JP3698319B2 - Multi-axis photoelectric sensor - Google Patents

Multi-axis photoelectric sensor Download PDF

Info

Publication number
JP3698319B2
JP3698319B2 JP2002151044A JP2002151044A JP3698319B2 JP 3698319 B2 JP3698319 B2 JP 3698319B2 JP 2002151044 A JP2002151044 A JP 2002151044A JP 2002151044 A JP2002151044 A JP 2002151044A JP 3698319 B2 JP3698319 B2 JP 3698319B2
Authority
JP
Japan
Prior art keywords
light
interference light
optical axis
interference
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002151044A
Other languages
Japanese (ja)
Other versions
JP2003347915A (en
Inventor
義之 松永
康一 密島
Original Assignee
サンクス株式会社
朝日松下電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社, 朝日松下電工株式会社 filed Critical サンクス株式会社
Priority to JP2002151044A priority Critical patent/JP3698319B2/en
Publication of JP2003347915A publication Critical patent/JP2003347915A/en
Application granted granted Critical
Publication of JP3698319B2 publication Critical patent/JP3698319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同期信号に基づいて投光及び受光を行う複数の光軸動作を順次的に所定周期で繰り返す投光器及び受光器からなる多光軸光電センサに関する。
【0002】
【従来の技術】
多光軸光電センサは図1のように、同期信号線を介して同期動作する多光軸の投光器1と多光軸の受光器2から成り立っており、同期信号に基づいて投光及び受光を行う複数の光軸動作を順次的に所定周期で繰り返すものである。例えば、投光器1から光軸▲1▼〜▲4▼が同期信号に基づいて順次的に投光され、受光器2が光軸▲1▼〜▲4▼の投光タイミングと同期して、前記投光出力を受光して認識している。このような光電センサは工場の生産ラインなどで危険防止などのためによく使用され、例えば生産従事者の手が少なくとも一つの光軸を遮ったとすると受光器2は遮光と判断して、アラーム報知や生産機械の停止などのための制御信号を送出するものである。
【0003】
【発明が解決しようとする課題】
しかし、例えば図2のように、このような光電センサの複数組を隣接して設置した場合、ある光電センサの投光器1からの投光出力は、その光軸からある程度の広がりをもっているために、他の光電センサの受光器2に点線のように入光して干渉光となり、誤動作を招くおそれがある。そこで、ペアとなる投光器1と受光器2との間に同期信号線を接続して同期関係を維持させて、投光器1の投光出力とタイミング同期した受光器2のみがその投光信号を認識可能とすることにより、同期関係のない受光器側ではその投光出力を無視できるため、干渉光による誤動作が一応防止されている。しかしながら、同期信号の周期がもともと異なる光電センサ同士では光軸のタイミングが合うことが殆どないため、誤動作は実質的に防止されているが、同機種同士のように同期信号の周期が実質等しい(すなわちごくわずかだけ異なる)光電センサ同士が隣接して設置された場合には、このような誤動作防止手段では不充分である。すなわち、そのような複数の光電センサ間において、ある時点では互いの光軸動作のタイミングがずれていたとしても、時間が経てば互いの微妙な時間ずれが累積してしまうことにより、長期に渡って光軸動作のタイミングが一致してしまう時期が到来してしまう。そうすると、互いに干渉する確率が非常に高くなる。従って、本発明は、同期信号の周期が実質等しい光電センサの複数組が隣接して設置された場合の相互干渉による誤動作を防止することを目的とする。
【0004】
【課題を解決するための手段】
本発明を要約すると、同期信号に基づいて投光及び受光を行う複数の光軸動作を順次的に所定周期で繰り返す投光器及び受光器からなる多光軸光電センサであって、受光器において、投光器からの投光出力を認識する投光信号認識区間の前に干渉光確認区間Bを設けるとともに、投光信号認識区間の後に干渉光確認区間Aを設け、干渉光確認区間B中に干渉光を確認した場合、確認した光軸において通常の光軸処理時間に加えて、後続の干渉光が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間後に同期信号を生成させて投受光処理を再開し、さらに次の周期において、投受光処理開始を、後続の干渉光が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間後に行うことにより干渉光を回避する多光軸光電センサである。そして、所定の遅延時間を、後続の干渉光が干渉光確認区間Aの直後付近に現れるように設定すると好ましい。また、干渉光確認区間A中に干渉光を確認した場合、次の周期において、投受光処理開始を、後続の干渉光が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間後に行うことにより干渉光を回避するものである。そして、この場合は、所定の遅延時間を、後続の干渉光が干渉光確認区間Bの直前付近に現れるように設定すると好ましい。
【0005】
【発明の実施の形態】
次に、本発明の実施形態を説明するが、それはあくまで本発明に基づいて採択された例示的な実施形態であり、本発明をその実施形態に特有な事項に基づいて限定解釈してはならず、本発明の技術的範囲は、請求項に示した事項さらにはその事項と実質的に等価である事項に基づいて定めなければならない。
【0006】
本発明の実施形態をまず図1〜6により説明すると、同期信号に基づいて投光及び受光を行う複数の光軸動作を順次的に所定周期(1スキャン:6ms)で繰り返す投光器1及び受光器2からなる多光軸光電センサが示され、投光器1及び受光器2は光軸▲1▼〜▲4▼が合うように対向して設置される。受光器2から同期信号線を介して送られてきた同期信号は同期信号入力回路3で受け付けられ、その同期信号に基づきマイコン4が指令を出すと、その指令に基づいて光軸選択回路5は発光ダイオードなどの発光素子を含む投光回路6〜9を順次駆動する。各投光回路6〜9からの順次投光出力は受光器2の各受光回路10〜13にて順次受光されてマイコン14で認識される。この受光認識タイミングは前記同期信号に基づいて定めらている。また、15は同期信号出力回路である。
【0007】
受光器2から送出される同期信号をさらに詳述すると、スタート信号、定時間間隔の4つの同期信号及びエンド信号からなり、スタート信号に続いて送信される各同期信号に基づいて所定のタイミングで各投光回路6〜9は順次的に各々所定時間だけ光軸▲1▼〜▲4▼として投光出力動作を行う。図6により詳しく説明すると、受光器2から同期信号が送信されると、投光器1では2μs程度の遅延時間後に前記同期信号が受信認識され、前記同期信号のスタート時点から約12μs経過後、投光器1から投光信号が例えば光軸▲1▼において約3μsの時間幅にて出力される。その後、他の光軸▲2▼〜▲4▼においても順次到来する各同期信号に基づいて投光回路7〜9により順次的に同様な投光出力が行われる。なお、1光軸当りの全処理時間は約45μsとしている。そして、受光器2から投光器1にエンド信号が送出された後、1周期の投受光処理が完了する。
【0008】
一方、受光器2においては、前記各同期信号にタイミングを合わせて、各同期信号の終了直後から各同期信号のスタート時点より約45μsの時点付近まで、各受光回路10〜13が順次有効化される。例えば光軸▲1▼にて投光出力があるタイミングでは、同期信号の終了直後から次の同期信号の直前までは受光回路10のみが有効化されている。受光回路10で受光された投光信号がマイコン14にて認識される時間は、前記同期信号のスタート時点から15〜17μsの時間幅で示された投光信号認識区間すなわち、投光出力終了時点直後の2μs程度の時間幅で行われる。このようにして、受光器2は、投光器1からの投光信号を同期信号に同期して各光軸毎に順次有効化して受光し、マイコン14にて投光信号の有無を認識して入光/遮光状態を判定している。そして、例えば生産従事者の手が光軸▲1▼を遮ったとすると受光器2は遮光と判断して、アラーム報知や生産機械の停止などのための図示されない制御信号を送出するものである。
【0009】
次に、投光器1と受光器2からなる光電センサの同機種が複数組、隣接して設置された場合などのように、相互干渉による誤動作の回避について説明する。まず、図6に示すように、受光器2において、投光器1からの投光出力信号を認識する投光信号認識区間の前に干渉光確認区間B(Before)を設けている。干渉光確認区間Bは同期信号のスタート時点から約11.8μs後にある。また、前記投光信号認識区間の後に干渉光確認区間A(After)を設けている。干渉光確認区間Aは、同期信号のスタート時点から約25〜27μs後にある。これらの干渉光確認区間B及び干渉光確認区間Aにおける干渉光があったかどうかの確認は、マイコン14にて行われるようプログラム化され、干渉光確認区間Bあるいは干渉光確認区間Aにおいて入光確認されると干渉光があったものとして処理される。
【0010】
次に、受光器2の周期よりごくわずかに長い周期で隣接する他の投光器が動作している場合の誤動作回避について、図7と図8により説明する。この場合、他の投光器からの干渉光は周期動作が繰り返されるたびに干渉光確認区間Bに対して前から徐々に近づいて来るようになるが、ついに図7のように、その干渉光21が、光軸▲1▼において受光器2の干渉光確認区間Bにて確認されるようになると、確認した光軸▲1▼において通常の光軸処理時間(約45μs)に加えて、後続の干渉光22、…が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間(例えば20μs)後に同期信号を生成させて投受光処理を再開する処理を行う。そうすると、次の干渉光22は先の干渉光21よりも約45μs後に到来するため、この干渉光22が次の干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重なることがないし、さらに後続する図外の干渉光も干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重なることがない。そして、光軸▲1▼における投光器1からの投光出力が干渉光22より後の投光信号認識区間にて認識されると、受光器2は光軸▲1▼にて入光があったと最終的に判断する。なお、この投光出力が遮光されると、干渉光22より後の前記投光信号認識区間にて遮光認識されて、受光器2は光軸▲1▼にて遮光があったと最終的に判断されることは当然である。なお、この周期の全体長は変わらないものの、前記遅延時間(20μs)により当然ながら、この周期内における他の光軸▲2▼〜▲4▼の動作は同様に遅延する。
【0011】
しかしながら、周期ごとに干渉光が前から徐々に近づいて干渉光確認区間Bにて確認されるたびに同期信号のみを単に遅延させていくことは限界があるため、次の動作周期(次の1スキャン)においては、投受光処理開始を、後続の干渉光23、24、…が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間(例えば約20μs)後に行うことにより干渉光を回避する。すなわち、図8のように、投受光処理開始を所定の遅延時間(例えば約20μs)だけ遅延させて、換言すればスタート信号やエンド信号を含む1スキャン分の同期信号全体を遅延させることにより干渉光を回避するものである。このようにすれば、干渉光23,24など約45μs間隔で到来する干渉光を的確に回避できる。なお、他の投光器からの干渉光は周期動作が繰り返されるたびに受光器2における干渉光確認区間Bに対して前から徐々に近づいて来るようになるため、その干渉光が干渉光確認区間Bにて再び確認されると、上記と同様な動作により干渉光回避手段が再び機能するものである。なお、図7と図8の各遅延時間は互いに異なっていてもよい。また、それらの遅延時間を、後続の干渉光が干渉光確認区間Aの直後付近に現れるように設定するのが、次々と到来する干渉光が干渉光確認区間Bに重なるまでの時間が最も長くなって好ましい。前記遅延時間である約20μsは、ほぼこの条件を満たしている。
【0012】
次に、受光器2の周期よりわずかに短い周期で隣接する他の投光器が動作している場合の誤動作回避について、図9と図10により説明する。この場合、他の投光器からの干渉光は周期動作が繰り返されるたびに干渉光確認区間Aに対して後から徐々に近づいて来るようになるが、ついに図9のように、その干渉光25が、光軸▲1▼において受光器2の干渉光確認区間Aにて確認されるようになると、次の動作周期(次の1スキャン)においては、図10のように動作させる。すなわち、投受光処理開始を、後続の干渉光26、27などが干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間(例えば約34μs)後に行うことにより干渉光を回避する。換言すればスタート信号やエンド信号を含む1スキャン分の同期信号全体を遅延させることにより干渉光を回避するものである。このようにすれば、干渉光26,27など約45μs間隔で到来する干渉光を的確に回避できる。なお、他の投光器からの干渉光は動作周期が繰り返されるたびに受光器2における干渉光確認区間Aに対して後から徐々に近づいて来るようになるため、その干渉光が干渉光確認区間Aにて再び確認されると、上記と同様な動作により干渉光回避手段が再び機能するものである。なお、干渉光認識後、次の動作周期まで遅延動作を先送りするのは、干渉光確認区間Aを投光信号認識区間よりかなり後に離間して設けることができるために、その動作周期においては干渉光が投光信号認識区間に重なるおそれがないためである。なお、図10に示した遅延時間を、後続の干渉光が干渉光確認区間Bの直前付近に現れるように設定すると、次々と到来する干渉光が干渉光確認区間Aに重なるまでの時間が最も長くなって好ましい。前記遅延時間である約34μsは、ほぼこの条件を満たしている。また、図7〜10においては複雑化を避けるため、図6とは異なり投光出力(黒塗り信号)と投光信号認識区間の時期をあえて一致させている。
【0013】
以上のように本実施形態によれば、同期信号の周期が実質等しい光電センサの複数組が隣接して設置された場合の相互干渉による誤動作を的確に防止でき、例えば、工場の生産ラインなどでの危険防止などを的確に行える。なお、同期信号を投光器1側で発生させてこれを受光器2側に送信する場合であっても投光器1と受光器2の同期動作は可能であるため、本発明はそのような場合にも同様に適用できるのは言うまでもないことである。
【図面の簡単な説明】
【図1】投光器と受光器からなる光電センサの外観正面図
【図2】光電センサの複数組を隣接して設置した状態の外観正面図
【図3】投光器と受光器からなる光電センサの回路ブロック図
【図4】受光器から投光器に送信する信号列を示すタイミング図
【図5】受光器からの信号列に対応した投光器の投光出力のタイミング図
【図6】同期信号に対応した投光器・受光器の投光出力・確認区間などを示す詳細タイミング図
【図7】干渉光確認区間Bにて干渉光が確認された場合の動作を示すタイミング図
【図8】図7の次の周期の動作を示すタイミング図
【図9】干渉光確認区間Aにて干渉光が確認された場合のタイミング図
【図10】図9の次の周期の動作を示すタイミング図
【符号の説明】
1 投光器
2 受光器
▲1▼〜▲4▼ 光軸
B、A 干渉光確認区間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-optical axis photoelectric sensor including a light projector and a light receiver that sequentially repeat a plurality of optical axis operations for performing light projection and light reception based on a synchronization signal at a predetermined cycle.
[0002]
[Prior art]
As shown in FIG. 1, the multi-optical axis photoelectric sensor is composed of a multi-optical axis projector 1 and a multi-optical axis light receiver 2 that operate synchronously via a synchronous signal line. A plurality of optical axis operations to be performed are sequentially repeated at a predetermined cycle. For example, the optical axes {circle over (1)} to {circle around (4)} are sequentially projected from the projector 1 based on the synchronization signal, and the light receiver 2 is synchronized with the light projection timing of the optical axes {circle over (1)} to {circle around (4)}. Receiving and recognizing the projection output. Such a photoelectric sensor is often used in a factory production line to prevent danger. For example, if a production worker's hand blocks at least one optical axis, the light receiver 2 determines that the light is blocked, and an alarm is notified. And a control signal for stopping the production machine.
[0003]
[Problems to be solved by the invention]
However, for example, as shown in FIG. 2, when a plurality of sets of such photoelectric sensors are installed adjacent to each other, the projection output from the projector 1 of a certain photoelectric sensor has a certain extent from the optical axis. There is a possibility that light enters the light receiver 2 of another photoelectric sensor as shown by a dotted line and becomes interference light, resulting in malfunction. Therefore, a synchronizing signal line is connected between the projector 1 and the receiver 2 that are paired to maintain the synchronization relationship, and only the receiver 2 that is synchronized in timing with the projector output of the projector 1 recognizes the projection signal. By making it possible, the light projection output can be ignored on the side of the light receiver that has no synchronization relationship, so that malfunction due to interference light is prevented for the time being. However, since the timings of the optical axes are hardly matched between photoelectric sensors with originally different synchronization signal cycles, malfunctions are substantially prevented, but the synchronization signal cycles are substantially equal as in the same model ( If the photoelectric sensors are installed adjacent to each other (that is, only slightly different), such a malfunction prevention means is not sufficient. In other words, even if the timings of optical axis movements are shifted at a certain point in time among such a plurality of photoelectric sensors, the subtle time shifts accumulate over time, so that a long period of time can be accumulated. As a result, the time when the timing of the optical axis operation coincides will come. Then, the probability of interfering with each other becomes very high. Therefore, an object of the present invention is to prevent malfunction due to mutual interference when a plurality of sets of photoelectric sensors having substantially the same synchronization signal period are installed adjacent to each other.
[0004]
[Means for Solving the Problems]
To summarize the present invention, there is provided a multi-optical axis photoelectric sensor comprising a projector and a light receiver that sequentially repeats a plurality of optical axis operations for performing light projection and light reception based on a synchronization signal at a predetermined cycle. The interference light confirmation section B is provided before the projection signal recognition section for recognizing the projection output from the projector, and the interference light confirmation section A is provided after the projection signal recognition section. When confirmed, in addition to the normal optical axis processing time on the confirmed optical axis, a predetermined interference light is set so that subsequent interference light does not overlap with the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A. The synchronization signal is generated after the delay time to restart the light projecting / receiving process, and in the next cycle, the light projecting / receiving process is started, and the subsequent interference light is the interference light confirmation section B, the light projection signal recognition section and the interference light confirmation section A. So as not to overlap A multi-optical axis photoelectric sensor to avoid interference light by performing after boss was a predetermined delay time. The predetermined delay time is preferably set so that the subsequent interference light appears immediately after the interference light confirmation section A. Further, when the interference light is confirmed during the interference light confirmation section A, in the next cycle, the light projection / reception process is started, and the subsequent interference light enters the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A. Interference light is avoided by performing after a predetermined delay time set so as not to overlap. In this case, the predetermined delay time is preferably set so that the subsequent interference light appears in the vicinity of the interference light confirmation section B.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described. However, this is merely an exemplary embodiment adopted based on the present invention, and the present invention should not be limitedly interpreted based on matters specific to the embodiment. Rather, the technical scope of the present invention should be determined based on the matters shown in the claims and matters substantially equivalent thereto.
[0006]
An embodiment of the present invention will be described first with reference to FIGS. 1 to 6. A projector 1 and a light receiver that sequentially repeat a plurality of optical axis operations for performing light projection and light reception based on a synchronization signal at a predetermined cycle (1 scan: 6 ms). A multi-optical axis photoelectric sensor composed of 2 is shown, and the projector 1 and the light receiver 2 are placed facing each other so that the optical axes (1) to (4) are aligned. The synchronization signal sent from the light receiver 2 via the synchronization signal line is received by the synchronization signal input circuit 3, and when the microcomputer 4 issues a command based on the synchronization signal, the optical axis selection circuit 5 is based on the command. The light projecting circuits 6 to 9 including light emitting elements such as light emitting diodes are sequentially driven. Sequential projection outputs from the light projecting circuits 6 to 9 are sequentially received by the light receiving circuits 10 to 13 of the light receiver 2 and recognized by the microcomputer 14. This light reception recognition timing is determined based on the synchronization signal. Reference numeral 15 denotes a synchronization signal output circuit.
[0007]
The synchronization signal transmitted from the optical receiver 2 will be described in further detail. The synchronization signal is composed of a start signal, four synchronization signals at regular time intervals, and an end signal, and at a predetermined timing based on each synchronization signal transmitted following the start signal. Each of the light projecting circuits 6 to 9 sequentially performs a light projecting output operation using the optical axes (1) to (4) for a predetermined time. More specifically, referring to FIG. 6, when a synchronization signal is transmitted from the light receiver 2, the projector 1 receives and recognizes the synchronization signal after a delay time of about 2 μs, and after about 12 μs has elapsed from the start time of the synchronization signal, the projector 1. The light projection signal is output with a time width of about 3 μs in the optical axis (1), for example. Thereafter, similar light projection outputs are sequentially performed by the light projecting circuits 7 to 9 on the other optical axes {circle around (2)} to {circle around (4)} on the basis of the synchronization signals that arrive sequentially. The total processing time per optical axis is about 45 μs. Then, after the end signal is transmitted from the light receiver 2 to the projector 1, the light projecting / receiving process in one cycle is completed.
[0008]
On the other hand, in the optical receiver 2, the respective light receiving circuits 10 to 13 are sequentially activated from the time immediately after the end of each synchronization signal to the vicinity of about 45 μs from the start time of each synchronization signal in synchronization with the timing of each synchronization signal. The For example, at the timing when there is a projection output on the optical axis (1), only the light receiving circuit 10 is enabled from immediately after the end of the synchronization signal to immediately before the next synchronization signal. The time for which the microcomputer 14 recognizes the light projection signal received by the light receiving circuit 10 is the light projection signal recognition section indicated by the time width of 15 to 17 μs from the start time of the synchronization signal, that is, the time when the light projection output ends. Immediately after that, it is performed with a time width of about 2 μs. In this way, the light receiver 2 sequentially receives and receives the light projection signal from the light projector 1 for each optical axis in synchronization with the synchronization signal, and the microcomputer 14 recognizes the presence or absence of the light projection signal. The light / light shielding state is determined. For example, if the hand of the production worker blocks the optical axis (1), the light receiver 2 determines that the light is blocked, and sends out a control signal (not shown) for alarm notification, production machine stoppage, and the like.
[0009]
Next, avoidance of malfunction due to mutual interference as in the case where a plurality of sets of the same type of photoelectric sensor including the projector 1 and the light receiver 2 are installed adjacent to each other will be described. First, as shown in FIG. 6, in the light receiver 2, an interference light confirmation section B (Before) is provided before the light projection signal recognition section for recognizing the light projection output signal from the light projector 1. The interference light confirmation section B is about 11.8 μs after the start of the synchronization signal. Further, an interference light confirmation section A (After) is provided after the projection signal recognition section. The interference light confirmation section A is about 25 to 27 μs after the start time of the synchronization signal. Confirmation of whether there is interference light in these interference light confirmation section B and interference light confirmation section A is programmed to be performed by the microcomputer 14, and the incident light is confirmed in interference light confirmation section B or interference light confirmation section A. Then, it is processed as if there was interference light.
[0010]
Next, avoiding malfunction when another adjacent projector is operating with a period slightly longer than the period of the light receiver 2 will be described with reference to FIGS. In this case, every time the periodic operation is repeated, the interference light from other projectors gradually approaches the interference light confirmation section B from the front, but finally the interference light 21 is changed as shown in FIG. When the optical axis {circle over (1)} is confirmed in the interference light confirmation section B of the light receiver 2, in addition to the normal optical axis processing time (about 45 μs) in the confirmed optical axis {circle around (1)}, the subsequent interference After a predetermined delay time (for example, 20 μs) set so that the lights 22,... Do not overlap the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A, a synchronization signal is generated and the light projection / reception processing is resumed. Process. Then, since the next interference light 22 arrives about 45 μs later than the previous interference light 21, this interference light 22 may overlap the next interference light confirmation section B, the projection signal recognition section, and the interference light confirmation section A. Further, the subsequent interference light (not shown) does not overlap the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A. When the light output from the projector 1 on the optical axis {circle around (1)} is recognized in the light projection signal recognition section after the interference light 22, the light receiver 2 receives light on the optical axis {circle around (1)}. Judgment finally. When this projection output is shielded, it is recognized in the projection signal recognition section after the interference light 22, and the light receiver 2 finally determines that there is a shield on the optical axis (1). It is natural to be done. Although the overall length of this period does not change, the operations of the other optical axes {circle around (2)} to {circle around (4)} within this period are delayed as a matter of course due to the delay time (20 μs).
[0011]
However, since there is a limit to simply delaying the synchronization signal every time the interference light gradually approaches from the front and is confirmed in the interference light confirmation section B, the next operation period (the next 1 In the scanning), a predetermined delay time (set so that the subsequent interference light 23, 24,... Does not overlap the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A) is started. For example, interference light is avoided by performing after about 20 μs). That is, as shown in FIG. 8, the start of the light projecting / receiving process is delayed by a predetermined delay time (for example, about 20 μs), in other words, the entire synchronization signal for one scan including the start signal and the end signal is delayed. It avoids light. In this way, interference light that arrives at intervals of about 45 μs, such as interference light 23 and 24, can be accurately avoided. The interference light from other projectors gradually approaches the interference light confirmation section B in the light receiver 2 every time the periodic operation is repeated, so that the interference light becomes the interference light confirmation section B. Then, the interference light avoiding means functions again by the same operation as described above. Note that the delay times in FIGS. 7 and 8 may be different from each other. In addition, the delay time is set so that the subsequent interference light appears in the vicinity immediately after the interference light confirmation section A. The time until the interference light that arrives one after another overlaps the interference light confirmation section B is the longest. It is preferable. The delay time of about 20 μs almost satisfies this condition.
[0012]
Next, malfunction avoidance when another adjacent projector is operating at a slightly shorter period than the period of the light receiver 2 will be described with reference to FIGS. 9 and 10. FIG. In this case, every time the periodic operation is repeated, the interference light from other projectors gradually approaches the interference light confirmation section A later, but finally the interference light 25 is changed as shown in FIG. When it is confirmed in the interference light confirmation section A of the light receiver 2 on the optical axis {circle around (1)}, it is operated as shown in FIG. 10 in the next operation cycle (next one scan). That is, a predetermined delay time (for example, about 34 μs) set so that the subsequent interference light 26, 27 and the like do not overlap the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A is started. Interfering light is avoided by performing later. In other words, interference light is avoided by delaying the entire synchronization signal for one scan including the start signal and the end signal. In this way, interference light that arrives at intervals of about 45 μs, such as interference light 26 and 27, can be accurately avoided. The interference light from other projectors gradually approaches the interference light confirmation section A in the light receiver 2 each time the operation cycle is repeated, so that the interference light becomes the interference light confirmation section A. Then, the interference light avoiding means functions again by the same operation as described above. In addition, after the interference light recognition, the delay operation is postponed until the next operation cycle because the interference light confirmation section A can be provided far away from the projection signal recognition section. This is because there is no possibility that the light overlaps the projection signal recognition section. If the delay time shown in FIG. 10 is set so that the subsequent interference light appears immediately before the interference light confirmation section B, the time until the interference light that arrives one after another overlaps the interference light confirmation section A is the longest. Longer is preferred. The delay time of about 34 μs almost satisfies this condition. In FIGS. 7 to 10, in order to avoid complication, unlike FIG. 6, the light output (black signal) and the timing of the light signal recognition section are purposely matched.
[0013]
As described above, according to the present embodiment, it is possible to accurately prevent malfunction due to mutual interference when a plurality of sets of photoelectric sensors having substantially the same synchronization signal period are installed adjacent to each other. It is possible to accurately prevent dangers. Even if the synchronization signal is generated on the projector 1 side and transmitted to the light receiver 2 side, the projector 1 and the light receiver 2 can be synchronized with each other. It goes without saying that the same applies.
[Brief description of the drawings]
FIG. 1 is an external front view of a photoelectric sensor composed of a projector and a light receiver. FIG. 2 is an external front view of a photoelectric sensor composed of a plurality of photoelectric sensors. Block diagram [Fig. 4] Timing diagram showing signal sequence transmitted from light receiver to projector [Fig. 5] Timing diagram of projector output corresponding to signal sequence from light receiver [Fig. 6] Projector corresponding to synchronization signal -Detailed timing diagram showing the light output and confirmation interval of the receiver [Fig. 7] Timing diagram showing the operation when interference light is confirmed in the interference light confirmation interval B [Fig. 8] Next cycle of Fig. 7 FIG. 9 is a timing diagram when interference light is confirmed in the interference light confirmation section A. FIG. 10 is a timing diagram showing operation in the next cycle of FIG.
1 Projector 2 Receiver (1) to (4) Optical axes B and A Interference light check section

Claims (4)

同期信号に基づいて投光及び受光を行う複数の光軸動作を順次的に所定周期で繰り返す投光器及び受光器からなる多光軸光電センサであって、受光器において、投光器からの投光出力を認識する投光信号認識区間の前に干渉光確認区間Bを設けるとともに、投光信号認識区間の後に干渉光確認区間Aを設け、干渉光確認区間B中に干渉光を確認した場合、確認した光軸において通常の光軸処理時間に加えて、後続の干渉光が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間後に同期信号を生成させて投受光処理を再開し、さらに次の周期において、投受光処理開始を、後続の干渉光が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間後に行うことにより干渉光を回避する多光軸光電センサ。A multi-optical axis photoelectric sensor composed of a light projector and a light receiver that sequentially repeats a plurality of optical axis operations for performing light projection and light reception based on a synchronization signal at a predetermined cycle. In the light receiver, the light projection output from the light projector is The interference light confirmation section B is provided before the light projection signal recognition section to be recognized, and the interference light confirmation section A is provided after the light projection signal recognition section. When the interference light is confirmed in the interference light confirmation section B, confirmation is made. In addition to the normal optical axis processing time on the optical axis, the synchronization signal is output after a predetermined delay time set so that the subsequent interference light does not overlap the interference light confirmation section B, the projection signal recognition section, and the interference light confirmation section A. Then, the light emitting / receiving process is restarted, and in the next cycle, the light emitting / receiving process start is set so that the subsequent interference light does not overlap the interference light confirmation section B, the light projection signal recognition section, and the interference light confirmation section A At a given delay Multi-optical axis photoelectric sensor to avoid interference light by performing later. 請求項1において、所定の遅延時間を、後続の干渉光が干渉光確認区間Aの直後付近に現れるように設定した多光軸光電センサ。2. The multi-optical axis photoelectric sensor according to claim 1, wherein the predetermined delay time is set so that the subsequent interference light appears immediately after the interference light confirmation section A. 同期信号に基づいて投光及び受光を行う複数の光軸動作を順次的に所定周期で繰り返す投光器及び受光器からなる多光軸光電センサであって、受光器において、投光器からの投光出力を認識する投光信号認識区間の前に干渉光確認区間Bを設けるとともに、投光信号認識区間の後に干渉光確認区間Aを設け、干渉光確認区間A中に干渉光を確認した場合、次の周期において、投受光処理開始を、後続の干渉光が干渉光確認区間B、投光信号認識区間及び干渉光確認区間Aに重ならないように設定した所定の遅延時間後に行うことにより干渉光を回避する多光軸光電センサ。A multi-optical axis photoelectric sensor composed of a light projector and a light receiver that sequentially repeats a plurality of optical axis operations for performing light projection and light reception based on a synchronization signal at a predetermined cycle. In the light receiver, the light projection output from the light projector is When the interference light confirmation section B is provided before the light projection signal recognition section to be recognized, the interference light confirmation section A is provided after the light projection signal recognition section, and the interference light is confirmed during the interference light confirmation section A, the following Interference light is avoided by performing the light projecting / receiving process in a period after a predetermined delay time set so that subsequent interference light does not overlap interference light confirmation section B, light projection signal recognition section, and interference light confirmation section A. Multi-optical axis photoelectric sensor. 請求項3において、所定の遅延時間を、後続の干渉光が干渉光確認区間Bの直前付近に現れるように設定した多光軸光電センサ。4. The multi-optical axis photoelectric sensor according to claim 3, wherein the predetermined delay time is set so that the subsequent interference light appears in the vicinity immediately before the interference light confirmation section B.
JP2002151044A 2002-05-24 2002-05-24 Multi-axis photoelectric sensor Expired - Fee Related JP3698319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151044A JP3698319B2 (en) 2002-05-24 2002-05-24 Multi-axis photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151044A JP3698319B2 (en) 2002-05-24 2002-05-24 Multi-axis photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2003347915A JP2003347915A (en) 2003-12-05
JP3698319B2 true JP3698319B2 (en) 2005-09-21

Family

ID=29768741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151044A Expired - Fee Related JP3698319B2 (en) 2002-05-24 2002-05-24 Multi-axis photoelectric sensor

Country Status (1)

Country Link
JP (1) JP3698319B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018353B2 (en) * 2008-05-09 2011-09-13 Omron Scientic Technologies, Inc. Method and apparatus for zone selection in area monitoring devices

Also Published As

Publication number Publication date
JP2003347915A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP6291993B2 (en) Multi-axis photoelectric sensor
JP4353047B2 (en) Multi-axis photoelectric sensor
CN101910911B (en) Scanning method and system for a multiple light beam system
US9798040B2 (en) Method for synchronizing optical units of a photoelectric barrier and light curtain
WO2021129790A1 (en) Method for solving packet loss in synchronous communication in code-type active optical motion capture system, and related device
US6411856B1 (en) General operation integrated control method and its controller
JP3698319B2 (en) Multi-axis photoelectric sensor
JP3899422B2 (en) Photoelectric sensor
JP3860013B2 (en) Multi-axis photoelectric sensor
JP4860323B2 (en) Photoelectric sensor and photoelectric sensor system
JP6926990B2 (en) Multi-optical axis photoelectric sensor
CN109298461B (en) Method for judging light projection state of correlation type photoelectric switch
JP4823702B2 (en) Multi-axis photoelectric sensor
JP2008028570A (en) Photoelectric sensor
JP4018515B2 (en) Multi-optical axis photoelectric switch and interference state canceling method of multi-optical axis photoelectric switch
JP4047710B2 (en) Multi-axis photoelectric sensor
JPH0983330A (en) Photoelectric switch and its system
JP2583712B2 (en) Through-beam sensors and area sensors
JP2002131125A (en) Photoelectric sensor, driving method for the same, and photoelectric sensor system
JP2605033B2 (en) Photoelectric switch
JPH06342082A (en) Multibeam sensor system
JP4394591B2 (en) Multi-axis photoelectric sensor
JP5353924B2 (en) Object detection system
JP2007178353A (en) Multiple optical axis photoelectric sensor
JP2007228425A (en) Multiple optical axis photoelectric sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees