JP3696712B2 - Regeneration method to ferric sulfate solution and regeneration apparatus used therefor - Google Patents

Regeneration method to ferric sulfate solution and regeneration apparatus used therefor Download PDF

Info

Publication number
JP3696712B2
JP3696712B2 JP10056497A JP10056497A JP3696712B2 JP 3696712 B2 JP3696712 B2 JP 3696712B2 JP 10056497 A JP10056497 A JP 10056497A JP 10056497 A JP10056497 A JP 10056497A JP 3696712 B2 JP3696712 B2 JP 3696712B2
Authority
JP
Japan
Prior art keywords
solution
mixed solution
ferrous sulfate
regeneration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10056497A
Other languages
Japanese (ja)
Other versions
JPH10287988A (en
Inventor
孝之 秋月
好則 谷本
裕 山崎
勝利 井谷
敏一 菊池
忠広 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Adeka Corp
Original Assignee
Nippon Seisen Co Ltd
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, Asahi Denka Kogyo KK filed Critical Nippon Seisen Co Ltd
Priority to JP10056497A priority Critical patent/JP3696712B2/en
Publication of JPH10287988A publication Critical patent/JPH10287988A/en
Application granted granted Critical
Publication of JP3696712B2 publication Critical patent/JP3696712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばステンレス鋼などの金属材料表面に形成した酸化スケールを酸洗除去するために用いる硫酸第二鉄溶液を、効率よく再生しうる無公害型の硫酸第二鉄溶液への再生方法及びそれに用いる再生装置に関する。
【0002】
【従来の技術】
例えば、ステンレス鋼線は、通常、ビレットの熱間圧延加工によって、例えば直径6mmのロッドに仕上げられるが、特にCr系ステンレス鋼の場合には、大気中で熱処理されるため表面に比較的厚い酸化スケール、即ち酸化皮膜が発生する。
【0003】
従来、このような酸化皮膜は、アルカリ溶融塩に浸漬する一次脱スケール処理と、その後の硝弗酸による酸洗い処理の2段階処理により除去してきた。
【0004】
しかしながら、この方法では、処理溶液に硝酸を用いることから、発生するNOxガスや、処理排水中にチッ素を含むことによる高富養化などの環境破壊の原因とされ、西暦1998年以降は硝酸の使用が実質的に制限されることが決定しており、これに変わる方法が望まれている。
【0005】
ところで特公昭57−1590号公報は、Cr系ステンレス鋼のスマット除去のために硫酸第二鉄などが0.5wt%以上含有される溶液により処理することを提案している。
【0006】
この方法においては、硫酸第二鉄と鉄との反応に際して、硫酸第二鉄が減少して、硫酸第一鉄、硫酸クロム、硫酸ニッケルなどが蓄積されることを示している。
【0007】
一方、特公昭56−8109号公報では、このような硫酸第二鉄溶液の使用に伴う液の老化物として内部に蓄積した硫酸第一鉄に、過酸化水素と硫酸を加え、かつ弗酸濃度に対応させて酸化還元電位を所定範囲に維持することによって硫酸第二鉄に再生し、活性化することで硫酸第二鉄溶液を繰り返し使用することを提案している。
【0008】
【発明が解決しようとする課題】
しかしながら、前者発明はスマットの除去のために硫酸第二鉄溶液を用いるものであり、その含有量も0.5wt%と低く、またこの溶液を積極的に再生することについては何ら示されていない。
【0009】
また後者発明では再生のために過酸化水素と硫酸を加え管理することは開示しているが、直接、過酸化水素と硫酸を混和することは、装置、保守、管理の手間を低減しうるとはいえ、残存する硫酸第一鉄の量が温度に応じて変化し、従って再生される硫酸第二鉄の量が変動するなど、混合溶液の成分の制御を困難とし、酸洗品質の安定化に欠ける場合も生じる。
【0010】
さらに過剰に硫酸第一鉄が残存しているときには、再生のためには過酸化水素と硫酸などの添加液の全体量を増やすこととなるなど不経済である他、必要な程度に硫酸第二鉄を再生しないときには、硫酸第二鉄の濃度が低く脱スケール処理を困難とする。
【0011】
なお、硫酸第1鉄を除去し過ぎて残留する硫酸第一鉄が不足するときには再生後の硫酸第二鉄をも減じ、逆に残存硫酸第一鉄が多くしかも添加物を添加しすぎた過濃度の混合溶液の場合には過酸洗となり製品表面を粗にする。
【0012】
本発明は、硫酸第一鉄の物性に着目し、混合溶液を取り出しつつ所定の温度範囲で冷却することにより、硫酸第一鉄の除去量、残存量をともに制御でき、硫酸第二鉄への再生、精度を向上し酸洗効率、品質を高めうる硫酸第二鉄溶液への再生方法及びそれを用いる再生装置の提供を目的としている。さらにクローズド方式としたときには無公害型の再生方法、装置となる。
【0013】
【課題を解決するための手段】
請求項1の発明は、原液として、硫酸第一鉄を含む硫酸第二鉄の混合溶液から、前記硫酸第一鉄の余剰分を予め除去するとともに、該混合溶液内の硫酸第一鉄を硫酸第二鉄に再生する硫酸第二鉄溶液への再生方法であって、酸洗槽から順次取り出された原液中の硫酸第一鉄が結晶化する温度以下の所定温度に冷却するための冷却部を具え、該冷却部による冷却により、前記硫酸第一鉄を結晶化させその結晶核を有する結晶核混合溶液を形成する結晶核生成工程と、この結晶核混合溶液を、晶析槽の液面下方に設けた流入口からこの晶析槽に流入させ、この結晶核混合溶液が液面に上昇する間に前記硫酸第一鉄の結晶核を成長させることによって硫酸第一鉄の余剰分を分離し非余剰混合溶液とする分離工程と、前記晶析槽から流出した非余剰混合溶液に過酸化水素及び硫酸を加えることによって混合溶液内の硫酸第一鉄を硫酸第二鉄に再生した再生溶液としかつ酸洗槽に連続的に循環供給する再生工程とからなることを特徴とする。
【0014】
酸洗用の硫酸第二鉄の混合溶液、即ち硫酸第二鉄溶液は、酸洗に伴って副次的に生成された硫酸第一鉄を余剰に含むこととなる。即ち、この余剰混合溶液には、硫酸第二鉄への再生に必要な量を越える余剰分の硫酸第一鉄を含む。従って、この余剰分の混合溶液への混入が過飽和となって除去しうることとなる温度以下、例えば液温を50℃程度の所定の温度に冷却し、結晶核を発生させる結晶核生成工程を施す。これにより前記硫酸第一鉄が結晶化した結晶核混合溶液となる。
【0015】
さらに分離工程において、この結晶核混合溶液は晶析槽の低所に送り込まれ、混合溶液が液面に上昇する間に前記硫酸第一鉄の結晶核が互いに結合することにより結晶成長する。このようにして晶析槽内で成長した結晶は比重が大きいこともあって槽の下方に堆積することとなり、分離される。その結果、硫酸第一鉄の余剰分が分離、除去された非余剰混合溶液をこの分離工程によって形成する。なお余剰分、非余剰分の決定にあたっては、予め計算や計測などによって堆積層の容量、濃度などが設定され抑制される。また冷却温度を所定温度に設定することで、希望比率の硫酸第一鉄が残留した前記非余剰混合溶液を上澄み溶液として得ることができる。なお、硫酸第一鉄として残存させる量は、例えば被酸洗材料、それに応じて必要となる硫酸第二鉄の濃度などに応じて適宜定める。
【0016】
さらにこの工程後の非余剰混合溶液に過酸化水素及び硫酸を加える酸化再生工程によって混合溶液内の硫酸第一鉄を硫酸第二鉄に酸化再生した再生溶液をうることができる。このように、予め余剰分の硫酸第一鉄を結晶として分離しておくことから、より少ない過酸化水素水と硫酸で効率よく溶液を再生することが可能となる。しかも、晶析槽から分離して取り出された硫酸第一鉄は再生資源として活用できる。なお晶析槽とは、硫酸第一鉄を結晶として除去できる槽体であり、各種の形態のものが採用できる。
【0017】
請求項2の発明は、前記晶析槽の液面と底部との間の全高さH、混合溶液の流入口と前記液面との間の高さhに対する全高さHの比を所定の範囲とし流入口も実質的に底部近傍に近づけることにより、過剰の硫酸第一鉄を効率よく沈降分離させことができる。そして、晶析槽の胴部の横断面積と前記流入口の管路の横断面積との比を10〜40倍範囲に設定することにより、流入口から入る冷却された混合溶液の流速が緩和され硫酸第一鉄の流出を防ぎ結晶成長を促進して分離をより効率よく行うことができる。
【0018】
なお、本発明の請求項3〜6の発明のように、酸洗槽内の混合溶液(原液)を順次取り出しつつ前記再生が行われる再生処理と、酸洗槽内での酸洗処理とをともに連続して行うことによって所定量ずつの混合溶液が常に循環するクローズドサイクルとすることもできる。さらに、混合溶液内の前記硫酸第一鉄の濃度を定常的に測定することも、その測定により求められる量に応じて過酸化水素及び硫酸を前記再生槽に加えることも可能であり、特に、ステンレス鋼酸洗い用の混合溶液の再生のために好適に利用できる。
【0019】
さらに、請求項7の再生装置は、冷却部と、晶析槽と、再生手段とを具え、硫酸第二鉄溶液への再生方法の実施のために便宜に直接的に利用できる。
【0020】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて説明する。
図1は、本発明の硫酸第二鉄溶液への再生方法に用いうる再生装置1を酸洗処理に接続した酸洗ラインの一実施例を線図により示している。酸洗ラインは、例えばハンガによって吊り下げられ金属材料、例えばステンレス鋼線のコイルである被処理材2を酸洗処理する酸洗槽10を用いる酸洗部Aに接続される。酸洗部Aは、酸洗槽10内の劣化した混合溶液(原液)を順次取り出し、この再生装置1で再生する。
【0021】
また再生処理された再生溶液は、前記酸洗槽10に戻され酸洗処理に供せられることにより、前記再生処理と、酸洗処理とをへて連続的に循環供給するクローズドサイクルを構成している。
【0022】
被処理材2は、例えば前記ステンレス鋼以外にも、鉄、クロム、ニッケルなど、その他の各種合金を含む各種金属材料であって、硫酸第二鉄溶液によって酸化皮膜(酸化スケール)を取り除きうる各種の金属材料が含まれる。
【0023】
前記酸洗槽10は、ストランドまたはバッチ方式など、種々な方式のものが採用でき、目的に応じた形状、構造のものが選択される。
【0024】
この酸洗処理として用いる溶液については、目的に応じて硫酸第二鉄以外に弗酸や硝酸などが添加され、また硫酸第一鉄を所定温度で結晶化させるために必要な硫酸第一鉄を加えたものであって配合をバランスした溶液としてもよく、被処理用によっても変わるものである。ステンレス鋼については、例えば特公平4−20996号公報などにより知られている。
【0025】
このように酸洗溶液の硫酸第二鉄の濃度、建浴は、被処理材2の材質、酸化皮膜の性質、状態、製品の仕上がり品質、精度などに応じて所定の比率範囲のものを予め設定する。なお、硫酸第二鉄の濃度が低い溶液にあっては一般に処理能率に劣る反面、逆に過濃度の溶液は、過酸洗を惹起し製品表面を粗にする。酸洗処理における混合溶液の濃度を管理するため、硫酸第二鉄、弗酸など必要な成分は、通常、別個に測定して所定量を添加し混合することによって調整する。
【0026】
通常、酸洗は、促進のために40゜C〜80゜C程度の温度範囲において所定の時間、例えば撹拌しつつ行われる。酸洗処理に伴って、酸洗液は被処理材の酸化皮膜中の鉄分との反応により、硫酸第二鉄が硫酸第一鉄に変質して蓄積され、即ち、溶液は余剰の硫酸第一鉄を含み、前記硫酸第二鉄が減じた余剰混合溶液となって酸洗処理能力を低下させることとなる。
【0027】
この混合溶液は、酸洗槽10から所定量ずつ取り出され再生装置1で再生処理され再生溶液として酸化槽10に還流する。なお「余剰混合溶液」とは、硫酸第一鉄が過剰となり酸洗能力に劣ることとなったものの他、クローズドサイクルを行う本例の場合のように、ある程度の酸洗能力は具えるものの予め設定する基準範囲から、硫酸第一鉄が余剰となった混合溶液をも包含し、原液ともいう。
【0028】
前記再生装置1は、酸洗槽10から取り出された前記余剰混合溶液、即ち原液を、硫酸第一鉄が結晶化する温度以下に冷却し結晶核が生じた結晶核混合溶液を生じさせる冷却工程を行う冷却部20と、この結晶核混合溶液を、液面下方に設けた流入口30Aから流入させ、上昇する間に結晶核を成長させて硫酸第一鉄の余剰分を分離除去し非余剰混合溶液を得る分離工程を行う晶析槽30と、晶析槽30の流出口30Bから流出した非余剰混合溶液に過酸化水素及び硫酸を加えて再生した再生溶液をうる酸化再生手段を行う再生手段50とを具備する。
【0029】
また本例では、酸化再生手段50には、非余剰混合溶液に過酸化水素および硫酸を混和するための再生槽60が設けられている。硫酸は、酸洗槽10に注入することもでき、そのときには、酸洗槽10は、前記再生手段50の一部をなすと考える。また特に再生槽を設けることなく、図1の導管15に直接流入させてもよい。
【0030】
前記酸洗槽10底部の出口10Aは、第1のポンプP1を介在する第1の導管11、及び第2のポンプP2を介在する第2の導管12をへて冷却部20に通じている。又第1の導管11、及び第2の導管12の間には、本例では前記晶析槽30の受け部37が介在する。第1の導管11と第2の導管12との間は前記受け部37で選択的に導通されることによって、本例では、酸洗槽10の原液溶液を直接冷却部20へ送給することも、また前記受け部37内の晶析槽30の上澄み混合溶液をも第2の導管12から再度冷却部20に送給することもできる。
【0031】
前記冷却部20は、温度可変かつ調整された温度の冷媒が通るコイル21と、堰状の仕切板22とを箱体23内に配置し、第2の導管12からの原液がオーバーフロする間に、前記コイル21により、50℃以下、好ましくは0〜30℃の所望の結晶率となる温度に冷却する。0℃以下は経済的にも通常好ましくない。これにより、原液は硫酸第一鉄の結晶核が生じた結晶核混合溶液となり、箱体23の底部から延びる第3の導管13に流出させる。導管13の結晶核混合溶液は前記晶析槽30上端の取入口30Cに導かれる。硫酸第一鉄の結晶は、その一部が冷却部20、導管13などに付着して残留するものもあるが、大部分は前記晶析槽30の取入口30Cに導入される。
【0032】
このように、結晶核生成工程は、余剰混合溶液に、硫酸第一鉄が結晶化する温度以下に冷却することにより、該原液内に前記硫酸第一鉄の結晶核を生じさせた結晶核混合溶液を形成するのであり、次の晶析槽30を用いる分離工程においてこの結晶核を成長させて沈降し、余剰分を除去できるのである。
【0033】
晶析槽30は、本例では、筒状の胴部31の下方に、小径の取出し部33を設けた主部34と、この主部34の上端下方でこの胴部31の外周面から外に張り出す底部35の周囲に周囲壁36を形成した受け部37とからなる基体40、及び受け部37の上方から垂下し主部34の内部を通り底部付近に至る長尺の管状の流入筒42を具える。
【0034】
このように、流入筒42の下端、即ち前記流入口30Aは、晶析槽30の底部であって、液面Eの下方に位置する。
【0035】
このように流入筒42の下端の流入口30Aを排出溶液の液面Eよりも下方に位置させることによって、第3の導管13からの結晶核混合溶液は、流入口30Aから静かに主部34内に流入する。さらに、前記液面Eまで静流により上昇し、その間に、硫酸第一鉄の結晶核が凝集して成長する。成長した結晶核は比重差によって沈降し、主部34の下方で堆積した堆積層44を形成する。なお、前記流入口30Aは、この堆積層44の上面44Aよりも下方に位置させる。また、前記取出し部33はバルブ47が適宜開放されることによって、硫酸第一鉄を、結晶受け槽49に流下させる。
【0036】
又前記晶析槽30は、主部34における硫酸第一鉄の沈降を円滑とするために、例えば流入口30Aと、前記液面Eとの間の高さhを、主部34の全高さ(液面Eまで)Hの80〜98%とし、かつ全高さHを800mm以上とする。さらに上昇する流速を緩和させ得る為に、好ましくは、流入口30Aの開口面積に対して胴部31の横断面面積を10〜40倍(好ましくは20〜30倍)としている。
【0037】
この面積比率が10倍より小さい場合、溶液の流速が大きく流入口30Aから流入し上昇する際に結晶の成長、分離が十分には行えず、オーバーフローして次段階に流れ出しやすくなり、一方40倍より大きくすると処理能力に比べ必要以上のスペースを必要とすることとなる。
【0038】
このように、主部34は、結晶核の成長、分離を制御できるように各部寸法が設定され、本例では、主部34は、縦型円筒形(外径300mm、高さ1000mm)の槽で形成し、また、口径50mmの流入口30Aを底部近くに設けて、流入口30Aと、前記液面Eとの間の前記高さHを850mmとしている。
【0039】
また、主部34は、例えば図2に示すように前記流入口30Aを実質的に底部付近にまで延長させた半球状とし、かつ図1の小筒状の取出し部33を省略することもできるとともに、図1の流入筒42を導管として直接冷却槽20に接続するのもよい。
【0040】
又前記堆積層44は、前記結晶核が徐々に結合することで成長するが、この際、この堆積層44は、流入する溶液のフィルタとして結晶核を捕獲するとともに、上昇流速を緩和して静流化する作用をもたらす。
【0041】
このように、分離工程は、結晶核混合溶液を、晶析槽30の液面E下方に設けた流入口30Aから流入させ、この結晶核混合溶液が液面Eに上昇し上澄み溶液となる間に前記硫酸第一鉄の結晶核の余剰分を分離した非余剰混合溶液となる。なお晶析槽30として、硫酸第一鉄の結晶核を成長させ、粗大化して分離できさえすれば、種々な形式のものが採用できる。
【0042】
次に、所定の硫酸第一鉄の余剰分が分離された非余剰混合溶液は、主部34の上端から受け部37内に溢流し、再生手段50の前記再生槽60に第4の導管14をへて流入する。また再生槽60は、第5の導管15を介して、前記酸洗槽10に通じている。なお、前記のように、第2の導管12をへて再度、冷却部20に送り、再処理することもできる。
【0043】
再生槽60には、好ましくは撹拌装置60Aが配されるとともに、本例では過酸化水素と、硫酸との薬注ポンプ61、62からの注出口が開口している。なお、硫酸の薬注ポンプ62は、前記酸化槽10で開口させることもでき、そのとき、前記のように、この酸洗槽10は、再生手段50の一部を構成することとなる。
【0044】
再生槽60において非余剰混合溶液に過酸化水素及び硫酸を加えることによって混合溶液内の硫酸第一鉄を硫酸第二鉄に酸化再生した再生溶液をうる。
【0045】
前記再生溶液は、前記酸洗槽10に戻され酸洗処理に供せられることにより循環使用されるとともに、酸洗槽内の原液を順次取り出し前記再生が行われる再生処理と、酸洗槽内での酸洗処理とを連続するようクローズドサイクルで行われる。
【0046】
これらのサイクルを行うために、酸洗槽10には、酸洗い工程における混合溶液の組成分布、例えば硫酸第一鉄の濃度を測定するための濃度測定手段70が取り付けられ、硫酸第一鉄の濃度などが定常的に測定される。また再生手段40における酸化槽60においても同様に、濃度測定手段70が設けられる。双方で測定することが好ましいが、いずれか一方でもよい。また硫酸第一鉄の他、硫酸第二鉄、硫酸、弗酸濃度を測定することもできる。これらの濃度測定手段70として、硫酸第二鉄については、三塩化チタン滴定法を用いる自動分析装置、硫酸第一鉄の測定には、過マンガン酸カリウム滴定法を用いる自動分析装置を採用できる。さらに硫酸などは周知の適宜の手段を用いうる。
【0047】
又濃度測定手段70の他、各部の温度、液量、流量、堆積層44の高さ、結晶粒度など種々な要因を測定し、図示しない制御装置にそれらの測定値を与える。又制御装置には被処理物の酸化被膜の性状、仕上げ精度、品質、量、時間などの情報を予め付与されることによって、該制御装置は、各部に必要な制御信号を与え、又測定値を受けてフィードバックなど、各種の制御理論に基づいて制御し、再生装置1を与えられた条件に従って、運転を自動化し、濃度を所定の範囲に保つ。
【0048】
【実施例】
酸洗槽10に、硫酸第二鉄と弗酸及び水を3:1:16で調合した酸洗溶液により、SUS430のCr系ステンレス鋼線5.0mmφ線材の脱スケール処理を液温65℃で行った。
【0049】
なお、この酸洗槽には処理に伴う処理溶液の濃度変化を処理量毎に測定する為の自動分析計を設置して液中の硫酸第二鉄と同第一鉄の濃度の変化を調べた。
【0050】
図3はその結果をまとめたものであって、新浴での硫酸第二鉄15.0wt%は処理量の増加に伴って急激に減少し、酸洗い回数10回処理した時にはその濃度は2%にまで低下しており、逆に硫酸第一鉄の増加が顕著であることが分かる。
【0051】
この濃度の低下を補い、酸洗い処理促進の為に実験プラントである再生装置によって再生するため、酸化槽10から1リットル/分の原液を取り出した。再生装置では、原液を15℃に冷却し、30g/リットルの硫酸第一鉄を除去しかつ170g/リットルを残留させるよう設定した。この条件で晶析処理した後、得られた非余剰混合溶液に過酸化水素10kgと硫酸9kgをそれぞれ添加することで液の再生を行った。これらの添加量については、予め濃度から求めた量であり、得られた再生溶液は硫酸第二鉄溶液濃度が14.9%とほぼ新液に近く、従って酸洗槽10内の混合溶液の濃度は図3に一点鎖線Aで示すように、バッジの再生処理によっても大巾に低下することなく持続し、数回再生しても処理能力が継続した。なお一点鎖線Bはクローズドシステムによるものであるが、予め硫酸第二鉄を10.0wt%としてもほぼ安定的に持続させることもできた。なお、この処理の選択は当業者により容易になしうる。
【0052】
このように、酸洗処理を行いつつ再生処理を20回くり返し行っても作業性への影響は見られず良好な結果を得ることができた。
【0053】
また、本実験例では硫酸第一鉄の余剰分を検知、制御する方法として、晶析槽20の硫酸第一鉄の堆積層44の高さを調節することもできる。なお予め求めた濃度範囲から算出した前記高さに到達した段階で再生処理を停止するのもよい。
【0054】
本発明のその他の応用例として、例えば晶析槽30の外周にも冷却手段を設けて晶析処理をより促進させ、あるいは槽内部に不溶性材料からなるフィルター部材を配置し、第一鉄の分離効率をより高めることも好ましく、また配管回路のいずれか途中に分析装置を併設して、分析しつつそれに適した濃度に再生させるなどの自動化にすることも可能となる。
【0055】
【発明の効果】
このように、本発明の硝酸第二鉄溶液の再生方法は、老化した原液を所定温度以下に冷却することで、該溶液中の過飽和の硫酸第一鉄を結晶として晶析させ分離除去させた後、過酸化水素水と硫酸を添加剤として加え再生する方法であり、少量の添加で効率的な再生が可能となり、酸洗品質、能率の改善にも役立つ。
【0056】
また、分離された同第一鉄もこれを取り出して新たな資源として活用するもでき、省資源化に寄与するとともに再生濃度の維持制御が容易となる他、この方法を酸洗い処理に応用展開することによって、酸洗い処理と再生処理を循環させながら行うクローズドシステムを確立でき、従来のように液更新の為に作業を中断する必要もなく、安定的な連続作業を行うことができる。
【0057】
また、本発明による再生装置についても、構造簡単にして安価に採用できるとともに、本発明による技術は無公害化という側面からも有効であって産業上大きく貢献するものである。
【図面の簡単な説明】
【図1】本発明の方法の処理工程を示すフロー図である。
【図2】晶析槽の一例を示す正面図である。
【図3】酸洗い処理に伴う、濃度の変化を示すグラフである。
【符号の説明】
10 酸洗槽
20 冷却部
30A 流入口
30B 取出し口
30C 取入口
31 胴部
40 晶析槽
50 再生手段
60 再生槽
70 測定手段
E 液面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a non-polluting ferric sulfate solution capable of efficiently regenerating a ferric sulfate solution used for pickling and removing oxide scale formed on the surface of a metal material such as stainless steel. And a reproducing apparatus used therefor.
[0002]
[Prior art]
For example, a stainless steel wire is usually finished into a rod having a diameter of, for example, 6 mm by hot rolling of a billet. In particular, in the case of Cr stainless steel, a relatively thick oxide is formed on the surface because it is heat-treated in the atmosphere. Scale, that is, an oxide film is generated.
[0003]
Conventionally, such an oxide film has been removed by a two-step process including a primary descaling process immersed in an alkali molten salt and a subsequent pickling process using nitric hydrofluoric acid.
[0004]
However, in this method, since nitric acid is used for the treatment solution, it is a cause of environmental destruction such as enrichment due to NOx gas generated and nitrogen contained in the treated wastewater. It has been determined that use is substantially limited, and alternative methods are desired.
[0005]
By the way, Japanese Patent Publication No. 57-1590 proposes treatment with a solution containing 0.5 wt% or more of ferric sulfate for removing smut of Cr-based stainless steel.
[0006]
In this method, it is shown that ferric sulfate is reduced and ferrous sulfate, chromium sulfate, nickel sulfate and the like are accumulated during the reaction between ferric sulfate and iron.
[0007]
On the other hand, in Japanese Examined Patent Publication No. 56-8109, hydrogen peroxide and sulfuric acid are added to ferrous sulfate accumulated internally as an aging product of such a ferric sulfate solution. It is proposed that the ferric sulfate solution is repeatedly used by regenerating and activating it by maintaining the oxidation-reduction potential within a predetermined range.
[0008]
[Problems to be solved by the invention]
However, the former invention uses a ferric sulfate solution for removing smut, and its content is as low as 0.5 wt%, and there is no indication of actively regenerating this solution. .
[0009]
In the latter invention, it is disclosed that hydrogen peroxide and sulfuric acid are added and managed for regeneration. However, mixing hydrogen peroxide and sulfuric acid directly can reduce the labor of equipment, maintenance and management. Nonetheless, the amount of remaining ferrous sulfate varies with temperature, and therefore the amount of ferric sulfate regenerated varies, making it difficult to control the components of the mixed solution and stabilizing the pickling quality. May be lacking.
[0010]
Furthermore, if ferrous sulfate remains excessively, it is uneconomical to increase the total amount of hydrogen peroxide, sulfuric acid, and other additives for regeneration, and to the extent necessary for ferric sulfate. When iron is not regenerated, the concentration of ferric sulfate is low, making descaling difficult.
[0011]
In addition, when ferrous sulfate is removed excessively and residual ferrous sulfate is insufficient, ferric sulfate after regeneration is also reduced, and conversely, excessive residual ferrous sulfate and excessive addition of additives. In the case of a mixed solution having a concentration, it becomes a peracid wash and roughens the product surface.
[0012]
The present invention pays attention to the physical properties of ferrous sulfate, and by cooling it within a predetermined temperature range while taking out the mixed solution, both the removal amount and remaining amount of ferrous sulfate can be controlled. It aims at providing the reproduction | regeneration method to the ferric sulfate solution which can improve reproduction | regeneration and precision, and can improve pickling efficiency and quality, and the reproduction | regeneration apparatus using the same. Further, when the closed system is adopted, a pollution-free reproduction method and apparatus are obtained.
[0013]
[Means for Solving the Problems]
According to the first aspect of the present invention, as a stock solution, an excess of the ferrous sulfate is previously removed from a mixed solution of ferric sulfate containing ferrous sulfate, and the ferrous sulfate in the mixed solution is converted into sulfuric acid. A regenerating method for ferric sulfate solution regenerated to ferric iron, a cooling unit for cooling to a predetermined temperature below the temperature at which ferrous sulfate in the stock solution taken out from the pickling tank is crystallized. A crystal nucleation step of crystallizing the ferrous sulfate to form a crystal nucleus mixed solution having the crystal nuclei by cooling by the cooling unit, and the crystal nucleus mixed solution is added to the liquid surface of the crystallization tank. The excess ferrous sulfate is separated by allowing the crystal nuclei of the ferrous sulfate to grow while the crystal nucleus mixed solution rises to the liquid level from the inlet provided below. And a separation process for producing a non-surplus mixed solution, and a non-surplus mixing solution flowing out of the crystallization tank. And characterized in that the ferrous sulfate in the mixed solution by adding hydrogen peroxide and sulfuric acid from a continuously circulating supply regeneration step in regeneration solution Toshikatsu pickling bath reproduced ferric sulfate solution To do.
[0014]
A mixed solution of ferric sulfate for pickling, that is, a ferric sulfate solution, excessively contains ferrous sulfate produced as a secondary product during pickling. That is, the surplus mixed solution contains surplus ferrous sulfate exceeding the amount necessary for regeneration to ferric sulfate. Therefore, a crystal nucleus generating step of generating crystal nuclei by cooling the excess to a temperature that can be removed due to supersaturation, for example, the liquid temperature is cooled to a predetermined temperature of about 50 ° C. Apply. Thus, a crystal nucleus mixed solution in which the ferrous sulfate is crystallized is obtained.
[0015]
Further, in the separation step, this crystal nucleus mixed solution is fed into the lower part of the crystallization tank, and crystals grow as the ferrous sulfate crystal nuclei are bonded to each other while the mixed solution rises to the liquid surface. Crystals grown in the crystallization tank in this way are deposited under the tank due to their high specific gravity and are separated. As a result, a non-surplus mixed solution from which excess ferrous sulfate is separated and removed is formed by this separation step. In determining the surplus and non-surplus, the capacity, concentration, etc. of the deposited layer are set and suppressed in advance by calculation or measurement. Further, by setting the cooling temperature to a predetermined temperature, the non-surplus mixed solution in which a desired ratio of ferrous sulfate remains can be obtained as a supernatant solution. The amount remaining as ferrous sulfate is appropriately determined according to, for example, the material to be pickled and the concentration of ferric sulfate required accordingly.
[0016]
Furthermore, a regeneration solution in which ferrous sulfate in the mixed solution is oxidized and regenerated to ferric sulfate can be obtained by an oxidation regeneration step of adding hydrogen peroxide and sulfuric acid to the non-surplus mixed solution after this step. Thus, since the excess ferrous sulfate is separated in advance as crystals, the solution can be efficiently regenerated with less hydrogen peroxide solution and sulfuric acid. Moreover, the ferrous sulfate separated and taken out from the crystallization tank can be used as a recycled resource. In addition, a crystallization tank is a tank body which can remove ferrous sulfate as a crystal | crystallization, and the thing of various forms is employable.
[0017]
In the invention of claim 2, the ratio of the total height H to the total height H between the liquid surface and the bottom of the crystallization tank and the height h between the inlet of the mixed solution and the liquid surface is within a predetermined range. The excess ferrous sulfate can be efficiently settled and separated by making the inlet close to the vicinity of the bottom. Then, by setting the ratio of the cross-sectional area of the body part of the crystallization tank to the cross-sectional area of the pipe line of the inlet to the range of 10 to 40 times, the flow rate of the cooled mixed solution entering from the inlet is alleviated. Separation can be performed more efficiently by preventing the outflow of ferrous sulfate and promoting crystal growth.
[0018]
In addition, like the invention of Claims 3-6 of this invention, the regeneration process in which the said reproduction | regeneration is performed, taking out the mixed solution (raw solution) in a pickling tank sequentially, and the pickling process in a pickling tank are performed. By performing both continuously, a closed cycle in which a predetermined amount of the mixed solution is always circulated can be obtained. Furthermore, it is possible to constantly measure the concentration of the ferrous sulfate in the mixed solution, or to add hydrogen peroxide and sulfuric acid to the regeneration tank according to the amount required by the measurement. It can be suitably used for regenerating a mixed solution for pickling stainless steel.
[0019]
Furthermore, the regenerator according to claim 7 comprises a cooling part, a crystallization tank, and a regenerating means, and can be directly used for convenience for carrying out the regenerating method to the ferric sulfate solution.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of a pickling line in which a regenerator 1 that can be used in the method for regenerating ferric sulfate solution of the present invention is connected to a pickling process. The pickling line is connected to a pickling section A that uses a pickling tank 10 that is hung by a hanger, for example, and pickles a material 2 that is a coil of a stainless steel wire, for example. The pickling section A sequentially takes out the deteriorated mixed solution (stock solution) in the pickling tank 10 and regenerates it with the regenerator 1.
[0021]
Moreover, the regenerated solution that has been regenerated is returned to the pickling tank 10 and subjected to a pickling process, thereby forming a closed cycle that continuously circulates through the regenerating process and the pickling process. ing.
[0022]
The material 2 to be treated is, for example, various metal materials including other various alloys such as iron, chromium, nickel, etc. in addition to the stainless steel, and various oxide materials (oxide scales) that can be removed with a ferric sulfate solution. Metal materials are included.
[0023]
The pickling tank 10 may be of various types such as a strand or batch type, and a shape and structure depending on the purpose is selected.
[0024]
In addition to ferric sulfate, hydrofluoric acid or nitric acid is added to the solution used for this pickling treatment, and ferrous sulfate necessary for crystallizing ferrous sulfate at a predetermined temperature is added. It may be a solution that has been added and has a balanced composition, and varies depending on the object to be treated. Stainless steel is known, for example, from Japanese Patent Publication No. 4-20996.
[0025]
Thus, the concentration of ferric sulfate in the pickling solution and the building bath should be in a predetermined ratio range according to the material of the material 2 to be treated, the nature of the oxide film, the state, the finished quality of the product, the accuracy, etc. Set. A solution having a low concentration of ferric sulfate is generally inferior in processing efficiency. On the other hand, an overconcentrated solution causes peracid washing to roughen the product surface. In order to control the concentration of the mixed solution in the pickling treatment, necessary components such as ferric sulfate and hydrofluoric acid are usually measured separately and adjusted by adding a predetermined amount and mixing.
[0026]
Usually, pickling is performed for a predetermined time, for example, with stirring in a temperature range of about 40 ° C. to 80 ° C. for promotion. Along with the pickling treatment, the pickling solution is converted into ferrous sulfate by accumulating due to the reaction with the iron content in the oxide film of the material to be treated. It becomes an excess mixed solution containing iron and reduced in the ferric sulfate, thereby reducing the pickling treatment ability.
[0027]
The mixed solution is taken out from the pickling tank 10 by a predetermined amount, regenerated by the regenerating apparatus 1 and returned to the oxidizing tank 10 as a regenerated solution. The “excess mixed solution” means that the ferrous sulfate is excessive and the pickling ability is inferior, but also has a certain pickling ability as in the case of this example in which a closed cycle is performed. From the reference range to be set, a mixed solution containing excess ferrous sulfate is also included, and is also referred to as a stock solution.
[0028]
The regenerator 1 cools the surplus mixed solution taken out from the pickling tank 10, that is, a stock solution, to a temperature below the temperature at which ferrous sulfate is crystallized to produce a crystal nucleus mixed solution in which crystal nuclei are produced. The cooling unit 20 for performing the above and the crystal nucleus mixed solution are introduced from an inlet 30A provided below the liquid surface, and crystal nuclei are grown while rising to separate and remove the excess ferrous sulfate, thereby removing the non-surplus A crystallization tank 30 for performing a separation step for obtaining a mixed solution, and a regeneration for performing an oxidative regeneration means for obtaining a regenerated solution by adding hydrogen peroxide and sulfuric acid to the non-surplus mixed solution flowing out from the outlet 30B of the crystallization tank 30. Means 50.
[0029]
In this example, the oxidation regeneration means 50 is provided with a regeneration tank 60 for mixing hydrogen peroxide and sulfuric acid in the non-surplus mixed solution. Sulfuric acid can also be injected into the pickling tank 10, and at that time, the pickling tank 10 is considered to form part of the regeneration means 50. Moreover, you may make it flow in directly into the conduit | pipe 15 of FIG. 1, without providing a regeneration tank in particular.
[0030]
The outlet 10A at the bottom of the pickling tank 10 communicates with the cooling unit 20 through the first conduit 11 having the first pump P1 and the second conduit 12 having the second pump P2. In the present example, a receiving portion 37 of the crystallization tank 30 is interposed between the first conduit 11 and the second conduit 12. In this example, the stock solution solution in the pickling tank 10 is directly fed to the cooling unit 20 by selectively conducting the first conduit 11 and the second conduit 12 at the receiving unit 37. In addition, the supernatant mixed solution of the crystallization tank 30 in the receiving portion 37 can be fed again to the cooling portion 20 from the second conduit 12.
[0031]
The cooling unit 20 includes a coil 21 through which a refrigerant having a variable temperature and a regulated temperature passes, and a weir-shaped partition plate 22 in the box body 23, while the stock solution from the second conduit 12 overflows. Further, the coil 21 is cooled to a temperature at which a desired crystal ratio is 50 ° C. or lower, preferably 0 to 30 ° C. A temperature of 0 ° C. or lower is usually not preferable economically. As a result, the stock solution becomes a crystal nucleus mixed solution in which crystal nuclei of ferrous sulfate are generated, and flows out into the third conduit 13 extending from the bottom of the box body 23. The crystal nucleus mixed solution in the conduit 13 is guided to the intake 30C at the upper end of the crystallization tank 30. Some of the ferrous sulfate crystals remain attached to the cooling unit 20, the conduit 13, etc., but most of them are introduced into the inlet 30 </ b> C of the crystallization tank 30.
[0032]
Thus, in the crystal nucleus generation step, the crystal nucleus mixture in which the ferrous sulfate crystal nuclei are generated in the stock solution by cooling the surplus mixed solution to a temperature below the temperature at which ferrous sulfate crystallizes. A solution is formed, and in the next separation step using the crystallization tank 30, this crystal nucleus grows and settles, and the excess can be removed.
[0033]
In this example, the crystallization tank 30 has a main part 34 provided with a small-diameter take-out part 33 below the cylindrical body part 31 and an outer peripheral surface of the body part 31 below the upper end of the main part 34. A base 40 composed of a receiving portion 37 having a peripheral wall 36 formed around the bottom portion 35 projecting from the bottom, and a long tubular inflow tube that hangs down from above the receiving portion 37 and passes through the inside of the main portion 34 to the vicinity of the bottom portion. 42 is provided.
[0034]
Thus, the lower end of the inflow tube 42, that is, the inflow port 30 </ b> A is located at the bottom of the crystallization tank 30 and below the liquid level E.
[0035]
In this way, by positioning the inlet 30A at the lower end of the inflow cylinder 42 below the liquid level E of the discharged solution, the crystal nucleus mixed solution from the third conduit 13 is gently moved from the inlet 30A to the main portion 34. Flows in. Furthermore, it rises to the liquid level E by static flow, and during that time, the crystal nuclei of ferrous sulfate aggregate and grow. The grown crystal nuclei settle due to the difference in specific gravity to form a deposited layer 44 deposited below the main portion 34. The inlet 30A is located below the upper surface 44A of the deposited layer 44. The take-out part 33 causes ferrous sulfate to flow down into the crystal receiving tank 49 by opening the valve 47 as appropriate.
[0036]
The crystallization tank 30 has a height h between the inlet 30A and the liquid level E, for example, to make the settling of ferrous sulfate in the main portion 34 smooth. 80% to 98% of H (up to liquid level E), and the total height H is 800 mm or more. In order to further reduce the rising flow velocity, the cross-sectional area of the body portion 31 is preferably 10 to 40 times (preferably 20 to 30 times) the opening area of the inflow port 30A.
[0037]
When this area ratio is smaller than 10 times, the flow rate of the solution is large, and when it flows in from the inlet 30A and rises, crystal growth and separation cannot be performed sufficiently, and it overflows and tends to flow out to the next stage. If it is larger, more space is required than the processing capacity.
[0038]
Thus, the dimensions of each part of the main part 34 are set so that the growth and separation of crystal nuclei can be controlled. In this example, the main part 34 is a vertical cylindrical tank (outer diameter 300 mm, height 1000 mm). In addition, an inlet 30A having a diameter of 50 mm is provided near the bottom, and the height H between the inlet 30A and the liquid level E is 850 mm.
[0039]
Further, the main portion 34 may be formed in a hemispherical shape in which the inlet 30A is substantially extended to the vicinity of the bottom as shown in FIG. 2, for example, and the small tubular extraction portion 33 in FIG. 1 may be omitted. At the same time, the inflow tube 42 of FIG. 1 may be directly connected to the cooling bath 20 as a conduit.
[0040]
The deposited layer 44 grows by gradually combining the crystal nuclei. At this time, the deposited layer 44 captures the crystal nuclei as a filter for the inflowing solution and relaxes the ascending flow rate to statically. Brings the effect of flowing.
[0041]
Thus, in the separation step, the crystal nucleus mixed solution is caused to flow from the inlet 30A provided below the liquid surface E of the crystallization tank 30, and the crystal nucleus mixed solution rises to the liquid surface E to become a supernatant solution. Thus, a surplus mixed solution is obtained by separating the surplus of the crystal nuclei of the ferrous sulfate. As the crystallization tank 30, various types can be adopted as long as the crystal nucleus of ferrous sulfate is grown, coarsened and separated.
[0042]
Next, the non-surplus mixed solution from which a predetermined excess of ferrous sulfate has been separated overflows into the receiving portion 37 from the upper end of the main portion 34, and enters the regeneration tank 60 of the regeneration means 50 into the regeneration conduit 60. Inflow through. Further, the regeneration tank 60 communicates with the pickling tank 10 through the fifth conduit 15. Note that, as described above, the second conduit 12 can be sent to the cooling unit 20 again and processed again.
[0043]
The regeneration tank 60 is preferably provided with a stirring device 60A, and in this example, the spouts from the chemical injection pumps 61 and 62 of hydrogen peroxide and sulfuric acid are opened. The sulfuric acid chemical injection pump 62 can be opened in the oxidation tank 10, and at this time, the pickling tank 10 constitutes a part of the regeneration means 50 as described above.
[0044]
By adding hydrogen peroxide and sulfuric acid to the non-surplus mixed solution in the regeneration tank 60, a regenerated solution obtained by oxidizing and regenerating ferrous sulfate in the mixed solution to ferric sulfate is obtained.
[0045]
The regenerated solution is recycled to the pickling tank 10 and is subjected to a pickling process, and the reclaimed process is performed by sequentially removing the stock solution in the pickling tank and performing the regeneration. In a closed cycle so that the pickling treatment in step 2 is continued.
[0046]
In order to perform these cycles, the pickling tank 10 is provided with a concentration measuring means 70 for measuring the composition distribution of the mixed solution in the pickling process, for example, the concentration of ferrous sulfate. Concentration etc. are constantly measured. Similarly, the concentration measuring means 70 is provided in the oxidation tank 60 in the regeneration means 40. It is preferable to measure both, but either one may be used. In addition to ferrous sulfate, ferric sulfate, sulfuric acid, and hydrofluoric acid concentrations can also be measured. As these concentration measuring means 70, an automatic analyzer using a titanium trichloride titration method can be adopted for ferric sulfate, and an automatic analyzer using a potassium permanganate titration method can be adopted for measuring ferrous sulfate. Furthermore, known appropriate means can be used for sulfuric acid and the like.
[0047]
In addition to the concentration measuring means 70, various factors such as the temperature of each part, the liquid volume, the flow rate, the height of the deposited layer 44, and the crystal grain size are measured, and those measured values are given to a control device (not shown). In addition, the control device is provided with information such as the properties, finish accuracy, quality, quantity, time, etc. of the oxide film of the object to be processed in advance, so that the control device gives necessary control signals to each part and also measures the measured values. In response, control is performed based on various control theories such as feedback, and the operation of the regenerator 1 is automated according to given conditions, and the concentration is kept within a predetermined range.
[0048]
【Example】
Using a pickling solution prepared by mixing ferric sulfate, hydrofluoric acid, and water at a ratio of 3:16 in the pickling tank 10, the descaling treatment of the SUS430 Cr-based stainless steel wire 5.0 mmφ wire was performed at a liquid temperature of 65 ° C. went.
[0049]
In addition, this pickling tank is equipped with an automatic analyzer to measure the concentration change of the treatment solution accompanying the treatment for each treatment amount, and examine the change in the concentration of ferric sulfate and ferrous iron in the liquid. It was.
[0050]
FIG. 3 summarizes the results, and 15.0 wt% of ferric sulfate in the new bath decreases rapidly as the treatment amount increases, and the concentration is 2 when the pickling is performed 10 times. It can be seen that the increase in ferrous sulfate is conspicuous.
[0051]
In order to compensate for this decrease in concentration and to regenerate by a regenerator as an experimental plant to promote pickling treatment, a stock solution of 1 liter / min was taken out from the oxidation tank 10. The regenerator was set to cool the stock solution to 15 ° C., remove 30 g / liter of ferrous sulfate and leave 170 g / liter. After crystallization treatment under these conditions, the liquid was regenerated by adding 10 kg of hydrogen peroxide and 9 kg of sulfuric acid to the resulting non-excess mixed solution. About these addition amounts, it is the amount calculated | required from the density | concentration beforehand, and the reproduction | regeneration solution obtained has a ferric sulfate solution density | concentration of 14.9%, and it is almost a new solution, Therefore, the mixed solution in the pickling tank 10 As indicated by the alternate long and short dash line A in FIG. 3, the concentration was maintained without being greatly reduced even by the badge regeneration process, and the processing capability continued even after being reproduced several times. In addition, although the dashed-dotted line B is based on a closed system, even if ferric sulfate was 10.0 wt% previously, it was able to be maintained almost stably. It should be noted that this process can be easily selected by those skilled in the art.
[0052]
As described above, even if the regenerating process was repeated 20 times while performing the pickling process, the workability was not affected and good results could be obtained.
[0053]
In the present experimental example, as a method for detecting and controlling the excess of ferrous sulfate, the height of the ferrous sulfate deposition layer 44 in the crystallization tank 20 can also be adjusted. Note that the regeneration process may be stopped when the height calculated from the concentration range obtained in advance is reached.
[0054]
As another application example of the present invention, for example, a cooling means is also provided on the outer periphery of the crystallization tank 30 to further promote the crystallization process, or a filter member made of an insoluble material is disposed inside the tank to separate the ferrous iron. It is also preferable to increase the efficiency, and it is possible to automate such that an analysis device is provided in the middle of any of the piping circuits and the concentration is regenerated to an appropriate level while analyzing.
[0055]
【The invention's effect】
Thus, in the method for regenerating a ferric nitrate solution of the present invention, the supersaturated ferrous sulfate in the solution is crystallized as crystals and separated and removed by cooling the aged stock solution to a predetermined temperature or lower. This is a method of regenerating by adding hydrogen peroxide and sulfuric acid as additives. Efficient regeneration is possible with a small amount of addition, which also helps improve pickling quality and efficiency.
[0056]
Also, the separated ferrous iron can be taken out and used as a new resource, contributing to resource saving and facilitating maintenance control of the regeneration concentration, and applying this method to pickling treatment By doing so, a closed system can be established in which the pickling process and the regeneration process are circulated, and a stable continuous work can be performed without the need to interrupt the work for renewing the liquid as in the prior art.
[0057]
Also, the reproducing apparatus according to the present invention can be adopted at a low cost with a simple structure, and the technique according to the present invention is also effective from the aspect of pollution-free and greatly contributes to the industry.
[Brief description of the drawings]
FIG. 1 is a flowchart showing processing steps of a method of the present invention.
FIG. 2 is a front view showing an example of a crystallization tank.
FIG. 3 is a graph showing a change in concentration accompanying pickling treatment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Pickling tank 20 Cooling part 30A Inlet 30B Outlet 30C Inlet 31 Trunk part 40 Crystallizing tank 50 Regeneration means 60 Regeneration tank 70 Measuring means E Liquid level

Claims (7)

原液として、硫酸第一鉄を含む硫酸第二鉄の混合溶液から、前記硫酸第一鉄の余剰分を予め除去するとともに、該混合溶液内の硫酸第一鉄を硫酸第二鉄に再生する硫酸第二鉄溶液への再生方法であって、
酸洗槽から順次取り出された原液中の硫酸第一鉄が結晶化する温度以下の所定温度に冷却するための冷却部を具え、該冷却部による冷却により、前記硫酸第一鉄を結晶化させその結晶核を有する結晶核混合溶液を形成する結晶核生成工程と、
この結晶核混合溶液を、晶析槽の液面下方に設けた流入口からこの晶析槽に流入させ、この結晶核混合溶液が液面に上昇する間に前記硫酸第一鉄の結晶核を成長させることによって硫酸第一鉄の余剰分を分離し非余剰混合溶液とする分離工程と、
前記晶析槽から流出した非余剰混合溶液に過酸化水素及び硫酸を加えることによって混合溶液内の硫酸第一鉄を硫酸第二鉄に再生した再生溶液としかつ酸洗槽に連続的に循環供給する再生工程と、
からなることを特徴とする硫酸第二鉄溶液への再生方法。
As a stock solution, sulfuric acid that removes the excess of ferrous sulfate in advance from a mixed solution of ferric sulfate containing ferrous sulfate and regenerates the ferrous sulfate in the mixed solution to ferric sulfate A regeneration method to ferric solution,
A cooling unit is provided for cooling to a predetermined temperature below the temperature at which ferrous sulfate in the stock solution sequentially taken out from the pickling tank is crystallized, and the ferrous sulfate is crystallized by cooling by the cooling unit. A crystal nucleus generating step for forming a crystal nucleus mixed solution having the crystal nucleus;
The crystal nucleus mixed solution is allowed to flow into the crystallization tank through an inlet provided below the liquid level of the crystallization tank, and the ferrous sulfate crystal nuclei are removed while the crystal nucleus mixed solution rises to the liquid level. A separation step of separating a surplus of ferrous sulfate by growing it into a non-surplus mixed solution;
By adding hydrogen peroxide and sulfuric acid to the non-surplus mixed solution flowing out from the crystallization tank, ferrous sulfate in the mixed solution is regenerated into ferric sulfate and continuously supplied to the pickling tank. A regeneration process,
A method for regenerating a ferric sulfate solution.
前記晶析槽は、前記液面と底部との間の全高さHが800mm以上であり、かつ前記流入口と前記液面との高さhは、全高さHの80〜98%とするとともに、晶析槽の胴部の横断面積を、前記流入口の横断面積の10〜40倍とした請求項1記載の硫酸第二鉄溶液への再生方法。  In the crystallization tank, the total height H between the liquid surface and the bottom is 800 mm or more, and the height h between the inlet and the liquid surface is 80 to 98% of the total height H. The method for regenerating ferric sulfate solution according to claim 1, wherein the cross-sectional area of the body of the crystallization tank is 10 to 40 times the cross-sectional area of the inlet. 前記再生溶液は、酸洗槽に送給され酸洗工程に供せられるとともに、酸洗槽内の原液を順次取り出し前記結晶核生成工程と分離工程と再生工程とからなる再生が行われる再生処理、及び酸洗槽内での酸洗処理がともに連続して行われることによって、再生処理と、酸洗処理とをクローズドサイクルとしたことを特徴とする請求項1又は2記載の硫酸第二鉄溶液への再生方法。  The regeneration solution is supplied to a pickling tank and is subjected to a pickling process, and the stock solution in the pickling tank is sequentially taken out to perform regeneration including the crystal nucleation process, separation process, and regeneration process. 3. The ferric sulfate according to claim 1, wherein the regeneration treatment and the pickling treatment are performed in a closed cycle by continuously performing the pickling treatment in the pickling tank. Regeneration method to solution. 前記酸洗処理、又前記再生処理において、原液中の前記硫酸第一鉄の濃度が定常的に測定されることを特徴とする請求項3記載の硫酸第二鉄溶液への再生方法。  The method for regenerating a ferric sulfate solution according to claim 3, wherein the concentration of the ferrous sulfate in the stock solution is steadily measured in the pickling process or the regeneration process. 前記再生工程は、再生槽を含むとともに、前記測定により求められる量の過酸化水素及び硫酸の少なくとも一方が前記再生槽に加えられることを特徴とする請求項4記載の硫酸第二鉄溶液への再生方法。  5. The ferric sulfate solution according to claim 4, wherein the regeneration step includes a regeneration tank, and at least one of hydrogen peroxide and sulfuric acid in an amount required by the measurement is added to the regeneration tank. Playback method. 酸洗処理される被酸洗物はステンレス鋼であって、前記原液は、ステンレス鋼酸洗い用の混合溶液であることを特徴とする請求項1乃至5のいずれかに記載の硫酸第二鉄溶液への再生方法。  6. The ferric sulfate according to claim 1, wherein the pickled product to be pickled is stainless steel, and the stock solution is a mixed solution for pickling stainless steel. Regeneration method to solution. 原液として、硫酸第一鉄を含む硫酸第二鉄の混合溶液から、前記硫酸第一鉄の余剰分を予め除去するとともに、該混合溶液内の硫酸第一鉄を硫酸第二鉄に再生する硫酸第二鉄溶液への再生装置であって、
酸洗槽から順次取り出された前記原液を、前記混合溶液中の前記硫酸第一鉄を冷却することにより結晶化させその結晶核を有する結晶核混合溶液とする冷却部と、
この結晶核混合溶液を流入口から流入させ、かつこの結晶核混合溶液が液面に上昇する間に前記硫酸第一鉄の結晶核を成長させることによって硫酸第一鉄の余剰分を分離し非余剰混合溶液とするために、前記結晶核混合溶液の流入口を前記非余剰混合溶液が排出される液面よりも下方に設けた晶析槽と、
該晶析槽から流出した非余剰混合溶液に過酸化水素及び硫酸を加えることによって混合溶液内の硫酸第一鉄を硫酸第二鉄に再生した再生溶液としかつ再生溶液を酸洗槽に連続的に循環供給する再生手段とを具えてなる硫酸第二鉄溶液への再生装置。
As a stock solution, sulfuric acid that removes the excess of ferrous sulfate in advance from a mixed solution of ferric sulfate containing ferrous sulfate and regenerates the ferrous sulfate in the mixed solution to ferric sulfate A regeneration device for ferric solution,
A cooling unit that crystallizes the stock solution sequentially taken out from the pickling tank by cooling the ferrous sulfate in the mixed solution to form a crystal nucleus mixed solution having the crystal nucleus;
The crystal nucleus mixed solution is introduced from the inlet, and the ferrous sulfate crystal nuclei are grown while the crystal nucleus mixed solution rises to the liquid surface, thereby separating the excess ferrous sulfate and removing In order to obtain a surplus mixed solution, a crystallizing tank in which the inlet of the crystal nucleus mixed solution is provided below the liquid surface from which the non-surplus mixed solution is discharged;
By adding hydrogen peroxide and sulfuric acid to the non-surplus mixed solution flowing out from the crystallization tank, ferrous sulfate in the mixed solution is regenerated to ferric sulfate, and the regenerated solution is continuously added to the pickling tank. A regenerating apparatus for ferric sulfate solution, comprising regenerating means for circulating and supplying to the apparatus.
JP10056497A 1997-04-17 1997-04-17 Regeneration method to ferric sulfate solution and regeneration apparatus used therefor Expired - Lifetime JP3696712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10056497A JP3696712B2 (en) 1997-04-17 1997-04-17 Regeneration method to ferric sulfate solution and regeneration apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10056497A JP3696712B2 (en) 1997-04-17 1997-04-17 Regeneration method to ferric sulfate solution and regeneration apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH10287988A JPH10287988A (en) 1998-10-27
JP3696712B2 true JP3696712B2 (en) 2005-09-21

Family

ID=14277423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10056497A Expired - Lifetime JP3696712B2 (en) 1997-04-17 1997-04-17 Regeneration method to ferric sulfate solution and regeneration apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3696712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828192A (en) * 2012-08-29 2012-12-19 南京化工职业技术学院 Resourceful treatment method for pickling waste liquor in steel industry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072059B2 (en) * 2005-10-25 2012-11-14 住友軽金属工業株式会社 Cleaning method for inner surface of copper tube or copper alloy tube
CN116374979A (en) * 2023-04-26 2023-07-04 四川大学 Preparation method of ferric phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828192A (en) * 2012-08-29 2012-12-19 南京化工职业技术学院 Resourceful treatment method for pickling waste liquor in steel industry

Also Published As

Publication number Publication date
JPH10287988A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP3910657B2 (en) Equipment for regenerating sulfate electrolyte during steel strip galvanization
JP4486559B2 (en) Electroless plating solution regeneration apparatus and method
CN115055654B (en) High-carbon steel wire rod and production method thereof
JP2695423B2 (en) How to chemically shave and pickle a copper rod
JP3696712B2 (en) Regeneration method to ferric sulfate solution and regeneration apparatus used therefor
US4159194A (en) Crystallization apparatus and process
EP0655518B1 (en) System to re-circulate treatment material in processes of surface treatment and finishing
US2087347A (en) Method of solidifying molten metals
JPH11128976A (en) Control of intermittent aeration type activated sludge method
US4189356A (en) Method for plating copper on steel rods
JP2010142736A (en) Wet chemical treatment method of steel material surface
JP2006316330A (en) Method and device for maintaining function of nitric acid solution for activating surface of plating stock
Davis et al. Waste minimization in electropolishing: Process control
JP2010227944A (en) Continuous casting method for steel cast slab
JPS5964800A (en) Regeneration treatment of ferrous electroplating bath
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JP2004269957A (en) Method of pickling steel strip
JPS63125700A (en) Device for maintaining and controlling concentration of iron electroplating liquid and storing said liquid
JPH0688296A (en) Method and device for supplying zinc in zn-ni based alloy plating
JP2002241952A (en) Electroless plating method and apparatus therefor
JPH01147046A (en) Controlling method for galvanizing bath
JP5304297B2 (en) Continuous casting method for steel slabs
JP3542676B2 (en) Apparatus for removing scale generated on the surface of wire and method for removing scale using this apparatus
CN118755998A (en) Zinc-aluminum-tin-lanthanum alloy and preparation method and application thereof
JP2002321043A (en) Manufacturing method for piece of cast which has fine solidification structure and steel product which is processed from it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term