JP3698682B2 - Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities - Google Patents

Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities Download PDF

Info

Publication number
JP3698682B2
JP3698682B2 JP2002104753A JP2002104753A JP3698682B2 JP 3698682 B2 JP3698682 B2 JP 3698682B2 JP 2002104753 A JP2002104753 A JP 2002104753A JP 2002104753 A JP2002104753 A JP 2002104753A JP 3698682 B2 JP3698682 B2 JP 3698682B2
Authority
JP
Japan
Prior art keywords
equipment
dioxins
waste incineration
agent
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002104753A
Other languages
Japanese (ja)
Other versions
JP2003300037A (en
Inventor
章 川下
三昌 高橋
Original Assignee
田熊プラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田熊プラント株式会社 filed Critical 田熊プラント株式会社
Priority to JP2002104753A priority Critical patent/JP3698682B2/en
Publication of JP2003300037A publication Critical patent/JP2003300037A/en
Application granted granted Critical
Publication of JP3698682B2 publication Critical patent/JP3698682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばごみ焼却処理施設の解体・撤去等に際して利用されるものであり、ダイオキシン類等の有害物質により汚染された建物や機器・装置の内部の汚染を高能率で簡単に、しかも高濃度の有害物を一切外部へ排出することなしに安全に除去処理できるようにした建物や機器・装置内部の汚染除去処理方法に関するものである。
【0002】
【従来の技術】
ごみ焼却施設を構成する建物や建物内部に設置された各種の機器・装置類は、ごみ焼却等により発生したダイオキシン類や重金属類等の有害物質によって汚染され易く、特にごみ焼却炉からの排ガスを直に取り扱う排ガス冷却室や排ガス処理装置の内部は、ごみ焼却施設の稼動期間が長いほどダイオキシン等の有害物質により高度に汚染される傾向にある。
【0003】
そのため、ごみ焼却施設等の解体・撤去に関しては、環境汚染の防止や作業員の安全性を確保する必要上、汚染物の濃度測定や汚染物の外部への取り出し方法、取り出しした汚染物の処理方法、作業員が着装する防護服等の防護レベルについて、法令により厳しい規制が設けられている。
【0004】
一方、上記有害物質により汚染された建物や機器・装置の解体撤去をより安全に、しかも迅速且つ安価に行なえるようにするため、これ迄に各種の技術が開発され、公開されている。
図6は、この種汚染除去処理に関する従来技術の一例を示すものであり、図6に於いてAは汚染除去処理の対象物である機器格納室(被処理対象物)、B・Cは養生設備(仮囲い)、D1 ・D2 は密閉通路、Eはエアーシャワー室、Fは更衣室、Mは作業員、Sは硅砂、Hはセメント、Pはセメント固化物、Vは真空吸引器、Gはブラストガン、Nは汚染物、20はコンプレッサ、21はサンドブラスト装置、22はマスク用エアフィルター、23はバキュームクリーナ、24はエアーダクト、25は集塵式空気清浄機、26はモルタルミキサー、27は型枠である。
【0005】
機器格納室Aの内部の汚染除去処理に際しては、先ず、気密状の養生設備(仮設の囲い)B・C、エアーシャワー室E及び更衣室F等を設けると共に、相互間を密封通路D1 ・D2 により連結する。
また、コンプレッサー20、サンドブラストガン21、マスクエアフィルター22、バキュームクリーナ23、エアーダクト24、集塵式空気清浄機25、モルタルミキサー26、型枠27等の必要機器を設置すると共に、エアーホースL1 ・L2 等により機器相互間を連結する。
更に、作業員Mは、法令に規定された防護レベルの密閉型防護服や化学防護手袋、化学防護長靴、エアーラインマスク等を着用し、防護体制を整える。
【0006】
上記養生・準備作業が完了すると、汚染除去処理に着手する。先ず、機器格納室Aの壁面や床面等の汚染物N(有害物質)が付着している部分の外表面に水を噴霧し、付着した汚染物Nを湿潤化させる。尚、図6では水噴霧装置が省略されているが、使用する水噴霧装置は如何なる型式の噴霧装置であっても良い。
【0007】
汚染物Nの湿潤化作業が完了すると、次にサンドブラスト装置21を作動させ、ブラストガンGを用いた所謂ブラスト工法により、壁面等に付着した汚染物Nを剥離・脱落させる。
また、壁面等から剥離・脱落させた汚染物Nは、真空吸引器Vを用いて吸引し、所謂バキューム吸引と空気搬送の組合せによりバキュームクリーナ23内へ回収したあと、養生設備C内に順次集積して行く。
【0008】
前記養生設備C内に集積された汚染物Nは、機器格納室A内で発生した洗浄排水等と共にモルタルミキサー26内でセメントH等と混練され、型枠27を用いて所定の形態に固形化される。
また、固形化されたセメント固化物Pは、最終的に管理型の産業廃棄物最終処分場へ送られ、ここで埋立処分されることになる。
【0009】
図6の如き従前の汚染除去処理方法は、汚染された機器格納室A等の内部を比較的能率よく除染処理することができ、優れた実用的効用を有するものである。
しかし、当該汚染除去処理方法にも解決すべき多くの問題が残されている。
【0010】
即ち、従前の除染処理方法では、機器格納室Aの内壁面等に付着した有害な汚染物Nを剥離・脱落させ、脱落させた高濃度の汚染物Nを外部へ取り出す工程と、外部へ取り出した高濃度の汚染物Nの汚染濃度を、セメント固化等によって法規制範囲内の数値にまで引き下げするための無害化工程とを必要とするため、汚染除去処理に多くの手数と時間を必要とすると云う難点がある。
【0011】
また、高濃度の汚染物Nを機器格納室Aの外部へ一旦搬出する必要があるため、機器格納室Aの外部の環境汚染を生じると云う危険性がある。
【0012】
更に、外部へ取り出された高濃度の汚染物Nは、汚染レベルの引下げ及びセメント固化等により無害化処理されるものの、最終的には形成されたセメント固化物Pを埋立処分するための廃棄物最終処分場を必要とするため、最終処分場の確保が問題となる。
【0013】
【発明が解決しようとする課題】
本発明は、従前の廃棄物焼却処理施設の建物や機器。装置内部の汚染除去処理方法に於ける上述の如き問題、即ち▲1▼付着した汚染物の剥離・除去並びにその外部への搬出工程と、搬出した高濃度汚染物の無害化処理工程とを必要とするため、汚染除去処理に多くの手数と時間が掛かること、▲2▼被処理対象の外部で環境汚染を生じる危険があること等の問題を解決せんとするものであり、被処理対象物の内部で有害な汚染物の剥離・脱落と無害化の処理を並行的に行なうと共に、被処理対象物内部の洗浄時に、無害化された汚染物を外部へ搬出することにより、環境の保全や作業の安全性並びに作業能率等の大幅な向上を可能にした廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法を提供するものである。
【0014】
【課題を解決するための手段】
請求項1の発明は、ほぼ密封状態とした被処理対象物の内部空間を所定の温度にまで上昇させる密封加温工程と,前記加温をした密封空間内へダイオキシン類を分解するための非加熱分解剤を吹込む分解剤吹込・散布工程と,分解剤を吹込みした後の内部空間内を高圧水により洗浄し、付着した汚染物を剥離・脱落させると共に非加熱分解剤によるダイオキシン類の分解反応を促進させる一次洗浄工程と,前記分解反応を完了した内部空間内を水洗浄し、分解反応後の汚染物を外部へ排出させる二次洗浄工程とを発明の基本構成とするものである。
【0015】
請求項2の発明は、請求項1の発明に於いて、密封加温工程に於ける加温温度を50℃〜80℃とするようにしたものである。
【0016】
請求項3の発明は、請求項1の発明に於いて、一次洗浄工程の完了後、少なくとも30分以上の時間を置いて二次洗浄工程を開始するようにしたものである。
【0017】
請求項4の発明は、請求項1の発明に於いて、ダイオキシン類の非加熱分解剤を粉状体の分解剤とすると共に、当該分解剤を空気輸送により内部空間内へ送り込みこれを吹込・散布するようにしたものである。
【0018】
請求項5の発明は、請求項1の発明の一次洗浄工程に於いて、汚染物内の重金属類をダイオキシン類の分解反応が完了した後の汚染物内に固定させるようにしたものである。
【0019】
請求項6の発明は、請求項1の発明に於いて、密封空間内へ吹込みするダイオキシン類非加熱分解剤の重量を、密封空間内に存在する汚染物の重量の約20〜30%とするようにしたものである。
【0020】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明に係る建物や機器・装置内部の汚染除去処理方法の作業工程図であり、図2は密封加温工程に於ける機器配置図、図3は分解剤吹込・散布工程に於ける機器配置図、図4は一次洗浄工程に於ける機器配置図、図5は二次洗浄工程に於ける機器配置図である。
【0021】
図1を参照して、本願発明は、密封状に保持した被処理対象物Aである建物や機器・装置の内部空間を所定の温度(約50℃〜80℃)に加温する密封加温工程1と、密封加温した被処理対象物Aの内部空間内へ所定量のダイオキシン類の非加熱分解剤を吹込み散布する分解剤吹込・散布工程2と、内部空間内を高圧水によって洗浄することにより、壁面等に固着した有害物質を含む汚染物層を湿潤化して剥離・脱落させると共に、汚染物と吹込・散布された非加熱分解剤との混合及び分解剤によるダイオキシン類の分解反応を促進させる一次洗浄工程3と、水洗浄により、分解剤との混合及び分解反応により所定の安全レベルにまで無害化された内部空間内の汚染物を、外部へ排出させる二次洗浄工程4とから構成されている。
【0022】
前記被処理対象物Aとしては、ごみ焼却施設の各種建家や建家内に設置された各種の機器・装置類がある。
また、被処理対象物Aが建物等でその内部が適宜の区画に分割されている場合には、各区画毎に本発明が適用され、内部空間の汚染除去処理が行なわれる。
更に、被処理対象物Aが建物等であって一区画の内容積が極端に大きい場合には、仮設壁等によって内部を適宜の区画に分割したうえ、各区画毎に汚染除去処理を行なう。
【0023】
前記被処理対象物Aの内部空間は、各開口部を適宜の遮蔽材で閉鎖したあと、電気ヒータやガスヒータ等の加熱源からの熱により約50℃〜70℃に加熱される。
また、加熱時の内部空間内の排気が必要な場合には、集塵式空気清浄機等の所謂局所排気装置を用いて排気するのが望ましい。
【0024】
尚、被処理対象物Aの内部空間内を約50℃〜70℃の温度に加温するのは、壁面等に付着したダイオキシン等の有害物質を含む汚染物を乾燥させることによりその固着力を低減させ、次工程の高圧水洗浄により容易に剥離・脱落するようにすると共に、次工程に於いて吹込みした分解剤(粉体)の分解反応を高め、また、微粒子が汚染物層内へより深く侵入できるようにするためである。
また、空間内部の温度は高温度にするほど好都合であるが、経済性や作業時間等の点から、約80℃位いまでが上限である。
更に、温度が50℃以下になると、前記汚染物の固着力の引下げや分解剤の吸着性の点で問題を生ずることがある。そのため、加温時の温度は50℃以上とするのが望ましい。
【0025】
前記分解剤吹込・散布工程2では、所定量のダイオキシン類の非加熱分解剤が被処理対象物Aの内部空間内へ粉体吹込装置等を用いて吹込・散布される。
尚、非加熱分解剤は、所謂空気輸送方式により可能な限り均一に吹込みされるのが望ましく、そのため複数の吹込口を設けるのが望ましい。
また、非加熱分解剤の吹込み中、内部空間からの排気は停止するのが望ましいが、必要な場合には前記密封加温工程1の場合と同様に、局所排気装置を用いて排気する。
【0026】
前記非加熱分解剤は、汚染物内に含有されているダイオキシン類と反応してこれを分解し、汚染物内のダイオキシン類濃度を所定の安全な濃度レベル以下に引き下げて無害化するためのものである。本実施態様に於いて当該非加熱分解剤として、商品名ダイオマスタ(製造元三浦工業株式会社・販売元アルストムパワー株式会社)を使用している。
【0027】
尚、当該非加熱分解剤は細かい粉体状を呈しており、カルシウム化合物を主成分とするものである。
また、飛灰等の内部に含有されるダイオキシン類であれば、飛灰重量の25〜30wt%の非加熱分解剤を水と一緒に添加して混練することにより、約80〜85%と云う高いダイオキシン類の分解率を得ることが出来る。
更に、非加熱分解剤の吹込量は反応率や経済性等の点から、通常のごみ焼却炉関係の機器・装置や建物の汚染除去処理に於いては、処理対象物の内部空間に存在する汚染物量の20〜30wt%の量の分解剤を吹込・散布すれば良いことが、実験により確認されている。
【0028】
本発明に於いては、予かじめ被処理対象物Aの内部空間に存在するダイオキシン類を含有する汚染物の重量を算定し、当該汚染物重量の約20〜30wt%のダイオキシン類の非加熱分解剤を吹込・散布するようにしている。
汚染物重量の約20〜30wt%の非加熱分解剤を吹込みすることにより、通常のごみ焼却施設の建家や機器・装置類に於いては、内部に存在するダイオキシン類の含有濃度を20ng−TEQ/g以下の汚染物を3ng−TEQ/g以下の管理型最終処分場に処理が可能な濃度にまで引下げすることができる。
尚、処理すべき汚染物内のダイオキシン類の含有濃度が相対的に低い場合には、前記非加熱分解剤の吹込・散布量を低減してもよいことは勿論である。
【0029】
前記一次洗浄工程3は高圧水でもって壁面等に固着した汚染物を脱落させると共に、汚染物と先きに吹込・散布されたダイオキシン類の非加熱分解剤とを混合・攪拌することによりダイオキシン類の分解反応を促進させる。
前記一次洗浄用の高圧水の水量は、汚染物の積層厚さが約10mm、放水圧が20kg/cm2 のとき被処理対象物Aの単位表面積当り約2〜3Lに選定される。
尚、当該放水量(l/m2 )は、汚染物の積層厚さやその固着強度、放水圧等によって適宜に変更され、通常は水圧10〜20kg/cm2 のとき、2〜5l/m2 の高圧水が放出される。
【0030】
前記一次洗浄工程3に於いて、高圧水の放水により、剥離・脱落された汚染物とそれに付着したダイオキシン類非加熱分解剤と水とが混練されることになり、これによって汚染物内のダイオキシン類と非加熱分解剤とが分解反応を起し、前述の如く理想的な条件下では最高で約85%の分解率を得ることが可能となる。
【0031】
上記非加熱分解剤によるダイオキシン類の分解反応に要する時間は10〜20分程度であるが、約30〜60分間程度の時間を次工程の開始との間に置くのが望ましい。
【0032】
非加熱分解剤によるダイオキシン類の分解は、有機合成反応によりダイオキシン類のClをアルキル基と置換することにより行なわれる。
また、非加熱分解剤の添加剤と汚染物との混練により、汚染物内に含まれる鉛等の重金属類が分解生成物内に固定されることになり、所謂重金属類の安定化を同時に達成できることが実験により確認されている。尚、重金属類の固定化の機構は、添加剤に含まれるキレート剤が金属イオンと結合し、キレート化合物を形成することにより反応生成物内に固定化されるものである。
【0033】
前記一次洗浄工程3に於けるダイオキシン類の分解反応が完了すると、二次洗浄工程4が開始され、無害化された汚染物の水による洗浄及び排出が行なわれる。
当該二次洗浄工程4では、水圧30〜40kg/cm2 、約10〜40l/minの高圧水が噴出され、これによって無害化された汚染物が被処理対象物の外方へ略完全に排出される。
尚、二次洗浄工程4では、通常の水洗浄に加えて、他の無害化された汚損物の排出方法を併用してもよいことは勿論である。
【0034】
【実施例】
図2乃至図5は、機械化バッチ燃焼式(ガス冷却室別置型)ごみ焼却炉(ごみ処理量50T/D・20年間運転)を解体撤去するに際して、その排ガス系統に設けたガス冷却室5を本発明により汚染除去処理する場合を示すものである。
当該ガス冷却室5の内容積は約90m3 (内壁面の延表面積は約150m2 )であり、その下流側には空気予熱器6が設けられている。
また、当該ガス冷却室5の内壁面には、平均厚さ8〜12mmの汚損物Nが積層状に固着しており、更に、内壁面に固着した汚損物Nの処理前の平均ダイオキシン類濃度は7ng−TEQ/g及び汚損物の重金属類溶出値は鉛及びその化合物において5mg/lであった。
【0035】
先ず、密封加温工程1に於いては、図2に示す如く遮蔽材7により排ガス入口側及び出口側を密封すると共に、電気ヒータ8、灯油焚ジェットヒータ9及び局所排気装置10を設け、ガス冷却室5の内部空間温度が約50℃になるまで加温した。加温に要する時間は約120分であった。
また、加温時にはガス冷却室5内を約0.5m3 /minの割合で排気し、これを局所排気装置10により清浄化して大気中へ放出した。
【0036】
次に、非加熱分解剤吹込・散布工程2に於いて、予かじめ設置しておいた可搬式粉体吹込装置11から粉体状のダイオキシン類非加熱分解剤Kをガス冷却室5内へ噴出し、これを散布した。
分解剤Kの吹出口12は2ケ所に選定されており、総量110kg(室内表面積約150m2 ×汚染物厚さ0.01m×汚染物の比重約300kg/m3 ×0.25)の分解剤Kを約120分間でガス冷却室5内へ均一に吹出し散布した。尚、使用したダイオキシン非加熱分解剤Kは、前述したダイオマスタ(商品名)である。
また、図2に於いて、11aはブロワ、11bは輸送管、11cは貯留槽、11dは定量フィーダである。
【0037】
分解剤吹込・散布工程2が完了すると、図4に示す如く防護対策を整えた作業員Mがガス冷却室5内へ入り、別に設けた加圧ポンプ(図示省略)からの高圧水Wを噴出することにより、分解剤Kが外表面に付着した汚染物の固着物層を順次剥離・脱落させた。
使用した高圧水Wの水圧は約20kg/cm2 であり、且つ放水量はガス冷却室5の内壁面1m2 当り約2Lとした(内壁面150m2 ×2l/m2 =300l)。
一次洗浄工程3に必要とした延作業時間は約60分であり、従って高圧水Wの噴出流量は5l/minであった。
【0038】
前記一次洗浄工程3の完了後、約30分の分解反応時間を置いて、図5に示す如く二次洗浄工程4を開始した。
ガス冷却室5内へ入った作業員Mは、内壁面に残留した分解反応後の汚染物Qをより完全に洗い落すと共に、床面へ脱落せしめた分解反応後の汚染物Qを排出路13を通してガス冷却室5の外に設けた回収タンク14内へ洗い出す。
本実施例では、ガス冷却室5の内壁面1m2 当り約20lの高圧水Wを使用した(内壁面150m2 ×20l/m2 =3ton)。二次洗浄工程4に必要とした延作業時間は約75分であり、従って高圧水Wの噴出流量は40l/minであった。
【0039】
上記実施例により汚染除去処理を行った場合、回収タンク14内へ排出された分解反応後の汚染物Qのダイオキシン類濃度は約1ng−TEQ/gであって、約1/7の濃度に低減していた。
また、鉛等の重金属も分解反応後の汚染物Q内に所謂固定化された状態になっており、回収タンク14内の排水中の鉛及びその化合物の濃度は基準値である0.3mg/l以下であった。
更に、分解反応前の汚染物Nと分解反応後の汚染物Qからの重金属の水中への溶出比を測定した試験の結果によれば、後者の溶出量が前者の溶出量に比較して約1/500に低下することが確認されている。
【0040】
【発明の効果】
本発明に於いては上述の通り、ダイオキシン類を含有する危険な汚染物Nを被処理対象物の外方へそのまま持ち出しすることなしに、先ず被処理対象物の内部で無害化処理したあと、これを外部へ排出する構成としている。その結果、ダイオキシン濃度の高い汚染物Nによって外部環境が汚染される危険性が、大幅に低下することになる。
【0041】
また、本願発明に於いては、一次洗浄工程に於いて汚染物Nの剥離・脱落と汚染物Nの分解無害化を並行的に行なう構成としている。その結果、汚染除去処理に必要とする作業時間の大幅な短縮が可能になる。
【0042】
更に、被処理対象物から排出されてくる分解処理後の汚染物Qは、二次洗浄工程4に於いて大量の洗浄水により十分に攪拌混合されたものである。その結果、外部へ排出されて来た分解処理後の汚染物Qの汚染濃度は、所謂略均一に平均化されたものとなり、汚染濃度に斑を生じることが皆無となる。
本発明は上述の通り優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本願発明の実施形態を示す作業工程図である。
【図2】本発明を構成する密封加温工程の実施説明図である。
【図3】本発明を構成する分解剤吹込・散布工程の実施説明図である。
【図4】本発明を構成する一次洗浄工程の実施説明図である。
【図5】本発明を構成する二次洗浄工程の実施説明図である。
【図6】従前の汚染除去処理方法の説明図である。
【符号の説明】
Aは被処理対象物、Wは高圧水、Nは汚染物、Kはダイオキシン類非加熱分解剤、Qは分解反応後の汚染物、1は密閉加温工程、2は分解剤吹込・散布工程、3は一次洗浄工程、4は二次洗浄工程、5はガス冷却室、6は空気予熱器、7は遮蔽材、8は電気ヒータ、9は灯油焚ジェットヒータ、10は局所排気装置、11は可搬式粉体吹込装置、11aはブロワ、11bは輸送管、11cは貯留槽、11dは定量フィーダ、12は吹込口、13は排出路、14は回収タンク。
[0001]
BACKGROUND OF THE INVENTION
The present invention is used, for example, when dismantling / removing a waste incineration facility, and highly efficiently and easily contaminates the inside of buildings and equipment / devices contaminated by harmful substances such as dioxins. The present invention relates to a decontamination method for the inside of buildings, equipment, and devices that can safely remove detrimental substances of concentration without discharging them to the outside.
[0002]
[Prior art]
The buildings that make up the waste incineration facility and the various equipment and devices installed inside the building are easily contaminated by harmful substances such as dioxins and heavy metals generated by the waste incineration, especially the exhaust gas from the waste incinerator. The interior of the exhaust gas cooling chamber and the exhaust gas treatment apparatus that are directly handled tends to be highly contaminated by harmful substances such as dioxins as the operation period of the waste incineration facility is longer.
[0003]
Therefore, when dismantling and removing garbage incineration facilities, etc., it is necessary to prevent environmental pollution and ensure the safety of workers. Strict regulations are set by laws and regulations on the level of protection of methods and protective clothing worn by workers.
[0004]
On the other hand, various techniques have been developed and disclosed so far in order to make it possible to dismantle and remove buildings and equipment / devices contaminated with the above-mentioned harmful substances in a safer, quicker and cheaper manner.
FIG. 6 shows an example of the prior art relating to this kind of decontamination treatment. In FIG. 6, A is an equipment storage room (object to be treated) that is an object of decontamination treatment, and B and C are curing conditions. Equipment (temporary enclosure), D 1 and D 2 are sealed passages, E is an air shower room, F is a changing room, M is a worker, S is sand, H is cement, P is cement solidified material, V is a vacuum suction device , G is a blast gun, N is a contaminant, 20 is a compressor, 21 is a sandblasting device, 22 is an air filter for a mask, 23 is a vacuum cleaner, 24 is an air duct, 25 is a dust collecting air cleaner, and 26 is a mortar mixer , 27 is a formwork.
[0005]
For the decontamination processing inside the equipment storage chamber A, first, an air-tight curing facility (temporary enclosure) B / C, an air shower room E, a changing room F, etc. are provided, and a sealed passage D 1. connected by D 2.
In addition, necessary equipment such as a compressor 20, a sandblast gun 21, a mask air filter 22, a vacuum cleaner 23, an air duct 24, a dust collecting air purifier 25, a mortar mixer 26, a formwork 27 and the like are installed, and an air hose L 1 connecting between devices each other by · L 2 and the like.
Furthermore, the worker M wears a protective protective suit, chemical protective gloves, chemical protective boots, an air line mask, etc. having a protective level prescribed by laws and regulations, and prepares a protective system.
[0006]
Once the above curing / preparation work is completed, the decontamination process begins. First, water is sprayed on the outer surface of the part where the contaminant N (hazardous substance) such as the wall surface or floor surface of the equipment storage chamber A is adhered, and the adhered contaminant N is moistened. Although the water spray device is omitted in FIG. 6, the water spray device to be used may be any type of spray device.
[0007]
When the operation of wetting the contaminant N is completed, the sand blasting device 21 is then operated, and the contaminant N adhering to the wall surface and the like is peeled off and dropped by a so-called blasting method using a blast gun G.
In addition, the contaminant N peeled off or dropped from the wall surface is sucked using the vacuum suction device V, collected in the vacuum cleaner 23 by a combination of so-called vacuum suction and air transport, and then sequentially accumulated in the curing equipment C. Go.
[0008]
Contaminant N accumulated in the curing equipment C is kneaded with cement H or the like in a mortar mixer 26 together with cleaning wastewater generated in the equipment storage chamber A, and solidified into a predetermined form using a mold 27 Is done.
Moreover, the solidified cement solidified material P is finally sent to a management-type industrial waste final disposal site where it is disposed of in landfill.
[0009]
The conventional decontamination processing method as shown in FIG. 6 can decontaminate the interior of the contaminated equipment storage chamber A and the like relatively efficiently, and has excellent practical utility.
However, many problems to be solved still remain in the contamination removal processing method.
[0010]
That is, in the conventional decontamination processing method, the harmful contaminant N adhering to the inner wall surface of the equipment storage chamber A is peeled and removed, and the removed high-concentration contaminant N is removed to the outside. Since it requires a detoxification process to reduce the contamination concentration of the extracted high-contamination contaminant N to a value within the legally regulated range by cement solidification, etc., a lot of work and time are required for the decontamination process There is a difficult point.
[0011]
Further, since it is necessary to once carry out the high-concentration contaminant N to the outside of the equipment storage chamber A, there is a risk of causing environmental pollution outside the equipment storage room A.
[0012]
Furthermore, although the high-concentration contaminant N taken out to the outside is detoxified by lowering the contamination level and cement solidifying, etc., waste for finally landfilling the formed cement solidified P Since a final disposal site is required, securing the final disposal site is a problem.
[0013]
[Problems to be solved by the invention]
The present invention is a building or equipment of a conventional waste incineration facility. The above-mentioned problem in the decontamination processing method inside the apparatus, that is, (1) separation / removal of adhered contaminants and removal process to the outside, and detoxification treatment process of the high-concentration contaminants carried out are necessary. Therefore, it is intended to solve the problems such as the fact that the decontamination process takes a lot of work and time, and (2) there is a risk of causing environmental pollution outside the object to be treated. In addition to removing and removing harmful contaminants and detoxifying treatments in parallel, the detoxified contaminants are transported to the outside when cleaning the inside of the object to be treated. The object of the present invention is to provide a decontamination method for the inside of a building or equipment / device in a waste incineration facility that can significantly improve work safety and work efficiency.
[0014]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a sealed heating step for raising the internal space of the object to be processed, which is in a substantially sealed state, to a predetermined temperature, and non-decomposition for decomposing dioxins into the heated sealed space. Decomposing agent blowing / spraying process for blowing the thermal decomposition agent, and cleaning the internal space after blowing the decomposition agent with high-pressure water to remove and remove the attached contaminants, and to remove dioxins by the non-thermal decomposition agent The basic structure of the invention includes a primary cleaning process for promoting a decomposition reaction and a secondary cleaning process for cleaning the interior space where the decomposition reaction is completed with water and discharging contaminants after the decomposition reaction to the outside. .
[0015]
According to a second aspect of the present invention, in the first aspect of the invention, the heating temperature in the sealing and heating step is set to 50 ° C to 80 ° C.
[0016]
According to a third aspect of the present invention, in the first aspect of the invention, after the completion of the primary cleaning step, the secondary cleaning step is started after a period of at least 30 minutes.
[0017]
According to a fourth aspect of the present invention, in the first aspect of the invention, the non-thermal decomposition agent of dioxins is used as the decomposition agent of the powdery substance, and the decomposition agent is sent into the internal space by air transportation. It is intended to be sprayed.
[0018]
According to a fifth aspect of the present invention, in the primary cleaning step of the first aspect of the invention, heavy metals in the contaminant are fixed in the contaminant after the decomposition reaction of the dioxins is completed.
[0019]
The invention according to claim 6 is the invention according to claim 1, wherein the weight of the non-thermal decomposition agent for dioxins blown into the sealed space is about 20 to 30% of the weight of the contaminants present in the sealed space. It is what you do.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a work process diagram of a decontamination processing method inside a building, equipment or apparatus according to the present invention, FIG. 2 is an equipment layout diagram in a sealing and heating process, and FIG. 3 is a decomposition agent blowing and spraying process. FIG. 4 is an equipment layout diagram in the primary cleaning process, and FIG. 5 is an equipment layout diagram in the secondary cleaning process.
[0021]
Referring to FIG. 1, the present invention is a sealed heating that heats the internal space of a building or equipment / device that is an object A to be processed held in a sealed state to a predetermined temperature (about 50 ° C. to 80 ° C.). Step 1, a decomposing agent blowing / spraying step 2 for blowing and spraying a predetermined amount of non-thermal decomposition agent of dioxins into the internal space of the object A to be sealed and heated, and washing the internal space with high-pressure water As a result, the pollutant layer containing harmful substances fixed on the wall surface etc. is moistened and peeled / dropped off, and the mixture of the pollutant and the sprayed / sprayed non-thermal decomposition agent and the decomposition reaction of dioxins by the decomposition agent A primary cleaning step 3 that promotes water, and a secondary cleaning step 4 that discharges contaminants in the internal space that have been rendered harmless to a predetermined safety level by mixing with a decomposition agent and a decomposition reaction by water cleaning, and It is composed of
[0022]
Examples of the object to be treated A include various buildings and various devices and apparatuses installed in the incineration facility.
Further, when the object A to be processed is a building or the like and its interior is divided into appropriate sections, the present invention is applied to each section, and the internal space is decontaminated.
Further, when the object A to be processed is a building or the like and the internal volume of one section is extremely large, the interior is divided into appropriate sections by a temporary wall or the like, and the decontamination process is performed for each section.
[0023]
The internal space of the object A to be processed is heated to about 50 ° C. to 70 ° C. by heat from a heating source such as an electric heater or a gas heater after each opening is closed with an appropriate shielding material.
In addition, when exhaust in the internal space at the time of heating is necessary, it is desirable to exhaust using a so-called local exhaust device such as a dust collection type air purifier.
[0024]
In addition, the inside space of the object A to be treated is heated to a temperature of about 50 ° C. to 70 ° C. because the adhering force is increased by drying contaminants containing harmful substances such as dioxin adhering to the wall surface. Reduced and easily removed and dropped by high-pressure water washing in the next process, enhanced decomposition reaction of the decomposition agent (powder) blown in the next process, and fine particles into the contaminant layer This is to allow deeper penetration.
Further, the temperature inside the space is more convenient as the temperature is higher, but the upper limit is about 80 ° C. from the viewpoint of economy and working time.
Further, when the temperature is 50 ° C. or lower, there may be a problem in terms of lowering the adhering force of the contaminants and adsorbability of the decomposition agent. Therefore, it is desirable that the temperature during heating is 50 ° C. or higher.
[0025]
In the decomposing agent blowing / dispersing step 2, a predetermined amount of the dioxin non-heat decomposing agent is blown / sprayed into the internal space of the object A to be treated using a powder blowing apparatus or the like.
The non-thermal decomposition agent is desirably blown as uniformly as possible by a so-called pneumatic transportation system, and therefore, it is desirable to provide a plurality of blowing ports.
Further, it is desirable to stop the exhaust from the internal space during the blowing of the non-thermal decomposition agent. However, if necessary, the exhaust is performed using a local exhaust device as in the case of the sealed heating step 1.
[0026]
The non-thermal decomposition agent reacts with and decomposes dioxins contained in pollutants and lowers the concentration of dioxins in the pollutants below a predetermined safe concentration level to make them harmless. It is. In the present embodiment, the trade name Diomaster (manufacturer Miura Kogyo Co., Ltd., distributor Alstom Power Co., Ltd.) is used as the non-thermal decomposition agent.
[0027]
In addition, the said non-thermal decomposition agent is exhibiting the fine powder form, and has a calcium compound as a main component.
Moreover, if it is dioxins contained inside fly ash etc., it will be said that it is about 80 to 85% by adding the non-thermal decomposition agent of 25-30 wt% of fly ash weight with water, and knead | mixing. A high decomposition rate of dioxins can be obtained.
In addition, the amount of non-thermal decomposition agent blown in the interior space of the object to be treated in the decontamination treatment of ordinary waste incinerator-related equipment / devices and buildings from the viewpoint of reaction rate and economy. Experiments have confirmed that a decomposition agent in an amount of 20 to 30 wt% of the amount of contaminants may be blown and sprayed.
[0028]
In the present invention, the weight of the contaminant containing dioxins existing in the internal space of the object A to be treated is calculated in advance, and the non-heated dioxins of about 20 to 30 wt% of the contaminant weight are calculated. The decomposition agent is blown and sprayed.
By blowing a non-thermal decomposition agent of about 20 to 30 wt% of the pollutant weight, the concentration of dioxins present in the interior of ordinary waste incineration facilities and equipment / devices is 20 ng. Contaminants of -TEQ / g or less can be reduced to a concentration that can be processed into a managed final disposal site of 3 ng-TEQ / g or less.
Of course, when the concentration of dioxins contained in the contaminant to be treated is relatively low, the amount of the non-thermal decomposition agent blown and sprayed may be reduced.
[0029]
The primary cleaning step 3 removes the contaminants fixed on the wall surface with high-pressure water, and mixes and agitates the contaminants and the non-thermal decomposition agent of the dioxins blown and sprayed earlier to dioxins. Promotes the decomposition reaction.
The amount of high-pressure water for primary cleaning is selected to be about 2 to 3 L per unit surface area of the object A to be treated when the stack thickness of contaminants is about 10 mm and the discharge pressure is 20 kg / cm 2 .
The water discharge amount (l / m 2 ) is appropriately changed depending on the stacking thickness of contaminants, the fixing strength thereof, the water discharge pressure, and the like. Usually, when the water pressure is 10 to 20 kg / cm 2 , the water discharge amount is 2 to 5 l / m 2. Of high pressure water is released.
[0030]
In the primary cleaning step 3, the polluted material that has been peeled off and dropped off, the dioxin non-thermal decomposition agent adhering to the water, and water are kneaded by the discharge of high-pressure water, thereby dioxins in the pollutant. As described above, it is possible to obtain a decomposition rate of up to about 85% under ideal conditions.
[0031]
The time required for the decomposition reaction of dioxins by the non-thermal decomposition agent is about 10 to 20 minutes, but it is desirable to put a time of about 30 to 60 minutes between the start of the next step.
[0032]
Dioxins are decomposed by a non-thermal decomposition agent by replacing Cl of dioxins with an alkyl group by an organic synthesis reaction.
In addition, by mixing the non-thermal decomposition agent additive with the contaminants, heavy metals such as lead contained in the contaminants are fixed in the decomposition products, and so-called stabilization of heavy metals is achieved at the same time. It has been confirmed by experiments that this can be done. The mechanism for immobilizing heavy metals is that the chelating agent contained in the additive binds to the metal ion to form a chelate compound and is immobilized in the reaction product.
[0033]
When the decomposition reaction of dioxins in the primary washing step 3 is completed, the secondary washing step 4 is started, and the detoxified contaminants are washed and discharged with water.
In the secondary cleaning step 4, high-pressure water having a water pressure of 30 to 40 kg / cm 2 and about 10 to 40 l / min is ejected, and the detoxified contaminants are almost completely discharged to the outside of the object to be treated. Is done.
In the secondary cleaning step 4, it goes without saying that in addition to the usual water cleaning, another method for discharging detoxified contaminants may be used in combination.
[0034]
【Example】
2 to 5 show the gas cooling chamber 5 provided in the exhaust gas system when dismantling and removing a mechanized batch combustion type (separate gas cooling chamber type) waste incinerator (waste treatment amount 50 T / D, 20 years operation). The case where the decontamination treatment is performed according to the present invention is shown.
The gas cooling chamber 5 has an internal volume of about 90 m 3 (the inner wall surface has a surface area of about 150 m 2 ), and an air preheater 6 is provided on the downstream side thereof.
In addition, a pollutant N having an average thickness of 8 to 12 mm is fixed in a laminated manner on the inner wall surface of the gas cooling chamber 5, and the average dioxin concentration before treatment of the pollutant N fixed on the inner wall surface is further increased. Was 7 ng-TEQ / g, and the elution value of the heavy metals of the pollutant was 5 mg / l for lead and its compounds.
[0035]
First, in the sealing and heating step 1, as shown in FIG. 2, the exhaust gas inlet side and the outlet side are sealed with a shielding material 7, and an electric heater 8, a kerosene jet heater 9 and a local exhaust device 10 are provided, Heating was performed until the internal space temperature of the cooling chamber 5 reached about 50 ° C. The time required for heating was about 120 minutes.
Further, during heating, the inside of the gas cooling chamber 5 was exhausted at a rate of about 0.5 m 3 / min, which was cleaned by the local exhaust device 10 and released into the atmosphere.
[0036]
Next, in the non-thermal decomposition agent blowing / spraying step 2, the powdery dioxins non-thermal decomposition agent K is transferred into the gas cooling chamber 5 from the portable powder blowing device 11 which has been installed in advance. Spouted and sprayed.
Decomposition agent K outlets 12 are selected at two locations, with a total amount of 110 kg (room surface area of about 150 m 2 × contaminant thickness 0.01 m × contaminant specific gravity of about 300 kg / m 3 × 0.25). K was blown and sprayed uniformly into the gas cooling chamber 5 in about 120 minutes. In addition, the used dioxin non-thermal decomposition agent K is the above-mentioned Diomaster (trade name).
In FIG. 2, 11a is a blower, 11b is a transport pipe, 11c is a storage tank, and 11d is a quantitative feeder.
[0037]
When the decomposition agent blowing / spraying step 2 is completed, a worker M who has prepared protective measures as shown in FIG. 4 enters the gas cooling chamber 5 and jets high-pressure water W from a separately provided pressurizing pump (not shown). By doing so, the fixed substance layer of the contaminants to which the decomposition agent K adhered to the outer surface was sequentially peeled off and dropped off.
The water pressure of the high-pressure water W used was about 20 kg / cm 2 , and the water discharge amount was about 2 L per 1 m 2 of the inner wall surface of the gas cooling chamber 5 (inner wall surface 150 m 2 × 2 l / m 2 = 300 l).
The total work time required for the primary cleaning step 3 was about 60 minutes, and thus the flow rate of the high-pressure water W was 5 l / min.
[0038]
After the completion of the primary washing step 3, the secondary washing step 4 was started as shown in FIG.
The worker M who has entered the gas cooling chamber 5 thoroughly cleans off the pollutant Q after the decomposition reaction remaining on the inner wall surface, and discharges the pollutant Q after the decomposition reaction that has dropped off to the floor surface into the discharge path 13. Then, it is washed out into the collection tank 14 provided outside the gas cooling chamber 5.
In this example, about 20 l of high-pressure water W was used per 1 m 2 of the inner wall surface of the gas cooling chamber 5 (inner wall surface 150 m 2 × 20 l / m 2 = 3 ton). The total work time required for the secondary cleaning step 4 was about 75 minutes, and therefore the flow rate of the high-pressure water W was 40 l / min.
[0039]
When the decontamination process is performed according to the above embodiment, the dioxin concentration of the pollutant Q discharged into the recovery tank 14 after the decomposition reaction is about 1 ng-TEQ / g, which is reduced to about 1/7. Was.
Also, heavy metals such as lead are in a so-called fixed state in the pollutant Q after the decomposition reaction, and the concentration of lead and its compounds in the waste water in the recovery tank 14 is a standard value of 0.3 mg / l or less.
Furthermore, according to the result of the test of measuring the elution ratio of heavy metal from pollutant N before the decomposition reaction and contaminant Q after the decomposition reaction into water, the latter elution amount is about 30% less than the former elution amount. It has been confirmed that it is reduced to 1/500.
[0040]
【The invention's effect】
In the present invention, as described above, after carrying out the detoxification treatment inside the object to be treated without taking out the dangerous contaminant N containing dioxins as it is outside the object to be treated, This is configured to discharge to the outside. As a result, the risk that the external environment is contaminated by the contaminant N having a high dioxin concentration is greatly reduced.
[0041]
In the present invention, the contaminant N is peeled and dropped and the contaminant N is decomposed and rendered harmless in the primary cleaning step. As a result, the work time required for the decontamination process can be greatly reduced.
[0042]
Furthermore, the decontaminated contaminant Q discharged from the object to be treated is sufficiently agitated and mixed with a large amount of washing water in the secondary washing step 4. As a result, the contamination concentration of the contaminant Q after being decomposed and discharged to the outside is averaged so-called substantially uniformly, and there is no spot in the contamination concentration.
The present invention has excellent practical utility as described above.
[Brief description of the drawings]
FIG. 1 is a work process diagram illustrating an embodiment of the present invention.
FIG. 2 is a diagram for explaining the implementation of a sealing and heating step constituting the present invention.
FIG. 3 is an implementation explanatory diagram of a decomposition agent blowing / dispersing step constituting the present invention.
FIG. 4 is a diagram for explaining an implementation of a primary cleaning process constituting the present invention.
FIG. 5 is a diagram for explaining the execution of a secondary cleaning process constituting the present invention.
FIG. 6 is an explanatory diagram of a conventional decontamination processing method.
[Explanation of symbols]
A is an object to be treated, W is high-pressure water, N is a contaminant, K is a dioxin non-thermal decomposition agent, Q is a contaminant after decomposition reaction, 1 is a closed heating process, 2 is a decomposition agent blowing and spraying process 3 is a primary cleaning process, 4 is a secondary cleaning process, 5 is a gas cooling chamber, 6 is an air preheater, 7 is a shielding material, 8 is an electric heater, 9 is a kerosene jet heater, 10 is a local exhaust device, 11 Is a portable powder blowing device, 11a is a blower, 11b is a transport pipe, 11c is a storage tank, 11d is a metering feeder, 12 is a blowing port, 13 is a discharge passage, and 14 is a recovery tank.

Claims (6)

ほぼ密封状態とした被処理対象物の内部空間を所定の温度にまで上昇させる密封加温工程と,前記加温をした密封空間内へダイオキシン類を分解するための非加熱分解剤を吹込む分解剤吹込・散布工程と,分解剤を吹込みした後の内部空間内を高圧水により洗浄し、付着した汚染物を剥離・脱落させると共に非加熱分解剤によるダイオキシン類の分解反応を促進させる一次洗浄工程と,前記分解反応を完了した内部空間内を水洗浄し、分解反応後の汚染物を外部へ排出させる二次洗浄工程とより構成した廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法。A sealing and heating step for raising the internal space of the object to be processed in a substantially sealed state to a predetermined temperature, and a decomposition in which a non-thermal decomposition agent for decomposing dioxins is blown into the heated sealed space. The primary cleaning that promotes the decomposition reaction of dioxins by non-thermal decomposition agent while cleaning the inside space after blowing agent and spraying agent with high-pressure water to remove the attached contaminants and drop off Contamination of buildings, equipment, and equipment in a waste incineration facility comprising a process and a secondary cleaning process in which the interior space where the decomposition reaction has been completed is washed with water and contaminants after the decomposition reaction are discharged to the outside. Removal processing method. 密封加温工程に於ける加温温度を50℃〜80℃とするようにした請求項1に記載の廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法。The method for removing contamination inside a building, equipment or apparatus in a waste incineration facility according to claim 1, wherein the heating temperature in the sealed heating step is 50 ° C to 80 ° C. 一次洗浄工程の完了後、少なくとも30分以上の時間を置いて二次洗浄工程を開始するようにした請求項1に記載の廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法。The method for removing decontamination of buildings, equipment, and devices in a waste incineration facility according to claim 1, wherein the secondary cleaning step is started after a period of at least 30 minutes after the completion of the primary cleaning step. ダイオキシン類の非加熱分解剤を粉状体の分解剤とすると共に、当該分解剤を空気輸送により内部空間内へ送り込みこれを吹込・散布する構成とした請求項1に記載の廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法。The waste incineration treatment facility according to claim 1, wherein a non-thermal decomposition agent for dioxins is used as a powder decomposition agent, and the decomposition agent is sent into the internal space by air transportation and blown and sprayed. Decontamination method for buildings and equipment / devices in Japan. 一次洗浄工程に於いて、汚染物内の重金属類をダイオキシン類の分解反応が完了した後の汚染物内に固定させるようにした請求項1に記載の廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法。The building, equipment and device in the waste incineration facility according to claim 1, wherein heavy metals in the pollutant are fixed in the pollutant after completion of the decomposition reaction of dioxins in the primary cleaning process. Internal decontamination method. 密封空間内へ吹込みするダイオキシン類非加熱分解剤の重量を、密封空間内に存在する汚染物の重量の約20〜30%とするようにした請求項1に記載の廃棄物焼却処理施設における建物や機器・装置内部の汚染除去処理方法。The waste incineration treatment facility according to claim 1, wherein the weight of the non-thermal decomposition agent for dioxins blown into the sealed space is about 20 to 30% of the weight of the contaminants present in the sealed space. Decontamination treatment method for buildings, equipment, and equipment.
JP2002104753A 2002-04-08 2002-04-08 Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities Expired - Fee Related JP3698682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002104753A JP3698682B2 (en) 2002-04-08 2002-04-08 Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002104753A JP3698682B2 (en) 2002-04-08 2002-04-08 Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities

Publications (2)

Publication Number Publication Date
JP2003300037A JP2003300037A (en) 2003-10-21
JP3698682B2 true JP3698682B2 (en) 2005-09-21

Family

ID=29389798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002104753A Expired - Fee Related JP3698682B2 (en) 2002-04-08 2002-04-08 Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities

Country Status (1)

Country Link
JP (1) JP3698682B2 (en)

Also Published As

Publication number Publication date
JP2003300037A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
JP2004305904A (en) Dioxins removing method, incinerator dismantling method, and asbestos removing method
US4352332A (en) Fluidized bed incineration of waste
KR101421109B1 (en) Method and apparatus for purifying toxic substances
JP4122015B2 (en) Plant cleaning method, asbestos removal method and dismantling treatment method
JP3698682B2 (en) Decontamination treatment method for buildings, equipment and devices inside waste incineration facilities
JP4828912B2 (en) Decomposition method of asbestos
JP2008049213A (en) Continuous detoxification treatment system of fibrous asbestos containing agglomerated material and its method
JP5479791B2 (en) How to dismantle contaminated equipment
JP3881864B2 (en) Waste treatment facility dismantling system
CN208853449U (en) A kind of integrated treating device of Organic-inorganic composite contaminated soil
WO2015137311A1 (en) Radioactive decontamination device and decontamination method
JP2007117909A (en) Scattering asbestos treatment method, apparatus used for the method, and vehicle loaded with the apparatus
JP4379663B2 (en) Cleaning method for dioxin contaminated parts
JP2001038318A (en) Method for removing contaminated matter by dioxins at trash incineration equipment
JP4408222B2 (en) Detoxification equipment for soil contaminated with chemical agents
JP2003010676A (en) Heat treatment apparatus, treatment facilities therefor and pollution cleaning method for treatment facilities
JP3618737B2 (en) Incinerator dismantling equipment
JP2006281148A (en) Dioxin contaminant treating method
JP3952880B2 (en) Waste material treatment equipment and waste material treatment method
KR20100088355A (en) Asbestos fiber removal system and removal method of structure inside surface
KR200307143Y1 (en) Exhauster of movable mixture stirrer
JP2008006326A (en) Scattering preventive method of scattering substance by gelling, and removing method
JP2004057992A (en) Method and apparatus for purifying contaminated soil
JP4446214B2 (en) Dioxin decontamination method for equipment surface
JPH03287376A (en) Blasting method in decontamination work

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees