JP3695683B2 - Resin composition milling equipment - Google Patents

Resin composition milling equipment Download PDF

Info

Publication number
JP3695683B2
JP3695683B2 JP02907699A JP2907699A JP3695683B2 JP 3695683 B2 JP3695683 B2 JP 3695683B2 JP 02907699 A JP02907699 A JP 02907699A JP 2907699 A JP2907699 A JP 2907699A JP 3695683 B2 JP3695683 B2 JP 3695683B2
Authority
JP
Japan
Prior art keywords
resin composition
wire mesh
milling
rotor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02907699A
Other languages
Japanese (ja)
Other versions
JPH11309713A (en
Inventor
竜巳 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP02907699A priority Critical patent/JP3695683B2/en
Publication of JPH11309713A publication Critical patent/JPH11309713A/en
Application granted granted Critical
Publication of JP3695683B2 publication Critical patent/JP3695683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)
  • Coating Apparatus (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Glanulating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂組成物の製粉装置、特に粉砕後の製品粒径に極めて近い製粉を特性の劣化を生ずることなく安定して得ることができるため粉砕工程時に発生する微粉量が少なく、粉砕時間の短縮が可能な樹脂組成物の製粉装置に関する。
【0002】
【従来の技術】
例えば、エポキシ樹脂粉体塗料は乾式法においては通常各原料を溶融混練し、これを冷却・粉砕し製造される。冷却にはクーリングベルトが主として用いられている。溶融混練組成物の冷却が不十分な場合には、粉砕効率が低下し、場合によっては目標とする粒径が得られない。粉砕には、パルペライザー、ビクトリーミル、ボールミル、ジェットミル等が用いられ、粉体の性状と目標粒径に応じて使い分けられる。通常は、粉砕効率を高めるために、5〜15mm程度の塊状にする粗粉砕工程と、目標粒径までに粉砕する粉砕工程に分けて処理される。
【0003】
しかし、ハンマーミル等の粗砕機を用いた場合には、平均粒径は2〜5mmと大きく、且つ粒度分布も数μmから10数mmと広くなる。一般的に、粗粉砕物の粒径が、粉砕後の目標粒径に近いほど粉砕に要する時間は短くなり、又粒度分布は狭いほど過粉砕による微粉の発生を抑えることができるため、このような粗砕物を粉砕した場合には、粉砕時間が長くなると共に、多くの微粉や粗粒が発生する。微粉や粗粒は歩留まりを向上させるためには回収・処理後に再度粉砕する必要があり、加工費増加の要因となる。すなわち、目標とする粒度分布に対して粉砕前の粒度が粗く、粒度分布が広い場合には微粉や粗粒が多く発生するため粉砕効率が低下し、高コストとなる。特に、微粉の発生は作業環境の悪化を招く。
【0004】
粉砕効率の改善に関する製造方法は特開平8−218643号公報や特開平8−294916号公報に開示されている。この方法を用いることにより、従来のハンマーミル等の粗砕工程を経た粉砕工程よりも発生する微粉量を低減することは可能である。しかし、この方法のように製粉機構に加熱手段を持たずに溶融混練した樹脂を供給した場合には、樹脂の性状によっては製粉中に樹脂が冷却され高粘度となるために目詰まりを生じやすく、特性劣化の原因となるばかりでなく、製粉できた場合でも得られる生成物の大きさは不均一で且つ、目標とする粒径に比べ大きくなる。例えばピン型ディスクの場合、供給する樹脂の溶融粘度が低く糸状で回転子に連続供給した時には、樹脂は隣り合った2本のピンの間で遠心力により延ばされ、繊維状となるが繊維の長さはピン間距離よりも長くなる。
【0005】
繊維長を短くするためにピン間距離を狭くした場合には、ピン間の樹脂量が少なくなるために作用する遠心力も小さくなりピン間より離れにくく、樹脂が回転子内部で滞留することになる。滞留を防ぐために遠心力を大きくするには回転速度を上げる必要があり、大きな動力を必要とすると共に、作業の安全性も低下する。一方繊維の太さは樹脂供給量に依存するため、供給量が十分少ないときは細くなるが、生産能力を上げるために供給量を増やした場合には繊維径は太くなり、製粉が安定して得られない。
【0006】
また、供給する樹脂組成物の溶融粘度が高く、糸状での連続供給ができずに樹脂を断続的に回転子に供給する場合には、局所的なピンに対しての樹脂の供給となる。よって、局所的に樹脂が過剰供給となり、ピンの空隙部全体より樹脂が押し出される形となるため不均一な板状で且つ極めて大きな形状となる。このことはベーン型ディスクについても同様のことが言える。つまり、これら方法では粉砕時間の短縮が可能な製粉を安定して得るには不十分である。
従来回転子を利用した製造方法としては、特開昭50−121529号公報、特開昭50−121530号公報、特開昭59−203448号公報等が挙げられるが、いずれも綿状の製品を製造することを目的としており、本発明とは異なるものである。
又、粉体塗料の製粉装置を提供することを目的としたものとして特開平10−032581号公報、特開平10−032582号公報、特開平10−032583号公報が挙げられるが、これら製造方法においては製粉を捕集する容器についての規定がなされておらず、製粉された微粒子あるいは繊維状樹脂組成物の飛行方向に対して外槽が垂直方向となっている。この場合、壁面は製粉の速度エネルギーに相当する衝突エネルギーを緩和されることなく受けるため、壁面に製粉が付着しやすい事や、回転子の回転により発生する風の流れは製粉を壁面に押しつける方向に働くため壁面近傍で滞留しやすく、また製粉の飛行速度が十分大きいため壁面衝突後反射する方向が入射方向とほぼ同じであることから、後から飛行してくる製粉との衝突確率が高くなり、製粉同士の融着が生じることで熱容量が増加し壁面へ付着しやすくなる。一度製粉が壁面に付着すると、その製粉を種として製粉同士の融着が成長するため、製粉は冷却されにくく熱による劣化を促すことになる。
【0007】
【発明が解決しようとする課題】
本発明は目標とする製品粒径に近い製粉を特性の劣化を生ずることなく安定して得ることができるため、粉砕時間を短縮でき、尚かつ粉砕工程において微粉や粗粒の発生量が少ないため、分級工程の削減あるいは省力化が可能な粉体塗料の製粉装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、回転する回転子の上部に設置した円筒体を通して溶融混練された樹脂組成物を開口部より供給でき、それぞれが回転動力源を備え、その外周上に上部及び/又は下部が磁性材料と接した小孔を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を備えた直径の異なる複数の回転子と打ち抜き金網上部及び/又は下部の磁性材料を加熱する加熱手段を有し、熱伝導により均一に加熱された打ち抜き金網の小孔を遠心力にて通過させることにより樹脂組成物を微粒子あるいは繊維状に製粉可能な樹脂組成物の製粉装置。更に、回転する回転子の上部に設置した円筒体は内壁と外壁の間に冷媒を通すことにより冷却できる2重管式となっており、回転子の打ち抜き金網の孔径は、それより内側に位置する回転子上の打ち抜き金網の孔径と比べと同等もしくは小さく、製粉した樹脂を回収する外槽は製粉の付着を防止するため製粉衝突部の壁面は10〜80度に傾斜しており、その外周に冷却ジャケットを備えている樹脂組成物の製粉装置である。
【0009】
【発明の実施の形態】
本発明における溶融混練された樹脂組成物とは、エポキシ樹脂、エポキシ−ポリエステル樹脂、ポリエステル樹脂、アクリル−ポリエステル樹脂、ポリイミド樹脂等の熱硬化性樹脂、又はポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリアミド樹脂、ABS樹脂、フッ素系樹脂等の熱可塑性樹脂等をベースレジンとし、用途に応じて硬化剤、充填材、顔料、その他添加剤などの各種原料を配合したものであり、これらベースレジンの変性系、混合系も使用できる。
【0010】
本発明によれば、その外周上に小孔を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を備えた直径の異なる複数の回転子はそれぞれが動力源を有しているため、製粉する樹脂組成物によってそれぞれの回転方向及び回転速度を調整することができる。但し、実用上から複数の回転子の数は2つが好ましい。打ち抜き金網の上部及び/又は下部は磁性材料と接しており、磁性材料は近傍に設置した励磁コイルに交流電源を通電させることにより加熱できる。磁性材料の加熱により打ち抜き金網に熱が伝わり、その熱伝導の高さから均一加熱が可能である。回転子の上部に設置した2重管式円筒体を通して開口部より供給された溶融混練樹脂組成物は、最も内側に位置する加熱された打ち抜き金網と接触し、樹脂の溶融粘度が上昇することなく遠心力により小孔を通過することで容易に微粒子あるいは繊維状物にすることができる。微粒子あるいは繊維状物となった樹脂組成物は更に遠心力により、その外側に位置する打ち抜き金網に移行する。外側に位置する打ち抜き金網の孔径は、それより内側に位置する打ち抜き金網の孔径と同等もしくは小さいため、通過することにより、さらに小さな微粒子あるいは繊維状物とすることができる。複数枚の打ち抜き金網の小孔を通過することで、より製品径に近い粒子に製粉する事ができる。製粉した樹脂を回収する外槽は製粉の付着を防止するため傾斜していることが好ましく、その外周に冷却ジャケットを備えているため製粉同士の付着による樹脂の特性劣化を招くことなく粉砕時間の短縮や粉砕工程時に発生する微粉や粗粒を低減できる。
【0011】
次に本発明の一例を図面にて説明する。ここで説明する回転子は2つの場合である。第1図に本発明の樹脂組成物の製粉方法を実施するための概略図、第2図に回転子及び励磁コイル、第3図に回転子の上部に設置する円筒体を示す。二軸押出機10で溶融混練された樹脂は内壁と外壁の間に冷媒を通し冷却された円筒体7を通して内側回転子1に供給される。この時、円筒体7が冷却されていない場合には、樹脂が円筒体7の壁に付着しやすく、安定した樹脂の供給が困難となり好ましくない。内側回転子1はモーター11と接続されており外側回転子2はモーター12と接続されている。外側回転子2の外周上に設置した熱伝導率の高い非磁性材料をもって形成された打ち抜き金網4の孔径は内側回転子1に設置された打ち抜き金網3の孔径と同等もしくは小さい。打ち抜き金網3,4と接した磁性材料5はその近傍に備えられた励磁コイル6に交流電源発生装置8により発生させた交流電源を通電させることによって発生する交番磁束の通過に伴う、うず電流損やヒステリシス損により発熱する。なお、この磁性材料は例えば鉄材や珪素鋼等が挙げられ、1種類あるいは2種類以上の磁性材料を複合して使用することができる。加熱された磁性材料を熱源として熱伝導により打ち抜き金網が加熱される。打ち抜き金網は熱伝導率の高い非磁性材料をもって形成されており、極めて均一に加熱することができる。この非磁性材料はたとえば銅やアルミ等が挙げられ、1種類あるいは2種類以上の磁性材料を複合して使用することができる。樹脂は内側回転子1供給後、遠心力により加熱された内側回転子1の打ち抜き金網3に飛行移動する。加熱された内側回転子1の打ち抜き金網3に接触した樹脂は溶融粘度が上昇することなく、容易に打ち抜き金網3の孔を通過し吐出される。
【0012】
内側回転子1の打ち抜き金網3の孔を通過し、微粒子や繊維状に製粉された樹脂は内側回転子1の打ち抜き金網3と同等もしくは小さな孔を有する外側回転子2の打ち抜き金網4に飛行移動する。外側回転子2の打ち抜き金網4も加熱されており、容易に打ち抜き金網4の孔を通過し、更に小さな微粒子や繊維状に製粉される。直径の異なる2つの回転子はそれぞれが動力源であるモーター11,12を有しているため、製粉すべき樹脂組成物の特性によって回転方向や回転速度を別々に調整することが可能であり、各々の外周上に備え付けてある打ち抜き金網は脱着自在のため、場合によってはどちらか一方の打ち抜き金網を取り外して使用することもできる。また、磁性材料を加熱する温度も、製粉する樹脂の特性により任意に設定することができる。熱硬化性樹脂を用いる場合は、加熱温度を上げすぎると樹脂の硬化が進み特性の劣化や打ち抜き金網3や4の小孔で目詰まりが生ずることがあるが、適当な温度条件の場合においては、樹脂は打ち抜き金網3および4の小孔を極めて速やかに通過するため、接触時間が短く特性への影響は極めて少ない。また、打ち抜き金網3,4は熱伝導率が極めて高いため均一に加熱でき、局所的な特性の変化は極めて少ない。吐出された微粒子あるいは繊維状組成物は外側回転子2の周囲に設置した外槽9で捕集される。外槽9は製粉が内壁へ付着したり、製粉同士の融着を防止するために製粉衝突面に10〜80度、好ましくは25〜65度の傾斜を設けてある。傾斜が小さすぎる場合には、製粉の衝突エネルギーを十分分散できず、壁面への付着が生じる。また、傾斜が大きすぎる場合には、製粉の飛行速度の減少割合が小さく且つ飛行方向は外槽壁面に向かうため次の壁面衝突時に付着が発生する恐れがある。また、製粉との衝突面の温度が高くなると付着しやすくなるため、衝突面外周には冷却ジャケット13を設けており、衝突面を冷却することができる。外槽9の内径は小さすぎると繊維状組成物が飛行中に十分冷却されないために内壁への付着や、樹脂同士の融着が生じる恐れがあるため、好ましくない。一般には、回転子の回転により空気の流れが生じ、冷却効果が得られるが必要に応じて冷風を導入しても良い。外槽の大きさは、処理する樹脂量にも依るが、例えば回転子の直径が20cmの場合、内径は100cmあれば付着や融着を防ぐことができる。
【0013】
打ち抜き金網の孔径は目標とする樹脂組成物の平均粒径により調整可能であるが、外側と内側の打ち抜き金網の孔径の大きさの比率は内側回転子の打ち抜き金網の孔径を1とした場合、外側回転子の打ち抜き金網の孔径は1〜0.2であり、好ましくは0.8〜0.4である。この関係は隣り合う全ての打ち抜き金網に成立する。外側回転子の打ち抜き金網の孔径が1より大きい場合、内側回転子の打ち抜き金網の孔を通過した微粒子或いは繊維状組成物はさらに小さな微粒子或いは繊維状組成物とならずに外側回転子の打ち抜き金網の孔を通過してしまう。又、0.2未満の場合には内側回転子の打ち抜き金網の孔を通過する樹脂量に比べ外側回転子の打ち抜き金網の孔を通過する樹脂量が極めて少なくなるために内側と外側回転子の打ち抜き金網の間に樹脂が滞留し特性劣化を生じる可能性が高い。
【0014】
目標とする樹脂組成物の平均粒径をαとすると、捕集される繊維状組成物の径は1.0α〜15.0α、長さが1.0α〜30.0αに調整される。繊維径及び繊維長は溶融粉体塗料樹脂組成物の供給速度、溶融粘度や回転子の回転速度、及び打ち抜き金網の孔径、加熱温度で調整される。繊維状組成物の径が15.0α以上もしくは繊維長さが30.0α以上の場合、後の粉砕工程で発生する微粉や粗粒の低減効果が少なく粉砕効率の改善が十分得られない。
【0015】
【実施例】
本発明を実施例により更に詳しく説明する。
《実施例1》
ビスフェノールA型エポキシ樹脂(エポキシ当量850)5kg、結晶シリカ粉末5kg、2−メチルイミダゾール0.06kg、レベリング剤0.02kgをヘンシェルミキサーでブレンド後、二軸押出機にて溶融混練し、120℃の溶融エポキシ樹脂組成物とした。
これを1.0mmの孔径を有し、励磁コイルで120℃に加熱した銅製打ち抜き金網を備えた3000r.p.mで右回転している20cmの内側回転子と0.6mmの孔径を有し、励磁コイルで120℃に加熱した銅製打ち抜き金網を備えた3000r.p.mで左回転している直径24cmの外側回転子に供給し、平均繊維径200μm、平均繊維長1.0mmの繊維状組成物を得た。これをパルペライザーにて4000回転で粉砕したところ、8μm以下の微粉および200μm以上の粗粒を含まない平均粒径68μmのエポキシ樹脂組成物を得た。
【0016】
《実施例2》
実施例1と同じ120℃の溶融エポキシ樹脂組成物を1.0mmの孔径を有し、励磁コイルで120℃に加熱した銅製打ち抜き金網を備えた4500r.p.mで右回転している直径20cmの内側回転子と0.6mmの孔径を有し、励磁コイルで120℃に加熱した銅製打ち抜き金網を備えた4500r.p.mで左回転している直径24cmの外側回転子に供給し、平均繊維径1700μm、平均繊維長0.8mmの繊維状組成物を得た。これをパルペライザーにて4000回転で粉砕したところ、10μm以下の微粉および180μm以上の粗粒を含まない平均粒径60μmのエポキシ樹脂組成物を得た。
【0017】
《比較例1》
ビスフェノールA型エポキシ樹脂(エポキシ当量850)5kg、結晶シリカ粉末5kg、2−メチルイミダゾール0.06kg、レベリング剤0.02kgをヘンシェルミキサーでブレンド後、二軸押出機にて溶融混練した。クーリングベルトで冷却後、ハンマーミルにて粗粉砕を行い平均粒径800μm、粒度分布40μm〜10mmの粗粉砕物を得た。これをパルペライザーにて4000回転で粉砕したところ、10μm以下の微粉を11wt%および180μm以上の粗粒を8%含んだ平均粒径70μmのエポキシ樹脂組成物を得た。
【0018】
【発明の効果】
本発明における樹脂組成物の製造方法では、製品の目標粒度に近い小さな粒径でかつ、粒度分布の狭い繊維組成物を安定して得ることができるため、粉砕時間を短縮でき、尚かつ粉砕工程で微粉や粗粒の発生を低減することができるため、分級工程の削減あるいは省力化に伴う生産性の向上および作業環境の改善を行うことができる。
【図面の簡単な説明】
【図1】本発明の樹脂組成物の製粉を実施するための、樹脂の溶融混練から繊維状生成物造粒までの一実施例を示す。
【図2】本発明に使用する回転子及び励磁コイルの断面図の一例を示す。
【図3】溶融混練された樹脂組成物を回転子に導入する円筒体の断面図の一例を示す。
【符号の説明】
1 内側回転子
2 外側回転子
3 内側回転子の打ち抜き金網
4 外側回転子の打ち抜き金網
5 磁性材料
6 励磁コイル
7 円筒体
8 交流電源発生装置
9 外槽
10 二軸押出機
11 内側回転子のモーター
12 外側回転子のモーター
13 冷却ジャケット
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a resin composition milling apparatus, in particular, a milling product that is extremely close to the product particle size after pulverization, so that the amount of fine powder generated during the pulverization process is small and the pulverization time can be stably obtained without causing deterioration of properties. The present invention relates to a milling apparatus for a resin composition capable of shortening the length.
[0002]
[Prior art]
For example, in the dry method, the epoxy resin powder coating is usually produced by melting and kneading each raw material, cooling and pulverizing it. A cooling belt is mainly used for cooling. If the melt-kneaded composition is not sufficiently cooled, the pulverization efficiency decreases, and in some cases, the target particle size cannot be obtained. For the pulverization, a pulverizer, a Victory mill, a ball mill, a jet mill, or the like is used. Usually, in order to increase the pulverization efficiency, the process is divided into a coarse pulverization step for forming a mass of about 5 to 15 mm and a pulverization step for pulverization to a target particle size.
[0003]
However, when a crusher such as a hammer mill is used, the average particle size is as large as 2 to 5 mm, and the particle size distribution is widened from several μm to several tens of mm. In general, the closer the particle size of the coarsely pulverized product is to the target particle size after pulverization, the shorter the time required for pulverization, and the narrower the particle size distribution, the less fine powder can be generated by over-pulverization. When a coarsely crushed material is pulverized, the pulverization time becomes long and many fine powders and coarse particles are generated. In order to improve the yield, fine powder and coarse particles need to be pulverized again after collection and processing, which causes an increase in processing costs. That is, when the particle size before pulverization is coarse with respect to the target particle size distribution and the particle size distribution is wide, a large amount of fine powder and coarse particles are generated, so that the pulverization efficiency is lowered and the cost is increased. In particular, the generation of fine powder causes the working environment to deteriorate.
[0004]
Manufacturing methods relating to the improvement of pulverization efficiency are disclosed in JP-A-8-218643 and JP-A-8-294916. By using this method, it is possible to reduce the amount of fine powder generated as compared with a pulverization process that has undergone a coarse pulverization process such as a conventional hammer mill. However, when a melt-kneaded resin is supplied to the milling mechanism without a heating means as in this method, clogging is likely to occur because the resin is cooled and becomes high viscosity during milling depending on the properties of the resin. In addition to causing deterioration of characteristics, the size of the product obtained even when milled can be non-uniform and larger than the target particle size. For example, in the case of a pin type disk, when the melt viscosity of the resin to be supplied is low and is continuously fed to the rotor in the form of a thread, the resin is extended between two adjacent pins by centrifugal force and becomes a fiber, but the fiber Is longer than the distance between the pins.
[0005]
If the distance between the pins is reduced to shorten the fiber length, the amount of resin between the pins is reduced, so the centrifugal force that acts is also reduced, making it difficult to separate between the pins, and the resin stays inside the rotor. . In order to increase the centrifugal force in order to prevent stagnation, it is necessary to increase the rotation speed, which requires a large amount of power and also reduces the safety of work. On the other hand, since the fiber thickness depends on the resin supply amount, it becomes thinner when the supply amount is small enough, but when the supply amount is increased to increase the production capacity, the fiber diameter becomes thicker and the milling becomes stable. I can't get it.
[0006]
Further, when the resin composition to be supplied has a high melt viscosity and cannot be continuously supplied in the form of a thread, and the resin is intermittently supplied to the rotor, the resin is supplied locally to the pins. Accordingly, the resin is locally excessively supplied, and the resin is pushed out from the entire gap portion of the pin, so that it becomes a non-uniform plate shape and a very large shape. The same can be said for the vane disk. That is, these methods are not sufficient to stably obtain a mill capable of shortening the grinding time.
Conventional production methods using a rotor include JP-A-50-121529, JP-A-50-121530, JP-A-59-203448, and the like. It is intended to be manufactured and is different from the present invention.
JP-A-10-032581, JP-A-10-035822, and JP-A-10-032583 can be cited as examples of the purpose of providing a powder coating mill. The container for collecting milling is not regulated, and the outer tank is perpendicular to the flight direction of the milled fine particles or fibrous resin composition. In this case, the wall surface receives the collision energy corresponding to the speed energy of milling without relaxation, so that the milling is likely to adhere to the wall surface, and the wind flow generated by the rotation of the rotor is in the direction of pressing the milling against the wall surface. Because it works easily, it stays near the wall surface, and the flying speed of the milling is sufficiently high so that the direction of reflection after the wall collision is almost the same as the incident direction, which increases the probability of collision with milling flying later. When the milling is fused, the heat capacity is increased and it is easy to adhere to the wall surface. Once the milling adheres to the wall surface, the fusion between the milling grows using the milling as a seed, so that the milling is difficult to be cooled and promotes deterioration due to heat.
[0007]
[Problems to be solved by the invention]
Since the present invention can stably obtain milling close to the target product particle size without causing deterioration of characteristics, the pulverization time can be shortened, and the generation amount of fine powder and coarse particles is small in the pulverization process. It is an object of the present invention to provide a powder coating apparatus that can reduce the classification process and save labor.
[0008]
[Means for Solving the Problems]
The present invention can supply a resin composition melted and kneaded through a cylindrical body installed at the upper part of a rotating rotor through an opening, each of which is provided with a rotational power source, and the upper part and / or the lower part are magnetic materials on the outer periphery thereof. A plurality of rotors each having a punched wire mesh formed of a non-magnetic material having high thermal conductivity and having a small hole in contact with the heater, and heating means for heating the upper and / or lower magnetic material of the punched wire mesh A resin composition milling apparatus capable of milling a resin composition into fine particles or fibers by passing through small holes of a punched wire mesh heated uniformly by heat conduction by centrifugal force. Furthermore, the cylindrical body installed on the upper part of the rotating rotor is a double pipe type that can be cooled by passing a refrigerant between the inner wall and the outer wall, and the hole diameter of the punched wire mesh of the rotor is located inside it. The outer tank that collects the milled resin is inclined to 10 to 80 degrees in order to prevent the adhesion of the milling, and the outer circumference Is a resin composition milling apparatus provided with a cooling jacket.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The melt-kneaded resin composition in the present invention is an epoxy resin, epoxy-polyester resin, polyester resin, acrylic-polyester resin, thermosetting resin such as polyimide resin, or polyvinyl chloride resin, polyethylene resin, polyamide resin, The base resin is a thermoplastic resin such as ABS resin or fluorine resin, and various raw materials such as curing agents, fillers, pigments, and other additives are blended depending on the application. Mixed systems can also be used.
[0010]
According to the present invention, each of the plurality of rotors having different diameters provided with a punched wire mesh formed of a nonmagnetic material with high thermal conductivity having a small hole on the outer periphery thereof has a power source. Each rotation direction and rotation speed can be adjusted by the resin composition to be milled. However, the number of rotors is preferably two for practical use. The upper part and / or the lower part of the punched wire mesh is in contact with the magnetic material, and the magnetic material can be heated by energizing an alternating current power supply to an exciting coil installed in the vicinity. Heat is transmitted to the punched wire mesh by heating the magnetic material, and uniform heating is possible due to the high heat conduction. The melt-kneaded resin composition supplied from the opening through the double-pipe cylindrical body installed on the upper part of the rotor comes into contact with the innermost heated punched wire mesh without increasing the melt viscosity of the resin. Fine particles or fibrous materials can be easily obtained by passing through the small holes by centrifugal force. The resin composition in the form of fine particles or fibrous material is further transferred to a punched wire net located outside by centrifugal force. The hole diameter of the punched wire mesh positioned on the outer side is the same as or smaller than the hole diameter of the punched metal mesh positioned on the inner side of the punched wire mesh. By passing through the small holes of a plurality of punched wire meshes, it is possible to mill into particles closer to the product diameter. The outer tank for collecting the milled resin is preferably inclined to prevent the adhesion of the milling, and since it has a cooling jacket on its outer periphery, the grinding time can be reduced without causing deterioration of the resin characteristics due to the adhesion of the milling. Fine powder and coarse particles generated during shortening and crushing processes can be reduced.
[0011]
Next, an example of the present invention will be described with reference to the drawings. There are two rotors described here. FIG. 1 is a schematic view for carrying out the method for milling a resin composition of the present invention, FIG. 2 shows a rotor and an exciting coil, and FIG. 3 shows a cylindrical body installed on the top of the rotor. The resin melt-kneaded by the twin-screw extruder 10 is supplied to the inner rotor 1 through a cylindrical body 7 cooled by passing a refrigerant between the inner wall and the outer wall. At this time, if the cylindrical body 7 is not cooled, the resin tends to adhere to the wall of the cylindrical body 7 and it becomes difficult to stably supply the resin. The inner rotor 1 is connected to a motor 11 and the outer rotor 2 is connected to a motor 12. The hole diameter of the punched wire mesh 4 formed of a nonmagnetic material with high thermal conductivity installed on the outer periphery of the outer rotor 2 is equal to or smaller than the hole diameter of the punched wire mesh 3 installed on the inner rotor 1. The magnetic material 5 in contact with the punched wire meshes 3 and 4 has an eddy current loss associated with the passage of alternating magnetic flux generated by energizing the AC coil generated by the AC power generator 8 to the exciting coil 6 provided in the vicinity thereof. And generates heat due to hysteresis loss. Examples of the magnetic material include iron material and silicon steel, and one type or two or more types of magnetic materials can be used in combination. The punched wire mesh is heated by heat conduction using the heated magnetic material as a heat source. The punched wire mesh is formed of a nonmagnetic material having a high thermal conductivity and can be heated extremely uniformly. Examples of this nonmagnetic material include copper and aluminum, and one or two or more kinds of magnetic materials can be used in combination. After the inner rotor 1 is supplied, the resin flies to the punched wire mesh 3 of the inner rotor 1 heated by centrifugal force. The resin that has contacted the punched wire mesh 3 of the heated inner rotor 1 easily passes through the holes of the punched wire mesh 3 and is discharged without increasing the melt viscosity.
[0012]
The resin that has passed through the holes of the punched wire mesh 3 of the inner rotor 1 and has been milled in the form of fine particles or fibers flies to the punched wire mesh 4 of the outer rotor 2 having the same or smaller holes as the punched wire mesh 3 of the inner rotor 1. To do. The punched wire mesh 4 of the outer rotor 2 is also heated and easily passes through the holes of the punched wire mesh 4 and is milled into smaller fine particles and fibers. Since the two rotors having different diameters have motors 11 and 12 as power sources, respectively, it is possible to separately adjust the rotation direction and the rotation speed depending on the characteristics of the resin composition to be milled, Since the punching wire mesh provided on each outer periphery is detachable, depending on the case, one of the punching wire meshes can be removed and used. Moreover, the temperature which heats a magnetic material can also be set arbitrarily by the characteristic of resin to mill. When a thermosetting resin is used, if the heating temperature is raised too much, the resin will harden and the characteristics may deteriorate and clogging may occur in the small holes of the punched wire nets 3 and 4, but in the case of appropriate temperature conditions Since the resin passes through the small holes of the punched wire nets 3 and 4 very quickly, the contact time is short and the influence on the characteristics is extremely small. Further, since the punched wire meshes 3 and 4 have extremely high thermal conductivity, they can be heated uniformly, and there is very little local change in characteristics. The discharged fine particles or fibrous composition is collected in an outer tank 9 installed around the outer rotor 2. The outer tub 9 is provided with an inclination of 10 to 80 degrees, preferably 25 to 65 degrees on the milling collision surface in order to prevent the milling from adhering to the inner wall or fusion between the milling. When the inclination is too small, the collision energy of milling cannot be sufficiently dispersed, and adhesion to the wall surface occurs. If the inclination is too large, the rate of decrease in the flying speed of the milling is small and the flight direction is toward the outer tank wall surface, which may cause adhesion during the next wall surface collision. Moreover, since it becomes easy to adhere when the temperature of the collision surface with milling becomes high, the cooling jacket 13 is provided in the outer periphery of the collision surface, and the collision surface can be cooled. If the inner diameter of the outer tub 9 is too small, the fibrous composition is not sufficiently cooled during the flight, which may cause adhesion to the inner wall and fusion between the resins. In general, an air flow is generated by rotation of the rotor and a cooling effect is obtained, but cold air may be introduced as necessary. Although the size of the outer tub depends on the amount of resin to be processed, for example, when the diameter of the rotor is 20 cm, adhesion and fusion can be prevented if the inner diameter is 100 cm.
[0013]
The hole diameter of the punched wire mesh can be adjusted by the average particle diameter of the target resin composition, but the ratio of the hole diameters of the outer and inner punched wire meshes is 1 when the hole diameter of the punched wire mesh of the inner rotor is 1. The hole diameter of the punched wire mesh of the outer rotor is 1 to 0.2, preferably 0.8 to 0.4. This relationship holds for all adjacent punched wire meshes. When the hole diameter of the punched wire mesh of the outer rotor is larger than 1, the fine particle or fibrous composition that has passed through the hole of the punched wire mesh of the inner rotor does not become a smaller fine particle or fibrous composition, and the punched wire mesh of the outer rotor. Will pass through the hole. If the ratio is less than 0.2, the amount of resin passing through the punched wire mesh holes of the outer rotor is extremely small compared to the amount of resin passing through the punched wire mesh holes of the inner rotor. There is a high possibility that the resin will stay between the punched wire nets and cause characteristic deterioration.
[0014]
When the average particle diameter of the target resin composition is α, the diameter of the collected fibrous composition is adjusted to 1.0α to 15.0α and the length is adjusted to 1.0α to 30.0α. The fiber diameter and fiber length are adjusted by the supply rate of the molten powder coating resin composition, the melt viscosity, the rotational speed of the rotor, the hole diameter of the punched wire mesh, and the heating temperature. When the diameter of the fibrous composition is 15.0α or more or the fiber length is 30.0α or more, the effect of reducing fine powder and coarse particles generated in the subsequent pulverization process is small, and the pulverization efficiency cannot be sufficiently improved.
[0015]
【Example】
The present invention will be described in more detail with reference to examples.
Example 1
After blending 5 kg of bisphenol A type epoxy resin (epoxy equivalent 850), 5 kg of crystalline silica powder, 0.06 kg of 2-methylimidazole, and 0.02 kg of leveling agent with a Henschel mixer, the mixture is melt-kneaded with a twin screw extruder, A molten epoxy resin composition was obtained.
This has a hole diameter of 1.0 mm, a 20 cm inner rotor rotating right at 3000 rpm with a copper punched wire mesh heated to 120 ° C. with an excitation coil, and a hole diameter of 0.6 mm. Supply to an outer rotor having a diameter of 24 cm and rotating left at 3000 rpm equipped with a copper punched wire mesh heated to 120 ° C. by a coil to obtain a fibrous composition having an average fiber diameter of 200 μm and an average fiber length of 1.0 mm. It was. When this was pulverized with a pulverizer at 4000 revolutions, an epoxy resin composition having an average particle size of 68 μm and containing no fine powder of 8 μm or less and coarse particles of 200 μm or more was obtained.
[0016]
Example 2
The inner side of a diameter of 20 cm which is rotated right at 4500 rpm with a copper punched wire mesh having a hole diameter of 1.0 mm and a heated epoxy resin composition at 120 ° C., which is heated to 120 ° C. with an exciting coil. Supplied to an outer rotor with a diameter of 24 cm and rotating counterclockwise at 4500 rpm with a rotor punch and a copper punched wire mesh heated to 120 ° C. with an exciting coil and having an average fiber diameter of 1700 μm, A fibrous composition having an average fiber length of 0.8 mm was obtained. When this was pulverized with a pulverizer at 4000 revolutions, an epoxy resin composition having an average particle size of 60 μm containing no fine powder of 10 μm or less and coarse particles of 180 μm or more was obtained.
[0017]
<< Comparative Example 1 >>
5 kg of bisphenol A type epoxy resin (epoxy equivalent 850), 5 kg of crystalline silica powder, 0.06 kg of 2-methylimidazole, and 0.02 kg of a leveling agent were blended with a Henschel mixer and then melt-kneaded with a twin screw extruder. After cooling with a cooling belt, coarse pulverization was performed with a hammer mill to obtain a coarsely pulverized product having an average particle size of 800 μm and a particle size distribution of 40 μm to 10 mm. When this was pulverized with a pulverizer at 4000 rpm, an epoxy resin composition having an average particle size of 70 μm containing 11 wt% of fine powder of 10 μm or less and 8% of coarse particles of 180 μm or more was obtained.
[0018]
【The invention's effect】
In the method for producing a resin composition in the present invention, since a fiber composition having a small particle size close to the target particle size of the product and a narrow particle size distribution can be stably obtained, the pulverization time can be shortened and the pulverization step Therefore, the generation of fine powder and coarse particles can be reduced, so that the productivity can be improved and the working environment can be improved along with the reduction of the classification process or labor saving.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows an example from resin kneading to fibrous product granulation for milling the resin composition of the present invention.
FIG. 2 shows an example of a cross-sectional view of a rotor and an excitation coil used in the present invention.
FIG. 3 shows an example of a cross-sectional view of a cylindrical body into which a melt-kneaded resin composition is introduced into a rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner rotor 2 Outer rotor 3 Inner rotor punching wire mesh 4 Outer rotor punching wire mesh 5 Magnetic material 6 Exciting coil 7 Cylindrical body 8 AC power generator 9 Outer tank 10 Twin screw extruder 11 Inner rotor motor 12 Motor of outer rotor 13 Cooling jacket

Claims (7)

回転する回転子の上部に設置した円筒体を通して溶融混練された樹脂組成物を開口部より供給でき、それぞれが回転動力源を備え、その外周上に上部及び/又は下部が磁性材料と接した小孔を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を備えた直径の異なる複数の回転子と打ち抜き金網上部及び/又は下部に接する磁性材料を加熱する加熱手段を有し、前記磁性材料からの熱伝導により均一に加熱された打ち抜き金網の小孔を遠心力にて通過させることにより樹脂組成物を微粒子あるいは繊維状に製粉可能な樹脂組成物の製粉装置。A resin composition melt-kneaded through a cylindrical body installed on the upper part of the rotating rotor can be supplied from the opening, each of which has a rotational power source, and the upper and / or lower part is in contact with a magnetic material on the outer periphery. has a different rotor diameters with a punched wire mesh formed with a non-magnetic material having high thermal conductivity having a hole, a heating means for heating the punching wire mesh top and / or magnetic material in contact with the bottom, the A resin composition milling apparatus capable of milling a resin composition into fine particles or fibers by passing through small holes of a punched wire mesh heated uniformly by heat conduction from a magnetic material by centrifugal force. 回転子上部に設置した円筒体は2重管式であり、内壁と外壁の間に冷媒を通すことにより円筒体を冷却できる請求項1記載の樹脂組成物の製粉装置。 2. The resin composition milling apparatus according to claim 1, wherein the cylindrical body installed on the upper part of the rotor is of a double tube type, and the cylindrical body can be cooled by passing a refrigerant between the inner wall and the outer wall. 直径の異なる回転子はそれぞれ回転動力源を備えているため、それぞれが回転方向および回転速度を自由に変えることのできる請求項1又は2記載の樹脂組成物の製粉装置。 3. The resin composition milling apparatus according to claim 1, wherein each of the rotors having different diameters is provided with a rotational power source, so that the rotational direction and the rotational speed can be freely changed. それぞれの回転子の外周上に小孔を有する熱伝率の高い非磁性材料をもって形成された打ち抜き金網は、上部及び/又は下部が磁性材料と接しており、磁性材料の近傍に備えられた励磁コイルに交流電源を通電させることによって磁性材料が加熱され、熱伝導により熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を均一に加熱できる請求項1〜3記載のいずれかの樹脂組成物の製粉装置。 The punched wire mesh formed of a nonmagnetic material with high thermal conductivity having a small hole on the outer circumference of each rotor is in contact with the magnetic material at the top and / or bottom, and the excitation provided near the magnetic material The resin composition according to any one of claims 1 to 3, wherein the magnetic material is heated by energizing the coil with an AC power supply, and the punched wire mesh formed of a nonmagnetic material having a high thermal conductivity by heat conduction can be heated uniformly. Milling equipment. 回転子の外周上に小孔を有する熱伝率の高い非磁性材料で形成された打ち抜き金網の孔径は、それより内側に設置された回転子の打ち抜き金網の孔径と同等あるいは小さい請求項1〜4記載のいずれかの樹脂組成物の製粉装置。 A hole diameter of a punched wire mesh formed of a nonmagnetic material having a high thermal conductivity and having a small hole on the outer periphery of the rotor is equal to or smaller than a hole diameter of a punched wire mesh of a rotor installed on the inner side thereof. 4. A milling apparatus for a resin composition according to any one of 4 above. 製粉した樹脂を回収する外槽は、製粉衝突部の壁面が10〜80度に傾斜しており、その外周に冷却ジャケットを備えている請求項1〜5記載のいずれかの樹脂組成物の製粉装置。 The outer tank for collecting the milled resin has a wall surface of the milling collision part inclined at 10 to 80 degrees, and has a cooling jacket on its outer periphery. Milling of the resin composition according to any one of claims 1 to 5 apparatus. 複数の回転子の数が2である請求項1〜6記載のいずれかの樹脂組成物の製粉装置。 The number of the plurality of rotors is 2, The milling apparatus for a resin composition according to claim 1.
JP02907699A 1998-02-16 1999-02-05 Resin composition milling equipment Expired - Fee Related JP3695683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02907699A JP3695683B2 (en) 1998-02-16 1999-02-05 Resin composition milling equipment

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3258398 1998-02-16
JP3258298 1998-02-16
JP10-32583 1998-02-16
JP10-32582 1998-02-16
JP02907699A JP3695683B2 (en) 1998-02-16 1999-02-05 Resin composition milling equipment

Publications (2)

Publication Number Publication Date
JPH11309713A JPH11309713A (en) 1999-11-09
JP3695683B2 true JP3695683B2 (en) 2005-09-14

Family

ID=27286418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02907699A Expired - Fee Related JP3695683B2 (en) 1998-02-16 1999-02-05 Resin composition milling equipment

Country Status (1)

Country Link
JP (1) JP3695683B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2381062A1 (en) * 2000-06-23 2001-12-27 Sumitomo Bakelite Company Limited Granulating apparatus of resin composition
BRPI0913633B1 (en) * 2008-06-27 2022-09-20 Commonwealth Scientific And Industrial Research Organisation METHOD FOR GRANULATING MATERIAL IN FUSION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203448A (en) * 1983-04-08 1984-11-17 Meiji Seika Kaisha Ltd Production unit for spun sugar
JPH0716946B2 (en) * 1989-05-26 1995-03-01 松下電工株式会社 Method for producing epoxy resin molding material
JP2840642B2 (en) * 1991-08-02 1998-12-24 ダイセル・ヒュルス株式会社 Resin granulation method and apparatus
JP3274311B2 (en) * 1995-04-11 2002-04-15 住友ベークライト株式会社 Powder coating manufacturing method
JP3337861B2 (en) * 1995-04-27 2002-10-28 住友ベークライト株式会社 Method for producing fine-particle thermosetting resin
JPH10180755A (en) * 1996-12-26 1998-07-07 Sumitomo Bakelite Co Ltd Manufacture of epoxy resin composition for sealing semiconductor

Also Published As

Publication number Publication date
JPH11309713A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP3625256B2 (en) Resin composition milling equipment
JP3695683B2 (en) Resin composition milling equipment
US6631861B1 (en) Grinding device for resin composition
JPH05253936A (en) Apparatus for producing monodisperse powder from rubber or rubber article
CN1042013C (en) Method for manufacturing thermoplastic synthetic resin impalpabale powder and apparatus for the same
JPH0816795B2 (en) Toner manufacturing method and apparatus
JP3695689B2 (en) Resin composition milling equipment
JP3556075B2 (en) Powder coating manufacturing method
JP3695686B2 (en) Granulator for thermosetting resin composition
CN112770893A (en) Polymer powder and process for producing the same
CN206343629U (en) A kind of fuel pulverizing plant for powder metallurgy
JP3910245B2 (en) Production method of organic / inorganic composite powder
JPH08281643A (en) Preparation of powder paint
JPH10338518A (en) Production of calcium carbonate
JP4522244B2 (en) Particle production equipment
JPH07244399A (en) Production of electrostatic charge image developing toner
JP4446636B2 (en) Short fiber production equipment
JP2002253983A (en) Production process of powder product
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JP2008110312A (en) Grinder and powder production method
JP2002326038A (en) Pulverizer for producing toner
JP2003285319A (en) Milling apparatus for resin composition and milling method using the same
JPH08294916A (en) Manufacture of fine particlelike thermosetting resin
JPH06262095A (en) Preparation of toner for static charge image development and grinding device
JPH06277545A (en) Production of electrostatic charge image developing toner and impact pulverizer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees