JP3699074B2 - Plate material bonding machine by high frequency dielectric heating - Google Patents

Plate material bonding machine by high frequency dielectric heating Download PDF

Info

Publication number
JP3699074B2
JP3699074B2 JP2002263609A JP2002263609A JP3699074B2 JP 3699074 B2 JP3699074 B2 JP 3699074B2 JP 2002263609 A JP2002263609 A JP 2002263609A JP 2002263609 A JP2002263609 A JP 2002263609A JP 3699074 B2 JP3699074 B2 JP 3699074B2
Authority
JP
Japan
Prior art keywords
plate
pressing
plate material
group
bonding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002263609A
Other languages
Japanese (ja)
Other versions
JP2004098481A (en
Inventor
泰司 山本
生樹 佐古
Original Assignee
山本ビニター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本ビニター株式会社 filed Critical 山本ビニター株式会社
Priority to JP2002263609A priority Critical patent/JP3699074B2/en
Publication of JP2004098481A publication Critical patent/JP2004098481A/en
Application granted granted Critical
Publication of JP3699074B2 publication Critical patent/JP3699074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高周波誘電加熱によって細幅の複数の小板材A,Aを接着し、図10の(a)に示すように一定幅Wに切断することによって柱材を得ることができる集成材を製造し、あるいは図10の(b)に示すように細幅の小板材A,Aを接ぎ、広幅の板材を製造するような板材接着機に関する発明である。
【0002】
【従来の技術】
従来から、複数の小板材を集成もしくは接ぎ加工するに際し、図11(a)に示すように加熱接着剤を介在させて複数の小板材A,Aを積み重ね、又は図11(b)に示すように加熱接着剤を介在させて複数の小板材A,Aを幅方向に配列して板材群Bとなし、この板材群Bの両面に高周波電極C,Dを当接させて高周波電流を印加することによって加熱接着する板材接着機が知られている。
この種板材接着機では、定位置にある固定部材Eに板材群Bの一端を支持させるとともに他端を押圧シリンダーFによって押圧し、押圧状態にある板材群Bの側方に配置した高周波電極C,Dの一方、例えば図面の上方位置に配置した高周波電極DをシリンダーGによって板材群Bに当接させるようにしている。
【0003】
また、一対の高周波電極C,Dによって挟まれた状態にある板材群Bの一端を固定部材Eで支持させ、他端をシリンダーFで確実に押圧するためシリンダーヘッドの先方に押し子Hを固定するとともに、該押し子Hに板材群Bの厚みに対応させた厚みの捨て板Iを装着することによって板材群Bの他端全体を確実に押圧することができるようにしている。この捨て板Iは、図11の(a),(b)に示すように、板材群Bの厚みに応じて変更する必要がある。
【0004】
【発明が解決しようとする課題】
上記捨て板を使用する従来の方法では、被処理物である板材群の寸法が変るたびに捨て板を変更する必要があり、その取り替え作業に多大の時間を要するため生産効率が悪いとともに、常時多種類の捨て板を準備しておく必要があり不経済であるという欠点があった。また、押し子に装着される捨て板は、被加工物である板材群とともに加熱されることになるため、それだけ熱効率が悪くなる欠点がある。このような従来技術の欠点に実情に鑑み、一々捨て板を変更する必要がなく、厚みの異なる板材群の接着加工を能率的に行うことができるとともに、熱効率に優れた高周波加熱による板材接着機を得ることを目的とする発明である。
【0005】
また、図11からも明らかなように、従来の方法では同じ位置の押圧シリンダーFによって捨て板Iを介して板材群Bは押圧する。そのため、押圧シリンダーFによる押圧位置と板材群Bの厚みの中心が一致しないことから、板材群Bに対して偏荷重が作用した状態で接着される。その結果、完成した板材や柱材が歪み易い欠点があった。本発明の別の目的は、板材群の厚みの中心位置を押圧した状態で高周波加熱接着し、前記したような歪みを生じない板材や柱材を完成することができる板材接着機を実現することである。
図11に示す板材接着機において、捨て板Iを押し子Hの中心位置に装着し、シリンダーFを図面の上下方向に移動させるものも工夫されているが、加工する小板材Aの厚みに応じで取り替える必要があることに変わりはなかった。
【0006】
【課題を解決するための手段】
本発明に係る板材接着機の基本的な構成は、加熱接着剤を介在させて複数の小板材A,Aを幅方向もしくは厚み方向に配列して板材群Bとなし、板材群Bの一端を固定部材2によって支持させるとともに他端を押圧手段、具体的には押圧片3で押圧し、板材群Bの両側方に配置して板材群Bに当接させる一対の高周波電極によって、押圧状態にある板材群の接着面を加熱する板材接着機である。
本発明は、上記板材接着機において、一方の高周波電極を板材群の押圧方向に移動しない定位置高周波電極4とするとともに、他方の高周波電極を板材群Bの押圧方向に移動可能な可動高周波電極5とする。そして、板材群Bの押圧手段は定位置高周波電極4に対して衝突しないで移動可能とする一方、可動高周波電極5は押圧手段によって押されて移動可能とする。
【0007】
板材群Bを押圧する押圧手段は、加工しようとする最も大きな厚みの板材群Bに対応することができる大きさ、すなわち比較的大きな厚みの押圧片3を用い、この押圧片3を板材群Bの厚み方向に移動させる押圧片移動手段を設けるとともに、板材群Bの厚み方向に移動可能な押圧片3を板材群に向けて押し出す押圧作動手段を設ける。さらに、押圧片3を押し出す押圧作動手段の作用位置を、板材群Bの厚み方向に移動させる押圧位置移動手段を備えておくと、常に板材群Bの厚みの中心位置を押圧し、歪みを生じない板材を製造することができることになる。
【0008】
【発明の実施の形態】
以下、本発明に係る、高周波誘電加熱による板材接着機の実施形態を、添付の図面に基づいて説明する。
図1は小板材を縦方向に積み重ねて接着する方式の板材接着機全体の正面図、図2はその主要部分のみの概略図である。
【0009】
図1、図2に示す実施形態の板材接着機は、本体フレーム1内に被加工物である小板材A,Aを積み重ねてセットするための固定部材2がほぼ中心位置に配置され、固定部材2の上方位置には、小板材を積み重ねた板材群Bを押圧するための押圧片3が配置されるとともに、固定部材の左右両側方には積み重ねられた板材群Bを加熱するための一対の高周波電極を設けている。一対の高周波電極のうち、図面上の左側に位置する電極は、リンク機構によって水平方向に移動して板材群Bの側面に当接させることができる定位置高周波電極4であり、図面上の右側に位置する電極は、板材群Bの押圧方向に移動可能な可動高周波電極5である。これら一対の高周波電極4,5に対しては、高周波発振器6によって高周波電流が印加される。
【0010】
定位置高周波電極4及び定位置高周波電極の支持台7は、下端部を本体フレーム1に軸支された支持杆8,9によって支持することによってほぼ水平方向に移動可能とし、電極シリンダー10によって定位置高周波電極4を側方から固定部材2上にセットされている板材群Bに向けて進退可能とする。一方、板材群Bの押圧方向に移動可能とする可動高周波電極5は、本体フレーム1に固定された支持台11に対して押圧方向、すなわち図面上の上下方向に移動可能な状態で支持されている。可動高周波電極5は、アリ嵌合やリニアウェイモジュールなどの移動可能な構造によって支持台11に支持され、常時は上方位置にあって、押圧片3によって押されることによって下方に移動することができるようにしてある。
【0011】
押圧片3は、押圧シリンダー12によって昇降駆動されるものであるが、該押圧シリンダー12はシリンダー支持台13に支持されているとともに、シリンダーヘッドが押圧片3に対し板材群Bの厚み方向、すなわち図面上の左右方向に自由に遊動できる状態に係合されている。押圧シリンダー12が支持されるシリンダー支持台13は、モータ14で駆動される送りネジ機構15によって板材群Bの幅方向に移動させることができるようにしている。一方、押圧片3は上部側方位置に連結杆16を連結してあり、該連結杆16がモータ17で駆動される送りネジ機構18に係合されていることにより、押圧片3はモータ17の駆動によって板材群の幅方向の所望位置に移動させることができるように構成されている。
【0012】
押圧片3を左右方向に移動させる送りネジ機構18は、先端に上下方向のガイドバー19を備えており、前記連結杆16がガイドバー19に沿って自由に移動することができるように係合している。したがって、図2に矢印で示すように、固定部材2の上にセットした板材群Bの左側に位置している定位置高周波電極4は、電極シリンダー10によって左右方向に移動可能であり、板材群Bの右側に位置している可動高周波電極5は、上下方向に移動可能である。この定位置高周波電極4及び可動高周波電極5に対しては、高周波発振器6によって高周波電流が印加される。
また、押圧シリンダー12によって昇降される押圧片3は、送りネジ機構によって板材群Bの厚み方向、すなわち図面上の左右方向に移動させることができる。さらに、押圧片3を駆動する押圧シリンダー12は、その支持台13が送りネジ機構15によって板材群Bの厚み方向、すなわち図面上の左右方向に移動させることができるものである。
【0013】
次に、前記板材接着機の作動状態について説明する。
図3に示すように、固定部材2の上に接着するべき複数の小板材A,Aを、加熱接着剤を介在させてセットして板材群Bとする。このとき板材群Bの右側面は可動高周波電極5に当接させて配置する。この状態から、図4に示すように定位置高周波電極4を電極シリンダー10によって押し出し、板材群Bの左側面に当接させ、一対の高周波電極によって板材群Bを挟み込む。次に、送りネジ機構15によってシリンダー支持台13を移動させ、板材群Bの厚みの中心位置と押圧シリンダー12の作動方向の中心位置を一致させる。
【0014】
続いて図5に示すように、送りネジ機構18によって押圧片3を板材群Bの厚み方向に移動させ、板材群Bの左端に当接している定位置高周波電極4の内側面と押圧片3の外側面を一致 (僅かに内方) させる。これにより、押圧片3の昇降に際して定位置高周波電極4が衝突することがなくなる。この状態で、押圧片3を押し下げていくと、途中で押圧片3が可動高周波電極5に衝突し、図6に示すように可動高周波電極5を押し下げながら、最終的に板材群Bを押圧する。この状態で、定位置高周波電極4と可動高周波電極5に高周波電流を印加すると、板材群Bの小板材A,Aが相互に加熱接着される。
【0015】
板材群Bに作用する力は、板材群Bの厚みの中心線上に配置した押圧シリンダー12による押圧力であるため、押圧片3の大きさや位置に関係なく小板材AとAの接着面が均等な力で押圧された状態で接着される。そのため、全体の接着状態が安定した均質な製品を得ることができるとともに、接着後の板材群、すなわち完成した集成材に偏った内部応力が残留しないため、接着直後あるいは経時変化によって歪むことがない高品位の板材や柱材製品を製造することができる。
【0016】
以上、図1に示す板材接着機は、主として小板材を集成するためのものであるが、集成する小板材の幅(集成材の厚み)及び枚数(集成材の幅)は任意である。図7は、前記図3ないし図6において説明した使用状態よりも幅の狭い小板材を利用して集成する使用例を示している。この使用状態では、押圧片3の幅の略半分が可動高周波電極5の位置にあり、押圧片3の略左半分が被加工材である板材郡Bの上面に接している。そして、押圧シリンダー12は押圧片3の左側に偏った位置を押圧している。このように、加工する小板材の幅に関係なく、任意幅の小板材を使った加工を、従来の押し子に相当する押圧片を取り替えることなく実施できるとともに、常に板材群Bの中心位置を押圧シリンダー12で押圧することによって押圧状態に偏りがない状態で加熱接着することができる。
【0017】
図1ないし図7では、縦型の板材接着機について説明したが、本発明は横型の板材接着機についても実施することができるものである。すなわち、図8及び図9には、本発明に係る板材接着機を横型で実施する実施形態の一例を概略図で示している。
図8及び図9に示す実施形態は、電極支持盤20の上に図面上左右方向に移動可能な状態で可動高周波電極である下電極21が配置されている。下電極21の上方には、シリンダー22によって昇降駆動される定位置高周波電極である上電極23を配置している。この板材接着機は主として平板を製造する板材接着機として活用することができるものであり、下電極21の上に加熱接着剤を介在させた状態で複数の小板材A,Aを配列した板材群Bの上面に上電極23を当接させ、下電極21と上電極23の間の高周波誘電加熱によって板材群Bを加熱するものである。
【0018】
上下一対の高周波電極の一側方(図面上の右側)には、下端面が下電極の上面よりも僅かに上方に位置する受け部材26を配置している。この受け部材26は固定部材であって、下電極21上に配列した板材群Bの一端を支持するとともに、受け部材26の下を下電極21が移動できるように構成している。
上下一対の高周波電極21,23の他側方(図面上の左側)には、押圧シリンダー24によって板材群Bを押圧する押圧片25が配置されている。この押圧片25は、上電極23の下を通過するとともに下電極21を図面上の右方向に押し出すように構成している。
【0019】
上記構成とすることにより、図8の(a)に示すように、下電極21上に板材群Bを配置して上電極23を下降させた状態で押圧シリンダー24を作動させると、図8の(b)に示すように、下電極21が右方向に押し出されて移動し、板材群Bの左端が押圧片25によって押圧される。この押圧状態で下電極21と上電極23の間に高周波電流を印加することにより、板材群B全体が加熱される。すなわち、加熱接着剤が加熱されて小板材AとAが接着されて大きな板材が完成する。
【0020】
図8は、細幅の小板材A,Aを接いで広幅の板材を製造する状態を、図9は薄い板材を集成して厚い板材、柱材を製造する状態を示すものである。図8に示す使用状態と図9に示す使用状態では、押圧片25が上電極23に衝突しないように、押圧シリンダー24を上下方向に移動させるものである (具体的な構造については記載を省略しているが図1参照) 。しかしながら、押圧片25と押圧シリンダー24の位置関係については固定状態で示している。先に説明した縦型の板材接着機のように、押圧片25と押圧シリンダー24の位置関係を変更できるようにしてもよいが、位置関係を変更しないものであっても実用上実施することができる。特に薄い板材を製造するものでは、薄い厚みの範囲での偏荷重による歪みは無視することができるであろう。逆に、大きな厚みの板材では偏荷重の影響が大きくなる可能性がある。そのため、図示例では、押圧片25の厚みのほぼ中心位置を押圧シリンダー24によって押し出すことにより、大きな厚みの板材を加工するときに、厚みのほぼ中心を押圧することができるようにしている。
【0021】
【発明の効果】
請求項1記載の本発明高周波誘電加熱による板材接着装置によれば、加熱接着剤を介在させて、複数の小板材を幅方向もしくは厚み方向に配列して板材群とし、板材群の両側方に配置した高周波電極によって押圧状態にある板材群の接着面を加熱する板材接着機において、板材群を押圧するための押圧手段に、加工する板材の寸法に合わせて一々押し子を交換する必要がなく、能率的に板材を接着することができる効果がある。また、従来のように押し子を装着し、装着した押し子を加熱することがない。そのため、熱効率に優れたものとすることができる実益がある。
【0022】
請求項2記載の発明によれば、請求項1記載の発明の効果に加え、板材の厚みの中心を押圧し、偏荷重が作用しない状態で押圧することができる。そのため、偏荷重による内部応力で完成した板材や柱材が歪むといったことがなく、高品位の製品を提供することができる。
【図面の簡単な説明】
【図1】小板材を縦方向に積み重ねて接着する方式の板材接着機全体の正面図、
【図2】図1に示す板材接着機の主要部分のみの概略図、
【図3】図2に示す板材接着機による製造過程のセッティング状態を示す略図、
【図4】図3に示す状態から定位置高周波電極を作動し、板材群を挟んだ状態の略図、
【図5】図4に示す状態から押圧シリンダーのシリンダー支持台及び押圧片を移動させた状態の略図、
【図6】図5に示す状態から押圧シリンダーを作動させ、板材群を押圧し高周波電流を印加する加熱状態の略図、
【図7】図2に示す板材接着機により、図3とは異なる厚みの板材群を加工する加熱接着状態の略図、
【図8】横型の板材接着機によって薄い板材を幅方向に接着する実施形態の略図、
【図9】図8に示す板材接着機によって板材集成接着する状態を示す略図、
【図10】板材接着機によって加工する製品の一例を示す斜視図、
【図11】従来の板材接着機の一例を示す略図。
【符号の説明】
1…本体フレーム、 2…固定部材、 3…押圧片、 4…定位置高周波電極、5…可動高周波電極、 6…高周波発振器、 7…支持台、 8,9…支持杆、 10…電極シリンダー、 11…支持台、 12…押圧シリンダー、 13…シリンダー支持台、 14、17…モータ、 15,18…送りネジ機構、 16…連結杆、19…ガイドバー、 20…電極支持盤、 21…下電極、 22…シリンダー、 23…上電極、 24…押圧シリンダー、 25…押圧片、 26…受け部材、 A…小板材、
B…板材群。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a laminated material capable of obtaining a pillar material by bonding a plurality of small plate materials A, A by high frequency dielectric heating and cutting them to a constant width W as shown in FIG. 10 (a). The invention relates to a plate material bonding machine that manufactures or manufactures a wide plate material by connecting small plate materials A and A as shown in FIG. 10 (b).
[0002]
[Prior art]
Conventionally, when a plurality of small plate materials are assembled or joined, a plurality of small plate materials A and A are stacked with a heating adhesive as shown in FIG. 11 (a), or as shown in FIG. 11 (b). A plurality of small plate materials A and A are arranged in the width direction with a heating adhesive interposed therebetween to form a plate material group B. High frequency electrodes C and D are brought into contact with both surfaces of the plate material group B to apply a high frequency current. There is known a plate material bonding machine that performs heat bonding.
In this seed plate material bonding machine, one end of a plate material group B is supported by a fixed member E at a fixed position and the other end is pressed by a pressing cylinder F, and is arranged on the side of the pressed plate material group B. , D, for example, a high-frequency electrode D arranged at an upper position in the drawing is brought into contact with the plate group B by a cylinder G.
[0003]
In addition, one end of the plate group B that is sandwiched between the pair of high-frequency electrodes C and D is supported by the fixing member E, and the pusher H is fixed to the tip of the cylinder head in order to press the other end reliably by the cylinder F. In addition, the entire other end of the plate group B can be surely pressed by attaching the discard plate I having a thickness corresponding to the thickness of the plate group B to the pusher H. The discarded plate I needs to be changed according to the thickness of the plate group B as shown in FIGS.
[0004]
[Problems to be solved by the invention]
In the conventional method using the above-mentioned discarding plate, it is necessary to change the discarding plate every time the size of the plate group that is the object to be processed is changed. There is a disadvantage that it is uneconomical because it is necessary to prepare various kinds of discarded boards. In addition, since the discard plate mounted on the pusher is heated together with the plate material group that is the workpiece, there is a disadvantage that the thermal efficiency is deteriorated. In view of the drawbacks of the prior art, there is no need to change the discarded plate one by one, and it is possible to efficiently perform the bonding processing of the plate group having different thicknesses, and the plate bonding machine by high-frequency heating excellent in thermal efficiency. It is an invention aiming at obtaining.
[0005]
Further, as is apparent from FIG. 11, in the conventional method, the plate group B is pressed via the discard plate I by the pressing cylinder F at the same position. Therefore, since the pressing position by the pressing cylinder F and the center of the thickness of the plate group B do not coincide with each other, the plate group B is bonded in a state where an offset load is applied. As a result, there is a defect that the finished plate material and column material are easily distorted. Another object of the present invention is to realize a plate material bonding machine capable of completing a plate material and a column material that do not cause distortion as described above by performing high-frequency heat bonding while pressing the center position of the thickness of the plate material group. It is.
In the plate material bonding machine shown in FIG. 11, it has been devised that the discard plate I is mounted at the center position of the pusher H and the cylinder F is moved in the vertical direction of the drawing, but depending on the thickness of the small plate material A to be processed. There was no change in the need to replace it.
[0006]
[Means for Solving the Problems]
The basic structure of the plate material bonding machine according to the present invention is that a plurality of small plate materials A and A are arranged in the width direction or the thickness direction with a heating adhesive interposed therebetween to form a plate material group B, and one end of the plate material group B is provided. While being supported by the fixing member 2, the other end is pressed by a pressing means, specifically, a pressing piece 3, placed on both sides of the plate group B and brought into a pressed state by a pair of high-frequency electrodes brought into contact with the plate group B This is a plate bonding machine that heats the bonding surface of a certain plate group.
The present invention provides a fixed high-frequency electrode 4 that does not move in the pressing direction of the plate group, and the other high-frequency electrode that can move in the pressing direction of the plate group B in the plate bonding machine. 5 The pressing means of the plate group B is movable without colliding with the fixed-position high-frequency electrode 4, while the movable high-frequency electrode 5 is moved by being pushed by the pressing means.
[0007]
The pressing means for pressing the plate group B uses a pressing piece 3 having a size corresponding to the largest thickness of the plate group B to be processed, that is, a relatively large thickness, and this pressing piece 3 is used as the plate group B. A pressing piece moving means for moving in the thickness direction is provided, and a pressing operation means for pushing the pressing piece 3 movable in the thickness direction of the plate material group B toward the plate material group is provided. Further, if a pressing position moving means for moving the operating position of the pressing operation means for pressing the pressing piece 3 in the thickness direction of the plate material group B is provided, the center position of the thickness of the plate material group B is always pressed and distortion occurs. It will be possible to produce a plate material without.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a plate material bonding machine using high frequency dielectric heating according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a front view of a whole plate bonding machine of a type in which small plate materials are stacked and bonded in the vertical direction, and FIG. 2 is a schematic view of only the main part thereof.
[0009]
In the plate material bonding machine of the embodiment shown in FIGS. 1 and 2, a fixing member 2 for stacking and setting small plate materials A and A, which are workpieces, is placed in a main body frame 1 at a substantially central position. 2, a pressing piece 3 for pressing the plate group B on which the small plate members are stacked is disposed, and a pair of members for heating the stacked plate group B on the left and right sides of the fixing member. A high frequency electrode is provided. Of the pair of high-frequency electrodes, the electrode located on the left side in the drawing is the fixed-position high-frequency electrode 4 that can be moved in the horizontal direction by the link mechanism and brought into contact with the side surface of the plate group B. The electrode located at is a movable high-frequency electrode 5 movable in the pressing direction of the plate group B. A high frequency current is applied to the pair of high frequency electrodes 4 and 5 by a high frequency oscillator 6.
[0010]
The fixed-position high-frequency electrode 4 and the fixed-position high-frequency electrode support base 7 can be moved in a substantially horizontal direction by supporting the lower ends thereof with support rods 8 and 9 that are pivotally supported by the main body frame 1. The position high-frequency electrode 4 can be advanced and retracted from the side toward the plate member group B set on the fixed member 2. On the other hand, the movable high-frequency electrode 5 that is movable in the pressing direction of the plate group B is supported while being movable in the pressing direction, that is, in the vertical direction on the drawing, with respect to the support base 11 fixed to the main body frame 1. Yes. The movable high-frequency electrode 5 is supported on the support base 11 by a movable structure such as an ant fitting or a linear way module, and is always in the upper position and can be moved downward by being pushed by the pressing piece 3. It is like that.
[0011]
The pressing piece 3 is driven up and down by a pressing cylinder 12. The pressing cylinder 12 is supported by a cylinder support 13 and the cylinder head is in the thickness direction of the plate group B with respect to the pressing piece 3, that is, It is engaged in a state where it can freely move in the left-right direction on the drawing. The cylinder support 13 on which the pressing cylinder 12 is supported can be moved in the width direction of the plate group B by a feed screw mechanism 15 driven by a motor 14. On the other hand, the pressing piece 3 has a connecting rod 16 connected to the upper side position, and the connecting piece 16 is engaged with a feed screw mechanism 18 driven by a motor 17, whereby the pressing piece 3 is connected to the motor 17. It is comprised so that it can be moved to the desired position of the width direction of a board | plate material group by drive.
[0012]
The feed screw mechanism 18 for moving the pressing piece 3 in the left-right direction is provided with a guide bar 19 in the vertical direction at the tip, and is engaged so that the connecting rod 16 can move freely along the guide bar 19. are doing. Therefore, as indicated by arrows in FIG. 2, the fixed-position high-frequency electrode 4 positioned on the left side of the plate group B set on the fixing member 2 can be moved in the left-right direction by the electrode cylinder 10, and the plate group The movable high-frequency electrode 5 located on the right side of B is movable in the vertical direction. A high frequency current is applied to the fixed position high frequency electrode 4 and the movable high frequency electrode 5 by a high frequency oscillator 6.
Further, the pressing piece 3 moved up and down by the pressing cylinder 12 can be moved in the thickness direction of the plate group B, that is, in the left-right direction in the drawing by a feed screw mechanism. Further, the pressing cylinder 12 for driving the pressing piece 3 has a support base 13 that can be moved by the feed screw mechanism 15 in the thickness direction of the plate group B, that is, in the left-right direction in the drawing.
[0013]
Next, the operating state of the plate material bonding machine will be described.
As shown in FIG. 3, a plurality of small plate materials A and A to be bonded onto the fixing member 2 are set with a heating adhesive interposed therebetween to form a plate material group B. At this time, the right side surface of the plate group B is disposed in contact with the movable high-frequency electrode 5. From this state, as shown in FIG. 4, the fixed-position high-frequency electrode 4 is pushed out by the electrode cylinder 10, brought into contact with the left side surface of the plate group B, and the plate group B is sandwiched between the pair of high-frequency electrodes. Next, the cylinder support 13 is moved by the feed screw mechanism 15 so that the center position of the thickness of the plate group B matches the center position of the pressing cylinder 12 in the operating direction.
[0014]
Subsequently, as shown in FIG. 5, the pressing piece 3 is moved in the thickness direction of the plate group B by the feed screw mechanism 18, and the inner surface of the fixed-position high-frequency electrode 4 in contact with the left end of the plate group B and the pressing piece 3. Align (slightly inward) the outer faces of. Thereby, the fixed-position high-frequency electrode 4 does not collide when the pressing piece 3 moves up and down. When the pressing piece 3 is pushed down in this state, the pressing piece 3 collides with the movable high-frequency electrode 5 on the way, and finally presses the plate group B while pushing the movable high-frequency electrode 5 as shown in FIG. . In this state, when a high-frequency current is applied to the fixed position high-frequency electrode 4 and the movable high-frequency electrode 5, the small plate materials A and A of the plate group B are heat-bonded to each other.
[0015]
Since the force acting on the plate group B is a pressing force by the pressing cylinder 12 disposed on the center line of the thickness of the plate group B, the bonding surfaces of the small plates A and A are equal regardless of the size and position of the pressing piece 3. Bonded in a state of being pressed with a strong force. Therefore, it is possible to obtain a uniform product with a stable overall bonding state, and since there is no residual internal stress in the bonded plate material group, that is, the finished laminated material, there is no distortion immediately after bonding or due to changes over time. High quality plate and pillar products can be manufactured.
[0016]
1 is mainly for assembling small plate materials, but the width of the small plate materials to be assembled (thickness of the laminated material) and the number of sheets (width of the laminated material) are arbitrary. FIG. 7 shows a usage example in which small plate members having a width smaller than that in the usage state described in FIGS. 3 to 6 are used. In this use state, approximately half of the width of the pressing piece 3 is at the position of the movable high-frequency electrode 5, and substantially left half of the pressing piece 3 is in contact with the upper surface of the plate group B that is a workpiece. The pressing cylinder 12 presses a position biased to the left side of the pressing piece 3. Thus, regardless of the width of the small plate material to be processed, the processing using the small plate material having an arbitrary width can be performed without replacing the pressing piece corresponding to the conventional pusher, and the center position of the plate material group B is always set. By pressing with the pressing cylinder 12, heat-bonding can be performed in a state where the pressing state is not biased.
[0017]
1 to 7, the vertical plate material bonding machine has been described. However, the present invention can also be applied to a horizontal plate material bonding machine. That is, in FIG.8 and FIG.9, an example of embodiment which implements the board | plate material bonding machine which concerns on this invention by a horizontal type is shown with the schematic.
In the embodiment shown in FIGS. 8 and 9, a lower electrode 21 that is a movable high-frequency electrode is disposed on an electrode support board 20 so as to be movable in the left-right direction in the drawing. Above the lower electrode 21, an upper electrode 23, which is a fixed-position high-frequency electrode driven up and down by a cylinder 22, is disposed. This plate material bonding machine can be used mainly as a plate material bonding machine for producing flat plates, and a plate material group in which a plurality of small plate materials A and A are arranged with a heating adhesive interposed on the lower electrode 21. The upper electrode 23 is brought into contact with the upper surface of B, and the plate group B is heated by high-frequency dielectric heating between the lower electrode 21 and the upper electrode 23.
[0018]
A receiving member 26 whose lower end surface is positioned slightly above the upper surface of the lower electrode is disposed on one side of the pair of upper and lower high-frequency electrodes (right side in the drawing). This receiving member 26 is a fixed member, and is configured to support one end of the plate group B arranged on the lower electrode 21 and to move the lower electrode 21 under the receiving member 26.
On the other side of the pair of upper and lower high-frequency electrodes 21 and 23 (left side in the drawing), a pressing piece 25 that presses the plate group B by the pressing cylinder 24 is disposed. The pressing piece 25 is configured to pass under the upper electrode 23 and push the lower electrode 21 to the right in the drawing.
[0019]
With the above configuration, as shown in FIG. 8A, when the plate cylinder B is disposed on the lower electrode 21 and the pressing cylinder 24 is operated with the upper electrode 23 lowered, As shown in (b), the lower electrode 21 is pushed out and moved in the right direction, and the left end of the plate group B is pressed by the pressing piece 25. By applying a high frequency current between the lower electrode 21 and the upper electrode 23 in this pressed state, the entire plate group B is heated. That is, the heating adhesive is heated to bond the small plate materials A and A to complete a large plate material.
[0020]
FIG. 8 shows a state in which a wide plate material is manufactured by contacting small thin plate materials A and A, and FIG. 9 shows a state in which a thin plate material is assembled to manufacture a thick plate material and a column material. In the use state shown in FIG. 8 and the use state shown in FIG. 9, the pressing cylinder 24 is moved in the vertical direction so that the pressing piece 25 does not collide with the upper electrode 23 (the description of the specific structure is omitted). (See Figure 1). However, the positional relationship between the pressing piece 25 and the pressing cylinder 24 is shown in a fixed state. Like the vertical plate material bonding machine described above, the positional relationship between the pressing piece 25 and the pressing cylinder 24 may be changed, but even if the positional relationship is not changed, it may be implemented in practice. it can. In particular, in the case of manufacturing a thin plate material, distortion due to an uneven load in the range of a thin thickness will be negligible. On the contrary, there is a possibility that the influence of the unbalanced load becomes large in the case of a plate material having a large thickness. For this reason, in the illustrated example, the approximate center position of the thickness of the pressing piece 25 is pushed out by the pressing cylinder 24, so that the center of the thickness can be pressed when processing a thick plate material.
[0021]
【The invention's effect】
According to the plate material bonding apparatus using high frequency dielectric heating according to the first aspect of the present invention, a plurality of small plate materials are arranged in the width direction or the thickness direction with a heating adhesive interposed therebetween to form a plate material group on both sides of the plate material group. In the plate bonding machine that heats the bonding surface of the plate group in a pressed state by the arranged high-frequency electrode, it is not necessary to replace the pusher one by one according to the size of the plate member to be processed in the pressing means for pressing the plate group. There is an effect that the plate material can be efficiently bonded. Further, the pusher is attached as in the conventional case, and the attached pusher is not heated. Therefore, there is an actual benefit that can be made excellent in thermal efficiency.
[0022]
According to invention of Claim 2, in addition to the effect of invention of Claim 1, it can press in the state which presses the center of the thickness of a board | plate material and an unbalanced load does not act. Therefore, it is possible to provide a high-quality product without distorting the finished plate material or column material due to the internal stress due to the uneven load.
[Brief description of the drawings]
FIG. 1 is a front view of an entire plate material bonding machine in which small plate materials are stacked and bonded in a vertical direction;
FIG. 2 is a schematic view of only the main part of the plate material bonding machine shown in FIG.
3 is a schematic diagram showing a setting state of a manufacturing process by the plate material bonding machine shown in FIG.
FIG. 4 is a schematic diagram showing a state in which the fixed-position high-frequency electrode is operated from the state shown in FIG.
FIG. 5 is a schematic view of a state in which the cylinder support and the pressing piece of the pressing cylinder are moved from the state shown in FIG.
6 is a schematic diagram of a heating state in which the pressing cylinder is operated from the state shown in FIG. 5 to press the plate group and to apply a high-frequency current;
7 is a schematic diagram of a heat-bonded state in which a plate material group having a thickness different from that of FIG. 3 is processed by the plate material bonding machine shown in FIG.
FIG. 8 is a schematic view of an embodiment in which a thin plate is bonded in the width direction by a horizontal plate bonding machine;
9 is a schematic diagram showing a state in which the plate material is bonded and bonded by the plate material bonding machine shown in FIG.
FIG. 10 is a perspective view showing an example of a product processed by a plate material bonding machine;
FIG. 11 is a schematic view showing an example of a conventional plate material bonding machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Main body frame, 2 ... Fixed member, 3 ... Pressing piece, 4 ... Fixed-position high frequency electrode, 5 ... Movable high frequency electrode, 6 ... High frequency oscillator, 7 ... Support stand, 8, 9 ... Support rod, 10 ... Electrode cylinder, 11 ... Support base, 12 ... Pressing cylinder, 13 ... Cylinder support base, 14, 17 ... Motor, 15, 18 ... Feed screw mechanism, 16 ... Connecting rod, 19 ... Guide bar, 20 ... Electrode support board, 21 ... Lower electrode 22 ... cylinder, 23 ... upper electrode, 24 ... pressing cylinder, 25 ... pressing piece, 26 ... receiving member, A ... small plate material,
B ... Plate material group.

Claims (2)

加熱接着剤を介在させて、複数の小板材を幅方向もしくは厚み方向に配列して板材群となし、該板材群の一端を固定部材によって支持させるとともに他端を押圧手段で押圧し、板材群の両側方に配置し板材群に当接させる一対の高周波電極によって押圧状態にある板材群の接着面を加熱する板材接着機において、
一対の高周波電極のうち、一方を板材群の押圧方向に対して定位置を維持する定位置高周波電極とするとともに他方を板材群の押圧方向に移動可能な可動高周波電極とし、前記板材群の押圧手段は定位置高周波電極に対して衝突しないで移動可能とする一方、可動高周波電極は押圧手段によって押されて移動可能とすることを特徴とする高周波誘電加熱による板材接着機。
A plurality of small plate materials are arranged in the width direction or the thickness direction by interposing a heating adhesive to form a plate material group, one end of the plate material group is supported by a fixing member, and the other end is pressed by a pressing means, and the plate material group In the plate material bonding machine that heats the bonding surface of the plate material group that is in a pressed state by a pair of high-frequency electrodes that are arranged on both sides of the plate and abutted against the plate material group,
One of the pair of high-frequency electrodes is a fixed-position high-frequency electrode that maintains a fixed position with respect to the pressing direction of the plate group, and the other is a movable high-frequency electrode that is movable in the pressing direction of the plate group, and the pressing of the plate group A plate material bonding machine using high-frequency dielectric heating, wherein the means is movable without colliding with the fixed-position high-frequency electrode, while the movable high-frequency electrode is moved by being pushed by the pressing means.
板材群を押圧する押圧手段は、大きな厚みの板材群に対応することができる大きさの押圧片と、該押圧片を板材群の厚み方向に移動させる押圧片移動手段と、押圧片を板材群に向けて押し出す押圧作動手段と、該押圧作動手段の作用位置を押圧片に対して板材群の厚み方向に移動させる押圧位置移動手段を備えてなる請求項1記載の高周波誘電加熱による板材接着機。The pressing means for pressing the plate material group includes a pressing piece having a size capable of corresponding to a large thickness plate material group, a pressing piece moving means for moving the pressing piece in the thickness direction of the plate material group, and the pressing piece as a plate material group. 2. A plate bonding machine using high-frequency dielectric heating according to claim 1, further comprising: pressing operation means that pushes out toward the plate, and pressing position moving means that moves the operating position of the pressing operation means in the thickness direction of the plate group with respect to the pressing pieces. .
JP2002263609A 2002-09-10 2002-09-10 Plate material bonding machine by high frequency dielectric heating Expired - Fee Related JP3699074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263609A JP3699074B2 (en) 2002-09-10 2002-09-10 Plate material bonding machine by high frequency dielectric heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263609A JP3699074B2 (en) 2002-09-10 2002-09-10 Plate material bonding machine by high frequency dielectric heating

Publications (2)

Publication Number Publication Date
JP2004098481A JP2004098481A (en) 2004-04-02
JP3699074B2 true JP3699074B2 (en) 2005-09-28

Family

ID=32263281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263609A Expired - Fee Related JP3699074B2 (en) 2002-09-10 2002-09-10 Plate material bonding machine by high frequency dielectric heating

Country Status (1)

Country Link
JP (1) JP3699074B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022847B1 (en) * 2008-03-13 2011-03-17 오태근 Apparatus and method for manufacturing rectangular-lumber block using disused wood and the rectangular-lumber block manufactured by this
KR101750246B1 (en) * 2015-10-30 2017-06-27 대한민국 manufacturing device for structural glued laminated timber by high frequency curing

Also Published As

Publication number Publication date
JP2004098481A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4355029B1 (en) Work cutting device and work cutting method
JP3699074B2 (en) Plate material bonding machine by high frequency dielectric heating
JP2011092946A (en) Hot-press working device and hot-press working method
CN215697414U (en) Riveting device
CN211030322U (en) Cutting device for substrate edge defect part
JP4520674B2 (en) Electrode positioning device for bonding plates
JPS6213913B2 (en)
CN209867676U (en) Laser welding equipment with pressing device
GB664425A (en) Improvements in and relating to method and apparatus for making laminated articles
JP2731023B2 (en) Lead terminal manufacturing equipment
JPH06234104A (en) Wood compression molding device
CN112297476A (en) Production process of composite aluminum film
JP3101209B2 (en) Butt bonding equipment for plate materials by high frequency heating
KR940000724B1 (en) Grass shaping method and manufacturing method thereof
JP2000145094A (en) Manufacture of wall material
CN214644506U (en) Wood floor hot-pressing equipment
CN220052896U (en) Preheating and prepressing device and continuous laminating machine
CN216539222U (en) Gluing device for hollow glass spacing frame
JPH1142755A (en) Method and apparatus for adhering core material to surface material by high-frequency dielectric heating
CN114407375B (en) DTRO diaphragm welding heating mechanism and DTRO diaphragm welding machine
JPH10249815A (en) Manufacture of laminated plywood and laminated plywood manufacturing device used in the manufacture
KR101149726B1 (en) Apparatus for bonding metal plates
CN220129556U (en) Feeding guide mechanism and welding device
CN216614451U (en) Hot cutting tool for separating laminated glass
KR20190029338A (en) Panel forming system and panel forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees