JP3694453B2 - Primary radiator - Google Patents

Primary radiator Download PDF

Info

Publication number
JP3694453B2
JP3694453B2 JP2000331039A JP2000331039A JP3694453B2 JP 3694453 B2 JP3694453 B2 JP 3694453B2 JP 2000331039 A JP2000331039 A JP 2000331039A JP 2000331039 A JP2000331039 A JP 2000331039A JP 3694453 B2 JP3694453 B2 JP 3694453B2
Authority
JP
Japan
Prior art keywords
waveguide
opening
primary radiator
horn
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000331039A
Other languages
Japanese (ja)
Other versions
JP2002141736A (en
Inventor
元珠 竇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2000331039A priority Critical patent/JP3694453B2/en
Publication of JP2002141736A publication Critical patent/JP2002141736A/en
Application granted granted Critical
Publication of JP3694453B2 publication Critical patent/JP3694453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、衛星放送反射式アンテナ等に用いられる一次放射器に係り、特に、直線偏波を送受信するのに好適な一次放射器に関する。
【0002】
【従来の技術】
図4は従来より知られている一次放射器の一例を示すものであり、同図(a)は左側面図、同図(b)は断面図である。この従来例に係る一次放射器は、一端側にホーン部10を有し他端側を閉塞面とした断面円形の導波管11と、この導波管11の外壁面から内部に挿入されたプローブ12とを備えており、プローブ12と導波管11の閉塞面とは管内波長の約1/4波長分だけ離れている。ホーン部10は一端側に円形の開口10aを有する円錐ホーンであり、このホーン部10の他端側に断面円形の導波管11が同軸的に連続形成されている。
【0003】
図5は一次放射器の他の従来例を示すものであり、同図(a)は左側面図、同図(b)は断面図である。この従来例に係る一次放射器は、ホーン部13が正方形の開口13aを有するDiagonalホーンであると共に、導波管14が断面方形の空洞部を有する方形導波管であり、それ以外の構成は図 に示す従来例と同様である。ホーン部13は逆向きの二等辺三角形を交互に隣接した八面体であり、開口13aの4つの辺と導波管14の空洞部の4つの辺とは軸心回りに45度の角度で交差している。すなわち、ホーン部13の八面体形状は、開口13aの各辺から導波管14の各角部に向かう4つの二等辺三角形と、導波管14の各辺から開口13aの各角部に向かう4つの二等辺三角形とで構成されている。
【0004】
このように構成された一次放射器において、例えば衛星から送信された直線偏波を受信する場合、この直線偏波はホーン部10,13の開口10a,13aから入力されて導波管11,14に導かれた後、導波管11,14の内部でプローブ12によって受信されるため、その受信信号を図示せぬコンバータ回路でIF周波数信号に周波数変換して出力することにより、衛星から送信された直線偏波を受信することができる。
【0005】
【発明が解決しようとする課題】
ところで、前述した従来例のうち、図4に示すような円錐ホーンを用いた一次放射器では、ホーン部10の内部における電界分布は図6に示すようになる。同図から明らかなように、ホーン部10に入射する電波の偏波面に平行なE面の電界強度分布は、入射する電波の偏波面に直交するH面の電界強度分布が異なるため、入射電波の偏波面に垂直なH面の放射パターンに比べるとE面の放射パターンが狭くなり、入射電波のE面とH面の放射パターンの対称性が悪いという問題がある。
【0006】
これに対し、図5に示すようなDiagonalホーンを用いた一次放射器では、ホーン部13の内部における電界分布は図7に示すようになり、この場合、E面の電界強度分布とH面の電界強度分布はほぼ同じになるため、入射電波のE面とH面の放射パターンの対称性は良好となる。しかしながら、円錐ホーンを用いた一次放射器に比べると、開口13aの最大径が大きくなるという難点があり、しかも、断面形状が異なるホーン部10と導波管14とを同軸的に連続形成しているため、ホーン部10を軸線方向に長くする必要があり、これらのことが一次放射器の小型化を妨げる大きな要因となっていた。
【0007】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、入射電波のE面とH面の放射パターンの対称性が良好で、小型化にも好適な一次放射器を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の一次放射器は、一端側に長辺と短辺が交互に連続する八角形状の開口を有するホーン部と、このホーン部の他端側に同軸的に連続形成された導波管と、この導波管の内壁面から中心軸方向へ突出するプローブとを備え、前記開口の短辺が電波の偏波面に対して略直交していることを特徴としている。
【0009】
このように構成された一次放射器では、ホーン部の開口が八角形状となっているため、開口の最大径を短縮しつつE面とH面の放射パターンの対称性を良好に保つことができ、しかも、ホーン部の軸線方向の長さを短縮して一次放射器小型化を実現することができる。
【0010】
上記の構成において、導波管の断面形状は特に限定されないが、ホーン部と導波管のそれぞれの断面形状を八角形にすると、ホーン部と導波管との相性が良好になり、ホーン部の軸線方向の長さを短縮する上で好ましい。
【0011】
この場合において、ホーン部の開口の形状と同様に導波管の断面形状も長辺と短辺が交互に連続する八角形となし、この導波管の長辺と開口の短辺とを略平行に設定することが好ましく、このようにすると導波管の長辺を含む平坦面にプローブを配設することができるため、プローブの取付けが簡単になると共に、直線偏波を導波管の内部でプローブに確実に結合させることができる。
【0012】
【発明の実施の形態】
以下、発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係る一次放射器の斜視図、図2は該一次放射器の構成図であり、同図(a)は左側面図、同図(b)は断面図である。
【0013】
これらの図に示すように、本実施形態例に係る一次放射器は、一端側に開口1aを有するホーン部1と、このホーン部1の他端側に同軸的に連続形成された導波管2と、この導波管2の外壁面から内部に挿入されたプローブ3とを備えており、プローブ3と導波管2の閉塞面とは管内波長の約1/4波長分だけ離れている。ホーン部1は断面形状が八角形の八面体であり、各面は上辺と下辺の長さを交互に異にする逆向きの台形を連続させた形状になっている。また、ホーン部1の開口1aは長辺と短辺が交互に連続する八角形であり、これはDiagonalホーンの正方形開口の各角部を切り落とした形状に相当する。開口1aの長辺の長さをL,短辺の長さをLとすると、L>Lの関係にあり、好ましくはLはLの約1/2に設定されている。
【0014】
一方、導波管2は内部に空洞部2aを有する多角形導波管であり、この空洞部2aの断面形状も長辺と短辺が交互に連続する八角形である。ただし、開口1aの八角形と空洞部2aの八角形とは軸心回りに45度ずれた相似形であり、前述したホーン部1の各面のうち、一方の台形は開口1aの長辺と空洞部2aの短辺間を繋ぎ、他方の台形は開口1aの短辺と空洞部2aの長辺間を繋いでいる。また、プローブ3は導波管2の1つの長辺を含む平坦面に取り付けられており、このプローブ3は導波管2の軸心に向かって突出している。ここで、プローブ3は入射電波の偏波面と平行になるように設置されており、換言すると、開口1aの相対向する2つ短辺が入射電波の偏波面に対して略直交していることになる。
【0015】
このように構成された一次放射器において、衛星から送信された直線偏波を受信する場合、この直線偏波はホーン部1の開口1aから入力されて導波管2に導かれた後、導波管2の内部でプローブ3によって受信され、その受信信号を図示せぬコンバータ回路でIF周波数信号に周波数変換して出力することにより、衛星から送信された直線偏波を受信することができる。その際、図3に示すように、八角形の開口1aを有するホーン部1の内部において、入射電波のE面の電界は開口1aの長辺に向かって円弧状に広がる強度分布となるため、E面とH面の放射パターンの対称性は良好となる。また、ホーン部1と導波管2の断面形状が共に八角形であるため、ホーン部1と導波管2との相性が良好になり、その分、ホーン部1の軸線方向の長さを短縮することができ、一次放射器の小型化を実現することができる。さらに、ホーン部1の開口1aと導波管2の空洞部2aとが軸心回りに45度ずれた相似形の八角形で、開口1aの短辺と導波管2の長辺とが平行になるように構成したため、導波管2の長辺を含む平坦面にプローブ3を配設することができ、それゆえプローブ3の取付けが簡単になると共に、直線偏波を導波管2の内部でプローブ3に確実に結合させることができる。
【0016】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0017】
ホーン部の開口を長辺と短辺が交互に連続する八角形状としたため、開口の最大径を短縮しつつE面とH面の放射パターンの対称性を良好に保つことができ、しかも、ホーン部の軸線方向の長さを短縮して一次放射器小型化を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る一次放射器の斜視図である。
【図2】該一次放射器の構成図である。
【図3】該一次放射器における電界分布と放射パターンを示す説明図である。
【図4】従来の一次放射器の一例を示す構成図である。
【図5】従来の一次放射器の他例を示す構成図である。
【図6】図4の一次放射器における電界分布と放射パターンを示す説明図である。
【図7】図5の一次放射器における電界分布と放射パターンを示す説明図である。
【符号の説明】
1 ホーン部1
1a 開口
2導波管
2a 空洞部
3 プローブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a primary radiator used for a satellite broadcast reflection antenna or the like, and more particularly to a primary radiator suitable for transmitting and receiving linearly polarized waves.
[0002]
[Prior art]
FIGS. 4A and 4B show an example of a conventionally known primary radiator. FIG. 4A is a left side view and FIG. 4B is a cross-sectional view. The primary radiator according to this conventional example is inserted into the waveguide 11 having a circular section from the outer wall surface of the waveguide 11 having a horn portion 10 at one end and a closed surface at the other end. The probe 12 is provided, and the probe 12 and the closed surface of the waveguide 11 are separated by about ¼ wavelength of the guide wavelength. The horn unit 10 is a conical horn having a circular opening 10a on one end side, and a waveguide 11 having a circular cross section is coaxially continuously formed on the other end side of the horn unit 10.
[0003]
FIG. 5 shows another conventional example of a primary radiator, in which FIG. 5 (a) is a left side view and FIG. 5 (b) is a cross-sectional view. The primary radiator according to this conventional example is a Diagonal horn in which the horn portion 13 has a square opening 13a, and the waveguide 14 is a rectangular waveguide having a hollow portion having a square cross section. This is the same as the conventional example shown in the figure. The horn part 13 is an octahedron in which opposite isosceles triangles are alternately adjacent to each other, and the four sides of the opening 13a and the four sides of the hollow part of the waveguide 14 intersect at an angle of 45 degrees around the axis. are doing. That is, the octahedral shape of the horn portion 13 is directed to four isosceles triangles from each side of the opening 13a to each corner of the waveguide 14, and from each side of the waveguide 14 to each corner of the opening 13a. It consists of four isosceles triangles.
[0004]
When the primary radiator configured as described above receives, for example, linearly polarized waves transmitted from a satellite, the linearly polarized waves are input from the openings 10a and 13a of the horn portions 10 and 13 and are guided to the waveguides 11 and 14. Then, the signal is received by the probe 12 inside the waveguides 11 and 14, so that the received signal is converted into an IF frequency signal by a converter circuit (not shown) and output to be transmitted from the satellite. Can receive linearly polarized waves.
[0005]
[Problems to be solved by the invention]
By the way, in the primary radiator using the conical horn as shown in FIG. 4 among the conventional examples described above, the electric field distribution inside the horn section 10 is as shown in FIG. As is clear from the figure, the electric field intensity distribution on the E plane parallel to the polarization plane of the radio wave incident on the horn unit 10 is different from the electric field intensity distribution on the H plane orthogonal to the polarization plane of the incident radio wave. There is a problem that the radiation pattern on the E plane is narrower than the radiation pattern on the H plane perpendicular to the plane of polarization, and the symmetry of the radiation pattern between the E plane and the H plane of incident radio waves is poor.
[0006]
On the other hand, in the primary radiator using the Diagonal horn as shown in FIG. 5, the electric field distribution inside the horn part 13 is as shown in FIG. 7, and in this case, the electric field intensity distribution on the E plane and the H plane Since the electric field intensity distribution is almost the same, the symmetry of the radiation pattern of the E plane and the H plane of the incident radio wave is good. However, compared to a primary radiator using a conical horn, there is a drawback that the maximum diameter of the opening 13a is increased, and the horn part 10 and the waveguide 14 having different cross-sectional shapes are coaxially continuously formed. Therefore, it is necessary to lengthen the horn part 10 in the axial direction, and these are major factors that hinder downsizing of the primary radiator.
[0007]
The present invention has been made in view of the actual situation of the prior art, and the object thereof is a primary radiator that has good symmetry in the radiation pattern of the E-plane and the H-plane of incident radio waves and is suitable for miniaturization. Is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the primary radiator of the present invention includes a horn portion having an octagonal opening in which a long side and a short side are alternately continuous on one end side, and coaxially on the other end side of the horn portion. Characterized in that it comprises a continuously formed waveguide and a probe protruding from the inner wall surface of the waveguide in the direction of the central axis, and the short side of the opening is substantially orthogonal to the plane of polarization of the radio wave. Yes.
[0009]
In the primary radiator configured as described above, since the opening of the horn portion has an octagonal shape, the symmetry of the radiation pattern of the E plane and the H plane can be kept good while shortening the maximum diameter of the opening. Moreover, the size of the primary radiator can be reduced by shortening the length of the horn portion in the axial direction.
[0010]
In the above configuration, the cross-sectional shape of the waveguide is not particularly limited. However, when the cross-sectional shapes of the horn part and the waveguide are octagonal, the compatibility between the horn part and the waveguide is improved. It is preferable for shortening the length in the axial direction.
[0011]
In this case, similarly to the shape of the opening of the horn portion, the cross-sectional shape of the waveguide is an octagon in which the long side and the short side are alternately continued, and the long side of the waveguide and the short side of the opening are substantially omitted. It is preferable to set the probe in parallel, and in this way, the probe can be arranged on a flat surface including the long side of the waveguide. It can be securely coupled to the probe internally.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1 is a perspective view of a primary radiator according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of the primary radiator. a) is a left side view, and FIG.
[0013]
As shown in these drawings, the primary radiator according to this embodiment includes a horn part 1 having an opening 1a on one end side, and a waveguide continuously formed coaxially on the other end side of the horn part 1. 2 and a probe 3 inserted inside from the outer wall surface of the waveguide 2, and the closed surface of the probe 3 and the waveguide 2 is separated by about ¼ wavelength of the in-tube wavelength. . The horn part 1 is an octahedron whose cross-sectional shape is an octagon, and each surface has a shape in which reverse trapezoids in which the lengths of the upper side and the lower side are alternately different are continued. Moreover, the opening 1a of the horn part 1 is an octagon in which the long side and the short side continue alternately, and this corresponds to a shape obtained by cutting off each corner of the square opening of the Diagonal horn. The length of the long side of the opening 1a L 1, and the length of the short side and L 2, have a relationship of L 1> L 2, preferably L 2 is set to about 1/2 of the L 1 .
[0014]
On the other hand, the waveguide 2 is a polygonal waveguide having a hollow portion 2a therein, and the cross-sectional shape of the hollow portion 2a is an octagon in which long sides and short sides are alternately continued. However, the octagon of the opening 1a and the octagon of the hollow portion 2a are similar to each other with a 45 ° shift around the axis, and one of the faces of the horn portion 1 is the long side of the opening 1a. The short side of the cavity 2a is connected, and the other trapezoid connects the short side of the opening 1a and the long side of the cavity 2a. The probe 3 is attached to a flat surface including one long side of the waveguide 2, and the probe 3 projects toward the axis of the waveguide 2. Here, the probe 3 is installed so as to be parallel to the plane of polarization of the incident radio wave. In other words, the two opposing short sides of the opening 1a are substantially orthogonal to the plane of polarization of the incident radio wave. become.
[0015]
In the case of receiving the linearly polarized wave transmitted from the satellite in the primary radiator configured as described above, the linearly polarized wave is inputted from the opening 1a of the horn unit 1 and guided to the waveguide 2 and then guided. The linearly polarized wave transmitted from the satellite can be received by receiving the probe 3 inside the wave tube 2 and converting the received signal into an IF frequency signal by a converter circuit (not shown). At that time, as shown in FIG. 3, in the horn part 1 having the octagonal opening 1a, the electric field on the E surface of the incident radio wave has an intensity distribution spreading in an arc shape toward the long side of the opening 1a. The symmetry of the radiation patterns on the E and H planes is good. Further, since the cross-sectional shapes of the horn unit 1 and the waveguide 2 are both octagonal, the compatibility between the horn unit 1 and the waveguide 2 is improved, and the length of the horn unit 1 in the axial direction is accordingly increased. Therefore, the primary radiator can be miniaturized. Furthermore, the opening 1a of the horn part 1 and the cavity 2a of the waveguide 2 are similar octagons shifted by 45 degrees around the axis, and the short side of the opening 1a and the long side of the waveguide 2 are parallel. Therefore, the probe 3 can be disposed on a flat surface including the long side of the waveguide 2, so that the probe 3 can be easily attached and the linearly polarized wave is converted into the waveguide 2. It can be reliably coupled to the probe 3 inside.
[0016]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0017]
Since the opening of the horn part has an octagonal shape in which the long side and the short side are alternately continuous, the symmetry of the radiation pattern of the E plane and the H plane can be kept good while shortening the maximum diameter of the opening, and the horn The size of the primary radiator can be reduced by shortening the length of the axial direction of the portion.
[Brief description of the drawings]
FIG. 1 is a perspective view of a primary radiator according to an exemplary embodiment of the present invention.
FIG. 2 is a configuration diagram of the primary radiator.
FIG. 3 is an explanatory diagram showing an electric field distribution and a radiation pattern in the primary radiator.
FIG. 4 is a block diagram showing an example of a conventional primary radiator.
FIG. 5 is a block diagram showing another example of a conventional primary radiator.
6 is an explanatory diagram showing an electric field distribution and a radiation pattern in the primary radiator of FIG. 4. FIG.
7 is an explanatory diagram showing an electric field distribution and a radiation pattern in the primary radiator of FIG.
[Explanation of symbols]
1 Horn 1
1a Opening 2 Waveguide 2a Cavity 3 Probe

Claims (3)

一端側に長辺と短辺が交互に連続する八角形状の開口を有するホーン部と、このホーン部の他端側に同軸的に連続形成された導波管と、この導波管の内壁面から中心軸方向へ突出するプローブとを備え、前記開口の短辺が電波の偏波面に対して略直交していることを特徴とする一次放射器。A horn portion having an octagonal opening in which long sides and short sides are alternately continuous on one end side, a waveguide continuously formed coaxially on the other end side of the horn portion, and an inner wall surface of the waveguide And a probe projecting in the direction of the central axis, wherein the short side of the opening is substantially orthogonal to the plane of polarization of the radio wave. 請求項1の記載において、前記ホーン部と前記導波管のそれぞれの断面形状が八角形であることを特徴とする一次放射器。2. The primary radiator according to claim 1, wherein each of the cross-sectional shapes of the horn portion and the waveguide is an octagon. 請求項2の記載において、前記導波管の断面形状が長辺と短辺を交互に連続する八角形であり、この導波管の長辺と前記開口の短辺とが略平行に設定されていることを特徴とする一次放射器。The cross-sectional shape of the waveguide according to claim 2 is an octagon in which a long side and a short side are alternately continued, and the long side of the waveguide and the short side of the opening are set substantially parallel to each other. A primary radiator characterized by that.
JP2000331039A 2000-10-30 2000-10-30 Primary radiator Expired - Fee Related JP3694453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331039A JP3694453B2 (en) 2000-10-30 2000-10-30 Primary radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331039A JP3694453B2 (en) 2000-10-30 2000-10-30 Primary radiator

Publications (2)

Publication Number Publication Date
JP2002141736A JP2002141736A (en) 2002-05-17
JP3694453B2 true JP3694453B2 (en) 2005-09-14

Family

ID=18807453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331039A Expired - Fee Related JP3694453B2 (en) 2000-10-30 2000-10-30 Primary radiator

Country Status (1)

Country Link
JP (1) JP3694453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005635A (en) * 2010-12-01 2011-04-06 宁波森富机电制造有限公司 Composite parabolic antenna with octagonal central loading slice structure
CN106602277B (en) * 2016-12-22 2019-07-02 厦门大学 A kind of back cavity groove antenna of X-band probe feed
CN108682940B (en) * 2018-06-06 2020-08-07 合肥工业大学 Ultra-wideband high-gain common-aperture array antenna

Also Published As

Publication number Publication date
JP2002141736A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
US10468773B2 (en) Integrated single-piece antenna feed and components
KR102402292B1 (en) Dual polarization horn antenna
JP4103917B2 (en) Waveguide converter, waveguide rotary joint and antenna device
JP3694453B2 (en) Primary radiator
JP5600359B2 (en) Dual-band microwave radiating element
WO2019142377A1 (en) Converter and antenna device
JP3739637B2 (en) Primary radiator
US6580400B2 (en) Primary radiator having improved receiving efficiency by reducing side lobes
US20070013457A1 (en) Mode transducer structure
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
US6529089B2 (en) Circularly polarized wave generator using a dielectric plate as a 90° phase shifter
JP3668649B2 (en) Primary radiator
KR101967302B1 (en) Waveguide for horizontal or vertical polarization change of electron wave
CN211404690U (en) KU wave dual-polarization waveguide
JPH01151803A (en) Circular-linear polarized wave converter
JP3660534B2 (en) Primary radiator
US6677910B2 (en) Compact primary radiator
JP2000165102A (en) Linearly to circularly polarized wave converter
JP3781943B2 (en) Primary radiator
JPH01151801A (en) Circular-linear polarized wave converter
JP2002252519A (en) Primary radiator
JPS6340487B2 (en)
JPH01151802A (en) Circular-linear polarized wave converter
SU1635234A1 (en) Coaxial-to-waveguide transducer
JPH0555814A (en) Waveguide circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees