JP3695404B2 - 波形処理デバイス - Google Patents
波形処理デバイス Download PDFInfo
- Publication number
- JP3695404B2 JP3695404B2 JP2002042749A JP2002042749A JP3695404B2 JP 3695404 B2 JP3695404 B2 JP 3695404B2 JP 2002042749 A JP2002042749 A JP 2002042749A JP 2002042749 A JP2002042749 A JP 2002042749A JP 3695404 B2 JP3695404 B2 JP 3695404B2
- Authority
- JP
- Japan
- Prior art keywords
- waveform
- address
- data
- read
- waveform memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrophonic Musical Instruments (AREA)
Description
【発明の属する技術分野】
本発明は、波形メモリへ処理手段が直接アクセスすることのできる波形処理デバイスに関するものである。
【0002】
【従来の技術】
従来より、発音しようとするピッチに応じて波形メモリから読み出した波形データに基づいて楽音を生成するようにした波形メモリ音源が知られている。このような波形メモリ音源を内蔵する従来の楽音生成装置における波形処理デバイスである音源部の構成例を図6に示す。
図6において、波形メモリ121は読み書き可能なSDRAM(Synchronous DRAM)により構成されており、複数の短期間の波形が記憶されている。音源部120では、波形メモリ121から読み出された波形データに基づいて楽音を生成している。楽音を生成する際に、楽音生成装置における図示しないCPUは音源制御レジスタ130に各種音源パラメータ情報を供給すると共に、発音の開始指示を出す。この音源パラメータ情報はCPUからデータバスDATA2を介して音源制御レジスタ130に供給され、音源制御レジスタ130においてCPUからアドレスバスAD2を介して与えられるCPUアドレスで示されるレジスタに格納される。
【0003】
音源パラメータ情報は、割り当てチャンネル、波形メモリ読み出しピッチ(周波数ナンバ)、波形メモリ読み出し区間、エンベロープパラメータ、ミキサ133に対する設定情報、およびエフェクト用係数などがある。この内の波形メモリ読み出し区間パラメータは、読み出す波形データの開始アドレスASおよびそのデータ長LPAとされる。音源制御レジスタ130および読出書込回路131は、処理A、処理B、取り込み処理、補間処理、およびXアクセス処理の5つの処理を行なうことにより各チャンネルの楽音を生成している。各処理の概要は次の通りである。処理Aは、音源制御レジスタ130から供給される波形データの開始アドレスASおよびそのデータ長LPAやピッチPITCH等の情報に基づいて、楽音生成のために時分割チャンネルタイミングにしたがって各チャンネルの波形データ読出アドレスを作成する処理である。各チャンネルの波形データ読出アドレスは相対アドレスであり、読出書込回路131内のレジスタに保持される。処理Bは、読出書込回路131において実行される処理であり、時分割チャンネルタイミングとは異なるチャンネルのタイミングで、波形メモリ21に対応する絶対アドレスの波形データ読出アドレスに変換して、この波形データ読出アドレスをアドレスバスAD1を介して波形メモリ121に供給する処理である。
【0004】
また、取り込み処理は、読出書込回路131により実行される処理であり、処理Bにより波形メモリ121に供給された波形データ読出アドレスにしたがって読み出された波形データをデータバスDATA1を介して取り込み、各チャンネル別に内蔵する波形バッファに書き込む処理である。補間処理は、読出書込回路131における図示しない補間回路により実行される処理であり、時分割チャンネルタイミングにしたがって、波形バッファから各チャンネルの波形サンプルを読み出し、補間を行なって各チャンネルの波形データを生成して時分割で出力する処理である。補間された波形データは、読出書込回路131からEG付与回路132に供給される。
【0005】
Xアクセス処理は、音源制御レジスタ130に内蔵されているXアクセス回路130aの制御の基で実行される処理であり、前述した処理Bや取り込み処理において処理を行うタイムスロットが空いた際に、そのタイムスロットで、CPUが波形メモリ121から波形データを読出/書込する処理、および、ミキサ133から出力されたミキシングされた波形データを波形メモリ109へ書き込む処理である。CPUが波形メモリ121から波形データを読み出すXアクセス処理の際には、CPUはXアクセス回路130aに内蔵されたXAレジスタを指定するアドレスを出力して、XAレジスタにデータバスへ出力した波形データ読出アドレスを書き込む。読出書込回路131は、処理Bや取り込み処理において空いたタイムスロットを使用して、アドレスバスAD1を介して波形メモリ121にXAレジスタに書き込まれた波形データ読出アドレスを供給する。これにより波形メモリ121から読み出された波形データはデータバスDATA1、読出書込回路131を介してXアクセス回路130aに内蔵されているFIFO(First In First Out)に書き込まれる。FIFOは先入れ先出し方式のバッファメモリである。CPUは読み出された波形データがFIFOに書き込まれた際に、FIFOからその波形データをデータバスDATA2上に読み出して取り込む。
【0006】
読出書込回路131が波形メモリ121へ波形データ読出アドレスを供給する際には、波形メモリ121へリードイネーブル信号も供給する。また、CPUはXアクセス回路130aへ読み出す波形データの開始アドレスとデータ長の情報を供給し、Xアクセス回路130aは波形メモリ121からデータを読み出す毎に開始アドレスからデータ長に対応するまで順次アドレスをインクリメントして連続する波形データ読出アドレスを発生する。この波形データ読出アドレスは内蔵するXAレジスタに書き込まれ、最終的に波形メモリ121に供給される。これにより、連続するアドレス位置に書き込まれている所定サンプル数の波形データを順次読み出してFIFOに格納することができるようになる。FIFOに格納された波形データはCPUにより読み出される。
【0007】
また、ミキサ133から出力される波形データを波形メモリ121へ書き込むXアクセス処理の際には、ミキサ133から出力される波形データがFIFOに書き込まれる。CPUはXアクセス回路130aに内蔵されたXAレジスタに波形データ書込アドレス(先頭アドレス)を書き込む。読出書込回路131は、処理Bや取り込み処理において空いたタイムスロットを使用して、アドレスバスAD1を介して波形メモリ121にXAレジスタに書き込まれた波形データ書込アドレスを供給する。同時にFIFOから出力された波形データが読出書込回路131を介してデータバスDATA1に出力されて、波形メモリ121に供給される。これにより、波形メモリ121へ波形データが書き込まれるようになる。この場合、読出書込回路131から波形メモリ121へライトイネーブル信号が供給される。なお、CPUはXアクセス回路130aへ書込アドレスの開始アドレスと波形データのデータ長の情報を供給し、Xアクセス回路130aは波形データを書き込む毎に開始アドレスからデータ長に対応するまで順次アドレスをインクリメントして連続する波形データ書込アドレスを発生する。この波形データ書込アドレスは内蔵するXAレジスタに書き込まれ、最終的に波形メモリ121に供給される。これにより、ミキサ133からFIFOに書き込まれた所定サンプル数の波形データを波形メモリ121の連続するアドレス位置に書き込むことができるようになる。この場合、FIFOにはその空き状態に応じてミキサ133から順次波形データが書き込まれる。また、CPUから波形データを波形メモリ121へ書き込むXアクセス処理の際にも同様の処理が行われる。
【0008】
読出書込回路131から時分割で出力される各チャンネルの波形データは、EG付与回路132においてエンベロープが付与される。付与されるエンベロープは、CPUから与えられて音源制御レジスタ130に格納されている各チャンネルのエンベロープパラメータに基づいて決定される。
エンベロープが付与された、例えば32チャンネル分の波形データはミキサ133に供給される。さらに、ミキサ133には信号処理回路(DSP)134から出力されるエフェクト処理等がされた、例えば8チャンネル分の波形データ、および外部回路122からフィルタ処理やエフェクト処理等がされた、例えば8チャンネル分の波形データが供給されている。ミキサ133は、これらの供給された各チャンネルの波形データにそれぞれ係数値を乗算してミキシングする。
【0009】
係数値はCPUから音源制御レジスタ130に音源パラメータとして与えられて、内蔵するレジスタに格納されている。ミキサ133においてミキシングされた波形データは、8チャンネル分がDSP134に、8チャンネル分が外部回路122に、1チャンネル分が音源制御レジスタ130内のXアクセス回路130aに、音源部120の最終的な出力となる2チャンネル(LおよびR出力)分がDAC123に、それぞれ出力されるようになされている。このように、ミキサ133はCPUから指定されたチャンネルの波形データに指定された係数値を乗算してミキシングし、そのミキシング結果をCPUの指定に基づく出力部へ指定されたチャンネルで送出するようにしている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の楽音生成装置における音源部とされる波形処理デバイスにおいては、CPUが波形メモリからデータを読み出す際には、その読出アドレスをデータバスへ出力してXAレジスタに書き込み、所定のタイミングで波形メモリにXAレジスタからの読出アドレスが供給される。これにより、波形データから読み出されたデータがバッファに格納され、バッファに格納された際にCPUがバッファから読み出されたデータを取り込むようにしている。これに対して、CPUがCPUバスに接続されているメモリにアクセスする際には、CPUが内蔵するアドレスレジスタに格納されているアドレスをアドレスバスを通じてメモリに供給することにより、メモリからデータを読み出して取り込むようにしている。このように、波形メモリにアクセスする場合とCPUバスに接続されているメモリにアクセスすると場合とでは、そのアクセスする態様が異なっていた。
【0011】
そこで本発明は、アクセスする態様を異ならせることなく波形メモリにアクセスできるようにした波形処理デバイスを提供することを目的としている。
【0014】
【課題を解決するための手段】
上記目的を達成することのできる本発明の波形処理デバイスは、第1のバスを介して制御手段に接続されているとともに、第2のバスを介して波形データを読み書き可能な波形メモリに接続されており、さらに、前記制御手段の出力する上位アドレスをデコードすることにより生成されている第1選択信号と第2選択信号を入力する波形処理デバイスであって、前記制御手段からの下位アドレスを入力するアドレス入力部と、前記制御手段からのデータを入力、あるいは、前記制御手段へのデータを出力するデータ入出力部と、前記第1選択信号および前記第2選択信号を入力する選択信号入力部と、前記波形メモリから波形データを読み出すための第1アドレスを発生し、前記波形メモリにおける前記第1アドレスの示す記憶位置から波形データを読み出して、読み出された波形データの信号処理を行なう信号処理部と、前記信号処理部の動作を制御する各種制御データと、前記制御手段から出力され前記波形メモリの直接アクセスに使用する上位アドレスとを少なくとも記憶する制御レジスタと、前記第1選択信号が入力されているとき、前記制御手段からの下位アドレスの示す前記制御レジスタにおける記憶位置に前記制御手段から入力する前記データを書き込む、あるいは、当該記憶位置から前記制御手段へ出力する前記データを読み出すレジスタ書込読出部と、前記第2選択信号が入力されているとき、前記制御レジスタに記憶された前記波形メモリの直接アクセスに使用する上位アドレスと前記制御手段からの下位アドレスに基づいて第2アドレスを発生し、前記波形メモリにおける前記第2アドレスの示す記憶位置に前記制御手段から入力する前記データを書き込む、あるいは、当該記憶位置から前記制御手段へ出力する前記データを読み出す直接アクセス部と、前記信号処理部による前記波形メモリからの読み出しと、前記直接アクセス部による前記波形メモリへの書き込み、あるいは、読み出しとを時分割化して行う時分割部とを備えている。
【0015】
また、上記本発明の波形処理デバイスにおいて、前記信号処理手段による波形メモリからの波形データの読み出し中に、前記第2選択信号が入力された場合は、前記制御手段に対してウェイトをかけ、前記信号処理手段による読み出しが終了した際に、前記ウェイトを解除すると共に、前記直接アクセス部による波形メモリの書き込み、あるいは、読み出しが行なわれるようにしてもよい。
【0016】
このような本発明によれば、信号処理手段が所定の周期で発生するアドレスにより波形データが読み出される波形メモリへ、制御手段がアクセスを行えるようにしている。この場合、制御手段の出力するアドレスの一部をそのまま波形メモリのアドレスとして使用して、波形メモリへ直接アクセスを行なうようにしている。これにより、制御手段が波形メモリにアクセスする態様を、バスに接続されているメモリにアクセスする態様と異ならせることなく、波形処理デバイスにおける波形メモリにアクセスすることができるようになる。この制御手段によるアクセスは、信号処理手段による波形メモリへのアクセスと時分割して行われる。この場合、信号処理手段によるアクセスを優先して行うように、信号処理手段によるアクセスが行われない時に、制御手段によるアクセスが行われるように制御している。
【0017】
また、本発明で実現される制御手段による波形メモリへの直接アクセス機能は、波形メモリに記憶された波形データの部分的な編集、波形メモリ上に楽音パラメータ(音色データ、エフェクトデータ等)、変換テーブル、曲データ等を記憶した場合の該変換テーブルや楽音パラメータの読み出し、書き込み、あるいは、編集等の波形メモリ上のデータのランダムアクセスが必要な用途に最適となる。例えば、波形データの編集では、ユーザからの指示に応じて、直接アクセス機能を用いて波形データの一部を選択的に波形メモリから読み出し、その波形データをフィルタ処理したり音量制御して、直接アクセスで処理した波形データを波形メモリに書き戻すことができるようになる。また、波形メモリ上の音色データを編集する場合では、直接アクセス機能を用いて波形メモリから音色データの特定のパラメータを読み出して表示し、ユーザの操作に応じてその値を変更し、直接アクセスにより変更されたパラメータを波形メモリに書き戻すことができるようになる。
【0018】
【発明の実施の形態】
本発明の実施の形態にかかる波形処理デバイスが音源部として備えられている楽音生成装置の構成例を示すブロック図を図1に示す。
図1に示す楽音生成装置1おいて、CPU10は各種プログラムを実行することにより楽音生成装置1における楽音生成の動作を制御する中央処理装置(Central Processing Unit)であり、タイマ11は動作時の経過時間を示したり、特定の間隔でタイマ割込を発生するタイマであり、自動演奏の時間管理等に使用される。ROM12は、CPU10が実行する楽音生成処理のプログラムや、各種データが格納されているROM(Read Only Memory)である。RAM13は楽音生成装置1におけるメインメモリであり、CPU10のワークエリア等が設定されるRAM(Random Access Memory)である。
【0019】
また、ディスク14はハードディスク、フロッピーディスク、リムーバブルディスク等の記録媒体であり、波形メモリ21にロードする波形データなどが格納されている。ドライブ15はセットされたディスク14の読出/書込を行うディスクドライブである。MIDIインタフェース16は、楽音生成装置1内部で作成したMIDIメッセージを外部へ送出したり、外部からのMIDIメッセージを受信するMIDIインターフェースである。ネットワークインタフェース17は、LAN(Local Area Network )やインターネット、電話回線等の通信ネットワークを介してサーバコンピュータに接続するためのネットワークインターフェースである。パネルスイッチ(パネルSW)18は、楽音生成装置1のパネルに設けられている各種スイッチであり、これを操作することにより楽音生成装置1に各種指示を与えることができる。パネル表示器19は、楽音生成時に各種情報が表示されるディスプレイである。
【0020】
音源部20は、CPU10の制御に基づいて、波形メモリ21から波形データ(波形サンプル)を読み出し、補間、エンベロープ付与、チャンネル累算(ミキシング)、および効果(エフェクト)付与などの処理を行って、楽音波形データとして出力している。音源部20から出力された楽音波形データは、DAC23によりアナログ信号に変換され、サウンドシステム24により放音される。波形メモリ21は、SDRAM等の高速のメモリにより構成されており、所定のレートでサンプリングされた多数の波形サンプルデータが格納されている。1ワードの波形サンプルは、例えば16ビットで表され、アドレスは波形サンプル単位に付けられている。すなわち、1アクセスで1つの波形サンプルを読み出すようにしている。波形メモリ21には、楽音の生成に先立ってディスク14等から読み出された波形データが格納されている。
【0021】
外部回路22は、外部から音声や楽音を取り込むためのアナログ/ディジタル変換器(ADC)、効果(エフェクト)付与処理を行なう外部DSP、あるいはディジタルフィルタなどで構成されている。音源部20から外部回路22へ供給された波形データには、外部回路22においてエフェクト付与処理やディジタルフィルタ処理が施されて、音源部20へ戻される。音源部20においては、戻された波形データが他のチャンネルの波形データにミキシングされるようになる。なお、外部回路22は楽音生成装置1に内蔵してもよいし、楽音生成装置1の外部に設けてもよい。また、また、バス25はアドレスバス(後述するCPUアドレスバスADB5,ADB6を含む)、コントロールバス(後述するCPUウェイトラインWAITのウェイト信号、CPUアクセス制御信号WE、OE、RAS、CASを含むコントロール信号のバス)、データバス(後述するCPUデータバスDATA4を含む)の各バスを備える前記した各部を相互接続しているCPUバスである。
【0022】
次に、本発明の実施の形態にかかる波形処理デバイスである音源部20の詳細構成を図2に示し、図3に楽音生成装置1における論理アドレス空間と波形メモリ21の物理アドレス空間の関係を示し、図4に音源部20における動作タイミングを示す。この音源部20において発音チャンネル数が32チャンネルとされている場合は、音源部20は時分割32チャンネルで動作する。このため、音源部20内の各部には、時分作を行なうための基準信号となる制御クロック信号やチャンネルカウント値などの制御信号が供給されている。
図2において、ADB1〜ADB6はそれぞれアドレスバスであり、アドレスバスADB1ないしアドレスバスADB6により供給されるアドレスをアドレスAD1ないしアドレスAD6として、以下に表すものとする。
波形メモリ21は読み書き可能な、例えばSDRAM(Synchronous DRAM)により構成されており、音源部20において楽音を生成する際には予めディスク14等から読み出した複数の比較的短期間の波形が記憶されている。音源部20では、この波形メモリ21からチャンネル毎に時分割で読み出された波形データに基づいて各チャンネルの楽音を生成している。
【0023】
楽音生成装置1におけるCPU10は、ノートオンに応じて楽音を発生する際に、前記32チャンネルから該ノートオンに応じた楽音生成に使用するチャンネル(割り当てチャンネル)を選択し、音源レジスタ30の割り当てチャンネルに対応する記憶領域に各種音源パラメータを設定し、同チャンネルの発音の開始指示を出す。この音源パラメータ情報はCPU10からデータバスDATA4を介して音源制御レジスタ30に供給され、CPUアクセス制御信号(前記WE、OE等)による書き込み制御のもとで、音源制御レジスタ30の中のCPU10からアドレスバスADB6を介して供給される下位アドレスAD6で示される記憶位置のレジスタに格納される。なお、図示していないが、CPU10からのアクセス制御信号等を伝送するための前記コントロールバスが音源制御レジスタ30及び直接アクセス部36に接続されている。
ここで、メモリ空間について図3を参照して説明する。図1に示す楽音生成装置1においてCPU10が32ビット・アーキテクチャであるとする。CPU10の出力するCPUアドレスを32ビット、データバスDATA4を16ビットとすると、CPU10のアクセス可能なアドレス空間は232=4Gワードである。CPU10は、内部の32ビットレジスタのデータをアドレスとして使用することにより、このアドレス空間全域をアクセスすることができる。また、音源20の出力するアドレスを32ビット、データバスDATA1を16ビットとすると、音源20のアクセス可能なアドレス空間は232=4Gワードであり、このアドレス空間の一部ないし全部に波形メモリ21が実装される。読出書込回路31は、整数部32ビットおよび小数部13ビットのアドレスカウンタを備えており、該整数部に基づいてアドレスバスADB2で供給されるアドレスAD2を生成することにより最長4Gワードの波形データを再生できる。
【0024】
CPU10のアドレス空間では、音源制御レジスタアクセス用の領域として領域M1が、また、波形メモリ直接アクセス用の領域として領域M2が、それぞれ割り当てられている。各領域のサイズは、16ビットの下位アドレスAD6でアクセス可能な64kワードである。前記割り当てを実現するために、CS信号発生部26(アドレスデコーダ)は、CPU10の出力する上位アドレスAD5が領域M1に対応する上位16ビットアドレスADM1と一致する際に、音源制御レジスタ30を選択するチップセレクト信号CS1を出力し、また、同上位アドレスAD5が領域M2に対応する上位16ビットアドレスADM2と一致する際に、直接アクセス回路36を選択するチップセレクト信号CS2を出力する。なお、CPU10のアドレス空間のうちで領域M1,M2以外には、ROM12、RAM13等のメモリをアクセスするための領域や、ネットワークインターフェース17、タイマ11、表示器19等の他のデバイスの制御レジスタをアクセスするための領域が適宜割り当てられている。さらに、チップセレクト信号CS2が出力された場合、直接アクセス回路36は、CPUアドレスから32ビットアドレスAD3を生成し、生成されたアドレスAD3により波形メモリ21への直接アクセス動作を実行する。ここで、アドレスAD3の上位16ビットは上位ADレジスタ30aからの16ビットアドレスAD4に基づいて生成され、下位16ビットはCPU10からの16ビット下位アドレスAD6により生成される。例えば、図3において、CPU10が矢印mで示されるアドレス(その上位アドレスはADM2で下位アドレスはAD6)により読み出し、あるいは、書き込みをする際には、上位ADレジスタ30aに値ADaが設定されていれば、該上位アドレスADaに対応した領域Aの先頭アドレスから該下位アドレスAD6だけ進んだ矢印aで示されるアドレスがアクセスされ、そのアドレスのデータが読み出し、あるいは、書き込みされる。また、その時に上位ADレジスタ30aに値ADbが設定されていれば、該上位アドレスADbに対応した領域Bの先頭アドレスから該下位アドレスAD6だけ進んだ矢印bで示されるアドレスが同様にアクセスされる。
【0025】
図2に戻り、発音開始指示と共に音源制御レジスタ30に供給される音源パラメータ情報は、波形メモリ読み出し速度(楽音ピッチに対応)、波形メモリ読み出し区間、エンベロープパラメータ、ミキサ33に対する設定情報、およびエフェクト用係数等とされる。この内の波形メモリ読み出し区間パラメータは、読み出す波形データの開始アドレスASおよびそのデータ長LPAとされる。これらの音源パラメータ情報は、CPU10からデータバスDATA4を介して音源制御レジスタ30に供給され、同時にCPUアドレスの上位アドレスAD5がCS信号発生部26に供給されると共に下位アドレスAD6が音源制御レジスタ30に供給され。この場合、上位アドレスAD5では図3に示す音源制御レジスタ30に内蔵されているレジスタに割り当てられているセグメント空間M1が指定される。これにより、CS信号発生部26は音源制御レジスタ30を選択するチップセレクト信号CS1を出力し、音源制御レジスタ30はアドレスバスを介して供給されるCPUアドレスの下位アドレスAD6を受け取る。そして、当該下位アドレスで示される音源制御レジスタ30内の特定のレジスタに、データバスDATA4を介して供給される音源パラメータを格納する。このようにして、複数のそれぞれのレジスタに対応する音源パラメータがそれぞれ格納されていく。
【0026】
音源制御レジスタ30および読出書込回路31は、処理A、処理B、取り込み処理、および補間処理を行なう。各処理の概要および処理タイミングは次の通りである。処理Aは、音源制御レジスタ30から供給される波形データの開始アドレスASおよびそのデータ長LPAやピッチPITCH等の情報に基づいて、楽音生成のために時分割チャンネルタイミングにしたがって各発音チャンネルの波形データ読出アドレスを作成する処理である。各チャンネルのアドレスは、読出書込回路31内のレジスタに保持される。発音チャンネル数が32チャンネルとされている場合は、処理AはDAC23における1DAC周期内において32チャンネル分の波形データ読出アドレスを作成する。
【0027】
この場合、図4に示すように1DAC周期は前半と後半とに2分割されて、前半の期間では1ch〜16chの波形データ読出アドレスが作成され(処理A前半ch)、後半の期間では17ch〜32chの波形データ読出アドレスが作成される(処理A後半ch)。処理Aでは、全チャンネルについて読出アドレスの生成を行ない、かつ、各チャンネルの読出アドレスの整数部の進行量に応じて波形データを読み出すべきチャンネルを決定し、決定されたチャンネルのチャンネル番号とそのチャンネルでの読み出すべきサンプル数(前記進行量に対応)を制御RAMに格納する。例えば、補間処理における4点補間等の補間態様においては複数の波形データが必要となることから、このような場合には処理Aにおいて1つのチャンネルについて複数の波形データ読出アドレスが作成されるようになる。なお、1ch〜32chの各チャンネルの処理を行うタイムスロットは1DAC周期を等分割して与えられる。すなわち、処理Aにおける各チャネルに割り当てられるタイムスロットは1DAC周期をTとするとT/32とされ、このタイムスロットにおいて図示するようにチャンネル順に処理される。
【0028】
処理Bは、読出書込回路31において処理Aよりほぼ1/2DAC周期だけ遅れて実行される処理であり、後述するタイミングで処理Aが終了したチャンネルについて行われる。処理Bは、制御RAMに読み出すべきチャンネルとして記憶されているチャンネルについて、当該チャンネルの読出アドレスに基づいて制御RAMに記憶されているアクセス回数だけ波形メモリ21にアクセスし、該回数分の波形サンプルを読み出す処理である。この場合、図4に示すように1DAC周期の前半の期間では1ch〜16chについての波形メモリ21からの読み出しが実行され(処理B前半ch)、後半の期間では17ch〜32chについての波形メモリ21からの読み出しが実行される(処理B後半ch)。この場合、処理Aにおいて、波形データを読み出すべきチャンネルとしてチャンネル番号が制御RAMに格納されなかったチャンネルについては、処理Bの処理は行われない。処理Bが行われるタイムスロットは処理Aの1タイムスロットの1/4とされ、1DAC周期をTとするとT/128とされる。
【0029】
そして、処理Aにおいて記憶されたアクセス回数が複数であったチャンネル(すなわち、読出アドレスの整数部が複数進行したチャンネル)については、それぞれの波形データ読出アドレスに対する処理Bが該アクセス回数に対応したタイムスロット数ずつ順次実行されるようになる。例えば、図4の処理Bに示すように1chについては処理Bが1タイムスロットで行われ、2chについては処理Bは行われず、3chについては処理Bが3タイムスロットで行われ、4chについては処理Bは行われず、5chについては処理Bが1タイムスロットで行われ、6chについては処理Bは行われず、7chについては処理Bが2タイムスロットで行われ、8ch〜16chについては処理Bは行われないようになる。このように、処理Bが行われないチャンネルがあることから処理Bの前半期間においては7chの処理が終了してから後半期間が始まるまでのタイムスロットが空くようになると共に、後半期間においても後には次の前半期間が始まるまでにタイムスロットに空きが生じるようになる。そこで、この空いたタイムスロットを後述する直接アクセス回路36がアクセスする直接アクセス処理を行うタイムスロットとして割り当てるようにする。この割り当ては、次のようにして制御信号CONT1及び制御信号CONT2により制御されている。読出書込回路31から出力されている制御信号CONT1は、読出書込回路31による波形メモリアクセス(処理Bなど)が行なわれる期間において「1」となる信号であり、制御信号CONT2はそれ以外の期間において「1」となる信号である。セレクタ35は、制御信号CONT1が「1」である間、波形メモリ21のアドレスバスADB1をアドレスバスADB2に、また、データバスDATA1をデータバスDATA2に接続し、それ以外の間はアドレスバスADB1をアドレスバスADB3に、また、データバスDATA1をデータバスDATA3に接続する。これにより、制御信号CONT1が「1」である間、読出書込回路31は、波形メモリ21をアクセスすることができる。一方、直接アクセス回路6は、制御信号CONT2が「1」となる間を空いたタイムスロットとして認識し、そのタイムスロットを利用して直接アクセス処理を行なうようにしている。
【0030】
また、取り込み処理は、読出書込回路31により実行される処理であり、処理Bにより波形メモリ21に供給された波形データ読出アドレスにしたがって読み出された波形データをデータバスDATA1を介して取り込み、内部の波形バッファに書き込む処理である。この波形バッファは、サンプル間補間用の波形データを記憶するバッファであり、各チャンネルごとに波形メモリ21から読み出された最新の波形データを4サンプル分記憶する。処理Bにおいて波形データ読出アドレスが波形メモリ21に供給されると、波形メモリ21から直ちに波形データが読み出されることから、取り込み処理は、図4に示すように処理Bからわずか遅れて開始されるようになる。この場合、1つの波形データ読出アドレスで1つの波形サンプルが読み出されることから、図4の取り込み処理に示すように1chについては波形データが1サンプル分取り込まれ、2chについては波形データは取り込まれず、3chについては波形データが3サンプル分取り込まれ、4chについては波形データは取り込まれず、5chについては波形データが1サンプル分取り込まれ、6chについては波形データは取り込まれず、7chについて波形データが2サンプル分取り込まれ、8ch〜16chについては波形データは取り込まれないようになる。このように、波形データが取り込まれないチャンネルがあることから取り込み処理の前半期間においては7chの処理が終了してから後半期間が始まるまでのタイムスロットが空くようになると共に、後半期間においても後には次の前半期間が始まるまでのタイムスロットに空きが生じるようになる。そこで、この空いたタイムスロットを後述する直接アクセス回路36が波形メモリ21に直接アクセスする際のタイムスロットとして割り当てるようにする。なお、取り込み処理における1タイムスロットは処理Bの1タイムスロットと同様とされ、1DAC周期をTとするとT/128とされる。
【0031】
補間処理は、読出書込回路31における図示しない補間回路により実行される処理であり、時分割チャンネルタイミングにしたがって、波形バッファから各チャンネルの必要とする波形サンプルを読み出し、2点補間や4点補間を行なった波形データを出力する処理である。この場合、波形バッファには取り込み処理により取り込まれた波形データが格納されていることから、補間処理は取り込み処理より若干遅れて開始されるようになる。補間された波形データは、読出書込回路31からEG付与回路32に供給される。この場合、図4に示すように1DAC周期の前半の期間では1ch〜16chの補間処理が行われ(補間前半ch)、後半の期間では17ch〜32chの補間処理が行われる(補間後半ch)。なお、1ch〜32chの各チャンネルの補間処理時間は1DAC周期を等分割して与えられる。すなわち、補間処理における各チャネルに割り当てられるタイムスロットは1DAC周期をTとするとT/32とされ、このタイムスロットにおいて図示するようにチャンネル順に処理される。
【0032】
次に、読出書込回路31から時分割で出力される各チャンネルの波形データは、EG付与回路32においてエンベロープが付与される。付与されるエンベロープは、CPU10から与えられて音源制御レジスタ30のレジスタに格納されている各チャンネルのエンベロープパラメータに基づいて決定される。エンベロープが付与された、例えば32チャンネル分の波形データはミキサ33に供給される。さらに、ミキサ33には信号処理回路(DSP)34から出力されるエフェクト処理等がされた、例えば8チャンネル分の波形データ、および外部回路22からフィルタ処理やエフェクト処理等がされた、例えば8チャンネル分の波形データが供給されている。ミキサ33は、これらの供給された各チャンネルの波形データにそれぞれ係数値を乗算してミキシングする。係数値はCPU10から音源制御レジスタ30に与えられて、内蔵するレジスタに格納されている。ミキサ33においてミキシングされた波形データは、8チャンネル分がDSP34に、8チャンネル分が外部回路22に、音源部20の最終的な出力となる2チャンネル(LおよびR出力)分がDAC23に、それぞれ出力されるようになされている。このように、ミキサ33はCPU10から指定されたチャンネルの波形データに指定された係数値を乗算してミキシングし、そのミキシング結果をCPU10の指定に基づく出力部へ指定されたチャンネルで送出するようにしている。
【0033】
ところで、音源部20においては 直接アクセス処理を行うことができるようにされている。この直接アクセス処理は、CPU10が波形メモリ21に直接アクセスして、波形メモリ21からデータを読み出す処理である。直接アクセス処理は、直接アクセス回路36の制御の基で実行される処理であり、前述した処理Bにおける空いたタイムスロットや取り込み処理において空いたタイムスロットを使用して、CPU10が波形メモリ21へ直接アクセスして波形メモリ21に格納されているデータを読み出す処理である。
【0034】
ノートオンに応じてCPU10が音源パラメータ情報の書き込みと発音の開始指示を行なう際には、CS信号発生部26に供給されるCPUアドレスの上位アドレスAD5がセグメント空間M1を指定するようになる。このように、上位アドレスAD5がセグメント空間M1内を指定していることから、CS信号発生部26がチップセレクト信号CS1を立ち上げて音源制御レジスタ30に供給する。この場合、チップセレクト信号CS2は立ち上がらない。これにより、音源制御レジスタ30が下位アドレスAD6のアドレスバスおよびデータバスDATA4に接続され、音源制御レジスタ30に音源パラメータ情報と発音の開始指示が書き込まれる。音源部20では、制御レジスタ30に音源パラメータ情報と発音開始指示が書き込まれたのに応じて、当該書き込みの行なわれたチャンネルの楽音生成動作が開始される。すなわち、読出書込回路31では、制御レジスタ30に設定された波形メモリ読み出し区間の波形データを、制御レジスタ30に設定された波形メモリ読み出し速度で読み出してサンプル間補間する処理を開始し、EG付与部32では、制御レジスタ30に設定されたエンベロープパラメータに基づく音量エンベロープを発生してサンプル間補間された波形データに付与する処理を開始する。
【0035】
そして、読出書込回路31において上述した処理Aおよび処理Bが行われて作成された波形データ読出アドレスがアドレスバスADB2を介してセレクタ35に供給され、セレクタ35は波形データ読出アドレスをアドレスバスADB1を介して波形メモリ21に供給する。この場合、波形メモリ21にはリードイネーブル信号も供給される。波形メモリ21にはCPU10が発音指示を与える前にディスク14等から読み出した複数の比較的短期間の波形が記憶されている。ただし、波形メモリ21の全メモリ空間に波形データがすべて記憶されている必要はなく、例えば、図3に示す波形データ実装領域Rに波形データが記憶されている。そして、チャンネル毎に波形メモリ21から読み出された波形データは、上述したように補間処理が行われて読出書込回路31からチャンネル毎に時分割で出力される。読出書込回路31から時分割で出力された各チャンネルの波形データには、EG付与回路32においてエンベロープが付与される。
【0036】
エンベロープが付与された、例えば32チャンネルの波形データはミキサ33に供給されるが、ミキサ33にはDSP34から出力されるエフェクト処理等がされた、例えば8チャンネル分の波形データ、および外部回路22からフィルタ処理やエフェクト処理等がされた、例えば8チャンネル分の波形データが供給されている。ミキサ33は、これらの供給された各チャンネルの波形データにそれぞれ係数値を乗算してミキシングする。ミキサ33においてミキシングされた波形データは、8チャンネル分がDSP34に、8チャンネル分が外部回路22に、音源部20の最終的な出力となる2チャンネル(LおよびR出力)分がDAC23に、それぞれ出力される。そして、DAC23によりアナログ信号に変換された楽音信号はサウンドシステム24から放音されるようになる。
【0037】
次に、CPU10が波形メモリ21に直接アクセスしてデータを読み出す直接アクセスしてデータを読み出しないし書き込みする直接アクセス処理について説明する。直接アクセス処理の機能は、CPU10が、普通のメモリをアクセスするのと同じようにアドレスをアドレスバスに出力しつつアクセス制御信号で読み出しないし書き込み制御を行うことにより、音源20に接続された波形メモリ21からデータを読み出したり、波形メモリ21へデータを書き込むことのできる機能である。CPU10は、直接アクセス処理に先立って、まず音源制御レジスタ30の上位ADレジスタ30aへ、直接アクセスにおいて波形メモリ21へ供給する読出アドレスの上位アドレスを設定する。すなわち、CPU10は、アドレスバスの上位アドレスバスADB5に領域M1のアドレス、下位アドレスバスADB6に該領域M1における上位ADレジスタ30aのアドレスを出力するとともに、データバスDATA4に設定しようとする上位アドレスを出力して、上位ADレジスタ30aに設定しようとする上位アドレスの書き込みを行なう。この場合、上位ADレジスタ30aに書き込まれる上位アドレスは、波形メモリ21上の直接アクセスを行なおうとする領域(例えば、領域A、領域B)を示している。
【0038】
上位アドレスの設定が終わった後、CPU10は直接アクセス処理を実行する。例えば、直接アクセスによる読み出しを行なう場合は、CPU10は、アドレスバスの上位アドレスAD5に領域M2を指定するアドレス、下位アドレスAD6に上位ADレジスタ30aの示す波形メモリ21上の領域における読み出したい波形データのアドレスを出力し、アクセス制御信号による読み出し制御を行なう。CS信号発生部26は、この上位アドレスをデコードしてチップセレクト信号CS2を立ち上げる。直接アクセス回路36は、上位ADレジスタ30aからの上位アドレスとCPU10からの下位アドレスに基づいて波形メモリ21上の読み出そうとする波形データのアドレスを生成し、アドレスバスADB3に出力する。
【0039】
そして、チップセレクト信号CS2が立ち上がった後の制御信号CONT2が「1」となるタイミングで、セレクタ35を介して該アドレスがアドレスバスADB1に出力され、直接アクセス回路36による波形メモリ21からの波形データの読み出しが実行される。ここで、CPU10は領域M2(直接アクセス回路36のアドレス)を通常のRAMとしてアクセスしており、波形メモリ21がSDRAMなどである場合は、それに応じたアドレス形式やタイミングの変換が必要であるが、それらは全て直接アクセス回路36で行なわれるものとする。波形メモリ21からデータバスDATA1に出力された読出アドレスに対応した波形データは、セレクタ35を介してデータバスDATA3に伝送され、直接アクセス回路36に取り込まれる。この読み出されたデータは、さらにデータバスDATA4を介してCPU10に渡されるようになる。
【0040】
このとき、CPU10が読み出しアドレスとして出力しているアドレスの上位アドレスAD5はCPU10のアクセス空間における領域M2を示しており、また、下位アドレスAD6は領域M2の先頭から下位アドレスAD6の値分だけ先の1つの記憶位置(矢印m参照)を示している。ここで、上位ADレジスタ30aからの上位アドレスが音源部20のアクセス空間における所定の64kワードの領域Aを示しているとすると、この直接アクセスでは、その領域Aの先頭から該下位アドレスAD6だけ先の記憶位置(矢印a参照)のデータが読み出される。また、上位ADレジスタ30aが領域Bを示している場合には、直接アクセスにより記憶位置(矢印b参照)のデータが読み出される。ここで、CPU10は領域M2をランダムアクセス読み出しする、すなわち、出力する読み出しアドレスの上位アドレスを保ったまま、下位アドレスを変更して読み出しを行なうことにより、波形メモリ21の領域Bに記憶されたデータをランダムアクセス読み出しすることができる。
【0041】
また、前述したように、直接アクセス回路36による波形メモリ21への直接アクセス処理は、図4で示す動作タイミング図のように読出書込回路31による波形メモリアクセス(処理Bなど)の行なわれていないタイムスロットで実行されている。そこで、CPU10から領域M2への読み出し(すなわち、波形メモリ21への直接アクセス)が発生した際に、該読み出しに応じて波形メモリから読み出されたデータをすぐにデータバスDATA4に供給できない場合には、通常行われているメモリアクセスのウェイト制御と同様に、CPU10にウェイト信号を出力してウェイトをかけるようにしている。例えば、図5に示すように読出書込回路36による波形メモリアクセス(処理B)が行なわれていた場合は、直接アクセス回路36から図2に示すCPUウェイトラインWAITにウェイト信号が出力され、CPU10にウェイトがかかるようになる。そして、読出書込回路36によるアクセス(処理B)が終了すると、直接アクセス回路36による波形メモリ21からのデータの読み出しが実行され、読み出されたデータをデータバスDATA4に供給するとともにウェイト信号が解除される。CPU10は、ウェイト信号の解除に応じて、データバスDATA4に出力されているデータを受け取る。なお、CPU10から領域M2への読み出し(直接アクセス)が発生した際に、読出書込回路36による波形メモリアクセスが行なわれていなかった場合は、図5に示すように、直接アクセス回路36による波形メモリ21からの読み出しが直ちに行なわれ、読み出されたデータがデータバスDATA4に出力されるとともにウェイト信号が解除される。
【0042】
一方、直接アクセスによる書き込みを行なう場合は、CPU10は、アドレスバスの上位アドレスバスADB5に領域M2を指定するアドレス、下位アドレスバスADB6に上位ADレジスタ30aの示す波形メモリ21上の領域における波形データを書き込もうとするアドレス、データバスDATA4に書き込む波形データを出力し、アクセス制御信号による書き込み制御を行なう。CS信号発生部26は、この上位アドレスAD5をデコードしてチップセレクト信号CS2を立ち上げる。直接アクセス回路36は、上位ADレジスタ30aからの上位アドレスとCPU10からの下位アドレスに基づいて波形メモリ21上の波形データを書き込むアドレスを生成し、アドレスバスADB3に出力するともに、CPU10からの波形データをデータバスDATA3に出力する。
【0043】
そして、チップセレクト信号CS2が立ち上がった後の制御信号CONT2が「1」となるタイミングで、セレクタ35を介して該アドレスがアドレスバスADB1に、該波形データがデータバスDATA1に出力され、直接アクセス回路36による波形メモリ21からの波形データの書き込みが実行される。この直接アクセス回路36による書き込みも、読出書込回路31が波形メモリアクセスを行なっていない期間に行なわれる。従って、読み出しの場合と同様に、直接アクセス回路36による波形メモリ21の書き込みが完了するまで、直接アクセス回路36からCPU10に対してウェイト信号が供給される。
このようにして、CPU10はCPUバスに接続されているメモリにアクセスする態様と同じ態様でアドレスバス、データバス、アクセス制御信号を制御することにより、音源部20に接続された波形メモリ21を直接アクセスして波形メモリ21から波形データやパラメータなどのデータを読み出したり書き込んだりすることができるようになる。
【0044】
以上説明した音源部20において、図6において説明したXアクセス回路を音源制御レジスタ30に設けて、Xアクセス処理を行うようにしてもよい。このようにすると、ミキサ33においてミキシングされた波形データを受け取った読出書込回路31が、波形メモリ21へその波形データを書き込むことができるようになる。このXアクセス処理は、図4に示す処理Bおよび取り込み処理における直接アクセス可能なタイムスロットにおいて実行することができる。上記したXアクセス回路を設けるようにすると、連続するアドレスに記憶されている波形データを波形メモリ21から読み出す際にはXアクセス処理により実行し、ランダムなアドレスに記憶されているパラメータ等のデータを波形メモリ21から読み出す際には直接アクセス処理により実行することができるようになる。
【0045】
なお、上記の説明では音源部20における処理を図4に示すように1DAC周期を前半と後半に分割した区間で実行するようにしているが、本発明はこれに限るものではなく、1DAC周期を1/3,1/4,・・・に分割し、それらの区間を単位にして各処理を行なうようにしてもよい。また、1DAC周期を分割することなく各処理を行うようにしてもよく、1DAC周期を分割する場合は区間の期間長は等分割に分割しなくてもよい。
【0046】
また、本発明において、音源部20のアクセスよりCPU10のアクセスを優先させることにより、WAIT信号の発生を防ぐようにしてもよい。さらに、上記した本発明の実施の態様では、CPU10のアクセス空間と音源部20のアクセス空間がともに4Gワードであったが、これは同じである必要はない。さらにまた、上記した本発明の実施の態様では、CPU10の出力する32ビットのアドレスのうち、下位の16ビットが波形メモリ21の直接アクセスに使用されていたが、必ずしもそうしなくてもよい。例えば、下位ではなく途中の16ビットを使用しても良いし、あるいは、16ビットではなく、14ビット、18ビット等の異なるビット数であってもよい。さらにまた、上記した本発明の実施の態様では、音源制御レジスタ用の領域M1と波形メモリ直接アクセス用の領域M2がともに64kワードであったが、互いに同じである必要はないし、サイズもそれぞれ64kワードである必要はない。
【0047】
さらにまた、上記した本発明の実施の態様では、波形メモリ21から波形データを読み出して楽音を生成する音源部20であったが、本発明は、読書き可能な遅延メモリを備えたディジタル信号プロセッサ(DSP)にそのまま適用することができる。すなわち、本発明を適用することにより、DSPを制御するCPUが、DSPのアクセス空間に装備された遅延メモリに対して直接アクセスすることができるようになる。さらにまた、上記した本発明の実施の態様では、各チャンネルごとに、波形バッファに記憶された4サンプルの波形データを用いて2点補間や4点補間を行なっていたが、このサンプル数や補間態様は変更しても良い。例えば、波形バッファには、各チャンネルごとに6サンプルずつ記憶するようにして、6点補間を行なうようにしてもよい。
【0048】
【発明の効果】
本発明は以上説明したように、信号処理手段が所定の周期で発生するアドレスにより波形データが読み出される波形メモリへ、制御手段がアクセスを行えるようにしている。この場合、制御手段の出力するアドレスの一部をそのまま波形メモリのアドレスとして使用して、波形メモリへ直接アクセスを行なうようにしている。これにより、制御手段が波形メモリにアクセスする態様を、バスに接続されているメモリにアクセスする態様と異ならせることなく、波形処理デバイスにおける波形メモリにアクセスすることができるようになる。この制御手段によるアクセスは、信号処理手段による波形メモリへのアクセスと時分割して行われる。この場合、信号処理手段によるアクセスを優先して行うように、信号処理手段によるアクセスが行われない時に、制御手段によるアクセスが行われるように制御している。
【0049】
また、本発明で実現される制御手段による波形メモリへの直接アクセス機能は、波形メモリに記憶された波形データの部分的な編集、波形メモリ上に楽音パラメータ(音色データ、エフェクトデータ等)、変換テーブル、曲データ等を記憶した場合の該変換テーブルや楽音パラメータの読み出し、書き込み、あるいは、編集等の波形メモリ上のデータのランダムアクセスが必要な用途に最適となる。例えば、波形データの編集では、ユーザからの指示に応じて、直接アクセス機能を用いて波形データの一部を選択的に波形メモリから読み出し、その波形データをフィルタ処理したり音量制御して、直接アクセスで処理した波形データを波形メモリに書き戻すことができるようになる。また、波形メモリ上の音色データを編集する場合では、直接アクセス機能を用いて波形メモリから音色データの特定のパラメータを読み出して表示し、ユーザの操作に応じてその値を変更し、直接アクセスにより変更されたパラメータを波形メモリに書き戻すことができるようになる。
【図面の簡単な説明】
【図1】 本発明の実施の形態にかかる波形処理デバイスを音源部として備える楽音生成装置の構成例を示すブロック図である。
【図2】 本発明の実施の形態にかかる波形処理デバイスである音源部の詳細構成を示す図である。
【図3】 本発明の実施の形態にかかる波形処理デバイスにおける論理アドレス空間と波形メモリの物理アドレス空間の関係を示す図である。
【図4】 本発明の実施の形態にかかる波形処理デバイスの動作タイミングを示す図である。
【図5】 本発明の実施の形態にかかる波形処理デバイスにおいて直接アクセスする際のタイミングを示す図である。
【図6】 従来の波形メモリ音源の構成を示すブロック図である。
【符号の説明】
1 楽音生成装置、10 CPU、11 タイマ、12 ROM、13 RAM、14 ディスク、15 ドライブ、16 MIDIインタフェース、17 ネットワークインタフェース、18 パネルSW、19 パネル表示器、20 音源部、21 波形メモリ、22 外部回路、23 DAC、24 サウンドシステム、25 バス、26 CS信号発生部、30 音源制御レジスタ、30a 上位ADレジスタ、31 読出書込回路、32 EG付与回路、33 ミキサ、34 DSP、35 セレクタ、36 直接アクセス回路、109 波形メモリ、120 音源部、121 波形メモリ、122 外部回路、130 音源制御レジスタ、130a Xアクセス回路、131 読出書込回路、132 EG付与回路、133 ミキサ、ADB1〜ADB6 アドレスバス、DATA1〜DATA4 データバス、WAIT CPUウェイトライン、CS1 チップセレクト信号、CS2 チップセレクト信号、CONT1,CONT2 制御信号
Claims (2)
- 第1のバスを介して制御手段に接続されているとともに、第2のバスを介して波形データを読み書き可能な波形メモリに接続されており、さらに、前記制御手段の出力する上位アドレスをデコードすることにより生成されている第1選択信号と第2選択信号を入力する波形処理デバイスであって、
前記制御手段からの下位アドレスを入力するアドレス入力部と、
前記制御手段からのデータを入力、あるいは、前記制御手段へのデータを出力するデータ入出力部と、
前記第1選択信号および前記第2選択信号を入力する選択信号入力部と、
前記波形メモリから波形データを読み出すための第1アドレスを発生し、前記波形メモリにおける前記第1アドレスの示す記憶位置から波形データを読み出して、読み出された波形データの信号処理を行なう信号処理部と、
前記信号処理部の動作を制御する各種制御データと、前記制御手段から出力され前記波形メモリの直接アクセスに使用する上位アドレスとを少なくとも記憶する制御レジスタと、
前記第1選択信号が入力されているとき、前記制御手段からの下位アドレスの示す前記制御レジスタにおける記憶位置に前記制御手段から入力する前記データを書き込む、あるいは、当該記憶位置から前記制御手段へ出力する前記データを読み出すレジスタ書込読出部と、
前記第2選択信号が入力されているとき、前記制御レジスタに記憶された前記波形メモリの直接アクセスに使用する上位アドレスと前記制御手段からの下位アドレスに基づいて第2アドレスを発生し、前記波形メモリにおける前記第2アドレスの示す記憶位置に前記制御手段から入力する前記データを書き込む、あるいは、当該記憶位置から前記制御手段へ出力する前記データを読み出す直接アクセス部と、
前記信号処理部による前記波形メモリからの読み出しと、前記直接アクセス部による前記波形メモリへの書き込み、あるいは、読み出しとを時分割化して行う時分割部と、
を備えたことを特徴とする前記波形処理デバイス。 - 前記信号処理手段による波形メモリからの波形データの読み出し中に、前記第2選択信号が入力された場合は、前記制御手段に対してウェイトをかけ、前記信号処理手段による読み出しが終了した際に、前記ウェイトを解除すると共に、前記直接アクセス部による波形メモリの書き込み、あるいは、読み出しが行なわれるようにしたことを特徴とする請求項1記載の波形処理デバイス。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042749A JP3695404B2 (ja) | 2002-02-20 | 2002-02-20 | 波形処理デバイス |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042749A JP3695404B2 (ja) | 2002-02-20 | 2002-02-20 | 波形処理デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003241754A JP2003241754A (ja) | 2003-08-29 |
JP3695404B2 true JP3695404B2 (ja) | 2005-09-14 |
Family
ID=27782754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002042749A Expired - Fee Related JP3695404B2 (ja) | 2002-02-20 | 2002-02-20 | 波形処理デバイス |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3695404B2 (ja) |
-
2002
- 2002-02-20 JP JP2002042749A patent/JP3695404B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003241754A (ja) | 2003-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5534388B2 (ja) | 楽音生成装置 | |
EP1580729B1 (en) | Sound waveform synthesizer | |
JP5614420B2 (ja) | 楽音発生装置、電子楽器、プログラム及び楽音発生方法 | |
US8791349B2 (en) | Flash memory based stored sample electronic music synthesizer | |
US6137046A (en) | Tone generator device using waveform data memory provided separately therefrom | |
US5892170A (en) | Musical tone generation apparatus using high-speed bus for data transfer in waveform memory | |
JP3152196B2 (ja) | 楽音発生回路 | |
JP3695404B2 (ja) | 波形処理デバイス | |
JP3855711B2 (ja) | 音波形データ用ディジタル信号処理装置 | |
JP3541718B2 (ja) | 楽音生成装置 | |
JP3918817B2 (ja) | 楽音生成装置 | |
JPH07121181A (ja) | 音声情報処理装置 | |
JP3695405B2 (ja) | 音源装置 | |
JP3922289B2 (ja) | 音源装置 | |
JP3000894B2 (ja) | 楽音発生方法 | |
JP3855710B2 (ja) | 音波形データ用ディジタル信号処理装置 | |
JP2003157082A (ja) | 楽音合成装置 | |
JP5510813B2 (ja) | 楽音生成装置 | |
JP4102931B2 (ja) | 音波形合成装置 | |
JP3815353B2 (ja) | マルチトラック再生装置、マルチトラック録音装置およびマルチトラック録音再生装置 | |
JP2768204B2 (ja) | 楽音データ記録再生装置 | |
JP4102930B2 (ja) | 音波形合成装置 | |
JP3060920B2 (ja) | ディジタル信号処理装置 | |
JP3753081B2 (ja) | アクセス制御装置、楽音合成方法、楽音合成装置およびプログラム | |
JP2000122668A (ja) | デジタル音声データ処理装置およびコンピュータシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050620 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |