JP3695689B2 - Resin composition milling equipment - Google Patents

Resin composition milling equipment Download PDF

Info

Publication number
JP3695689B2
JP3695689B2 JP2000076048A JP2000076048A JP3695689B2 JP 3695689 B2 JP3695689 B2 JP 3695689B2 JP 2000076048 A JP2000076048 A JP 2000076048A JP 2000076048 A JP2000076048 A JP 2000076048A JP 3695689 B2 JP3695689 B2 JP 3695689B2
Authority
JP
Japan
Prior art keywords
milling
resin composition
resin
rotor
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000076048A
Other languages
Japanese (ja)
Other versions
JP2001260128A (en
Inventor
竜巳 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000076048A priority Critical patent/JP3695689B2/en
Priority to TW89113444A priority patent/TW508292B/en
Publication of JP2001260128A publication Critical patent/JP2001260128A/en
Application granted granted Critical
Publication of JP3695689B2 publication Critical patent/JP3695689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Crushing And Grinding (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂組成物の製粉装置、特に粉砕工程時に発生する微粉量が少なく、粉砕時間の短縮が可能な樹脂組成物の製粉装置に関する。
【0002】
【従来の技術】
例えば、エポキシ樹脂粉体塗料は乾式法においては通常各原料を溶融混練し、これを冷却・粉砕し製造される。冷却にはクーリングベルトが主として用いられている。溶融混練組成物の冷却が不十分な場合には、粉砕効率が低下し、場合によっては目標とする粒径が得られない。粉砕には、パルペライザー、ビクトリーミル、ボールミル、ジェットミル等が用いられ、粉体の性状と目標粒径に応じて使い分けられる。通常は、粉砕効率を高めるために、5〜15mm程度の塊状にする粗粉砕工程と、目標粒径までに粉砕する粉砕工程に分けて処理される。
【0003】
しかし、ハンマーミル等の粗砕機を用いた場合には、平均粒径は2〜5mmと大きく、且つ粒度分布も数μmから10数mmと広くなる。一般的に、粗粉砕物の粒径が、粉砕後の目標粒径に近いほど粉砕に要する時間は短くなり、又粒度分布は狭いほど過粉砕による微粉の発生を抑えることができるため、このような粗砕物を粉砕した場合には、粉砕時間が長くなると共に、多くの微粉や粗粒が発生する。微粉や粗粒は歩留まりを向上させるためには回収・処理後に再度粉砕する必要があり、加工費増加の要因となる。すなわち、目標とする粒度分布に対して粉砕前の粒度が粗く、粒度分布が広い場合には微粉や粗粒が多く発生するため粉砕効率が低下し、高コストとなる。特に、微粉の発生は作業環境の悪化を招く。
【0004】
粉砕効率の改善に関する製造方法は特開平8−218643号公報や特開平8−294916号公報に開示されている。この方法を用いることにより、従来のハンマーミル等の粗砕工程を経た微粉砕工程よりも発生する微粉量を低減することは可能である。しかし、この方法のように製粉機構に加熱手段を持たずに溶融混練した樹脂を供給した場合には、樹脂の性状によっては製粉中に樹脂が冷却され高粘度となるために目詰まりを生じやすく、特性劣化の原因となるばかりでなく、製粉できた場合でも得られる生成物の大きさは不均一で且つ、目標とする粒径に比べ大きくなる。例えばピン型ディスクの場合、供給する樹脂の溶融粘度が低く糸状で回転子に連続供給した時には、樹脂は隣り合った2本のピンの間で遠心力により延ばされ、繊維状となるため、繊維の長さはピン間距離よりも長くなる。
【0005】
繊維長を短くするためにピン間距離を狭くした場合には、ピン間の樹脂量が少なくなるために作用する遠心力も小さくなりピン間より離れにくく、樹脂が回転子内部で滞留することになる。滞留を防ぐために遠心力を大きくするには回転速度を上げる必要があり、大きな動力を必要とすると共に、作業の安全性も低下する。一方繊維の太さは樹脂供給量に依存するため、供給量が十分少ないときは細くなるが、生産能力を上げるために供給量を増やした場合には繊維径は太くなり、製粉が安定して得られない。
【0006】
また、供給する樹脂組成物の溶融粘度が高く、糸状での連続供給ができずに樹脂を断続的に回転子に供給する場合には、局所的なピンに対しての樹脂の供給となる。よって、局所的に樹脂が過剰供給となり、ピンの空隙部全体より樹脂が押し出される形となるため不均一な板状で且つ極めて大きな形状となる。このことはベーン型ディスクについても同様のことが言える。つまり、この方法では粉砕時間の短縮可能な製粉を安定して得るには不十分である。
従来回転子を利用した製造方法としては、特開昭50−121529号公報、特開昭50−121530号公報、特開昭59−203448号公報等が挙げられるが、いずれも綿状の製品を製造することを目的としており、本発明とは異なるものである。
【0007】
又、粉体塗料の製粉装置を提供することを目的としたものとして特開平10−032581号公報、特開平10−032582号公報、特開平10−032583号公報が挙げられるがこれら製造方法において、製粉を捕集する容器は製粉された微粒子あるいは繊維状樹脂組成物の飛行方向に対して外槽が垂直方向となっている。この場合、壁面は製粉の速度エネルギーに相当する衝突エネルギーを緩和されることなく受けるため、壁面に製粉が付着しやすい事や、回転子の回転により発生する風の流れは製粉を壁面に押しつける方向に働くため壁面近傍で滞留しやすく、また製粉の飛行速度が十分大きいため壁面衝突後反射する方向が入射方向とほぼ同じであることから、後から飛行してくる製粉との衝突確率が高くなり、製粉同士の融着が生じることで熱容量が増加し壁面へ付着しやすくなる。一度製粉が壁面に付着すると、その製粉を種として製粉同士の融着がさらに起こるため、製粉は冷却されにくくなり熱による劣化を促すことになる。
【0008】
これらの問題を解決する樹脂組成物の製粉装置を提供することを目的としたものとして、特開平11−309713号公報が挙げられるが、外槽内あるいは外槽から直ちに容器に捕集した製粉は溶融混練や回転子の運転条件によっては、外周部は飛行時に冷却されているものの、内部は蓄熱している場合があり、そのような製粉を堆積させた場合に製粉同士が融着を生じたり熱履歴によって特性の劣化を生じる場合があった。
【0009】
【発明が解決しようとする課題】
本発明は、目標とする製品粒径により近い製粉を特性の劣化を生ずることなく安定して得ることができことで粉砕時間を短縮でき、尚かつ粉砕工程において微粉や粗粒の発生量が少なくなることで分級工程の削減あるいは省力化が可能となる粉体塗料の製粉装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
即ち本発明は、回転する回転子の上部に設置した円筒体を通して溶融混練された樹脂組成物を開口部より供給でき、その外周上に上部及び/又は下部が磁性材料と接した小孔を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を備えた回転子と打ち抜き金網上部及び/又は下部の磁性材料を加熱する手段を有し、熱伝導により均一に加熱された打ち抜き金網の小孔を遠心力にて通過させることにより樹脂組成物を微粒子あるいは繊維状に製粉し、製粉した樹脂を回収する外槽は、製粉衝突部の壁面が10〜80度に傾斜しており、その外周に冷却ジャケットを備えている樹脂組成物の製粉装置において、外槽下部に製粉を取り出す排出口を有し、その先に備えられている空気輸送用設備によって製粉を空気冷却しながら、外槽より搬送できる製粉装置である。
【0011】
【発明の実施の形態】
本発明における溶融混練された樹脂組成物とは、エポキシ樹脂、エポキシ−ポリエステル樹脂、ポリエステル樹脂、アクリル−ポリエステル樹脂、ポリイミド樹脂等の熱硬化性樹脂、又はポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリアミド樹脂、 ABS樹脂、フッ素系樹脂等の熱可塑性樹脂を主なベースレジンとし、用途に応じて硬化剤、充填材、顔料、その他添加剤等の各種原料を配合したものであり、ベースレジンは用途によって変性樹脂または混合物でも良い。
【0012】
本発明の装置は、その外周上に上部及び/又は下部が磁性材料と接した小孔を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を備えた回転子と磁性材料の近傍にに設置した励磁コイルに交流電源を通電させることにより、打ち抜き金網上部及び/又は下部の磁性材料を加熱でき、その熱伝導の高さから打ち抜き金網を均一加熱可能な樹脂組成物の製粉装置において、回転する回転子の上部に設置した2重管式円筒体を通して溶融混練された樹脂組成物を開口部より供給し、熱伝導により加熱された打ち抜き金網と接触し、樹脂の溶融粘度が上昇することなく遠心力により小孔を通過することで容易に微粒子あるいは繊維状物とすることができる。
【0013】
製粉した樹脂を回収する外槽は冷却ジャケットを備えたダブルコーン状であり、上部コーン部の傾斜は製粉の付着を防止し、下部コーン部上を回転子が回転することにより発生する気流に沿って製粉が落下していくため製粉を効率よく冷却できる。また、ダブルコーン状の外槽下部コーン部に製粉を取り出す排出口を有し、その先に備えられている配管経路中に回転羽根を取り付けた空気輸送設備と接続されており、輸送する製粉は空気冷却されながら回転している回転羽根に衝突することにより、製品回収容器へ捕集時には、回転子の金網から飛び出した製粉直後と比べてより最終製品径に近い粒子径に砕かれ、比表面積が増加することにより製粉の冷却を促進するため製粉同士の付着による樹脂の特性劣化を招くことなく粉砕時間の短縮や粉砕工程時に発生する微粉や粗粒を低減できる。
【0014】
次に本発明の一例を図面にて説明する。第1図に本発明の樹脂組成物の製粉方法を実施するための概略図、第2図に回転子及び励磁コイル、第3図に回転子の上部に設置する円筒体を示す。二軸押出機9で溶融混練された樹脂は内壁と外壁の間に冷媒を通し冷却された円筒体5を通して回転子1に供給される。この時、円筒体5が冷却されていない場合には、樹脂が円筒体の壁に付着しやすく、安定した樹脂の供給が困難となり好ましくない。
【0015】
回転子1はモーター10と接続されており、任意の回転数で回転させることができる。回転子1の外周上に設置した均一な孔径を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網2と接した磁性材料3はその近傍に備えられた励磁コイル4に交流電源発生装置6により発生させた交流電源を通電させることによって発生する交番磁束の通過に伴う、うず電流損やヒステリシス損により加熱する。なお、この磁性材料は例えば鉄材や珪素鋼等が挙げられ、1種類あるいは2種類以上の磁性材料を複合して使用することができる。
【0016】
加熱された磁性材料3を熱源として熱伝導により打ち抜き金網が加熱される。打ち抜き金網2は熱伝導率の高い非磁性材料をもって形成されており、極めて均一に加熱することができる。この非磁性材料はたとえば銅やアルミ等が挙げられ、1種類あるいは2種類以上の磁性材料を複合して使用することができる。樹脂は回転子1に供給後、遠心力により加熱された打ち抜き金網2に飛行移動する。
【0017】
加熱された打ち抜き金網2に接触した樹脂は溶融粘度が上昇することなく、容易に打ち抜き金網2の孔を通過し吐出される。加熱する温度は、適用する樹脂の特性により任意に設定することができる。熱硬化性樹脂を用いる場合は、加熱温度を上げすぎると樹脂の硬化が進み特性の劣化や打ち抜き金網2の孔で目詰まりが生ずることがあるが、適当な温度条件の場合においては、樹脂は打ち抜き金網2の小孔を極めて速やかに通過するため、接触時間が短く特性への影響は極めて少ない。また、打ち抜き金網2は均一に加熱されているため、局所的な特性の変化は極めて少ない。
【0018】
打ち抜き金網2の孔を通過することで微粒子あるいは繊維状に製粉された樹脂組成物は回転子1の周囲に設置した外槽8で捕集される。外槽8はダブルコーン状であり、上部コーン部は製粉が内壁へ付着したり、製粉同士の融着を防止するために衝突面に10〜80度、好ましくは25〜65度の傾斜を設けてある。傾斜が小さすぎる場合には、製粉の衝突エネルギーを十分分散できず、壁面への付着が生じる。また、傾斜が大きすぎる場合には、製粉の飛行速度の減少割合が小さく且つ飛行方向は外槽壁面に向かうため次の壁面衝突時に付着が発生する恐れがある。また、製粉との衝突面の温度が高くなると付着しやすくなるため、外周には冷却ジャケット7を設けており、外槽全体を冷却することができる。
【0019】
上部コーンに衝突した製粉は、回転子1の回転により発生する気流に沿って下部コーン上を冷却されながら落下していく。外槽8内は回転子1の回転により気流が発生しているが、この気流を更に強くするために気流発生装置14を1個または複数個取り付け併用することができる。気流発生装置14は、送風機や圧縮空気など気流を強制的に発生することができる装置であれば限定されない。外槽8の内径は小さすぎると飛行中に製粉が十分冷却されないために内壁への付着や、製粉同士の融着が生じる恐れがあるため、好ましくない。外槽8の大きさは処理する樹脂量にも依るが、例えば回転子の直径が20cmの場合、内径は100cmあれば付着や融着を防ぐことができる。
【0020】
ダブルコーン状の外槽8下部コーン部に製粉を取り出す排出口を有し、その先に備えられている配管経路中に回転羽根11を取り付けた空気輸送設備12と接続されており、輸送する製粉は空気冷却されながら回転している回転羽根11に衝突することにより、回転子の金網から飛び出した製粉直後と比べてより最終製品径に近い粒子径に砕かれ、比表面積が増加することにより冷却が促進され、十分冷却した後に製粉回収容器13へ運ばれる。そのため、製粉直後の飛行中に表面は冷却されているが、外槽8で捕集された時にはまだ内部蓄熱している製粉であっても十分冷却された後に製粉回収容器13へ運ばれるため製粉同士の付着や熱履歴による特性劣化を防止できる。
【0021】
製粉と回転羽根11との衝突エネルギーは、通常の粉砕機の粉砕エネルギーと比べて十分小さいため、回転羽根11との衝突によって微粉は発生しない。回転羽根11は製粉と衝突する際に、粉砕を生ずるものであれば、材質、羽根の枚数、取り付け個数は制限されるものではない。また、空気輸送装置のファンやブロアーを製粉回収容器13の前に取り付け回転羽根の代わとすることもできる。
【0022】
粉砕後に得られる樹脂組成物の平均粒径をαとすると、捕集される微粒子あるいは繊維状の製粉の平均短軸径は0.5α〜12.0α、平均長軸径が1.0α〜20.0αに調整される。平均短軸径及び平均長軸径は溶融樹脂組成物の供給速度、溶融粘度や回転子の回転速度、及び打ち抜き金網の孔径、加熱温度で調整される。従来の特開平11−309713号公報で得られる、製粉の平均短軸径が1.0α〜20.0α、平均長軸径が1.0α〜40.0αとくらべ、より製品粒子径に近い製粉が得られるため、粉砕工程で発生する微粉や粗粒の低減効果が大きい。
【0023】
【実施例】
本発明を実施例により更に詳しく説明する。
《実施例1》 ビスフェノールA型エポキシ樹脂(エポキシ当量850)5kg、結晶シリカ粉末5kg、2−メチルイミダゾール0.06kg、レベリング剤0.02kgをヘンシェルミキサーでブレンド後、二軸押出機にて溶融混練し、120℃の溶融エポキシ樹脂組成物とした。
これを1.0mmの孔径を有し、励磁コイルで120℃に加熱した銅製打ち抜き金網を備えた直径24cmで3000r.p.mで回転している回転子に供給し、平均短軸径90μm、平均長軸径134μmの繊維状組成物を得た。これをパルペライザーにて4000回転で粉砕したところ、7μm以下の微粉および170μm以上の粗粒を含まない平均粒径50μmのエポキシ樹脂組成物を得た。
【0024】
《実施例2》 実施例1と同じ120℃の溶融エポキシ樹脂組成物を3.0mmの孔径を有し、励磁コイルで120℃に加熱した銅製打ち抜き金網を備えた直径24cmで3000r.p.mで回転している回転子に供給し、平均短軸径100μm、平均長軸径150μmの繊維状組成物を得た。これをパルペライザーにて4000回転で粉砕したところ、10μm以下の微粉および180μm以上の粗粒を含まない平均粒径60μmのエポキシ樹脂組成物を得た。
【0025】
《比較例1》 ビスフェノールA型エポキシ樹脂(エポキシ当量850)5kg、結晶シリカ粉末5kg、2−メチルイミダゾール0.06kg、レベリング剤0.02kgをヘンシェルミキサーでブレンド後、二軸押出機にて溶融混練した。クーリングベルトで冷却後、ハンマーミルにて粗粉砕を行い平均粒径800μm、粒度分布40μm〜10mmの粗粉砕物を得た。これをパルペライザーにて4000回転で粉砕したところ、10μm以下の微粉を11wt%および180μm以上の粗粒を8%含んだ平均粒径70μmのエポキシ樹脂組成物を得た。
【0026】
【発明の効果】
本発明における樹脂組成物の製造方法では、製品の目標粒度に近い小さな粒径でかつ、粒度分布の狭い微粒子の製粉を安定して得ることができるため、粉砕時間を短縮でき、尚かつ粉砕工程で微粉や粗粒の発生を低減することができ、分級工程の削減あるいは省力化に伴う生産性の向上および作業環境の改善を行うことができる。
【図面の簡単な説明】
【図1】本発明の樹脂組成物の製粉を実施するための、樹脂の溶融混練から製粉捕集までの一実施例を示す。
【図2】本発明に使用する回転子及び励磁コイル4の断面図の一例を示す。
【図3】溶融混練された樹脂組成物を回転子に導入する円筒体5の断面図の一例を示す。
【符号の説明】
1 回転子
2 打ち抜き金網
3 磁性材料
4 励磁コイル
5 円筒体
6 交流電源発生装置
7 冷却ジャケット
8 外槽
9 二軸押出機
10 モーター
11 回転羽根
12 空気輸送設備
13 製粉回収容器
14 気流発生装置
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a resin composition milling apparatus, and more particularly to a resin composition milling apparatus that generates a small amount of fine powder during the pulverization process and can shorten the pulverization time.
[0002]
[Prior art]
For example, in the dry method, the epoxy resin powder coating is usually produced by melting and kneading each raw material, cooling and pulverizing it. A cooling belt is mainly used for cooling. If the melt-kneaded composition is not sufficiently cooled, the pulverization efficiency decreases, and in some cases, the target particle size cannot be obtained. For the pulverization, a pulverizer, a Victory mill, a ball mill, a jet mill, or the like is used. Usually, in order to increase the pulverization efficiency, the process is divided into a coarse pulverization step for forming a mass of about 5 to 15 mm and a pulverization step for pulverization to a target particle size.
[0003]
However, when a crusher such as a hammer mill is used, the average particle size is as large as 2 to 5 mm, and the particle size distribution is widened from several μm to several tens of mm. In general, the closer the particle size of the coarsely pulverized product is to the target particle size after pulverization, the shorter the time required for pulverization, and the narrower the particle size distribution, the less fine powder can be generated by over-pulverization. When a coarsely crushed material is pulverized, the pulverization time becomes long and many fine powders and coarse particles are generated. In order to improve the yield, fine powder and coarse particles need to be pulverized again after collection and processing, which causes an increase in processing costs. That is, when the particle size before pulverization is coarse with respect to the target particle size distribution and the particle size distribution is wide, a large amount of fine powder and coarse particles are generated, so that the pulverization efficiency is lowered and the cost is increased. In particular, the generation of fine powder causes the working environment to deteriorate.
[0004]
Manufacturing methods relating to the improvement of pulverization efficiency are disclosed in JP-A-8-218643 and JP-A-8-294916. By using this method, it is possible to reduce the amount of fine powder generated as compared with the fine pulverization step through the conventional pulverization step such as a hammer mill. However, when a melt-kneaded resin is supplied to the milling mechanism without a heating means as in this method, clogging is likely to occur because the resin is cooled and becomes high viscosity during milling depending on the properties of the resin. In addition to causing deterioration of characteristics, the size of the product obtained even when milled can be non-uniform and larger than the target particle size. For example, in the case of a pin-type disk, when the melt viscosity of the resin to be supplied is low and is continuously supplied to the rotor in the form of a thread, the resin is extended by centrifugal force between two adjacent pins, and becomes a fibrous form. The length of the fiber is longer than the distance between the pins.
[0005]
If the distance between the pins is reduced to shorten the fiber length, the amount of resin between the pins is reduced, so the centrifugal force that acts is also reduced, making it difficult to separate between the pins, and the resin stays inside the rotor. . In order to increase the centrifugal force in order to prevent stagnation, it is necessary to increase the rotation speed, which requires a large amount of power and also reduces the safety of work. On the other hand, since the fiber thickness depends on the resin supply amount, it becomes thinner when the supply amount is small enough, but when the supply amount is increased to increase the production capacity, the fiber diameter becomes thicker and the milling becomes stable. I can't get it.
[0006]
Further, when the resin composition to be supplied has a high melt viscosity and cannot be continuously supplied in the form of a thread, and the resin is intermittently supplied to the rotor, the resin is supplied locally to the pins. Accordingly, the resin is locally excessively supplied, and the resin is pushed out from the entire gap portion of the pin, so that it becomes a non-uniform plate shape and a very large shape. The same can be said for the vane disk. That is, this method is not sufficient for stably obtaining a milling product capable of shortening the grinding time.
Conventional production methods using a rotor include JP-A-50-121529, JP-A-50-121530, JP-A-59-203448, and the like. It is intended to be manufactured and is different from the present invention.
[0007]
Further, as an object of providing a powder coating device milling apparatus, there are JP-A-10-032581, JP-A-10-032582, JP-A-10-032583, and in these production methods, In the container for collecting milling, the outer tub is perpendicular to the flight direction of the milled fine particles or fibrous resin composition. In this case, the wall surface receives the collision energy corresponding to the speed energy of milling without relaxation, so that the milling is likely to adhere to the wall surface, and the wind flow generated by the rotation of the rotor is in the direction of pressing the milling against the wall surface. Because it works easily, it stays near the wall surface, and the flying speed of the milling is sufficiently high so that the direction of reflection after the wall collision is almost the same as the incident direction, which increases the probability of collision with milling flying later. When the milling is fused, the heat capacity is increased and it is easy to adhere to the wall surface. Once the milling has adhered to the wall surface, the milling is further fused with the milling as a seed, so that the milling is less likely to be cooled and promotes deterioration due to heat.
[0008]
JP-A-11-309713 can be cited as an object of providing a resin composition milling apparatus that solves these problems, but the milling immediately collected in a container from the outer tank or from the outer tank is Depending on the melt-kneading and the operating conditions of the rotor, the outer periphery may be cooled during flight, but the inside may store heat, and when such milling is deposited, the milling may cause fusion. In some cases, deterioration of characteristics may occur due to thermal history.
[0009]
[Problems to be solved by the invention]
In the present invention, milling time closer to the target product particle size can be stably obtained without causing deterioration of characteristics, so that the grinding time can be shortened, and the generation amount of fine powder and coarse particles is small in the grinding process. Thus, an object of the present invention is to provide a powder coating apparatus that can reduce the classification process or save labor.
[0010]
[Means for Solving the Problems]
That is, according to the present invention, a resin composition melt-kneaded through a cylindrical body installed on the upper part of a rotating rotor can be supplied from the opening, and the upper and / or lower part has small holes in contact with the magnetic material on the outer periphery thereof. A rotor having a punched wire mesh formed of a non-magnetic material with high thermal conductivity and a means for heating the upper and / or lower magnetic material of the punched wire mesh, and a small size of the punched wire mesh uniformly heated by heat conduction. The outer tank for milling the resin composition into fine particles or fibers by passing through the holes with centrifugal force and collecting the milled resin has a wall surface of the milling collision part inclined at 10 to 80 degrees, and its outer periphery In the resin composition mill equipped with a cooling jacket, the outer tank has a discharge port for taking out the milled powder, and the air is cooled by the air transportation equipment provided at the end, A milling device which can be further transported.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The melt-kneaded resin composition in the present invention is an epoxy resin, epoxy-polyester resin, polyester resin, acrylic-polyester resin, thermosetting resin such as polyimide resin, or polyvinyl chloride resin, polyethylene resin, polyamide resin, The main resin is a thermoplastic resin such as ABS resin or fluorine resin, and various raw materials such as curing agents, fillers, pigments, and other additives are blended depending on the application. The base resin is modified depending on the application. It may be a resin or a mixture.
[0012]
The apparatus of the present invention has a rotor with a punched wire mesh formed of a non-magnetic material with high thermal conductivity having a small hole whose upper and / or lower part is in contact with the magnetic material on the outer periphery thereof, and in the vicinity of the magnetic material. In the milling apparatus of the resin composition capable of heating the magnetic material of the upper part and / or the lower part of the punched wire mesh by energizing the exciting coil installed in The melted and kneaded resin composition is supplied from the opening through a double-pipe cylinder installed at the top of the rotating rotor, and comes into contact with a punched wire mesh heated by heat conduction, increasing the melt viscosity of the resin. Without passing through the small holes by centrifugal force, it can be easily made into fine particles or fibrous materials.
[0013]
The outer tank that collects the milled resin has a double cone shape with a cooling jacket, and the slope of the upper cone prevents the milling from adhering and follows the airflow generated by the rotation of the rotor on the lower cone. Since milling falls, milling can be cooled efficiently. In addition, the double cone-shaped outer tank lower cone part has a discharge port for taking out the flour, and is connected to the pneumatic transportation equipment with rotating blades installed in the pipe path provided at the tip, and the flour to be transported is By colliding with rotating blades that are rotating while being cooled by air, when collected in the product collection container, it is crushed to a particle size closer to the final product diameter than immediately after milling that has jumped out of the rotor mesh, and the specific surface area Since the cooling of the milling is promoted by the increase, the grinding time can be shortened and the fine powder and coarse particles generated during the grinding process can be reduced without causing deterioration of the resin characteristics due to the adhesion of the milling.
[0014]
Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view for carrying out the method for milling a resin composition of the present invention, FIG. 2 shows a rotor and an exciting coil, and FIG. 3 shows a cylindrical body installed on the top of the rotor. The resin melt-kneaded by the twin-screw extruder 9 is supplied to the rotor 1 through a cylindrical body 5 cooled by passing a refrigerant between the inner wall and the outer wall. At this time, when the cylindrical body 5 is not cooled, the resin tends to adhere to the wall of the cylindrical body, and it becomes difficult to stably supply the resin.
[0015]
The rotor 1 is connected to a motor 10 and can be rotated at an arbitrary number of rotations. A magnetic material 3 in contact with a punched wire mesh 2 formed of a non-magnetic material having a uniform hole diameter and having a uniform hole diameter provided on the outer periphery of the rotor 1 is connected to an excitation coil 4 provided in the vicinity thereof, and an AC power generator 6 is heated by the eddy current loss and hysteresis loss accompanying the passage of the alternating magnetic flux generated by energizing the AC power source generated by 6. Examples of the magnetic material include iron material and silicon steel, and one type or two or more types of magnetic materials can be used in combination.
[0016]
The punched wire mesh is heated by heat conduction using the heated magnetic material 3 as a heat source. The punched wire mesh 2 is formed of a nonmagnetic material having a high thermal conductivity and can be heated extremely uniformly. Examples of this nonmagnetic material include copper and aluminum, and one or two or more kinds of magnetic materials can be used in combination. After the resin is supplied to the rotor 1, the resin flies to the punched wire mesh 2 heated by centrifugal force.
[0017]
The resin that has contacted the heated punched metal mesh 2 is easily discharged through the holes of the punched metal mesh 2 without increasing the melt viscosity. The heating temperature can be arbitrarily set depending on the characteristics of the applied resin. When using a thermosetting resin, if the heating temperature is raised too much, the resin will harden and the characteristics may deteriorate and clogging may occur in the holes of the punched wire mesh 2. However, under appropriate temperature conditions, the resin Since it passes through the small hole of the punched wire mesh 2 very quickly, the contact time is short and the influence on the characteristics is very small. Further, since the punched wire mesh 2 is heated uniformly, there is very little local change in characteristics.
[0018]
The resin composition milled in the form of fine particles or fibers by passing through the holes of the punched wire mesh 2 is collected in an outer tank 8 installed around the rotor 1. The outer tub 8 has a double cone shape, and the upper cone portion is provided with an inclination of 10 to 80 degrees, preferably 25 to 65 degrees on the collision surface in order to prevent the milling from adhering to the inner wall and the fusion of the milled powder. It is. When the inclination is too small, the collision energy of milling cannot be sufficiently dispersed, and adhesion to the wall surface occurs. If the inclination is too large, the rate of decrease in the flying speed of the milling is small and the flight direction is toward the outer tank wall surface, which may cause adhesion during the next wall surface collision. Moreover, since it becomes easy to adhere when the temperature of the collision surface with milling becomes high, the cooling jacket 7 is provided in the outer periphery, and the whole outer tank can be cooled.
[0019]
Milling that collides with the upper cone falls along the air flow generated by the rotation of the rotor 1 while being cooled on the lower cone. An air flow is generated in the outer tub 8 by the rotation of the rotor 1, and one or more air flow generators 14 can be attached and used together to further strengthen the air flow. The airflow generation device 14 is not limited as long as it is a device that can forcibly generate an airflow such as a blower or compressed air. If the inner diameter of the outer tub 8 is too small, the milling is not sufficiently cooled during the flight, which may cause adhesion to the inner wall and fusion between the mills. Although the size of the outer tub 8 depends on the amount of resin to be processed, for example, when the diameter of the rotor is 20 cm, adhesion and fusion can be prevented if the inner diameter is 100 cm.
[0020]
The double cone-shaped outer tub 8 has a discharge port for taking out the flour in the lower cone part, and is connected to the air transportation facility 12 in which the rotary blades 11 are installed in the piping path provided at the tip, and the flour to be transported Is collided with the rotating blades 11 that are rotating while being cooled with air, so that it is crushed to a particle diameter closer to the final product diameter than that immediately after milling that has jumped out of the rotor mesh, and the specific surface area is increased, thereby cooling. Is promoted, and after being sufficiently cooled, is carried to the milling collection container 13. Therefore, although the surface is cooled during the flight immediately after milling, even if the milled powder is still stored inside when it is collected in the outer tank 8, it is sufficiently cooled and then transported to the milling recovery container 13 for milling. It is possible to prevent deterioration of characteristics due to adhesion between each other and heat history.
[0021]
Since the collision energy between the milling and the rotary blade 11 is sufficiently smaller than the pulverization energy of a normal pulverizer, no fine powder is generated by the collision with the rotary blade 11. The material, the number of blades, and the number of attachments are not limited as long as the rotating blades 11 pulverize when colliding with milling. In addition, a fan or blower of an air transportation device can be attached in front of the milling recovery container 13 to replace the rotating blades.
[0022]
When the average particle diameter of the resin composition obtained after pulverization is α, the average minor axis diameter of the collected fine particles or fibrous milling is 0.5α to 12.0α, and the average major axis diameter is 1.0α to 20 .0α is adjusted. The average minor axis diameter and the average major axis diameter are adjusted by the supply rate of the molten resin composition, the melt viscosity, the rotation speed of the rotor, the hole diameter of the punched wire mesh, and the heating temperature. Milling that is closer to the product particle diameter than the average minor axis diameter of 1.0α to 20.0α and the average major axis diameter of 1.0α to 40.0α obtained by the conventional Japanese Patent Laid-Open No. 11-309713. Therefore, the effect of reducing fine powder and coarse particles generated in the pulverization step is great.
[0023]
【Example】
The present invention will be described in more detail with reference to examples.
Example 1 5 kg of bisphenol A type epoxy resin (epoxy equivalent 850), 5 kg of crystalline silica powder, 0.06 kg of 2-methylimidazole, and 0.02 kg of a leveling agent were blended with a Henschel mixer and then melt-kneaded with a twin screw extruder. And it was set as the 120 degreeC molten epoxy resin composition.
This has a hole diameter of 1.0 mm, and is provided with a copper punched wire mesh heated to 120 ° C. by an exciting coil and having a diameter of 24 cm and 3000 rpm. p. The fibrous composition having an average minor axis diameter of 90 μm and an average major axis diameter of 134 μm was obtained. When this was pulverized with a pulverizer at 4000 rpm, an epoxy resin composition having an average particle size of 50 μm and containing no fine powder of 7 μm or less and coarse particles of 170 μm or more was obtained.
[0024]
Example 2 The same melt epoxy resin composition at 120 ° C. as in Example 1 having a hole diameter of 3.0 mm and having a copper punched wire net heated to 120 ° C. with an exciting coil and having a diameter of 3000 r. p. The fibrous composition having an average minor axis diameter of 100 μm and an average major axis diameter of 150 μm was obtained. When this was pulverized with a pulverizer at 4000 revolutions, an epoxy resin composition having an average particle size of 60 μm containing no fine powder of 10 μm or less and coarse particles of 180 μm or more was obtained.
[0025]
Comparative Example 1 5 kg of bisphenol A type epoxy resin (epoxy equivalent 850), 5 kg of crystalline silica powder, 0.06 kg of 2-methylimidazole, and 0.02 kg of a leveling agent were blended with a Henschel mixer and then melt-kneaded with a twin screw extruder. did. After cooling with a cooling belt, coarse pulverization was performed with a hammer mill to obtain a coarsely pulverized product having an average particle size of 800 μm and a particle size distribution of 40 μm to 10 mm. When this was pulverized with a pulverizer at 4000 rpm, an epoxy resin composition having an average particle size of 70 μm containing 11 wt% of fine powder of 10 μm or less and 8% of coarse particles of 180 μm or more was obtained.
[0026]
【The invention's effect】
In the method for producing a resin composition in the present invention, it is possible to stably obtain fine particles having a small particle size close to the target particle size of the product and a narrow particle size distribution, so that the pulverization time can be shortened and the pulverization step. Thus, the generation of fine powder and coarse particles can be reduced, and the productivity can be improved and the working environment can be improved along with the reduction of the classification process or labor saving.
[Brief description of the drawings]
FIG. 1 shows one example from resin kneading to milling collection for milling the resin composition of the present invention.
FIG. 2 shows an example of a cross-sectional view of a rotor and excitation coil 4 used in the present invention.
FIG. 3 shows an example of a cross-sectional view of a cylindrical body 5 for introducing a melt-kneaded resin composition into a rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 2 Punching wire net 3 Magnetic material 4 Excitation coil 5 Cylindrical body 6 AC power generator 7 Cooling jacket 8 Outer tank 9 Twin screw extruder 10 Motor 11 Rotor blade 12 Air transport equipment 13 Flour collection container 14 Airflow generator

Claims (2)

回転する回転子の上部に設置した円筒体を通して溶融混練された樹脂組成物を開口部より供給でき、その外周上に上部及び/又は下部が磁性材料と接した小孔を有する熱伝導率の高い非磁性材料をもって形成された打ち抜き金網を備えた回転子と打ち抜き金網上部及び/又は下部に接する磁性材料を加熱する手段を有し、前記磁性材料からの熱伝導により均一に加熱された打ち抜き金網の小孔を遠心力にて通過させることにより樹脂組成物を微粒子あるいは繊維状に製粉し、製粉した樹脂を回収する外槽は、製粉衝突部の壁面が10〜80度に傾斜しており、その外周に冷却ジャケットを備えている樹脂組成物の製粉装置において、外槽下部に製粉を取り出す排出口を有し、その先に備えられている空気輸送用設備によって製粉を空気冷却しながら、外槽より搬送できる製粉装置であって、製粉した樹脂を回収する外槽は、ダブルコーン型であり、その外周に冷却ジャケットを備えた上部コーン部に製粉が衝突したのち、その外周に冷却ジャケットを備えた下部コーン部を回転子が回転することにより発生する気流に沿って製粉が落下していくことにより製粉を冷却できる樹脂組成物の製粉装置The resin composition melt-kneaded through the cylindrical body installed on the upper part of the rotating rotor can be supplied from the opening, and the upper and / or the lower part has small holes in contact with the magnetic material on the outer periphery, and has high thermal conductivity. A rotor having a punched wire mesh formed of a non-magnetic material, and a means for heating the magnetic material in contact with the upper and / or lower portions of the punched wire mesh, and the punched wire mesh heated uniformly by heat conduction from the magnetic material The outer tank for milling the resin composition into fine particles or fibers by passing through the small holes of the tube and collecting the milled resin, the wall surface of the milling collision part is inclined at 10 to 80 degrees, In the resin composition milling apparatus provided with a cooling jacket on its outer periphery, the lower part of the outer tub has a discharge port for taking out the milling, and the milling is air-cooled by an air transportation facility provided at the end. While, a milling equipment that can be transported from the outer tank, the outer tank for collecting the milled resin, a double cone type, after the milling has collided with the upper cone portion having a cooling jacket on the outer periphery, on the outer periphery thereof A resin composition milling apparatus capable of cooling a milling powder by dropping the milling along an air flow generated by the rotation of a rotor through a lower cone portion provided with a cooling jacket . 外槽下部に設けられた排出口は、配管経路中に回転羽根を取り付けた空気輸送設備と接続されている請求項1記載の樹脂組成物の製粉装置。 The apparatus for milling a resin composition according to claim 1, wherein the discharge port provided in the lower part of the outer tub is connected to an air transport facility in which a rotary blade is attached in the piping path.
JP2000076048A 2000-03-17 2000-03-17 Resin composition milling equipment Expired - Fee Related JP3695689B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000076048A JP3695689B2 (en) 2000-03-17 2000-03-17 Resin composition milling equipment
TW89113444A TW508292B (en) 2000-03-17 2000-07-06 Granulating apparatus of resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076048A JP3695689B2 (en) 2000-03-17 2000-03-17 Resin composition milling equipment

Publications (2)

Publication Number Publication Date
JP2001260128A JP2001260128A (en) 2001-09-25
JP3695689B2 true JP3695689B2 (en) 2005-09-14

Family

ID=18593843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076048A Expired - Fee Related JP3695689B2 (en) 2000-03-17 2000-03-17 Resin composition milling equipment

Country Status (2)

Country Link
JP (1) JP3695689B2 (en)
TW (1) TW508292B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124620A (en) * 2012-12-27 2014-07-07 Equos Research Co Ltd Heating pulverization apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631861B1 (en) * 2000-06-23 2003-10-14 Sumitomo Bakelite Company Limited Grinding device for resin composition
JP6283204B2 (en) * 2013-11-11 2018-02-21 大阪瓦斯株式会社 Micronizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124620A (en) * 2012-12-27 2014-07-07 Equos Research Co Ltd Heating pulverization apparatus

Also Published As

Publication number Publication date
JP2001260128A (en) 2001-09-25
TW508292B (en) 2002-11-01

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
JP4891574B2 (en) Crusher and powder manufacturing method using the crusher
WO2001098046A1 (en) Grinding device for resin composition
JP3695689B2 (en) Resin composition milling equipment
JP2006143532A (en) Method of improving dispersibility of carbon nanotube
JP3625256B2 (en) Resin composition milling equipment
CN1042013C (en) Method for manufacturing thermoplastic synthetic resin impalpabale powder and apparatus for the same
JP3695683B2 (en) Resin composition milling equipment
JP2001259451A (en) Pulverizing device and powdery product manufacturing system
JP3556075B2 (en) Powder coating manufacturing method
JP2007270043A (en) Powdered coating particle and method for producing the same
JP3695686B2 (en) Granulator for thermosetting resin composition
JP2001321684A (en) Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same
JPH10338518A (en) Production of calcium carbonate
JP4870885B2 (en) Grinding device and toner manufacturing method using the same
JP3337861B2 (en) Method for producing fine-particle thermosetting resin
JPS59196754A (en) Finely crushing apparatus
JPS59196753A (en) Finely crushing apparatus
JP3779975B2 (en) Method for producing toner for developing electrostatic image and pulverizing and classifying device for toner
JP2008110312A (en) Grinder and powder production method
JP2002326038A (en) Pulverizer for producing toner
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JP2007209924A (en) Crushing equipment and conglobation treatment method of powder
JPH1133429A (en) Impact type pneumatic pulverizer
JP2003285319A (en) Milling apparatus for resin composition and milling method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Ref document number: 3695689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees