながら、これらの技術
によって製造された鋼も、溶接入熱量が20kJ/mm
を超えるような大入熱溶接HAZにおいては十分な靭性
を得ることは困難であった。
[0003] As means for solving such problems,
JP-A-60-245768, JP-A-60-152
626, JP-A-63-210235, JP-A-63-210235, JP-A-2-250917
Japanese Patent Application Laid-Open No. H07-73320 discloses a method of positively generating intragranular transformation ferrite having nuclei of Ti oxide or a composite precipitate of TiN and MnS inside coarse γ grains,
The toughness has been improved. However, steels manufactured by these techniques also have a welding heat input of 20 kJ / mm.
It has been difficult to obtain sufficient toughness in a large heat input welding HAZ that exceeds.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、溶接入熱量が20kJ/mmを超えるよう
な大入熱溶接においても、良好なHAZ靭性を有する鋼
材およびその製造方法を提供することである。
An object of the present invention is to provide a steel material having good HAZ toughness even in a large heat input welding where the welding heat input exceeds 20 kJ / mm, and a method for producing the same. It is to be.

【0005】[0005]

【課題を解決するための手段】本発明者らは、溶接入熱
量が20kJ/mmを超える大入熱溶接HAZ靭性の向
上を狙いとして、加熱γ粒成長抑制、適正なTiと
Nの存在形態について鋭意研究し、新たな金属学的効果
を知見して本発明に至った。
Means for Solving the Problems The inventors of the present invention aimed at improving the HAZ toughness of a large heat input weld having a heat input of more than 20 kJ / mm to suppress the growth of the heated γ grains and the proper form of Ti and N. The present inventors have made intensive studies and found a new metallurgical effect, leading to the present invention.

【0006】本発明の要旨は、以下の通りである。The gist of the present invention is as follows.

【0007】(1) 質量%で、C:0.03%〜0.
2%、Si:0.4%以下、Mn:0.5〜2%、P:
0.015%以下、S:0.006%以下、Al:0.
01%超〜0.03%以下、Ti:0.007%〜0.
02%、Mg:0.001%超〜0.006%以下、
O:0.001〜0.004%、N:0.0025〜
0.006%を含有し、残部がFeおよび不可避的不純
物からなる化学成分を有し、MgとAlから成る酸化物
を内包する0.01以上0.5μm未満のTiNが10
000個/mm2以上存在し、さらに、0.5〜5μm
の大きさの酸化物中のMg含有量とAl含有量との和の
平均値が質量%で30%以上であることを特徴とする溶
接熱影響部靭性の優れた鋼材。
(1) C: 0.03% to 0.
2%, Si: 0.4% or less, Mn: 0.5 to 2%, P:
0.015% or less, S: 0.006% or less, Al: 0.
More than 01% to 0.03% or less, Ti: 0.007% to 0.1%.
02%, Mg: more than 0.001% to 0.006% or less,
O: 0.001 to 0.004%, N: 0.0025 to
0.006%, with the balance having a chemical composition of Fe and unavoidable impurities, and containing 0.01 to less than 0.5 μm of TiN containing an oxide of Mg and Al.
000 / mm 2 or more, and 0.5 to 5 μm
The average value of the sum of the Mg content and the Al content in the oxide having a size of 30% by mass or more is 30% or more.

【0008】(2) 質量%で、さらに、Cu:1.5
%以下、Ni:1.5%以下、Mo:1%以下、Cr:
1%以下、Nb:0.05%以下、V:0.05%以
下、B:0.002%以下の1種または2種以上を含有
することを特徴とする上記(1)項記載の溶接熱影響部
靭性の優れた鋼材。
(2) In mass%, Cu: 1.5
%, Ni: 1.5% or less, Mo: 1% or less, Cr:
The welding according to the above (1), wherein one or two or more of 1% or less, Nb: 0.05% or less, V: 0.05% or less, and B: 0.002% or less are contained. Steel material with excellent heat-affected zone toughness.

【0009】(3) 質量%、でさらに、Ca:0.0
04%以下、REM:0.003%以下のいずれか一方
あるいは両方を含有することを特徴とする上記(1)項
または(2)項記載の溶接熱影響部靭性の優れた鋼材。
(3) mass%, and Ca: 0.0
The steel material having excellent toughness of the weld heat-affected zone according to the above item (1) or (2), which contains one or both of not more than 04% and not more than REM: 0.003%.

【0010】(4) さらに、質量%を用いて下記の
(1)式あるいは(2)式で計算される有効Ti量が−
0.01%〜+0.005%の範囲とすることを特徴と
する上記(1)項乃至(3)項のいずれかに記載の溶接
熱影響部靭性の優れた鋼材。 O−0.17×REM−0.4×Ca−0.66×Mg
−0.89×Al≧0 の場合、 有効Ti量=Ti−2×(O−0.17×REM−0.4×Ca−0.66 ×Mg−0.89×Al)−3.4×N ・ ・ ・(1) O−0.17×REM−0.4×Ca−0.66×Mg
−0.89×Al<0の場合、 有効Ti量=Ti−3.4×N ・ ・ ・(2)
(4) Further, the effective Ti amount calculated by the following equation (1) or (2) using the mass% is-
The steel material excellent in toughness of the weld heat-affected zone according to any one of the above items (1) to (3), which is in the range of 0.01% to + 0.005%. O-0.17 x REM-0.4 x Ca-0.66 x Mg
When −0.89 × Al ≧ 0, effective Ti amount = Ti−2 × (O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al) −3.4 × N · · · (1) O-0.17 x REM-0.4 x Ca-0.66 x Mg
When −0.89 × Al <0, effective Ti amount = Ti−3.4 × N (2)

【0011】(5) MgおよびCa添加前のスラグ中
T.Fe+MnOが10質量%であることを特徴とする
上記(1)項乃至(4)項のいずれかに記載の溶接熱影
響部靭性の優れた鋼材の製造方法。
(5) T. in slag before addition of Mg and Ca The method for producing a steel material having excellent toughness in a weld heat-affected zone according to any one of the above items (1) to (4), wherein Fe + MnO is 10% by mass.

【0012】(6) Mg、Ca以外の元素を添加した
後にMg、Caを添加することを特徴とする上記(1)
項乃至(4)項のいずれかに記載の溶接熱影響部靭性の
優れた鋼材の製造方法。
(6) The above (1), wherein Mg and Ca are added after adding elements other than Mg and Ca.
Item 4. The method for producing a steel material having excellent toughness of a weld heat-affected zone according to any one of Items 4 to 4.

【0013】[0013]

【発明の実施の形態】本発明で知見した新たな金属学的
効果について以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The new metallurgical effects discovered by the present invention will be described below.

【0014】まず、加熱γ粒成長抑制について説明す
る。溶接線近傍HAZは加熱温度が1400℃にも及ぶ
ため、炭化物や窒化物が溶解・粗大化することでγ粒界
の移動をピンニングする力が著しく低下し、γ粒の成長
を避けることはできなかった。そこで、1400℃以上
の高温でも熱的に安定である酸化物によるピンニングに
よってγ粒成長を抑制することを検討した。その結果、
鋼中に微量のMgとAlを含有させることで、0.01
〜0.1μmの大きさの従来にない極めて微細な(M
g,Al)酸化物が多量に生成することを見いだした。
さらに、0.01以上0.5μm未満の大きさの微細な
TiNがこの(Mg,Al)酸化物上に複合析出し、1
400℃以上の高温で従来にない非常に強力なピンニン
グ力を発揮することを明らかにした。なお、TiN複合
粒子は0.01超0.2μm以下とすることが好まし
い。
First, suppression of heating γ grain growth will be described. Since the heating temperature of the HAZ near the welding line reaches 1400 ° C., the force for pinning the movement of the γ grain boundary is significantly reduced due to dissolution and coarsening of carbides and nitrides, and the growth of γ grains can be avoided. Did not. Therefore, suppression of γ grain growth by pinning with an oxide that is thermally stable even at a high temperature of 1400 ° C. or higher was studied. as a result,
By adding trace amounts of Mg and Al to steel, 0.01%
Extremely fine (M
(g, Al) oxide was found to be produced in large quantities.
Further, fine TiN having a size of 0.01 or more and less than 0.5 μm is compositely deposited on the (Mg, Al) oxide, and
It has been clarified that at a high temperature of 400 ° C. or more, a very strong pinning force, which has never been seen before, is exhibited. The TiN composite particles preferably have a thickness of more than 0.01 and 0.2 μm or less.

【0015】この(Mg,Al)酸化物はTiNとの格
子整合性がよいため、TiNの析出核として有効に作用
する。そして0.01〜0.1μmの(Mg,Al)酸
化物にTiNが複合することでその表面積が増し、より
強力なピンニング力が発現される。図1は溶接冷却時の
800℃から500℃までの冷却時間が330sである
場合のHAZ靭性に及ぼすγ粒径の影響を示す。この冷
却時間は板厚80mmの鋼材の約70kJ/mmの溶接
入熱量でエレクトロスラグ溶接した場合に相当する。図
1からγ粒の細粒化に伴いHAZ靭性が向上する。これ
は、γ粒の細粒化に伴ってγ粒界から変態する粒界フェ
ライトやフェライトサイドプレートが小さくなり、HA
Z組織が微細化されるためである。このような効果はγ
粒径が150μm以下の時に顕著である。図2は140
0℃で30s間保持した場合のγ粒に及ぼす0.01μ
m以上0.5μm未満の複合析出TiNの個数の影響を
示す。この加熱条件は、板厚80mmの鋼材を約70k
J/mmの溶接入熱量でエレクトロスラグ溶接した時の
溶融線近傍HAZに相当する。図2から複合析出TiN
の個数が10000個/mm2未満の場合にはγ粒径が
150μm以上になり、HAZ組織が十分に微細化され
ないために良好な靭性は得られない。γ粒成長抑制に有
効なこのような複合析出TiNの分散状態は、Mg、A
l、Ti、O、Nの量を本発明の範囲に制御することで
達成される。
Since this (Mg, Al) oxide has good lattice matching with TiN, it effectively acts as a precipitation nucleus of TiN. Then, by combining TiN with (Mg, Al) oxide of 0.01 to 0.1 μm, its surface area increases, and a stronger pinning force is developed. FIG. 1 shows the influence of the γ grain size on the HAZ toughness when the cooling time from 800 ° C. to 500 ° C. during welding cooling is 330 s. This cooling time corresponds to the case of electroslag welding of a steel material having a thickness of 80 mm with a welding heat input of about 70 kJ / mm. From FIG. 1, the HAZ toughness is improved as the γ grains are refined. This is because the grain boundary ferrite or ferrite side plate that transforms from the γ grain boundary as the γ grains are refined becomes smaller, and HA
This is because the Z structure is refined. Such an effect is γ
This is remarkable when the particle size is 150 μm or less. FIG. 2 shows 140
0.01 μm effect on γ grains when held at 0 ° C for 30 seconds
The effect of the number of composite precipitated TiN having a length of m to less than 0.5 μm is shown. This heating condition is as follows.
It corresponds to the HAZ near the melting line when electroslag welding was performed with a welding heat input of J / mm. From FIG. 2, the composite deposited TiN
If the number is less than 10,000 / mm 2 , the γ particle size will be 150 μm or more, and the HAZ structure will not be sufficiently refined, so that good toughness cannot be obtained. The dispersed state of such composite precipitated TiN effective for suppressing γ grain growth is Mg, A
This is achieved by controlling the amounts of l, Ti, O, and N within the range of the present invention.

【0016】次に、0.5〜5μmの酸化物組成と、
0.01μm以上0.5μm未満の複合析出TiNの個
数との関係について説明する。図3は、0.5〜5μm
の酸化物組成の内、質量%で表したMg含有量とAl含
有量との和、Mg+Alと0.01μm以上0.5μm
未満の複合析出TiNの個数との関係を示す。Mg+A
lが30%以上の場合、複合析出TiNの個数が100
00個/mm2以上になる。溶鋼中のAlとMgが本発
明の範囲である場合、0.5〜5μmの酸化物中のMg
+Alを上げることにより、このサイズの酸化物中のM
gが増加するが、それと同時に、0.01〜0.5μm
の(Mg,Al)酸化物の個数が増加するためである。
Next, an oxide composition of 0.5 to 5 μm,
The relationship with the number of composite precipitated TiN of 0.01 μm or more and less than 0.5 μm will be described. FIG. 3 shows 0.5 to 5 μm
Sum of Mg content and Al content expressed in mass% of the oxide composition of Mg + Al, and 0.01 μm or more and 0.5 μm or more
2 shows the relationship with the number of composite precipitated TiN less than. Mg + A
When 1 is 30% or more, the number of composite precipitated TiN is 100
It becomes 00 pieces / mm 2 or more. When Al and Mg in the molten steel fall within the range of the present invention, Mg in the oxide of 0.5 to 5 μm is used.
By increasing + Al, the M in oxides of this size
g increases, but at the same time, 0.01-0.5 μm
This is because the number of (Mg, Al) oxides increases.

【0017】次に各々の化学成分の限定理由について説
明する。
Next, the reasons for limiting each chemical component will be described.

【0018】Cの下限は母材および溶接部の強度、靭性
を確保するための最小量の0.03%である。しかし、
Cが多すぎると母材およびHAZの靭性を低下させると
ともに溶接性を劣化させるため、その上限を0.2%と
する。
The lower limit of C is 0.03%, which is the minimum amount for securing the strength and toughness of the base metal and the welded portion. But,
If the amount of C is too large, the toughness of the base material and the HAZ is reduced and the weldability is deteriorated. Therefore, the upper limit is set to 0.2%.

【0019】Siは脱酸のために鋼に含有されるが、多
すぎると溶接性およびHAZ靭性が劣化するため、上限
を0.4%とする。本発明の脱酸はTiだけでも十分可
能であり、良好なHAZ靭性を得るためにはSiを0.
3%以下にするのが望ましい。
Although Si is contained in steel for deoxidation, if it is too much, weldability and HAZ toughness deteriorate, so the upper limit is made 0.4%. The deoxidation of the present invention can be sufficiently performed only with Ti, and in order to obtain good HAZ toughness, Si is added to 0.1%.
It is desirable to make it 3% or less.

【0020】Mnは母材および溶接部の強度、靭性の確
保に不可欠であり、下限を0.5%とする。しかし、M
nが多すぎるとHAZ靭性を劣化させたり、スラブの中
心偏析を助長し、溶接性を劣化させるため上限を2%と
する。
Mn is indispensable for securing the strength and toughness of the base material and the welded portion, and the lower limit is made 0.5%. But M
If n is too large, HAZ toughness is degraded, center segregation of the slab is promoted, and weldability is degraded, so the upper limit is made 2%.

【0021】Pは本発明鋼において不純物元素であり、
0.015%以下とする。Pの低減はスラブ中心偏析の
軽減を通じて母材およびHAZの機械的性質を改善し、
さらには、HAZの粒界破壊を抑制する。
P is an impurity element in the steel of the present invention,
0.015% or less. The reduction of P improves the mechanical properties of the base metal and HAZ through the reduction of slab center segregation,
Furthermore, the grain boundary destruction of HAZ is suppressed.

【0022】Sは多すぎると中心偏析を助長したり、延
伸したMnSが多量に生成したりするため、母材および
HAZの機械的性質が劣化する。したがって、上限を
0.006%とする。
If the content of S is too large, the center segregation is promoted and a large amount of stretched MnS is generated, so that the mechanical properties of the base material and the HAZ are deteriorated. Therefore, the upper limit is made 0.006%.

【0023】Alは、γ粒成長のピンニング粒子である
複合析出TiNの析出核である0.01〜0.1μmの
(Mg,Al)酸化物の個数を制御する上で重要であ
る。Alが0.01%未満の場合、0.5〜5μmの酸
化物中のMg+Alが30%未満となり、0.01〜
0.1μmの(Mg,Al)酸化物の個数が10000
個/mm2以下となり、複合析出TiNの個数が不足す
ることでγ粒が十分に細粒化されず、良好なHAZ靭性
が得られない。一方、0.03%を超えてAlを添加し
ても、その効果は飽和する。したがって、Alは0.0
1%超0.03%以下とする。
Al is important in controlling the number of (Mg, Al) oxides of 0.01 to 0.1 μm, which are precipitation nuclei of composite precipitation TiN, which is pinning particles for γ grain growth. When Al is less than 0.01%, Mg + Al in the oxide of 0.5 to 5 μm becomes less than 30%, and
Number of 0.1 μm (Mg, Al) oxides is 10,000
Particles / mm 2 or less, and the number of composite precipitated TiN is insufficient, so that the γ grains are not sufficiently refined and good HAZ toughness cannot be obtained. On the other hand, even if Al is added in excess of 0.03%, the effect is saturated. Therefore, Al is 0.0
More than 1% and 0.03% or less.

【0024】Tiは、ピンニング粒子としての複合析出
TiNの分散状態を制御する上で重要であり、後述する
有効Ti濃度の適正範囲と相俟って狭い範囲に限定され
なければならない。Tiが0.007%未満の場合、
(Mg,Al)酸化物上に複合析出するTiNの個数が
10000個/mm2未満となり、HAZ靭性向上に必
要なγ粒成長抑制効果が得られない。一方、Tiが0.
02%を超える場合、有効Tiが適正範囲内にあっても
実質的にTiCが過剰に生成し、HAZ靭性が低下す
る。TiNは厚板圧延でのスラブ加熱時のγ粒成長抑制
を通じて母材組織を微細化し、鋼材の強度と靭性を向上
させることにも貢献する。
Ti is important in controlling the dispersion state of the composite precipitated TiN as pinning particles, and must be limited to a narrow range in conjunction with an appropriate range of the effective Ti concentration described later. When Ti is less than 0.007%,
The number of TiN that is compositely deposited on the (Mg, Al) oxide is less than 10,000 / mm 2, and the effect of suppressing γ grain growth required for improving the HAZ toughness cannot be obtained. On the other hand, when Ti is 0.
If it exceeds 02%, even if the effective Ti is within an appropriate range, TiC is substantially excessively generated, and the HAZ toughness is reduced. TiN also contributes to refinement of the base metal structure by suppressing the growth of γ grains during slab heating in thick plate rolling, and to improve the strength and toughness of the steel material.

【0025】ここで、適正なTiとNの存在形態につい
て説明する。鋼中のTiはOと結合して酸化物を生成
し、残りのTiはNと結合してTiNを形成し、さらに
残ったTiが存在すれば、Cと結合してTiCを形成す
るが、TiCは析出脆化をもたらす。一方、鋼中のTi
が酸化物およびTiNとしてすべて消費されれば、Ti
と結合できなかった過剰なNが地鉄中に固溶するが、固
溶Nもまた脆化をもたらす。このように、酸化物および
窒化物として消費された残りのTiが存在するか否かに
よってTiとNの存在形態が異なり、このことが靭性に
大きな影響を及ぼす。本発明では、酸化物および窒化物
として消費された残りのTi量を「有効Ti量」として
質量%を用いて(1)式および(2)式で定義する。
Here, the proper form of Ti and N will be described. Ti in the steel combines with O to form an oxide, the remaining Ti combines with N to form TiN, and if there is any remaining Ti, combines with C to form TiC, TiC causes precipitation embrittlement. On the other hand, Ti in steel
Is consumed as oxides and TiN, Ti
Excess N, which could not be bonded to the iron, forms a solid solution in the base iron, but the solute N also causes embrittlement. As described above, the existence form of Ti and N differs depending on whether or not the remaining Ti consumed as oxides and nitrides is present, and this greatly affects toughness. In the present invention, the remaining Ti amount consumed as oxides and nitrides is defined by the formulas (1) and (2) using mass% as the “effective Ti amount”.

【0026】O−0.17×REM−0.4×Ca−
0.66×Mg−0.89×Al≧0 の場合、 有効Ti量=Ti−2×(O−0.17×REM−0.4×Ca−0.66 ×Mg−0.89×Al)−3.4×N ・ ・ ・(1) O−0.17×REM−0.4×Ca−0.66×Mg
−0.89×Al<0の場合、 有効Ti量=Ti−3.4×N ・ ・ ・(2)
O-0.17 × REM-0.4 × Ca-
0.66 × Mg−0.89 × Al ≧ 0, effective Ti amount = Ti−2 × (O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al ) −3.4 × N (1) O−0.17 × REM−0.4 × Ca−0.66 × Mg
When −0.89 × Al <0, effective Ti amount = Ti−3.4 × N (2)

【0027】(1)式および(2)式の各元素の係数は
想定される酸化物および窒化物から化学量論的に決定さ
れた値である。1400℃を超えるような溶融線近傍H
AZでは、TiとNの存在形態はさらに複雑である。そ
の理由は、溶接加熱時にTiCとTiNの多くが地鉄中
に一旦固溶し、固溶したTi、N、Cは溶接冷却時にT
iNあるいはTiCとして再析出するとともに、一部は
固溶のまま存在するからである。このようなTiとNの
存在形態を制御してHAZ靭性の向上を目指すために
は、TiとNの各々の量を規定するとともに、有効Ti
の概念を用いて他の成分とのバランスを図ることが重要
である。図4は溶接入熱量が50kJ/mmの場合をシ
ミュレートした1400℃加熱再現HAZ靭性に及ぼす
有効Ti量の影響を示す。有効Ti濃度が−0.01%
〜+0.005%の範囲で良好な靭性を示す。すなわ
ち、この範囲がTiCの析出脆化とNの固溶脆化の両方
を回避できる適正な成分範囲であることを示している。
有効Ti量g−0.01%未満の婆は固溶N量が過剰と
なり、有効Ti量が+0.005%を超える場合にはT
iC析出量が過剰となり、HAZ靭性が劣化する。
The coefficients of the respective elements in the equations (1) and (2) are values stoichiometrically determined from assumed oxides and nitrides. H near the melting line exceeding 1400 ° C
In AZ, the form of existence of Ti and N is more complicated. The reason is that most of TiC and TiN are once dissolved in the base iron at the time of welding heating, and the dissolved Ti, N and C become T
This is because they are re-precipitated as iN or TiC, and partly exists as a solid solution. In order to improve the HAZ toughness by controlling the existing form of Ti and N, it is necessary to define the respective amounts of Ti and N and to increase the effective Ti.
It is important to balance with other components using the concept of. FIG. 4 shows the effect of the effective Ti amount on the 1400 ° C. heating reproduction HAZ toughness simulating the case where the welding heat input is 50 kJ / mm. Effective Ti concentration is -0.01%
Good toughness is shown in the range of + 0.005%. That is, this range indicates that the range is an appropriate component range in which both the precipitation embrittlement of TiC and the solid solution embrittlement of N can be avoided.
If the effective Ti amount is less than g-0.01%, the amount of dissolved N becomes excessive. If the effective Ti amount exceeds + 0.005%, T
The iC precipitation amount becomes excessive, and the HAZ toughness deteriorates.

【0028】このように有効Tiを考慮することによ
り、さらに良好なHAZ靭性が得られる。
By considering the effective Ti in this way, a better HAZ toughness can be obtained.

【0029】Mgは本発明の特徴的な元素であり、最も
重要な役割を有する。Mgを適量含有することで本発明
における酸化物の分散状態を達成することができる。M
gが0.001%以下の場合、Mgは0.5〜5μmの
酸化物に消費され、TiNの析出核である(Mg,A
l)酸化物の個数が不足する。一方、酸化物として消費
されるMgは0.006%あれば十分であり、これを超
えるMgが金属的に何ら効果をもたらさない。Mgは蒸
気圧が高くて酸化力が強い非常に活性な元素であること
から、必要以上に鋼中に含有させることは製造コストの
上昇を招き好ましくない。
Mg is a characteristic element of the present invention and has the most important role. By containing Mg in an appropriate amount, the dispersed state of the oxide in the present invention can be achieved. M
When g is 0.001% or less, Mg is consumed by the oxide of 0.5 to 5 μm and is a precipitation nucleus of TiN (Mg, A
l) Insufficient number of oxides. On the other hand, 0.006% of Mg consumed as an oxide is sufficient, and Mg exceeding this has no metallic effect. Since Mg is a very active element having a high vapor pressure and a strong oxidizing power, it is not preferable to include Mg more than necessary in the steel because it increases the production cost.

【0030】Oは、TiNの析出核である(Mg,A
l)酸化物の個数を確保する上で必要である。Oが0.
001%未満の場合、酸化物の個数が不足し、HAZ靭
性が劣化する。一方、Oが0.004%を超える場合、
鋼の清浄度が低下して機械的性質が劣化する。
O is a precipitation nucleus of TiN (Mg, A
l) Necessary for securing the number of oxides. O is 0.
If it is less than 001%, the number of oxides will be insufficient, and the HAZ toughness will deteriorate. On the other hand, when O exceeds 0.004%,
The cleanliness of the steel decreases and the mechanical properties deteriorate.

【0031】Nは、ピンニング粒子である複合析出Ti
Nの個数を確保する上で重要であり、有効Ti量の適正
範囲と相俟って狭い範囲に限定されなければならない。
Nが0.0025%未満の場合、TiNの個数が確保で
きない。一方、Nが0.006%を超える場合、有効T
i量が適正範囲内にあっても実質的に固溶Nが過剰とな
り、HAZ靭性が低下する。
N is a compound precipitation Ti which is a pinning particle.
It is important in securing the number of N, and must be limited to a narrow range in conjunction with an appropriate range of the effective Ti amount.
When N is less than 0.0025%, the number of TiN cannot be secured. On the other hand, when N exceeds 0.006%, the effective T
Even if the i amount is within the proper range, the amount of dissolved N becomes substantially excessive, and the HAZ toughness is reduced.

【0032】続いて、Cu、Ni、Mo、Cr、Nb、
V、B、Ca、REMを添加する理由について説明す
る。
Subsequently, Cu, Ni, Mo, Cr, Nb,
The reason for adding V, B, Ca, and REM will be described.

【0033】Cu、Niは溶接性およびHAZ靭性に悪
影響を及ぼすことなく母材の強度、靭性を向上させる。
しかし、1.5%を超えると溶接性およびHAZ靭性が
劣化する。
Cu and Ni improve the strength and toughness of the base material without adversely affecting weldability and HAZ toughness.
However, if it exceeds 1.5%, the weldability and the HAZ toughness deteriorate.

【0034】Mo、Crは母材の強度、靭性を向上させ
る。しかし、1%を超えると母材の靭性、溶接性および
HAZ靭性が劣化する。
Mo and Cr improve the strength and toughness of the base material. However, if it exceeds 1%, the toughness, weldability and HAZ toughness of the base material deteriorate.

【0035】Nbは母材組織の微細化に有効な元素であ
り、母材の機械的性質を控除させる。しかし、0.05
%を超えるとHAZ靭性が劣化する。
Nb is an element effective for refining the structure of the base material, and deducts the mechanical properties of the base material. However, 0.05
%, HAZ toughness deteriorates.

【0036】Vは母材の靭性を向上させる。しかし0.
05%を超えると溶接性およびHAZ靭性が劣化する。
V improves the toughness of the base material. But 0.
If it exceeds 05%, the weldability and the HAZ toughness deteriorate.

【0037】Bは焼き入れ正を高めて母材やHAZの機
械的性質を向上させる。しかし、0.002%を超えて
添加するとはZ靭性や溶接性が劣化する。
B enhances the quenching strength and improves the mechanical properties of the base material and HAZ. However, if it exceeds 0.002%, Z toughness and weldability deteriorate.

【0038】CaとREMは酸化物や硫化物を形成して
材質を改善する。ここで、REMとは、La、Ceなど
の希土類金属元素を示す。Caを0.004%を超えて
添加しても材質改善効果が飽和する。REMを0.00
3%を超えて添加しても同様に材質改善効果が飽和す
る。必要以上に添加することは製造コストの増加を招き
好ましくない。 CaとREMの両方を添加しても効果
は同等である。
Ca and REM form oxides and sulfides to improve the material. Here, REM indicates a rare earth metal element such as La or Ce. Even if Ca is added in excess of 0.004%, the material improvement effect is saturated. REM 0.00
Even if added in excess of 3%, the effect of improving the material is similarly saturated. If it is added more than necessary, the production cost increases, which is not preferable. The effect is the same even if both Ca and REM are added.

【0039】本発明鋼は、鉄鋼業の製鋼工程において所
定の化学成分に調整し、連続鋳造を行い、鋳片を再加熱
した後に圧延によって形状と母材材質を付与することで
製造される。必要に応じ、鋼材に各種の熱処理を施して
母材の材質を制御することも行われる。鋳片を再加熱す
ることなく、ホットチャージ圧延することも可能であ
る。
The steel of the present invention is manufactured by adjusting a predetermined chemical composition in a steelmaking process of the steel industry, performing continuous casting, reheating a slab, and then giving a shape and a base material by rolling. If necessary, the steel material may be subjected to various heat treatments to control the material of the base material. Hot charge rolling can be performed without reheating the slab.

【0040】本発明で規定した酸化物の分散状態は、例
えば、以下にような方法で定量的に測定される。0.0
1以上0.5μm未満の(Mg,Al)酸化物とTiN
の複合析出物の分散状態は、母材鋼材の任意の場所から
抽出レプリカ試料を作製し、これを透過電子顕微鏡(T
EM)を用いて10000〜50000倍の倍率で少な
くとも1000μm2以上の面積にわたって観察し、対
象となる大きさの複合析出物の個数を測定し、単位面積
当たりの個数に換算する。この時、(Mg,Al)酸化
物とTiNの同定は、TEMに付属のエネルギー分散型
X線分光法(EDS)による組成分析と、TEMによる
電子線回折像の結晶構造解析によって行われる。このよ
うな同定を測定するすべての複合析出物に対して行うこ
とが煩雑な場合、簡易的に次の手順による。まず、四角
い形状の析出物をTiNとみなし、対象となる大きさの
TiN中に酸化物が複合しているものの個数を上記の要
領で測定する。次のこのような方法で個数を測定した複
合析出物の内少なくとも10個以上について上記の要領
で同定を行い、(Mg,Al)酸化物とTiNが複合的
に存在している割合を算出する。そして、はじめに測定
された複合析出物の個数にこの割合を掛け合わせる。鋼
中の炭化物が以上のTEM観察を邪魔する場合、500
℃以下の熱処理によって炭化物を凝集・粗大化させ、対
象となる複合析出物の観察を容易にすることができる。
The dispersion state of the oxide specified in the present invention is quantitatively measured, for example, by the following method. 0.0
(Mg, Al) oxide and TiN of 1 to less than 0.5 μm
In the dispersion state of the composite precipitate of the above, an extracted replica sample was prepared from an arbitrary position of the base steel material, and this was sampled by a transmission electron microscope (T
(EM) at a magnification of 10,000 to 50,000 times over an area of at least 1000 μm 2 , the number of composite precipitates of a target size is measured, and the number is converted into the number per unit area. At this time, identification of the (Mg, Al) oxide and TiN is performed by a composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to the TEM and a crystal structure analysis of an electron diffraction image by the TEM. When it is complicated to perform such identification for all the composite precipitates to be measured, the following procedure is simply used. First, a square-shaped precipitate is regarded as TiN, and the number of oxides compounded in TiN of a target size is measured as described above. Next, at least 10 or more of the composite precipitates whose number has been measured by such a method are identified in the above-described manner, and the ratio of (Mg, Al) oxide and TiN present as a composite is calculated. . Then, this ratio is multiplied by the number of composite precipitates measured first. If carbide in steel hinders the above TEM observation, 500
Carbide can be aggregated and coarsened by heat treatment at a temperature of not more than ° C, and observation of the target composite precipitate can be facilitated.

【0041】0.5〜5μmの酸化物の組成の測定例を
次に示す。母材鋼材の任意の場所から小片試料を切り出
し、これを1400〜1450℃で10分間以上保持す
ることで酸化物以外の0.5〜5μmの介在物を溶体化
させ、その後水冷する。これを鏡面研磨し、光学顕微鏡
を用いて1000倍の倍率で少なくとも1mm2以上の
面積にわたって観察する。対象となる酸化物の内少なく
とも10個以上についてX線マイクロアナライザー(E
PMA)に付属の波長分散型分光法(WDS)を用いて
組成を分析し、酸化物の平均組成におけるMgとAlの
含有量を質量%で求める。介在物の時、酸化物の分析値
に地鉄のFeが検出される場合は、分析値からFeを除
外して酸化物の平均組成を求める。
The following is an example of measuring the composition of the oxide of 0.5 to 5 μm. A small piece sample is cut out from an arbitrary location of the base steel material, and is kept at 1400 to 1450 ° C. for 10 minutes or more to form a solution of 0.5 to 5 μm inclusions other than oxides, and then cooled with water. This is mirror-polished and observed with an optical microscope at a magnification of 1000 times over an area of at least 1 mm 2 or more. For at least 10 or more of the target oxides, an X-ray microanalyzer (E
The composition is analyzed using wavelength dispersion spectroscopy (WDS) attached to PMA), and the contents of Mg and Al in the average composition of the oxides are determined by mass%. In the case of inclusions, when Fe of ground iron is detected in the analysis value of the oxide, the average composition of the oxide is obtained by excluding Fe from the analysis value.

【0042】MgとCaは酸素との親和力が強く、蒸気
圧も高いため、酸化され、酸化物として溶鋼中から除去
されたり、蒸発してロスする。そのため添加歩留まりが
低い。歩留まりを向上させるためには、酸化ロスと蒸発
ロスを極力抑制することが重要である。
Since Mg and Ca have a strong affinity for oxygen and a high vapor pressure, they are oxidized, removed from the molten steel as oxides, or evaporated and lost. Therefore, the addition yield is low. In order to improve the yield, it is important to minimize oxidation loss and evaporation loss.

【0043】酸化ロスを小さくするためには、MgやC
a添加前の溶鋼中の酸素やスラグ中のFeO濃度とMn
O濃度を低減することが重要である。本発明の鋼材に
は、Si、Mn、Al、Tiなどの脱酸元素が含まれて
おり、これらの元素を添加した後にMgやCaを添加す
ることによって、酸化ロスを小さくすることができる。
すなわち、MgやCa以外の元素を添加し、溶鋼中の酸
素濃度を低下させるため、MgやCaの酸化ロスが低減
する。
In order to reduce the oxidation loss, Mg or C
a) O2 in molten steel before Fe addition and FeO concentration in slag and Mn
It is important to reduce the O concentration. The steel material of the present invention contains deoxidizing elements such as Si, Mn, Al, and Ti. By adding Mg or Ca after adding these elements, the oxidation loss can be reduced.
That is, since elements other than Mg and Ca are added to lower the oxygen concentration in the molten steel, the oxidation loss of Mg and Ca is reduced.

【0044】スラグからの酸素供給によってMgやCa
が酸化ロスするのを抑制するため、スラグ中のFeO濃
度とMnO濃度を低減することが有効である。MgやC
aの添加前のスラグ中のT.Fe+MnOを質量%で1
0%を超えるとMgやCaの歩留まりが著しく低下す
る。したがって、T.Fe+MnOを10%以下とす
る。この値は小さいほど、Mgの酸化ロス防止には有効
であり、5%以下が望ましい。
By supplying oxygen from the slag, Mg or Ca
It is effective to reduce the FeO concentration and the MnO concentration in the slag in order to suppress oxidation loss of the slag. Mg and C
a in the slag before the addition of Fe + MnO is 1% by mass.
If it exceeds 0%, the yield of Mg or Ca is significantly reduced. Therefore, T. Fe + MnO is set to 10% or less. The smaller this value is, the more effective it is in preventing the oxidation loss of Mg, and desirably 5% or less.

【0045】MgやCaの蒸発ロスを抑制するため、で
きるだけ精錬工程の末期に添加することが有利である。
したがって、精錬工程で他の元素を添加したのちに、添
加するのがよい。これは上述のように酸化ロスを抑制す
ることからも有利である。ただし、成分の微調整のた
め、Mg、Ca添加後に、Mg、Ca以外の元素を少量
添加しても構わない。
In order to suppress the evaporation loss of Mg and Ca, it is advantageous to add as much as possible at the end of the refining process.
Therefore, it is preferable to add the other elements after adding them in the refining process. This is advantageous from the viewpoint of suppressing the oxidation loss as described above. However, in order to finely adjust the components, a small amount of an element other than Mg and Ca may be added after Mg and Ca are added.

【0046】Mgを溶鋼に添加するには、Mg含有合
金、MgO含有酸化物の1種もしくは、2種以上を用い
る。
To add Mg to molten steel, one or more of Mg-containing alloys and MgO-containing oxides are used.

【0047】Mg含有合金、MgO含有酸化物を溶鋼に
添加する方法は、粉状にしたMg合金、MgO含有酸化
物を不活性ガスを搬送ガスとして取鍋内の溶鋼中に吹き
込む方法、塊状のものを取鍋内溶鋼、RH、DH等の真
空槽内溶鋼に上方添加する方法、粉状のものを例えば鉄
で被覆しワイヤ状にしたものを取鍋内溶鋼または/およ
びタンディッシュ内溶鋼または/およびモールド内溶鋼
に添加する方法が考えられる。これらのいずれの方法を
用いてもよく、その効果は同等である。さらに、これら
の方法を組み合わせてもよい。
The method of adding the Mg-containing alloy and the MgO-containing oxide to the molten steel includes a method of blowing the powdered Mg alloy and the MgO-containing oxide into the molten steel in the ladle using an inert gas as a carrier gas, A method in which the molten steel in the ladle, RH, DH, etc. is added upward to the molten steel in the vacuum chamber, and the powdery steel is coated with iron, for example, and is made into a wire, and the molten steel in the ladle or / and the molten steel in the tundish or And / or a method of adding to the molten steel in the mold. Any of these methods may be used, and the effects are equivalent. Further, these methods may be combined.

【0048】CaはCaを含有する合金であれば何を用
いても構わない。一般的にはCa−Si合金が用いられ
る。
As Ca, any alloy containing Ca may be used. Generally, a Ca-Si alloy is used.

【0049】Mgの添加時期は、Ca添加前、Ca添加
と同時、Ca添加後のいずれか、または、これらの組み
合わせのいずれでもよい。
The Mg may be added either before Ca addition, simultaneously with Ca addition, after Ca addition, or any combination thereof.

【0050】MgとCaを同時に添加する場合は、Mg
含有合金または/およびMgO含有酸化物をCa含有合
金と混合して添加する方法、MgとCaの両方を含有す
る合金を添加する方法のいずれの方法でもよく、その効
果は同等である。
When Mg and Ca are added simultaneously, Mg
Either a method of adding a mixed alloy and / or an MgO-containing oxide to a Ca-containing alloy and adding the mixed alloy or a method of adding an alloy containing both Mg and Ca may be used, and the effects are the same.

【0051】[0051]

【実施例】(実施例1)表1に鋼材の化学成分と介在物
の分散状態を、表2に鋼材の製造条件と機械的性質を示
す。
EXAMPLES (Example 1) Table 1 shows the chemical composition of the steel material and the dispersion state of inclusions, and Table 2 shows the manufacturing conditions and mechanical properties of the steel material.

【0052】表1のピンニング粒子の個数の測定は、鋼
材母材の板厚中心部から抽出レプリカ試料を作製し、こ
れを、30000倍の倍率で2000μm2の面積にわ
たってTEM観察することで行った。また、表1の0.
5〜5μmの大きさの酸化物の個数の測定は、同じく、
鋼材母材の板厚中心部から小片を切り出して1400℃
で20分間保定した後に水冷し、鏡面研磨面を1000
倍の倍率で4mm2の面積にわたって光学顕微鏡観察す
ることで行った。さらに、EPMA−WDSによって、
0.5〜5μmの20個の酸化物について組成を分析
し、地鉄(Fe)の分析値を差し引いて平均組成を求
め、Mg+Alの値を求めた。
The number of pinning particles in Table 1 was measured by preparing an extracted replica sample from the center of the thickness of the steel base material and observing it with a TEM at a magnification of 30,000 times over an area of 2000 μm 2 . . In addition, 0.
The measurement of the number of oxides having a size of 5 to 5 μm is performed in the same manner.
1400 ° C by cutting a small piece from the center of the thickness of the steel base material
, And water-cooled.
The observation was performed by optical microscope observation over an area of 4 mm 2 at double magnification. Furthermore, by EPMA-WDS,
The composition of 20 oxides of 0.5 to 5 μm was analyzed, and the average composition was obtained by subtracting the analysis value of the base iron (Fe) to obtain the value of Mg + Al.

【0053】本発明鋼は溶接入熱量が20〜100kJ
/mmのエレクトロガス溶接部あるいはエレクトロスラ
グ溶接部の溶融線において従来にない良好なHAZ靭性
を有する。本発明鋼は、Al、Ti、Mg、O、Nの量
を厳密に制御し、有効Ti量なる概念を用いてHAZに
おけるTiとNの存在形態を適正化し、さらに、γ粒成
長抑制に有効な酸化物の分散状態を有することで大入熱
溶接においても良好なHAZ靭性を達成している。一
方、比較鋼は化学成分や酸化物の分散状態が適正でない
ため、母材およびHAZの機械的性質が劣っている。
The steel of the present invention has a welding heat input of 20 to 100 kJ.
/ Mm of electrogas welded portion or electroslag welded portion has unprecedented good HAZ toughness. The steel of the present invention strictly controls the amounts of Al, Ti, Mg, O, and N, optimizes the form of existence of Ti and N in the HAZ using the concept of the effective Ti amount, and is effective in suppressing γ grain growth. The excellent HAZ toughness is achieved even in large heat input welding by having a suitable oxide dispersion state. On the other hand, the comparative steel is inferior in the mechanical properties of the base material and the HAZ because the dispersion state of the chemical components and oxides is not appropriate.

【0054】鋼12は、Cの量が低すぎるために、鋼1
3はC量が高すぎるために、母材およびHAZの靭性が
劣る。鋼14は、Si量が高すぎるためにHAZ靭性が
劣る。鋼15はMn量が低すぎるために、鋼16はMn
量が高すぎるために、母材およびHAZの靭性が劣る。
鋼17はP量が高すぎるために、母材およびHAZの靭
性が劣る。鋼18は、S量が高すぎるために、母材およ
びHAZの靭性が劣る。鋼19はAl量が低すぎるため
に0.5〜5μmの酸化物中のMg+Alが低く、ピン
ニング粒子の個数が少ないため、HAZ靭性が劣る。鋼
20はTi量が低すぎるため、ピンニング粒子であるT
iNの個数が少なく、HAZ組織が著しく粗大化してH
AZ靭性が劣る。鋼21はTi量が高すぎるため、有効
Ti量が適正範囲から外れ、TiC析出脆化によってH
AZ靭性が劣る。鋼22はMg量が低すぎるため、Ti
Nの析出核である(Mg,Al)酸化物の個数が少な
く、γ粒が粗大化してHAZ靭性が劣る。鋼23は、O
量が低すぎるため、(Mg,Al)酸化物の個数が少な
く、γ粒が粗大化してHAZ靭性が劣る。鋼24はO量
が高すぎるため、鋼の清浄度が悪くなり、破壊起点が増
えてHAZ靭性が劣る。鋼25はN量が低すぎるためピ
ンニング粒子であるTiNの個数が少なく、HAZ組織
が著しく粗大化してHAZ靭性が劣る。鋼26はN量が
高すぎるため、有効Ti量の適正範囲から外れ、固溶N
が過剰となりHAZ靭性が劣る。鋼27と鋼28は各々
の元素は適正範囲にあるが、有効Ti量が不適当である
ため、TiC析出脆化あるいは固溶N脆化によりHAZ
靭性が劣る。
In Steel 12, Steel 1 was used because the amount of C was too low.
In No. 3, since the C content is too high, the toughness of the base material and HAZ is inferior. Steel 14 has inferior HAZ toughness because the amount of Si is too high. Steel 16 has Mn content too low, so steel 16
Since the amount is too high, the toughness of the base material and HAZ is inferior.
In steel 17, the toughness of the base metal and HAZ is inferior because the P content is too high. Steel 18 has inferior toughness of the base metal and HAZ because the S content is too high. In Steel 19, the Al content is too low, so that Mg + Al in the oxide of 0.5 to 5 μm is low, and the number of pinning particles is small, so that the HAZ toughness is inferior. Since the amount of Ti in the steel 20 is too low, the pinning particles T
The number of iN is small, and the HAZ
Poor AZ toughness. Since the amount of Ti in steel 21 is too high, the effective Ti amount is out of an appropriate range, and the Ti content is reduced by embrittlement of TiC.
Poor AZ toughness. Steel 22 has a too low Mg content, so Ti
The number of (Mg, Al) oxides, which are the precipitation nuclei of N, is small, and γ grains are coarsened, resulting in poor HAZ toughness. Steel 23 is O
Since the amount is too low, the number of (Mg, Al) oxides is small, the γ grains are coarsened, and the HAZ toughness is poor. Since the amount of O in steel 24 is too high, the cleanliness of the steel deteriorates, the number of fracture starting points increases, and the HAZ toughness deteriorates. In steel 25, the N content is too low, so that the number of pinning particles, TiN, is small, and the HAZ structure is remarkably coarsened to deteriorate the HAZ toughness. Since the amount of N in the steel 26 is too high, the effective Ti amount is out of the proper range, and
Is excessive and HAZ toughness is inferior. In steel 27 and steel 28, the respective elements are in an appropriate range, but the effective Ti amount is inappropriate, so that HAZ due to TiC precipitation embrittlement or solid solution N embrittlement is caused.
Poor toughness.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】(実施例2)表1の本発明鋼1の組成の鋼
を溶製するに際して、Mg添加前の取鍋スラグ中のT.
Fe+MnO濃度を種々変化させた。その時の成品にお
けるMgの歩留まりを図5に示す。Mgの歩留まりは、
T.Fe+MnO濃度が低いほど高い。T.Fe+Mn
O濃度を質量%で10%以下望ましくは5%以下にする
ことでMg歩留まりは著しく向上する。
(Example 2) In melting a steel having the composition of the steel 1 of the present invention shown in Table 1, T.P. in ladle slag before the addition of Mg was used.
The Fe + MnO concentration was varied. FIG. 5 shows the yield of Mg in the product at that time. The yield of Mg is
T. The lower the concentration of Fe + MnO, the higher the concentration. T. Fe + Mn
By setting the O concentration to 10% or less, preferably 5% or less by mass%, the Mg yield is remarkably improved.

【0058】(実施例3)表1の本発明鋼1の組成の鋼
を溶製するに際して、Si、Mn、Ti、Al、Mg、
Caの添加時期を変化させた。その時の成品におけるM
gとCaの歩留まりを比較した結果を表3に示す。Mg
添加前のスラグ中T.Fe+MnO濃度はいずれも2%
であった。
(Example 3) In melting a steel having the composition of the steel 1 of the present invention shown in Table 1, Si, Mn, Ti, Al, Mg,
The addition time of Ca was changed. M in the product at that time
Table 3 shows the results of comparing the yields of g and Ca. Mg
T. in slag before addition Fe + MnO concentration is 2%
Met.

【0059】Mg、Ca以外の元素を添加した後に、M
gやCaを添加した場合には、MgとCaの両方の歩留
まりが10%以上で良好であるのに対して、Mg、Ca
以外の元素をMgやCaの添加後に添加した場合には、
Mg、Caのいずれかまたは、両方の歩留まりが低い。
After adding elements other than Mg and Ca, M
When g and Ca are added, the yield of both Mg and Ca is good at 10% or more, whereas Mg and Ca are good.
When other elements are added after addition of Mg or Ca,
The yield of either or both of Mg and Ca is low.

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【発明の効果】本発明により、大入熱溶接においても良
好なHAZ靭性を有する鋼材の製造が可能となり、各種
の溶接構造物の安全性が格段に向上した。また、本発明
鋼を使用することで高能率溶接の適用範囲が広がり、溶
接施工コストを大幅に低減することが可能となった。
According to the present invention, it is possible to produce a steel material having good HAZ toughness even in large heat input welding, and the safety of various welded structures is remarkably improved. In addition, the use of the steel of the present invention has broadened the application range of high-efficiency welding, and has made it possible to significantly reduce welding work costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】HAZ靭性に及ぼすγ粒径の影響を示す図であ
る。
FIG. 1 is a diagram showing the effect of the γ grain size on HAZ toughness.

【図2】1400℃加熱γ粒径に及ぼすピンニング粒子
個数の影響を示す図である。
FIG. 2 is a diagram showing the effect of the number of pinning particles on the 1400 ° C. heated γ particle size.

【図3】ピンニング粒子個数に及ぼす0.5〜5μmの
大きさの酸化物中Mg+Alの影響を示す図である。
FIG. 3 is a view showing the effect of Mg + Al in an oxide having a size of 0.5 to 5 μm on the number of pinning particles.

【図4】1400℃加熱HAZ靭性に及ぼす有効Ti量
の影響を示す図である。
FIG. 4 is a graph showing the effect of the effective Ti content on the HAZ toughness heated at 1400 ° C.

【図5】Mgの添加歩留まりに及ぼすスラグ中のT.F
e+MnO濃度の影響を示す図である。
FIG. 5 shows the effect of T.C. in slag on the yield of Mg addition. F
It is a figure which shows the influence of e + MnO density | concentration.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月22日(2000.5.2
2)
[Submission date] May 22, 2000 (2000.5.2)
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項5[Correction target item name] Claim 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】(5) MgおよびCa添加前のスラグ中
T.Fe+MnOが10質量%以下であることを特徴と
する上記(1)項乃至(4)項のいずれかに記載の溶接
熱影響部靭性の優れた鋼材の製造方法。
(5) T. in slag before addition of Mg and Ca The method for producing a steel material having excellent toughness of a weld heat-affected zone according to any one of the above items (1) to (4), wherein Fe + MnO is 10% by mass or less .

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.03%〜0.2%、
Si:0.4%以下、Mn:0.5〜2%、P:0.0
15%以下、S:0.006%以下、Al:0.01%
超〜0.03%以下、Ti:0.007%〜0.02
%、Mg:0.001%超〜0.006%以下、O:
0.001〜0.004%、N:0.0025〜0.0
06%を含有し、残部がFeおよび不可避的不純物から
なる化学成分を有し、MgとAlから成る酸化物を内包
する0.01以上0.5μm未満のTiNが10000
個/mm2以上存在し、さらに、0.5〜5μmの大き
さの酸化物中のMg含有量とAl含有量との和の平均値
が質量%で30%以上であることを特徴とする溶接熱影
響部靭性の優れた鋼材。
1. A mass% of C: 0.03% to 0.2%,
Si: 0.4% or less, Mn: 0.5 to 2%, P: 0.0
15% or less, S: 0.006% or less, Al: 0.01%
Ultra-less than 0.03%, Ti: 0.007% -0.02
%, Mg: more than 0.001% to 0.006% or less, O:
0.001 to 0.004%, N: 0.0025 to 0.0
1% of TiN of not less than 0.01 and less than 0.5 μm containing 0.6%, the balance having a chemical composition of Fe and unavoidable impurities, and containing an oxide of Mg and Al.
Particles / mm 2 or more, and the average value of the sum of the Mg content and the Al content in the oxide having a size of 0.5 to 5 μm is 30% or more by mass%. Steel material with excellent toughness in the heat affected zone.
【請求項2】 質量%で、さらに、Cu:1.5%以
下、Ni:1.5%以下、Mo:1%以下、Cr:1%
以下、Nb:0.05%以下、V:0.05%以下、
B:0.002%以下の1種または2種以上を含有する
ことを特徴とする請求項1記載の溶接熱影響部靭性の優
れた鋼材。
2. In mass%, Cu: 1.5% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1%
Hereinafter, Nb: 0.05% or less, V: 0.05% or less,
B: The steel material having excellent toughness of the weld heat-affected zone according to claim 1, comprising one or more of 0.002% or less.
【請求項3】 質量%で、さらに、Ca:0.004%
以下、REM:0.003%以下のいずれか一方あるい
は両方を含有することを特徴とする請求項1または2記
載の溶接熱影響部靭性の優れた鋼材。
3. In% by mass, Ca: 0.004%
The steel material having excellent toughness of a weld heat-affected zone according to claim 1 or 2, further comprising one or both of REM: 0.003% or less.
【請求項4】 さらに、質量%を用いて下記の(1)式
あるいは(2)式で計算される有効Ti量が−0.01
%〜+0.005%の範囲とすることを特徴とする請求
項1乃至3のいずれかに記載の溶接熱影響部靭性の優れ
た鋼材。 O−0.17×REM−0.4×Ca−0.66×Mg
−0.89×Al≧0 の場合、 有効Ti量=Ti−2×(O−0.17×REM−0.4×Ca−0.66 ×Mg−0.89×Al)−3.4×N ・ ・ ・(1) O−0.17×REM−0.4×Ca−0.66×Mg
−0.89×Al<0の場合、 有効Ti量=Ti−3.4×N ・ ・ ・(2)
4. An effective Ti content calculated by the following formula (1) or (2) using mass% is -0.01.
The steel material having excellent toughness of the weld heat-affected zone according to any one of claims 1 to 3, wherein the steel material has a range of% to + 0.005%. O-0.17 x REM-0.4 x Ca-0.66 x Mg
When −0.89 × Al ≧ 0, effective Ti amount = Ti−2 × (O−0.17 × REM−0.4 × Ca−0.66 × Mg−0.89 × Al) −3.4 × N · · · (1) O-0.17 x REM-0.4 x Ca-0.66 x Mg
When −0.89 × Al <0, effective Ti amount = Ti−3.4 × N (2)
【請求項5】 MgおよびCa添加前のスラグ中T.F
e+MnOが10質量%であることを特徴とする請求項
1乃至4のいずれかに記載の溶接熱影響部靭性の優れた
鋼材の製造方法。
5. The method of claim 1 wherein the slag before the addition of Mg and Ca has a T.C. F
The method for producing a steel material excellent in toughness of a weld heat-affected zone according to any one of claims 1 to 4, wherein e + MnO is 10% by mass.
【請求項6】 Mg、Ca以外の元素を添加した後にM
g、Caを添加することを特徴とする請求項1乃至4の
いずれかに記載の溶接熱影響部靭性の優れた鋼材の製造
方法。
6. After adding an element other than Mg and Ca, M
The method for producing a steel material excellent in toughness of a weld heat-affected zone according to any one of claims 1 to 4, wherein g and Ca are added.
JP2000132434A 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method Expired - Fee Related JP3699633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132434A JP3699633B2 (en) 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-126678 1999-05-07
JP12667899 1999-05-07
JP2000132434A JP3699633B2 (en) 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001026839A true JP2001026839A (en) 2001-01-30
JP3699633B2 JP3699633B2 (en) 2005-09-28

Family

ID=26462826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132434A Expired - Fee Related JP3699633B2 (en) 1999-05-07 2000-05-01 Steel material excellent in toughness of heat affected zone and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3699633B2 (en)

Also Published As

Publication number Publication date
JP3699633B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
CN113631321B (en) Method for manufacturing high-strength welded joint for extremely low temperature
CN100535165C (en) Large volume heat inputing in the welding tie-in tenacity excellent thick steel plate
JP5651090B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP6245417B1 (en) Steel
CN111433381B (en) High Mn steel and method for producing same
US20240051070A1 (en) Submerged arc welded joint
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP3699639B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP4074536B2 (en) Steel with excellent toughness of base metal and weld heat affected zone
EP4257281A1 (en) Tig welding joint
JPH08325635A (en) Production of high strength and high toughness steel excellent in hic resistance
JP3699630B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3699624B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP6627536B2 (en) Steel with excellent toughness in weld heat affected zone and method of manufacturing steel with excellent toughness in weld heat affected zone
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP2002371338A (en) Steel superior in toughness at laser weld
JP3699631B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3699633B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP5213517B2 (en) Steel with excellent weld heat affected zone toughness
JP2000080436A (en) Steel plate excellent in toughness in weld heat-affected zone
WO2010008031A1 (en) Steel material for welding
WO2024127494A1 (en) Welded joint and welding structure
EP4365326A1 (en) Submerged arc welding method
JP7205618B2 (en) steel
JP3477054B2 (en) Steel sheet with excellent toughness of weld heat affected zone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050708

R151 Written notification of patent or utility model registration

Ref document number: 3699633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees