JP3693562B2 - Refrigeration cycle apparatus and refrigeration cycle control method - Google Patents

Refrigeration cycle apparatus and refrigeration cycle control method Download PDF

Info

Publication number
JP3693562B2
JP3693562B2 JP2000322313A JP2000322313A JP3693562B2 JP 3693562 B2 JP3693562 B2 JP 3693562B2 JP 2000322313 A JP2000322313 A JP 2000322313A JP 2000322313 A JP2000322313 A JP 2000322313A JP 3693562 B2 JP3693562 B2 JP 3693562B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigeration cycle
internal heat
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000322313A
Other languages
Japanese (ja)
Other versions
JP2002130856A (en
Inventor
達也 堀
Original Assignee
松下エコシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下エコシステムズ株式会社 filed Critical 松下エコシステムズ株式会社
Priority to JP2000322313A priority Critical patent/JP3693562B2/en
Publication of JP2002130856A publication Critical patent/JP2002130856A/en
Application granted granted Critical
Publication of JP3693562B2 publication Critical patent/JP3693562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を用いた冷凍サイクル装置に関する。
【0002】
【従来の技術】
従来、この種の冷凍サイクル装置は、特開平11−193967号公報に記載されたものが知られている。
【0003】
以下、その冷凍サイクル装置について図12を参照しながら説明する。
【0004】
図12に示すように、圧縮機101と放熱器102と膨張機構部103と吸熱器104と内部熱交換器105と内部熱交換器バイパス106とバイパス流量調整弁107と前記圧縮機101吐出冷媒温度センサー108と吐出冷媒圧力センサー110と前記バイパス流量調整弁107のコントローラー109を備えることにより冷凍サイクル装置を構成する。
【0005】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記放熱器102を通り常温に近い温かい高圧冷媒ガスとなり、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張機構部103で減圧し低温の二相冷媒となり、前記吸熱器104にて吸熱して低圧冷媒ガスとなり、前記内部熱交換器105にて加熱され、前記圧縮機101へと戻り、周知の前記内部熱交換器105を用いた冷凍サイクルとなる。
【0006】
このとき、前記吐出冷媒温度センサー108と前記吐出冷媒圧力センサー110の検知値が設定値となるように前記コントローラー109によって前記バイパス流量調整弁107を制御し前記内部熱交換器105の能力を調整することで、効率を改善する制御を可能にしている。
【0007】
【発明が解決しようとする課題】
このような従来の冷暖房給湯装置では第1に、内部熱交換器の能力制御範囲が狭く一定以下とすることが出来ないという課題がある。
【0008】
また、第2に、四方弁などで冷凍サイクルを切替えた時に内部熱交換器が機能しないという課題がある。
【0009】
本発明は、このような従来の課題を解決するものであり、内部熱交換器の能力制御範囲を拡大することができ、また、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の冷凍サイクル装置は上記目的を達成するために、圧縮機と室外熱交換器と膨張機構部と利用側熱交換器と内部熱交換器からなる冷凍サイクル装置において、放熱時に超臨界状態となりうる冷媒が封入され、前記膨張機構部を第1の膨張機構部と第2の膨張機構部に分けて前記内部熱交換器の高圧冷媒側出入口にそれぞれ設け、前記内部熱交換器の高圧冷媒出入口に冷凍サイクルの逆転に対し内部熱交換器の冷媒流れ方向を変えないようにする流路切替四方弁を設けたものである。
【0011】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置が得られる。
【0012】
また他の手段は、内部熱交換器の高圧冷媒出入口に冷凍サイクルの逆転に対し前記内部熱交換器の冷媒流れ方向を変えないようにする流路切替四方弁を設け、前記内部熱交換器の高圧冷媒出口と前記流路切替四方弁の間に前記第1の膨張機構部を設けたものである。
【0013】
そして本発明によれば、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置が得られる。
【0014】
また他の手段は、内部熱交換器の高圧冷媒入口と流路切替四方弁の間に第2の膨張機構部を設けたものである。
【0015】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置が得られる。
【0016】
また他の手段は、第2の膨張機構部の全開時の減圧量が、膨張機構部の全開時の減圧量より小さいものである。
【0017】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置が得られる。
【0018】
また他の手段は、利用側熱交換器で冷媒と熱交換する媒体の温度検知手段を設け、この検知値によって設定された温度となるように第1の膨張機構部と第2の膨張機構部を制御するものである。
【0019】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0020】
また他の手段は、内部熱交換器の低圧冷媒出入口温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものである。
【0021】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0022】
また他の手段は、内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものである。
【0023】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0024】
また他の手段は、吸熱交換部分と圧縮機吸入の冷媒温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものである。
【0025】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0026】
また他の手段は、圧縮機吸入部の温度と圧力を検知する検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものである。
【0027】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0028】
また他の手段は、圧縮機の回転数を検知する検知手段を設け、この検知値によって第1の膨張機構部と第2の膨張機構部を制御するものである。
【0029】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0030】
また他の手段は、冷凍サイクルの冷媒循環量を検知する検知手段を設け、この検知値によって第1の膨張機構部と第2の膨張機構部を制御するものである。
【0031】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0032】
また他の手段は、膨張機構部を第1の膨張機構部と第2の膨張機構部に分けて内部熱交換器の高圧冷媒側出入口にそれぞれ設け、利用側熱交換器と膨張機構部を接続する配管と、室外熱交換器と膨張機構部を接続する配管に冷凍サイクルの逆転に対し膨張機構部の冷媒流れ方向を変えないようにする流路切替四方弁を設け、膨張機構部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、内部熱交換器の冷媒回路を複数とし、それぞれの回路に開閉弁を設けたものである。
【0033】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置が得られる。
【0034】
また他の手段は、利用側熱交換器で冷媒と熱交換する媒体の温度検知手段を設け、この検知値によって設定された温度となるように開閉弁を制御するものである。
【0035】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0036】
また他の手段は、内部熱交換器の低圧冷媒出入口温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものである。
【0037】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0038】
また他の手段は、内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものである。
【0039】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0040】
また他の手段は、吸熱交換部分と圧縮機吸入の冷媒温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものである。
【0041】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0042】
また他の手段は、圧縮機吸入部の温度と圧力を検知する検知手段を設け、これらの検知値によって開閉弁を制御するものである。
【0043】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0044】
また他の手段は、圧縮機回転数を検知する検知手段を設け、この検知値によって開閉弁を制御するものである。
【0045】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0046】
また他の手段は、冷凍サイクルの冷媒循環量を検知する検知手段を設け、この検知値によって開閉弁を制御するものである。
【0047】
そして本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができる冷凍サイクル装置にて内部熱交換器を有効に機能させる制御方法が得られる。
【0048】
【発明の実施の形態】
本発明は、第1の膨張機構部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、内部熱交換器の高圧冷媒入口に第2の膨張機構部を設け、内部熱交換器の高圧冷媒出入口に冷凍サイクルの逆転に対し前記内部熱交換器の冷媒流れ方向を変えないようにする流路切替四方弁を設けたものであり、放熱と吸熱のどちらの熱利用をする場合においても内部熱交換器の熱交換を効率的に行えるという作用を有する。
【0049】
また、利用側熱交換器と膨張機構部を接続する配管と、室外熱交換器と膨張機構部を接続する配管に冷凍サイクルの逆転に対し膨張機構部の冷媒流れ方向を変えないようにする流路切替四方弁を設け、膨張機構部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設けたものであり、冷暖の冷凍サイクル切替えに同期して流路切替四方弁を切り替えることで、冷暖どちらの冷凍サイクルでも内部熱交換器に減圧前の高圧冷媒を入れられることによって内部熱交換器が機能することができるという作用を有する。
【0050】
また、利用側熱交換器と第1の膨張機構部を接続する配管と、室外熱交換器と第1の膨張機構部を接続する配管に冷凍サイクルの逆転に対し第1の膨張機構部の冷媒流れ方向を変えないようにする流路切替四方弁を設け、第1の膨張機構部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、内部熱交換器の高圧冷媒入口に第2の膨張機構部を設けたものであり、冷暖の冷凍サイクル切替えに同期して流路切替四方弁を切り替えることで、冷暖どちらの冷凍サイクルでも二つの膨張機構部の流れ方向が変らないため膨張機構部の動作負荷低減することができるという作用を有する。
【0051】
また、利用側熱交換器と第1の膨張機構部を接続する配管と、室外熱交換器と第1の膨張機構部を接続する配管に冷凍サイクルの逆転に対し第1の膨張機構部の冷媒流れ方向を変えないようにする流路切替四方弁を設け、第1の膨張機構部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、内部熱交換器の高圧冷媒入口に第2の膨張機構部を設け、第2の膨張機構部の全開時の減圧量を第1の膨張機構部より小さくしたものであり、冷暖の冷凍サイクル切替えに同期して流路切替四方弁を切り替えることで、冷暖どちらの冷凍サイクルでも二つの膨張機構部の流れ方向が変らないため、第2の膨張機構部は内部熱交換器能力制御専用となり、第1の膨張機構部はサイクル制御専用とすることができる。このとき第2の膨張機構部の全開時の減圧量を極力小さくすることで内部熱交換器能力を向上できるという作用を有する。
【0052】
また、利用側熱交換器で冷媒と熱交換する媒体の温度検知手段を設け、この検知値によって設定された温度となるように第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加するという作用を有する。
【0053】
また、内部熱交換器の低圧冷媒出入口温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため低圧冷媒出口温度が低下する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため低圧冷媒出口温度が上昇する。これにより内部熱交換器の低圧冷媒入口温度に応じた低圧冷媒出口温度となるように第1膨張機構部と第2膨張機構部を制御するという作用を有する。
【0054】
また、内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。この内部熱交換器での冷媒温度差を内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度で検知し設定値となるように第1の膨張機構部と第2の膨張機構部を制御するという作用を有する。
【0055】
また、吸熱器と圧縮機吸入の冷媒温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため圧縮機吸入温度が低下する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため圧縮機吸入温度が上昇する。これにより吸熱器と圧縮機吸入の冷媒温度差を設定値となるように第1の膨張機構部と第2の膨張機構部を制御するという作用を有する。
【0056】
また、圧縮機吸入部の温度と圧力を検知する検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため圧縮機吸入温度が低下する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため圧縮機吸入温度が上昇する。これにより圧縮機吸入温度が圧縮機吸入圧力に対応した設定値となるように第1膨張機構部と第2膨張機構部を制御するという作用を有する。
【0057】
また、圧縮機の回転数を検知する検知手段を設け、この検知値によって第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため圧縮機吸入での過熱度が減少するため吐出温度が減少する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このような作用を有するサイクルにおいて、圧縮機回転数の変化に応じて冷媒循環量が変化し、冷媒循環量が少ない方が熱交換効率が良いため内部熱交換能力を抑制する必要がある。このため圧縮機回転数に応じて第1の膨張機構部と第2の膨張機構部を制御量を調整するという作用を有する。
【0058】
また、冷凍サイクルの冷媒循環量を検知する検知手段を設け、この検知値によって第1の膨張機構部と第2の膨張機構部を制御するものであり、第2の膨張機構部を閉じる方向に制御し、それに応じて第1の膨張機構部を開けると、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため圧縮機吸入での過熱度が減少するため吐出温度が減少する。逆に第2の膨張機構部を開ける方向に制御し、それに応じて第1の膨張機構部を閉めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このような作用を有するサイクルにおいて、冷媒循環量が少ない方が熱交換効率が良いため内部熱交換能力を抑制する必要がある。このため冷媒循環量に応じて第1の膨張機構部と第2の膨張機構部を制御量を調整するという作用を有する。
【0059】
また、圧縮機と室外熱交換器と膨張機構部と利用側熱交換器からなる冷凍サイクル装置において、放熱時に超臨界状態となりうる冷媒が封入され、前記膨張機構部にて減圧される前の高圧冷媒と前記圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、この内部熱交換器は複数の冷媒回路で構成され、前記複数の冷媒回路毎に開閉弁を設け、利用側熱交換器と膨張機構部を接続する配管と、室外熱交換器と膨張機構部を接続する配管に冷凍サイクルの逆転に対し膨張機構部の冷媒流れ方向を変えないようにする流路切替四方弁を設け、膨張機構部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、内部熱交換器の冷媒回路を複数とし、それぞれの回路に開閉弁を設けたものであり、高圧側の開閉弁の動作個数で段階的に内部熱交換器能力を変化させる。そして、低圧側開閉弁を閉めた回路に相当する高圧側の開閉弁のみを開け、その他の高圧側開閉弁を閉じることで内部熱交換能力を最小とすることができる。さらに、冷暖の冷凍サイクル切替えに同期して流路切替四方弁を切り替えることで、冷暖どちらの冷凍サイクルでも内部熱交換器に減圧前の高圧冷媒を入れられることによって内部熱交換器が機能することができるという作用を有する。
【0060】
また、利用側熱交換器で冷媒と熱交換する媒体の温度検知手段を設け、この検知値によって設定された温度となるように開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、吸熱器では加熱域が増加し吸熱能力が減少し、放熱器では圧縮機吸入温度の低下から吐出温度が低下し放熱能力が減少する。そして、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、吸熱器では加熱域が減少し吸熱能力が増加し、放熱器では圧縮機吸入温度の上昇から吐出温度が上昇し放熱能力が増加するという作用を有する。
【0061】
また、内部熱交換器の低圧冷媒出入口温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、圧縮機吸入温度が低下する。逆に、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、圧縮機吸入温度が上昇する。これにより内部熱交換器の低圧冷媒入口温度に応じた低圧冷媒出口温度となるように制御するという作用を有する。
【0062】
また、内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、圧縮機吸入温度が低下する。逆に、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、圧縮機吸入温度が上昇する。これにより内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度より開閉弁の動作を決定し、圧縮機吸入温度を制御するという作用を有する。
【0063】
また、吸熱器と圧縮機吸入の冷媒温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、圧縮機吸入温度が低下する。逆に、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、圧縮機吸入温度が上昇する。これにより吸熱器温度に応じた圧縮機吸入温度に制御するという作用を有する。
【0064】
また、圧縮機吸入部の温度と圧力を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、圧縮機吸入温度が低下する。逆に、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、圧縮機吸入温度が上昇する。これにより圧縮機吸入圧力に応じた圧縮機吸入温度に制御するという作用を有する。
【0065】
また、圧縮機の回転数を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、圧縮機吸入温度が低下し、吐出温度が低下する。逆に、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、圧縮機吸入温度が上昇し、吐出温度が上昇する。このような作用を有するサイクルにおいて、圧縮機回転数の変化に応じて冷媒循環量が変化し、冷媒循環量が少ない方が熱交換効率が良いため内部熱交換能力を抑制する必要がある。このため圧縮機回転数に応じて各開閉弁を制御するという作用を有する。
【0066】
また、冷凍サイクルの冷媒循環量を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御するものであり、高圧側開閉弁の開ける個数を減らす方向に制御すると、内部熱交換器能力が減少するため、圧縮機吸入温度が低下し、吐出温度が低下する。逆に、高圧側開閉弁の開ける個数を増やす方向に制御すると、内部熱交換器能力が増加するため、圧縮機吸入温度が上昇し、吐出温度が上昇する。このような作用を有するサイクルにおいて、冷媒循環量が少ない方が熱交換効率が良いため内部熱交換能力を抑制する必要がある。このため冷媒循環量に応じて各開閉弁を制御するという作用を有する。
【0067】
以下、本発明の実施例について図面を参照しながら説明する。
【0068】
【実施例】
参考例1)
図1は本発明の参考例1の冷暖房給湯装置のサイクル構成図を示す。圧縮機101と、室外熱交換器1と、膨張弁A2と、利用側熱交換器3と、内部熱交換器105と、冷暖切替四方弁4と、前記内部熱交換器105を挟んで前記膨張弁A2の反対側に設けた膨張弁B5と、前記利用側熱交換器3で熱交換される熱交換媒体温度センサー6と、この熱交換媒体温度センサー6の検知値を入力に前記膨張弁A2と前記膨張弁B5の開度を制御するコントローラー7を備えることにより冷凍サイクル装置を構成する。
【0069】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁B5にて減圧量を制御することで温度を調整し、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0070】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁A2にて減圧量を制御することで温度を調整し、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁B5で減圧し低温低圧の二相冷媒となり、前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。このとき前記内部熱交換器105において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0071】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ効率の良い運転を可能としている。
【0072】
また、前記膨張弁A2と前記膨張弁B5の制御を冷媒流れの上流側となる膨張弁を前記内部熱交換器105の能力制御用として制御し、下流側となる膨張弁を冷凍サイクル制御用として制御することとし、前記能力制御用膨張弁を閉じる方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を開けると、前記内部熱交換器105に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。この時、高圧冷媒と低圧冷媒の温度差がなくなるまで前記能力制御用膨張弁を閉めると前記内部熱交換器105の熱交換量はゼロとすることができ、能力制御範囲が改善される。
【0073】
逆に前記能力制御用膨張弁を開ける方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を閉めると前記内部熱交換器105に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0074】
このような冷凍サイクル動作を利用し、前記熱交換媒体温度センサー6の検知値を設定値となるように前記膨張弁A2と前記膨張弁B5の開度を前記コントローラー7によって制御することで、前記利用側熱交換器3の能力を調整することができる。
【0075】
参考例2)
図2は本発明の参考例2の冷暖房給湯装置のサイクル構成図を示す。なお参考例1と同一のものについては同一番号を付し詳細な説明は省く。内部熱交換器105を挟んで膨張弁A2の反対側に設けた膨張弁B5と、内部熱交換器低圧側入口温度センサー8と、内部熱交換器低圧側出口温度センサー9と、これらのセンサーの検知値を入力に前記膨張弁A2と前記膨張弁B5の開度を制御するコントローラー7を備えることにより冷凍サイクル装置を構成する。
【0076】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁B5にて減圧量を制御することで温度を調整し、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。このとき前記内部熱交換器105において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0077】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁A2にて減圧量を制御することで温度を調整し、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁B5で減圧し低温低圧の二相冷媒となり、前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0078】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ効率の良い運転を可能としている。
【0079】
また、前記膨張弁A2と前記膨張弁B5の制御を冷媒流れの上流側となる膨張弁を前記内部熱交換器105の能力制御用として制御し、下流側となる膨張弁を冷凍サイクル制御用として制御することとし、前記能力制御用膨張弁を閉じる方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を開けると、前記内部熱交換器105に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。この時、高圧冷媒と低圧冷媒の温度差がなくなるまで前記能力制御用膨張弁を閉めると前記内部熱交換器105の熱交換量はゼロとすることができ、能力制御範囲が改善される。
【0080】
逆に前記能力制御用膨張弁を開ける方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を閉めると前記内部熱交換器105に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0081】
このような冷凍サイクル動作を利用し、前記内部熱交換器低圧側入口温度センサー8の検知値に応じ低圧冷媒出口温度を設定して、前記内部熱交換器低圧側出口温度センサー9の検知値が前記設定値この値となるように前記膨張弁A2と前記膨張弁B5の開度を前記コントローラー7によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0082】
(実施例
図3は本発明の冷暖房給湯装置のサイクル構成図を示す。なお参考例1と同一のものについては同一番号を付し詳細な説明は省く。内部熱交換器105と膨張弁A2および膨張弁B5を介する流路切替四方弁10と、内部熱交換器低圧側入口温度センサー8と、内部熱交換器高圧側入口温度センサー11と、圧縮機101の回転数検知装置12と、これらのセンサーの検知値を入力に前記膨張弁A2と前記膨張弁B5の開度を制御するコントローラー7を備えることにより冷凍サイクル装置を構成する。
【0083】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁B5にて減圧量を制御することで温度を調整し、前記流路切替四方弁10を介して前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記流路切替四方弁10を介して前記膨張弁A2で減圧し低温低圧の二相冷媒となり、利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0084】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁A2にて減圧量を制御することで温度を調整し、前記流路切替四方弁10を介して前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記流路切替四方弁10を介して前記膨張弁B5で減圧し低温低圧の二相冷媒となり、前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0085】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器105において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0086】
また、前記膨張弁A2と前記膨張弁B5の制御を冷媒流れの上流側となる膨張弁を前記内部熱交換器105の能力制御用として制御し、下流側となる膨張弁を冷凍サイクル制御用として制御することとし、前記能力制御用膨張弁を閉じる方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を開けると、前記内部熱交換器105に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。この時、高圧冷媒と低圧冷媒の温度差がなくなるまで前記能力制御用膨張弁を閉めると前記内部熱交換器105の熱交換量はゼロとすることができ、能力制御範囲が改善される。
【0087】
逆に前記能力制御用膨張弁を開ける方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を閉めると前記内部熱交換器105に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0088】
このとき、圧縮機の回転数が少ないと、これに応じて冷媒循環量が少なくなり、冷媒流速が低下するため熱交換時間が増加し、前記内部熱交換器105の熱交換効率が良化するため能力を抑制する必要がある。
【0089】
このような冷凍サイクル動作を利用し、前記内部熱交換器低圧側入口温度センサー8の検知値に応じ高圧冷媒入口温度を設定して、さらに圧縮機の回転数に応じて高圧冷媒入口温度の前記設定値を修正して、前記内部熱交換器高圧側入口温度センサー11の検知値が前記設定値この値となるように前記膨張弁A2と前記膨張弁B5の開度を前記コントローラー7によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0090】
なお、本実施例では圧縮機の回転数を回転数検知装置を用いて検知したが、インバータなどの出力や設定値を用いても良い。
【0091】
(実施例
図4は本発明の冷暖房給湯装置のサイクル構成図を示す。なお実施例と同一のものについては同一番号を付し詳細な説明は省く。利用側熱交換器冷媒温度センサー13と、室外熱交換器冷媒温度センサー14と、圧縮機吸入温度センサー15と、これらのセンサーの検知値を入力に膨張弁A2と膨張弁B5の開度を制御するコントローラー7を備えることにより冷凍サイクル装置を構成する。
【0092】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁B5にて減圧量を制御することで温度を調整し、流路切替四方弁10を介して内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記流路切替四方弁10を介して前記膨張弁A2で減圧し低温低圧の二相冷媒となり、利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0093】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記膨張弁A2にて減圧量を制御することで温度を調整し、前記流路切替四方弁10を介して前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記流路切替四方弁10を介して前記膨張弁B5で減圧し低温低圧の二相冷媒となり、前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0094】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器105において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0095】
また、前記膨張弁A2と前記膨張弁B5の制御を冷媒流れの上流側となる膨張弁を前記内部熱交換器105の能力制御用として制御し、下流側となる膨張弁を冷凍サイクル制御用として制御することとし、前記能力制御用膨張弁を閉じる方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を開けると、前記内部熱交換器105に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。この時、高圧冷媒と低圧冷媒の温度差がなくなるまで前記能力制御用膨張弁を閉めると前記内部熱交換器105の熱交換量はゼロとすることができ、能力制御範囲が改善される。
【0096】
逆に前記能力制御用膨張弁を開ける方向に制御し、それに応じて前記冷凍サイクル制御用膨張弁を閉めると前記内部熱交換器105に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0097】
このような冷凍サイクル動作を利用し、前記利用側熱交換器冷媒温度センサー13または前記室外熱交換器冷媒温度センサー14の吸熱器として作用している検知値に応じ圧縮機吸入温度を設定して、前記圧縮機吸入温度センサー15の検知値が前記設定値この値となるように前記膨張弁A2と前記膨張弁B5の開度を前記コントローラー7によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0098】
(実施例
図5は本発明の冷暖房給湯装置のサイクル構成図を示す。なお参考例1と同一のものについては同一番号を付し詳細な説明は省く。室外熱交換器1と利用側熱交換器3の間に冷凍サイクルの逆転に対し膨張弁A2と内部熱交換器105の冷媒流れ方向を変えないようにする流路切替四方弁10を備えることにより冷凍サイクル装置を構成する。
【0099】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて前記室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0100】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0101】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができる。
【0102】
また、前記膨張弁A2への流入方向が冷凍サイクルの切替えで逆転しないので逆方向流れに対する動作負荷がなくなり膨張弁の小型化が可能となる。さらに、膨張部分での動力利用も冷媒流れ方向が変らないので容易になる。
【0103】
(実施例
図6は本発明の冷暖房給湯装置のサイクル構成図を示す。なお参考例1と同一のものについては同一番号を付し詳細な説明は省く。室外熱交換器1と利用側熱交換器3の間に冷凍サイクルの逆転に対し膨張弁A2と内部熱交換器105と膨張弁B5の冷媒流れ方向を変えないようにする流路切替四方弁10と、圧縮機吸入温度センサー15と、圧縮機吸入圧力センサー16と、冷媒循環量計17と、これらのセンサーの検知値を入力に前記膨張弁A2と前記膨張弁B5の開度を制御するコントローラー7を備えることにより冷凍サイクル装置を構成する。
【0104】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて前記室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記膨張弁B5にて減圧量を制御することで温度を調整し、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0105】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記膨張弁A2にて減圧量を制御することで温度を調整し、前記内部熱交換器105にて低温の高圧冷媒ガスとなる。そして、前記膨張弁B5で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器105を通り加熱され、前記圧縮機101へと戻る。
【0106】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器105において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0107】
また、前記膨張弁A2と前記膨張弁B5への流入方向が冷凍サイクルの切替えで逆転しないので逆方向流れに対する動作負荷がなくなり膨張弁の小型化が可能となる。さらに、膨張部分での動力利用も冷媒流れ方向が変らないので容易になる。
【0108】
また、前記膨張弁A2は冷凍サイクル制御用となり、前記膨張弁B5は前記内部熱交換器105の能力制御用と用途が固定されることから使用方法や条件に応じた仕様にすることができ、前記膨張弁B5のノズル径を大きくするなどして全開時の減圧量を極力小さくすることで前記内部熱交換器105の高圧側入口温度の低下を抑制し、熱交換効率を改善することができる。
【0109】
また、前記膨張弁B5を閉じる方向に制御し、それに応じて前記膨張弁A2を開けると、前記内部熱交換器105に入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力が減少する。このため吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。この時、高圧冷媒と低圧冷媒の温度差がなくなるまで前記膨張弁B5を閉めると前記内部熱交換器105の熱交換量はゼロとすることができ、能力制御範囲が改善される。
【0110】
逆に前記膨張弁B5を開ける方向に制御し、それに応じて前記膨張弁A2を閉めると前記内部熱交換器105に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器能力が増加する。このため吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0111】
このとき、冷媒循環量が少ないと、冷媒流速が低下するため熱交換時間が増加し、前記内部熱交換器105の熱交換効率が良化するため能力を抑制する必要がある。
【0112】
このような冷凍サイクル動作を利用し、前記圧縮機吸入圧力センサー16の検知値に応じ圧縮機吸入温度を設定して、さらに冷媒循環量に応じて圧縮機吸入温度の前記設定値を修正して、前記圧縮機吸入温度センサー15の検知値が前記設定値この値となるように前記膨張弁A2と前記膨張弁B5の開度を前記コントローラー7によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0113】
参考
図7は本発明の参考例3の冷暖房給湯装置のサイクル構成図を示す。圧縮機101と、放熱器102と、膨張機構部103と、吸熱器104と、複数回路を有する内部熱交換器18と、この内部熱交換器18の低圧側回路の一つに設けた低圧電磁弁19と、この低圧電磁弁19を設けた回路と熱交換する高圧側回路以外の高圧側回路にそれぞれ設けた高圧電磁弁A20高圧電磁弁B21高圧電磁弁C22と、圧縮機吸入温度センサー15と、吸熱器冷媒温度センサー23と、これらのセンサーの検知値を入力に前記低圧電磁弁19と高圧電磁弁A20と高圧電磁弁B21と高圧電磁弁C22の開閉を制御するコントローラー24を備えることにより冷凍サイクル装置を構成する。
【0114】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記放熱器102を通り常温に近い温かい高圧冷媒ガスとなり、前記内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、前記膨張機構部103で減圧し低温低圧の二相冷媒となり、前記吸熱器104にて吸熱して低圧冷媒ガスとなり、前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。このとき、前記内部熱交換器18の能力は前記各電磁弁の開閉で制御される。具体的には、前記各電磁弁を全て開けたときに最大能力となり、前記高圧電磁弁ABCを閉める個数で段階的に能力を変化させる。また、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁19を閉めるとほぼ熱交換できなくなるため最低能力となる。
【0115】
このように、前記内部熱交換器18の能力をほぼ熱交換しない低能力から最大能力まで変化させることができる。
【0116】
また、前記内部熱交換器18の能力を制御し、内部熱交換器能力を減少させると、吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。
【0117】
内部熱交換器能力を増加させると、吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
このような冷凍サイクル動作を利用し、前記吸熱器冷媒温度センサー23の検知値に応じ圧縮機吸入温度を設定して、前記圧縮機吸入温度センサー15の検知値が前記設定値この値となるように前記各電磁弁の開閉を前記コントローラー24によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0118】
(実施例
図8は本発明の冷暖房給湯装置のサイクル構成図を示す。なお参考と同一のものについては同一番号を付し詳細な説明は省く。室外熱交換器1と、膨張弁A2と、利用側熱交換器3と、冷暖切替四方弁4と、前記室外熱交換器1と前記利用側熱交換器3の間に冷凍サイクルの逆転に対し前記膨張弁A2と前記内部熱交換器18の冷媒流れ方向を変えないようにする流路切替四方弁10と、前記利用側熱交換器3で熱交換される熱交換媒体温度センサー6と、この熱交換媒体温度センサー6の検知値を入力に各電磁弁の開閉を制御するコントローラー24を備えることにより冷凍サイクル装置を構成する。
【0119】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0120】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0121】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器18において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0122】
そして、前記内部熱交換器18の能力は前記各電磁弁の開閉で制御される。具体的には、前記各電磁弁を全て開けたときに最大能力となり、前記高圧電磁弁ABCを閉める個数で段階的に能力を変化させる。また、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁19を閉めるとほぼ熱交換できなくなるため最低能力となる。
【0123】
このように、前記内部熱交換器18の能力をほぼ熱交換しない低能力から最大能力まで変化させることができる。
【0124】
また、前記内部熱交換器18の能力を制御し、内部熱交換器能力を減少させると、吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。
【0125】
内部熱交換器能力を増加させると、吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0126】
このような冷凍サイクル動作を利用し、前記熱交換媒体温度センサー6の検知値を設定値となるように前記各電磁弁の開閉を前記コントローラー24によって制御することで、前記利用側熱交換器3の能力を調整することができる。
【0127】
(実施例
図9は本発明の冷暖房給湯装置のサイクル構成図を示す。なお実施例と同一のものについては同一番号を付し詳細な説明は省く。内部熱交換器低圧側入口温度センサー8と、内部熱交換器低圧側出口温度センサー9と、これらのセンサーの検知値を入力に前記各電磁弁の開閉を制御するコントローラー24を備えることにより冷凍サイクル装置を構成する。
【0128】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、流路切替四方弁10を介して内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0129】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0130】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器18において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0131】
そして、前記内部熱交換器18の能力は前記各電磁弁の開閉で制御される。具体的には、前記各電磁弁を全て開けたときに最大能力となり、前記高圧電磁弁ABCを閉める個数で段階的に能力を変化させる。また、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁19を閉めるとほぼ熱交換できなくなるため最低能力となる。
【0132】
このように、前記内部熱交換器18の能力をほぼ熱交換しない低能力から最大能力まで変化させることができる。
【0133】
また、前記内部熱交換器18の能力を制御し、内部熱交換器能力を減少させると、吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。
【0134】
内部熱交換器能力を増加させると、吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0135】
このような冷凍サイクル動作を利用し、前記内部熱交換器低圧側入口温度センサー8の検知値に応じ低圧冷媒出口温度を設定して、前記内部熱交換器低圧側出口温度センサー9の検知値が前記設定値この値となるように前記各電磁弁の開閉を前記コントローラー24によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0136】
(実施例
図10は本発明の冷暖房給湯装置のサイクル構成図を示す。なお実施例と同一のものについては同一番号を付し詳細な説明は省く。内部熱交換器低圧側入口温度センサー8と、内部熱交換器高圧側入口温度センサー11と、圧縮機の回転数検知装置12と、これらのセンサーの検知値を入力に前記各電磁弁の開閉を制御するコントローラー24を備えることにより冷凍サイクル装置を構成する。
【0137】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、流路切替四方弁10を介して内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0138】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0139】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器18において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0140】
そして、前記内部熱交換器18の能力は前記各電磁弁の開閉で制御される。具体的には、前記各電磁弁を全て開けたときに最大能力となり、前記高圧電磁弁ABCを閉める個数で段階的に能力を変化させる。また、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁19を閉めるとほぼ熱交換できなくなるため最低能力となる。
【0141】
このように、前記内部熱交換器18の能力をほぼ熱交換しない低能力から最大能力まで変化させることができる。
【0142】
また、前記内部熱交換器18の能力を制御し、内部熱交換器能力を減少させると、吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。
【0143】
内部熱交換器能力を増加させると、吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0144】
このとき、圧縮機の回転数が少ないと、これに応じて冷媒循環量が少なくなり、冷媒流速が低下するため熱交換時間が増加し、前記内部熱交換器105の熱交換効率が良化するため能力を抑制する必要がある。
【0145】
このような冷凍サイクル動作を利用し、前記内部熱交換器低圧側入口温度センサー8の検知値に応じ高圧冷媒入口温度を設定して、さらに圧縮機の回転数に応じて高圧冷媒入口温度の前記設定値を修正して、前記内部熱交換器高圧側入口温度センサー11の検知値が前記設定値この値となるように前記各電磁弁の開閉を前記コントローラー24によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0146】
なお、本実施例では圧縮機の回転数を回転数検知装置を用いて検知したが、インバータなどの出力や設定値を用いても良い。
【0147】
(実施例
図11は本発明の冷暖房給湯装置のサイクル構成図を示す。なお実施例と同一のものについては同一番号を付し詳細な説明は省く。圧縮機吸入温度センサー15と、圧縮機吸入圧力センサー16と、冷媒循環量計17と、これらのセンサーの検知値を入力に前記各電磁弁の開閉を制御するコントローラー24を備えることにより冷凍サイクル装置を構成する。
【0148】
上記構成により、二酸化炭素などの放熱器で超臨界状態となりうる冷媒を封入し、前記利用側熱交換器3を吸熱器として動作させる場合は、圧縮機101で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガスとなり、流路切替四方弁10を介して内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して利用側熱交換器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0149】
逆に、前記利用側熱交換器3を放熱器として動作させる場合は、前記圧縮機101で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側熱交換器3を通り常温に近い温かい高圧冷媒ガスとなり、前記流路切替四方弁10を介して前記内部熱交換器18にて低温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前記流路切替四方弁10を介して前記室外熱交換器1にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱交換器18を通り加熱され、前記圧縮機101へと戻る。
【0150】
このように、前記利用側熱交換器3を放熱器または吸熱器として動作させるどちらの場合の冷凍サイクルにおいても前記内部熱交換器を機能させることができ、しかも前記流路切替四方弁10を介することにより前記内部熱交換器18において、高圧冷媒と低圧冷媒の流れが対向流となるため熱交換効率の良い熱交換ができる。
【0151】
そして、前記内部熱交換器18の能力は前記各電磁弁の開閉で制御される。具体的には、前記各電磁弁を全て開けたときに最大能力となり、前記高圧電磁弁ABCを閉める個数で段階的に能力を変化させる。また、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁19を閉めるとほぼ熱交換できなくなるため最低能力となる。
【0152】
このように、前記内部熱交換器18の能力をほぼ熱交換しない低能力から最大能力まで変化させることができる。
【0153】
また、前記内部熱交換器18の能力を制御し、内部熱交換器能力を減少させると、吸熱器では加熱域が増加し吸熱能力が減少する。そして放熱器では、圧縮機吸入での過熱度が減少するため吐出温度が減少し、放熱器の冷媒温度が低下することで能力が減少する。
【0154】
内部熱交換器能力を増加させると、吸熱器では加熱域が減少し吸熱能力が増加する。そして放熱器では、圧縮機吸入での過熱度が上昇するため吐出温度が上昇し、放熱器の冷媒温度が上昇することで能力が増加する。
【0155】
このとき、冷媒循環量が少ないと、冷媒流速が低下するため熱交換時間が増加し、前記内部熱交換器105の熱交換効率が良化するため能力を抑制する必要がある。
【0156】
このような冷凍サイクル動作を利用し、前記圧縮機吸入圧力センサー16の検知値に応じ圧縮機吸入温度を設定して、さらに冷媒循環量に応じて圧縮機吸入温度の前記設定値を修正して、前記圧縮機吸入温度センサー15の検知値が前記設定値この値となるように前記各電磁弁の開閉を前記コントローラー24によって制御することで、冷凍サイクルを効率の良い状態に調整することができる。
【0157】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、内部熱交換器の能力制御範囲を拡大することができ、冷凍サイクルの可逆サイクルとした時においても内部熱交換器が機能することができ、この冷凍サイクル装置の内部熱交換器を有効に機能させる制御方法を有する冷凍サイクル装置を提供できる。
【図面の簡単な説明】
【図1】本発明の参考例1の冷凍サイクル装置のサイクル構成図
【図2】本発明の参考例2の冷凍サイクル装置のサイクル構成図
【図3】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図4】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図5】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図6】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図7】本発明の参考の冷凍サイクル装置のサイクル構成図
【図8】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図9】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図10】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図11】本発明の実施例の冷凍サイクル装置のサイクル構成図
【図12】従来の冷凍サイクル装置のサイクル構成図
【符号の説明】
1 室外熱交換器
2 膨張弁A
3 利用側熱交換器
4 冷暖切替四方弁
5 膨張弁B
6 熱交換媒体温度
7 コントローラー
8 内部熱交換器低圧側入口温度センサー
9 内部熱交換器低圧側出口温度センサー
10 流路切替四方弁
11 内部熱交換器高圧側入口温度センサー
12 回転数検知装置
13 利用側熱交換器冷媒温度センサー
14 室外熱交換器冷媒温度センサー
15 圧縮機吸入温度センサー
16 圧縮機吸入圧力センサー
17 冷媒循環量計
18 内部熱交換器
19 低圧電磁弁
20 高圧電磁弁A
21 高圧電磁弁B
22 高圧電磁弁C
23 吸熱器冷媒温度センサー
24 コントローラー
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a refrigeration cycle apparatus using a refrigerant such as carbon dioxide that can be brought into a supercritical state.
[0002]
[Prior art]
  Conventionally, this type of refrigeration cycle apparatus is known as described in JP-A-11-193967.
[0003]
  Hereinafter, the refrigeration cycle apparatus will be described with reference to FIG.
[0004]
  As shown in FIG. 12, a compressor 101, a radiator 102, an expansion mechanism 103, a heat absorber 104, an internal heat exchanger 105, an internal heat exchanger bypass 106, a bypass flow rate adjustment valve 107, and the compressor 101 discharge refrigerant temperature. A refrigeration cycle apparatus is configured by including a sensor 108, a discharge refrigerant pressure sensor 110, and a controller 109 for the bypass flow rate adjustment valve 107.
[0005]
  With the above configuration, a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 passes through the radiator 102 and becomes a warm high-pressure refrigerant gas close to room temperature, The internal heat exchanger 105 becomes a low-temperature high-pressure refrigerant gas. Then, the expansion mechanism 103 depressurizes and becomes a low-temperature two-phase refrigerant, absorbs heat in the heat absorber 104 and becomes low-pressure refrigerant gas, is heated in the internal heat exchanger 105, returns to the compressor 101, This is a refrigeration cycle using the well-known internal heat exchanger 105.
[0006]
  At this time, the bypass flow rate adjusting valve 107 is controlled by the controller 109 so that the detected values of the discharged refrigerant temperature sensor 108 and the discharged refrigerant pressure sensor 110 become set values, thereby adjusting the capacity of the internal heat exchanger 105. This enables control that improves efficiency.
[0007]
[Problems to be solved by the invention]
  In such a conventional air-conditioning / heating water heater, firstly, there is a problem that the capacity control range of the internal heat exchanger is narrow and cannot be set below a certain level.
[0008]
  Second, there is a problem that the internal heat exchanger does not function when the refrigeration cycle is switched by a four-way valve or the like.
[0009]
  The present invention solves such a conventional problem, can expand the capacity control range of the internal heat exchanger, and the internal heat exchanger functions even when the refrigerating cycle is a reversible cycle. It is an object of the present invention to provide a refrigeration cycle apparatus that can be used.
[0010]
[Means for Solving the Problems]
  In order to achieve the above object, the refrigeration cycle apparatus of the present invention is in a supercritical state during heat dissipation in a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion mechanism, a use side heat exchanger, and an internal heat exchanger. And the expansion mechanism portion is divided into a first expansion mechanism portion and a second expansion mechanism portion and provided at the high-pressure refrigerant side inlet / outlet of the internal heat exchanger,A flow path switching four-way valve is provided at the high-pressure refrigerant inlet / outlet of the internal heat exchanger so as not to change the refrigerant flow direction of the internal heat exchanger with respect to the reversal of the refrigeration cycle.
[0011]
  And according to this invention, the capability control range of an internal heat exchanger can be expanded, and even when it is set as the reversible cycle of a refrigerating cycle, the refrigerating-cycle apparatus with which an internal heat exchanger can function is obtained.
[0012]
  The other means is provided with a flow path switching four-way valve that prevents the refrigerant flow direction of the internal heat exchanger from changing with respect to the reversal of the refrigeration cycle at the high-pressure refrigerant inlet / outlet of the internal heat exchanger, The first expansion mechanism is provided between the high-pressure refrigerant outlet and the flow path switching four-way valve.
[0013]
  And according to this invention, even when it is set as the reversible cycle of a refrigerating cycle, the refrigerating-cycle apparatus with which an internal heat exchanger can function is obtained.
[0014]
  Another means is that a second expansion mechanism is provided between the high-pressure refrigerant inlet of the internal heat exchanger and the flow path switching four-way valve.
[0015]
  And according to this invention, the capability control range of an internal heat exchanger can be expanded, and even when it is set as the reversible cycle of a refrigerating cycle, the refrigerating-cycle apparatus with which an internal heat exchanger can function is obtained.
[0016]
  Another means is that the amount of pressure reduction when the second expansion mechanism portion is fully opened is smaller than the amount of pressure reduction when the expansion mechanism portion is fully opened.
[0017]
  And according to this invention, the capability control range of an internal heat exchanger can be expanded, and even when it is set as the reversible cycle of a refrigerating cycle, the refrigerating-cycle apparatus with which an internal heat exchanger can function is obtained.
[0018]
  The other means is provided with a temperature detecting means for the medium that exchanges heat with the refrigerant in the use side heat exchanger, and the first expansion mechanism section and the second expansion mechanism section so that the temperature is set by the detected value. Is to control.
[0019]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0020]
  Another means is provided with temperature detection means for detecting the low-pressure refrigerant inlet / outlet temperature of the internal heat exchanger, and controls the first expansion mechanism section and the second expansion mechanism section based on these detected values.
[0021]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0022]
  The other means is provided with temperature detecting means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger, and controls the first expansion mechanism section and the second expansion mechanism section based on these detected values. Is.
[0023]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0024]
  The other means is provided with a temperature detection means for detecting the heat absorption exchange part and the refrigerant temperature of the compressor suction, and controls the first expansion mechanism part and the second expansion mechanism part by these detected values.
[0025]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0026]
  Another means is provided with detection means for detecting the temperature and pressure of the compressor suction portion, and controls the first expansion mechanism portion and the second expansion mechanism portion based on these detection values.
[0027]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0028]
  Another means is provided with a detecting means for detecting the rotation speed of the compressor, and controls the first expansion mechanism section and the second expansion mechanism section based on the detected value.
[0029]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0030]
  Another means is provided with a detecting means for detecting the refrigerant circulation amount of the refrigeration cycle, and controls the first expansion mechanism section and the second expansion mechanism section based on the detected value.
[0031]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0032]
  Other means are:The expansion mechanism part is divided into a first expansion mechanism part and a second expansion mechanism part, and each is provided at the high-pressure refrigerant side inlet / outlet of the internal heat exchanger,Flow path switching that prevents the refrigerant flow direction of the expansion mechanism section from changing with respect to the reversal of the refrigeration cycle, to the piping connecting the use side heat exchanger and the expansion mechanism section and to the piping connecting the outdoor heat exchanger and the expansion mechanism section. A four-way valve is provided, an internal heat exchanger that exchanges heat between the high-pressure refrigerant before being decompressed by the expansion mechanism and the low-pressure refrigerant before suction of the compressor is provided, and a plurality of refrigerant circuits of the internal heat exchanger are provided. An open / close valve is provided in the circuit.
[0033]
  And according to this invention, the capability control range of an internal heat exchanger can be expanded, and even when it is set as the reversible cycle of a refrigerating cycle, the refrigerating-cycle apparatus with which an internal heat exchanger can function is obtained.
[0034]
  The other means is provided with a temperature detecting means for the medium that exchanges heat with the refrigerant in the use side heat exchanger, and controls the on-off valve so that the temperature is set by the detected value.
[0035]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0036]
  The other means is provided with temperature detecting means for detecting the low-pressure refrigerant inlet / outlet temperature of the internal heat exchanger, and controls the on-off valve according to these detected values.
[0037]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0038]
  Another means is provided with temperature detecting means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger, and controls the on-off valve based on these detected values.
[0039]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0040]
  The other means is provided with a temperature detection means for detecting the heat absorption exchange portion and the refrigerant temperature of the compressor suction, and controls the on-off valve based on these detected values.
[0041]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0042]
  Another means is provided with detecting means for detecting the temperature and pressure of the compressor suction portion, and controls the on-off valve based on these detected values.
[0043]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0044]
  Another means is provided with a detecting means for detecting the rotation speed of the compressor, and controls the on-off valve based on the detected value.
[0045]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0046]
  Another means is provided with a detecting means for detecting the refrigerant circulation amount of the refrigeration cycle, and controls the on-off valve based on the detected value.
[0047]
  According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchange can be performed in the refrigeration cycle apparatus that can function even when the refrigerating cycle is a reversible cycle. A control method that allows the device to function effectively is obtained.
[0048]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention provides an internal heat exchanger for exchanging heat between the high-pressure refrigerant before being depressurized by the first expansion mechanism and the low-pressure refrigerant before suction of the compressor, and the second is provided at the high-pressure refrigerant inlet of the internal heat exchanger. With an expansion mechanismThe flow switching four-way valve is provided at the high-pressure refrigerant inlet / outlet of the internal heat exchanger so as not to change the refrigerant flow direction of the internal heat exchanger with respect to the reversal of the refrigeration cycle. Even in the case of use, it has the effect that the heat exchange of the internal heat exchanger can be performed efficiently.
[0049]
  In addition, a pipe that connects the use-side heat exchanger and the expansion mechanism section and a pipe that connects the outdoor heat exchanger and the expansion mechanism section are configured to prevent the refrigerant flow direction of the expansion mechanism section from being changed with respect to the reversal of the refrigeration cycle. A path switching four-way valve is provided, and an internal heat exchanger is installed to exchange heat between the high-pressure refrigerant before being decompressed by the expansion mechanism and the low-pressure refrigerant before suction of the compressor, and is synchronized with the cooling / heating refrigeration cycle switching. By switching the flow path switching four-way valve, the internal heat exchanger can function by allowing the internal heat exchanger to contain the high-pressure refrigerant before decompression in both the cooling and heating refrigeration cycles.
[0050]
  Further, the refrigerant of the first expansion mechanism section against the reversal of the refrigeration cycle is connected to the pipe connecting the use side heat exchanger and the first expansion mechanism section and the pipe connecting the outdoor heat exchanger and the first expansion mechanism section. A four-way switching valve that prevents the flow direction from changing is provided, and an internal heat exchanger that exchanges heat between the high-pressure refrigerant before being decompressed by the first expansion mechanism and the low-pressure refrigerant before suction of the compressor is provided. The second expansion mechanism is provided at the high-pressure refrigerant inlet of the internal heat exchanger. By switching the flow path switching four-way valve in synchronization with the cooling / heating refrigeration cycle switching, two cooling / heating refrigeration cycles have two Since the flow direction of the expansion mechanism portion does not change, the operation load of the expansion mechanism portion can be reduced.
[0051]
  Further, the refrigerant of the first expansion mechanism section against the reversal of the refrigeration cycle is connected to the pipe connecting the use side heat exchanger and the first expansion mechanism section and the pipe connecting the outdoor heat exchanger and the first expansion mechanism section. A four-way switching valve that prevents the flow direction from changing is provided, and an internal heat exchanger that exchanges heat between the high-pressure refrigerant before being decompressed by the first expansion mechanism and the low-pressure refrigerant before suction of the compressor is provided. The second expansion mechanism is provided at the high-pressure refrigerant inlet of the internal heat exchanger, and the amount of pressure reduction when the second expansion mechanism is fully opened is smaller than that of the first expansion mechanism. Since the flow direction of the two expansion mechanism sections does not change in both the cooling and heating refrigeration cycles, the second expansion mechanism section is dedicated to the internal heat exchanger capacity control. 1 expansion mechanism can be dedicated to cycle control . At this time, the internal heat exchanger capability can be improved by minimizing the amount of pressure reduction when the second expansion mechanism portion is fully opened.
[0052]
  Also, there is provided a temperature detecting means for a medium that exchanges heat with the refrigerant in the use side heat exchanger, and controls the first expansion mechanism and the second expansion mechanism so that the temperature is set by the detected value. When the second expansion mechanism is controlled in the closing direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases and the refrigerant temperature difference from the low-pressure refrigerant Reduced internal heat exchanger capacity. For this reason, in the heat absorber, the heating area increases and the heat absorption capacity decreases. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. For this reason, in a heat absorber, a heating zone decreases and heat absorption capability increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and it has the effect | action that a capability increases because the refrigerant | coolant temperature of a radiator rises.
[0053]
  Further, temperature detection means for detecting the low-pressure refrigerant inlet / outlet temperature of the internal heat exchanger is provided, and the first expansion mechanism and the second expansion mechanism are controlled by these detected values. When the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity is increased. Decrease. For this reason, the low-pressure refrigerant outlet temperature decreases. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. For this reason, the low-pressure refrigerant outlet temperature rises. Thereby, it has the effect | action of controlling a 1st expansion mechanism part and a 2nd expansion mechanism part so that it may become the low pressure refrigerant | coolant exit temperature according to the low pressure refrigerant | coolant inlet temperature of an internal heat exchanger.
[0054]
  In addition, temperature detection means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger is provided, and the first expansion mechanism unit and the second expansion mechanism unit are controlled by these detection values. When the second expansion mechanism is controlled in the closing direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, and the refrigerant temperature difference with the low-pressure refrigerant decreases. Heat exchanger capacity is reduced. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. The first expansion mechanism and the second expansion mechanism are controlled so that the refrigerant temperature difference in the internal heat exchanger is detected by the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger and becomes a set value. It has the action.
[0055]
  Also, a temperature detecting means for detecting the heat absorber and the refrigerant temperature of the suction of the compressor is provided, and the first expansion mechanism and the second expansion mechanism are controlled by these detection values. When the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity is increased. Decrease. For this reason, the compressor suction temperature decreases. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. For this reason, the compressor intake temperature rises. Thus, the first expansion mechanism and the second expansion mechanism are controlled so that the refrigerant temperature difference between the heat absorber and the compressor suction becomes a set value.
[0056]
  Further, a detecting means for detecting the temperature and pressure of the compressor suction portion is provided, and the first expansion mechanism portion and the second expansion mechanism portion are controlled by these detected values. When controlled in the closing direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity decreases. . For this reason, the compressor suction temperature decreases. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. For this reason, the compressor intake temperature rises. Thus, the first expansion mechanism and the second expansion mechanism are controlled so that the compressor intake temperature becomes a set value corresponding to the compressor intake pressure.
[0057]
  Also, a detecting means for detecting the rotation speed of the compressor is provided, and the first expansion mechanism and the second expansion mechanism are controlled by the detected value, and the second expansion mechanism is controlled in the closing direction. If the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity decreases. For this reason, since the degree of superheat at the suction of the compressor decreases, the discharge temperature decreases. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. In the cycle having such an action, the refrigerant circulation amount changes according to the change in the compressor rotation speed, and the heat exchange efficiency is better when the refrigerant circulation amount is smaller, so it is necessary to suppress the internal heat exchange capability. For this reason, it has the effect | action of adjusting the control amount of a 1st expansion mechanism part and a 2nd expansion mechanism part according to compressor rotation speed.
[0058]
  Further, a detecting means for detecting the refrigerant circulation amount of the refrigeration cycle is provided, and the first expansion mechanism and the second expansion mechanism are controlled by the detected value, and the second expansion mechanism is closed. When controlled and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity decreases. For this reason, since the degree of superheat at the suction of the compressor decreases, the discharge temperature decreases. Conversely, if the second expansion mechanism is controlled to open and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference from the low-pressure refrigerant increases. Increases internal heat exchanger capacity. In a cycle having such an action, it is necessary to suppress the internal heat exchange capacity because the heat exchange efficiency is better when the refrigerant circulation amount is smaller. For this reason, it has the effect | action of adjusting the control amount of a 1st expansion mechanism part and a 2nd expansion mechanism part according to a refrigerant | coolant circulation amount.
[0059]
  Also,In a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion mechanism section, and a use side heat exchanger, a refrigerant that can be in a supercritical state during heat dissipation is enclosed, and the high-pressure refrigerant before being decompressed by the expansion mechanism section An internal heat exchanger for exchanging heat with the low-pressure refrigerant before suction of the compressor is provided, the internal heat exchanger is composed of a plurality of refrigerant circuits, and an open / close valve is provided for each of the plurality of refrigerant circuits,Flow path switching that prevents the refrigerant flow direction of the expansion mechanism section from changing with respect to the reversal of the refrigeration cycle, to the piping connecting the use side heat exchanger and the expansion mechanism section and to the piping connecting the outdoor heat exchanger and the expansion mechanism section. A four-way valve is provided, an internal heat exchanger that exchanges heat between the high-pressure refrigerant before being decompressed by the expansion mechanism and the low-pressure refrigerant before suction of the compressor is provided, and a plurality of refrigerant circuits of the internal heat exchanger are provided. The circuit is provided with an on-off valve, and the internal heat exchanger capacity is changed step by step according to the number of operating high-pressure side open / close valves. The internal heat exchange capability can be minimized by opening only the high-pressure side on-off valve corresponding to the circuit in which the low-pressure side on-off valve is closed and closing the other high-pressure side on-off valves. Furthermore, by switching the flow path switching four-way valve in synchronization with cooling / heating refrigeration cycle switching, the internal heat exchanger functions by allowing high-pressure refrigerant before decompression to be put into the internal heat exchanger in both cooling and heating refrigeration cycles. Has the effect of being able to
[0060]
  In addition, a temperature detecting means for the medium that exchanges heat with the refrigerant in the use side heat exchanger is provided, and the on / off valves are controlled so that the temperature is set by the detected value. When controlled to decrease, the internal heat exchanger capacity decreases, so the heat sink increases the heating zone and the heat absorption capacity decreases, and the radiator reduces the discharge temperature due to the decrease in the compressor suction temperature and the heat dissipation capacity decreases. . If the number of open high-pressure side open / close valves is controlled to increase, the internal heat exchanger capacity increases, so the heat sink reduces the heating area and increases the heat absorption capacity, and the heat sink increases the compressor suction temperature. It has the effect that the discharge temperature rises and the heat dissipation capability increases.
[0061]
  In addition, temperature detection means for detecting the low-pressure refrigerant inlet / outlet temperature of the internal heat exchanger is provided, and the on / off valves are controlled based on these detection values. Since the capacity of the exchanger decreases, the compressor intake temperature decreases. On the contrary, if the control is performed in such a way that the number of high-pressure side opening / closing valves is increased, the internal heat exchanger capacity is increased, so that the compressor suction temperature rises. Thereby, it has the effect | action of controlling so that it may become low pressure refrigerant | coolant exit temperature according to the low pressure refrigerant | coolant inlet temperature of an internal heat exchanger.
[0062]
  In addition, temperature detection means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger is provided, and the on / off valves are controlled by these detected values, in a direction to reduce the number of open high-pressure side on / off valves. If controlled, the internal heat exchanger capacity is reduced and the compressor suction temperature is lowered. On the contrary, if the control is performed in such a way that the number of high-pressure side opening / closing valves is increased, the internal heat exchanger capacity is increased, so that the compressor suction temperature rises. Thus, the operation of the on-off valve is determined from the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger, and the compressor intake temperature is controlled.
[0063]
  In addition, temperature detection means for detecting the refrigerant temperature of the heat absorber and the compressor suction is provided, and the on / off valves are controlled based on these detected values. Since the capacity of the exchanger decreases, the compressor intake temperature decreases. On the contrary, if the control is performed in such a way that the number of high-pressure side opening / closing valves is increased, the internal heat exchanger capacity is increased, so that the compressor suction temperature rises. Thereby, it has the effect | action of controlling to the compressor suction temperature according to heat sink temperature.
[0064]
  In addition, temperature detection means for detecting the temperature and pressure of the compressor suction section is provided, and the on / off valves are controlled based on these detected values. As the capacity of the compressor decreases, the compressor intake temperature decreases. On the contrary, if the control is performed in such a way that the number of high-pressure side opening / closing valves is increased, the internal heat exchanger capacity is increased, so that the compressor suction temperature rises. This has the effect of controlling the compressor suction temperature in accordance with the compressor suction pressure.
[0065]
  In addition, temperature detection means for detecting the number of rotations of the compressor is provided, and the on / off valves are controlled based on these detected values. When the control is performed in a direction to reduce the number of open high-pressure side on / off valves, the internal heat exchanger capacity is increased. As a result, the compressor suction temperature decreases and the discharge temperature decreases. On the other hand, if the control is performed to increase the number of open high-pressure side open / close valves, the internal heat exchanger capacity increases, so that the compressor intake temperature rises and the discharge temperature rises. In the cycle having such an action, the refrigerant circulation amount changes according to the change in the compressor rotation speed, and the heat exchange efficiency is better when the refrigerant circulation amount is smaller, so it is necessary to suppress the internal heat exchange capability. For this reason, it has the effect | action of controlling each on-off valve according to a compressor rotation speed.
[0066]
  In addition, temperature detection means for detecting the amount of refrigerant circulating in the refrigeration cycle is provided, and the on / off valves are controlled by these detected values. When the control is performed in a direction that reduces the number of high-pressure side on / off valves, the internal heat exchanger capability Therefore, the compressor suction temperature decreases and the discharge temperature decreases. On the other hand, if the control is performed to increase the number of open high-pressure side open / close valves, the internal heat exchanger capacity increases, so that the compressor intake temperature rises and the discharge temperature rises. In a cycle having such an action, it is necessary to suppress the internal heat exchange capacity because the heat exchange efficiency is better when the refrigerant circulation amount is smaller. For this reason, it has the effect | action of controlling each on-off valve according to a refrigerant | coolant circulation amount.
[0067]
  Embodiments of the present invention will be described below with reference to the drawings.
[0068]
【Example】
  (referenceExample 1)
  FIG. 1 illustrates the present invention.Reference Example 1The cycle block diagram of an air conditioning hot-water supply apparatus is shown. The compressor 101, the outdoor heat exchanger 1, the expansion valve A2, the use-side heat exchanger 3, the internal heat exchanger 105, the cooling / heating switching four-way valve 4, and the expansion with the internal heat exchanger 105 interposed therebetween. An expansion valve B5 provided on the opposite side of the valve A2, a heat exchange medium temperature sensor 6 that exchanges heat with the use-side heat exchanger 3, and a detection value of the heat exchange medium temperature sensor 6 are input to the expansion valve A2. And a controller 7 for controlling the opening of the expansion valve B5 constitutes a refrigeration cycle apparatus.
[0069]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is The cooling / heating switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a high-pressure refrigerant gas that is warm to room temperature. The expansion valve B5 controls the pressure reduction amount to adjust the temperature, and the internal heat exchanger 105 It becomes a low-temperature, high-pressure refrigerant gas. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the use-side heat exchanger 3 absorbs heat to become a low-pressure refrigerant gas. The cooling / heating switching four-way valve 4 passes through the internal heat exchanger 105. It is heated and returns to the compressor 101.
[0070]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. The pressure is adjusted by controlling the amount of pressure reduction by the expansion valve A2, and the temperature is changed to a low-temperature high-pressure refrigerant gas by the internal heat exchanger 105. Then, the pressure is reduced by the expansion valve B5 to become a low-temperature and low-pressure two-phase refrigerant, the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas, and is heated by the cooling / heating switching four-way valve 4 through the internal heat exchanger 105. Then, the process returns to the compressor 101. At this time, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with good heat exchange efficiency can be performed.
[0071]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, thereby enabling efficient operation.
[0072]
  Further, the expansion valve A2 and the expansion valve B5 are controlled for controlling the expansion valve on the upstream side of the refrigerant flow for capacity control of the internal heat exchanger 105, and for the expansion valve on the downstream side for refrigeration cycle control. And controlling the expansion valve for capacity control in the closing direction, and opening the expansion valve for refrigeration cycle control accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases, and the low-pressure refrigerant and The refrigerant temperature difference becomes smaller and the internal heat exchanger capacity decreases. For this reason, in the heat absorber, the heating area increases and the heat absorption capacity decreases. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.
[0073]
  Conversely, when the expansion valve for capacity control is controlled to open, and the expansion valve for refrigeration cycle control is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and the refrigerant temperature difference from the low-pressure refrigerant Increases and the internal heat exchanger capacity increases. For this reason, in a heat absorber, a heating zone decreases and heat absorption capability increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0074]
  By using such a refrigeration cycle operation, the controller 7 controls the opening degree of the expansion valve A2 and the expansion valve B5 so that the detection value of the heat exchange medium temperature sensor 6 becomes a set value. The capacity of the use side heat exchanger 3 can be adjusted.
[0075]
  (referenceExample 2)
  FIG. 2 illustrates the present invention.Reference example 2The cycle block diagram of the air conditioning hot-water supply apparatus of FIG. In additionreferenceThe same components as those in Example 1 are denoted by the same reference numerals and detailed description thereof is omitted. An expansion valve B5 provided on the opposite side of the expansion valve A2 across the internal heat exchanger 105, an internal heat exchanger low-pressure side inlet temperature sensor 8, an internal heat exchanger low-pressure side outlet temperature sensor 9, and these sensors A refrigeration cycle apparatus is configured by including a controller 7 that controls the opening of the expansion valve A2 and the expansion valve B5 with the detected value as an input.
[0076]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is switched between cooling and heating. The four-way valve 4 passes through the outdoor heat exchanger 1 to become a warm high-pressure refrigerant gas close to room temperature, the temperature is adjusted by controlling the amount of decompression at the expansion valve B5, and the internal heat exchanger 105 is operated at a low temperature and high pressure. It becomes refrigerant gas. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the use-side heat exchanger 3 absorbs heat to become a low-pressure refrigerant gas. The cooling / heating switching four-way valve 4 passes through the internal heat exchanger 105. It is heated and returns to the compressor 101. At this time, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with good heat exchange efficiency can be performed.
[0077]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. The pressure is adjusted by controlling the amount of pressure reduction by the expansion valve A2, and the temperature is changed to a low-temperature high-pressure refrigerant gas by the internal heat exchanger 105. Then, the pressure is reduced by the expansion valve B5 to become a low-temperature and low-pressure two-phase refrigerant, the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas, and is heated by the cooling / heating switching four-way valve 4 through the internal heat exchanger 105. Then, the process returns to the compressor 101.
[0078]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, thereby enabling efficient operation.
[0079]
  Further, the expansion valve A2 and the expansion valve B5 are controlled for controlling the expansion valve on the upstream side of the refrigerant flow for capacity control of the internal heat exchanger 105, and for the expansion valve on the downstream side for refrigeration cycle control. And controlling the expansion valve for capacity control in the closing direction, and opening the expansion valve for refrigeration cycle control accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases, and the low-pressure refrigerant and The refrigerant temperature difference becomes smaller and the internal heat exchanger capacity decreases. For this reason, in the heat absorber, the heating area increases and the heat absorption capacity decreases. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.
[0080]
  Conversely, when the expansion valve for capacity control is controlled to open, and the expansion valve for refrigeration cycle control is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and the refrigerant temperature difference from the low-pressure refrigerant Increases and the internal heat exchanger capacity increases. For this reason, in a heat absorber, a heating zone decreases and heat absorption capability increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0081]
  Using such a refrigeration cycle operation, a low-pressure refrigerant outlet temperature is set according to a detection value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and a detection value of the internal heat exchanger low-pressure side outlet temperature sensor 9 is By controlling the opening degree of the expansion valve A2 and the expansion valve B5 by the controller 7 so that the set value becomes this value, the refrigeration cycle can be adjusted to an efficient state.
[0082]
  (Example1)
  FIG. 3 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. In additionreferenceThe same components as those in Example 1 are denoted by the same reference numerals and detailed description thereof is omitted. The internal heat exchanger 105, the flow switching four-way valve 10 via the expansion valve A2 and the expansion valve B5, the internal heat exchanger low pressure side inlet temperature sensor 8, the internal heat exchanger high pressure side inlet temperature sensor 11, and the compressor 101 The refrigeration cycle apparatus is configured by including a controller 7 for controlling the opening degree of the expansion valve A2 and the expansion valve B5 with input of the detection values of these sensors and the detection values of these sensors.
[0083]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is The cooling / heating switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas close to room temperature. The expansion valve B5 controls the pressure by controlling the amount of pressure reduction, and the passage switching four-way valve 10 is used. The internal heat exchanger 105 becomes a low-temperature high-pressure refrigerant gas. Then, the pressure is reduced by the expansion valve A2 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0084]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. The pressure is adjusted by controlling the amount of pressure reduction by the expansion valve A2, and the low-temperature high-pressure refrigerant gas is changed by the internal heat exchanger 105 through the flow path switching four-way valve 10. Become. Then, the pressure is reduced by the expansion valve B5 via the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0085]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0086]
  Further, the expansion valve A2 and the expansion valve B5 are controlled for controlling the expansion valve on the upstream side of the refrigerant flow for capacity control of the internal heat exchanger 105, and for the expansion valve on the downstream side for refrigeration cycle control. And controlling the expansion valve for capacity control in the closing direction, and opening the expansion valve for refrigeration cycle control accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases, and the low-pressure refrigerant and The refrigerant temperature difference becomes smaller and the internal heat exchanger capacity decreases. For this reason, in the heat absorber, the heating area increases and the heat absorption capacity decreases. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.
[0087]
  Conversely, when the expansion valve for capacity control is controlled to open, and the expansion valve for refrigeration cycle control is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and the refrigerant temperature difference from the low-pressure refrigerant Increases and the internal heat exchanger capacity increases. For this reason, in a heat absorber, a heating zone decreases and heat absorption capability increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0088]
  At this time, if the rotation speed of the compressor is small, the amount of refrigerant circulation decreases accordingly, and the refrigerant flow rate decreases, so the heat exchange time increases, and the heat exchange efficiency of the internal heat exchanger 105 improves. Therefore, it is necessary to suppress ability.
[0089]
  Using such a refrigeration cycle operation, the high-pressure refrigerant inlet temperature is set according to the detected value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and the high-pressure refrigerant inlet temperature is further set according to the rotation speed of the compressor. The controller 7 controls the opening degree of the expansion valve A2 and the expansion valve B5 so that the detected value of the internal heat exchanger high-pressure side inlet temperature sensor 11 becomes the set value by correcting the set value. Thus, the refrigeration cycle can be adjusted to an efficient state.
[0090]
  In this embodiment, the rotational speed of the compressor is detected by using the rotational speed detection device, but an output or a set value of an inverter or the like may be used.
[0091]
  (Example2)
  FIG. 4 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. Examples1The same reference numerals are assigned to the same components and detailed description is omitted. The use side heat exchanger refrigerant temperature sensor 13, the outdoor heat exchanger refrigerant temperature sensor 14, the compressor suction temperature sensor 15, and the opening values of the expansion valve A2 and the expansion valve B5 are controlled using the detected values of these sensors as inputs. The refrigeration cycle apparatus is configured by including the controller 7 that performs the above operation.
[0092]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is cooled or heated. The switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas that is close to normal temperature. The temperature is adjusted by controlling the amount of pressure reduction by the expansion valve B5, and the temperature is adjusted through the passage switching four-way valve 10. It becomes a low-temperature high-pressure refrigerant gas in the heat exchanger 105. Then, the pressure is reduced by the expansion valve A2 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0093]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. The pressure is adjusted by controlling the amount of pressure reduction by the expansion valve A2, and the low-temperature high-pressure refrigerant gas is changed by the internal heat exchanger 105 through the flow path switching four-way valve 10. Become. Then, the pressure is reduced by the expansion valve B5 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0094]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0095]
  Further, the expansion valve A2 and the expansion valve B5 are controlled for controlling the expansion valve on the upstream side of the refrigerant flow for capacity control of the internal heat exchanger 105, and for the expansion valve on the downstream side for refrigeration cycle control. And controlling the expansion valve for capacity control in the closing direction, and opening the expansion valve for refrigeration cycle control accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases, and the low-pressure refrigerant and The refrigerant temperature difference becomes smaller and the internal heat exchanger capacity decreases. For this reason, in the heat absorber, the heating area increases and the heat absorption capacity decreases. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.
[0096]
  Conversely, when the expansion valve for capacity control is controlled to open, and the expansion valve for refrigeration cycle control is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and the refrigerant temperature difference from the low-pressure refrigerant Increases and the internal heat exchanger capacity increases. For this reason, in a heat absorber, a heating zone decreases and heat absorption capability increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0097]
  Using such a refrigeration cycle operation, a compressor intake temperature is set according to a detection value acting as a heat absorber of the use side heat exchanger refrigerant temperature sensor 13 or the outdoor heat exchanger refrigerant temperature sensor 14. The controller 7 controls the opening degree of the expansion valve A2 and the expansion valve B5 so that the detected value of the compressor suction temperature sensor 15 is equal to the set value, so that the refrigeration cycle is in an efficient state. Can be adjusted.
[0098]
  (Example3)
  FIG. 5 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. In additionreferenceThe same components as those in Example 1 are denoted by the same reference numerals and detailed description thereof is omitted. By including a flow path switching four-way valve 10 between the outdoor heat exchanger 1 and the use side heat exchanger 3 so as not to change the refrigerant flow direction of the expansion valve A2 and the internal heat exchanger 105 against the reversal of the refrigeration cycle. A refrigeration cycle apparatus is configured.
[0099]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is cooled or heated. The switching four-way valve 4 passes through the outdoor heat exchanger 1 to become a warm high-pressure refrigerant gas close to room temperature, and the internal heat exchanger 105 becomes a low-temperature high-pressure refrigerant gas through the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0100]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. It becomes a warm high-pressure refrigerant gas close to, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 105 via the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0101]
  As described above, the internal heat exchanger can be caused to function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber.
[0102]
  In addition, since the inflow direction to the expansion valve A2 is not reversed by switching the refrigeration cycle, there is no operating load for the reverse flow, and the expansion valve can be downsized. Furthermore, power utilization at the expansion portion is facilitated because the refrigerant flow direction does not change.
[0103]
  (Example4)
  FIG. 6 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. In additionreferenceThe same components as those in Example 1 are denoted by the same reference numerals and detailed description thereof is omitted. A flow path switching four-way valve 10 between the outdoor heat exchanger 1 and the use side heat exchanger 3 so as not to change the refrigerant flow direction of the expansion valve A2, the internal heat exchanger 105 and the expansion valve B5 with respect to the reversal of the refrigeration cycle. A compressor suction temperature sensor 15, a compressor suction pressure sensor 16, a refrigerant circulation meter 17, and a controller for controlling the opening degree of the expansion valve A2 and the expansion valve B5 using the detection values of these sensors as inputs. The refrigeration cycle apparatus is configured by providing 7.
[0104]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is cooled or heated. The switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas close to room temperature, and the temperature is adjusted by controlling the amount of pressure reduction by the expansion valve B5 via the flow path switching four-way valve 10. The internal heat exchanger 105 becomes a low-temperature high-pressure refrigerant gas. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0105]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. The pressure is adjusted by controlling the amount of pressure reduction by the expansion valve A2 via the flow path switching four-way valve 10 and the low-temperature high-pressure refrigerant gas is changed by the internal heat exchanger 105. Become. Then, the pressure is reduced by the expansion valve B5 to form a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returned to the compressor 101.
[0106]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0107]
  Further, since the inflow directions to the expansion valve A2 and the expansion valve B5 are not reversed by switching the refrigeration cycle, there is no operating load for the reverse flow, and the expansion valve can be downsized. Furthermore, power utilization at the expansion portion is facilitated because the refrigerant flow direction does not change.
[0108]
  The expansion valve A2 is for refrigeration cycle control, and the expansion valve B5 is used for capacity control of the internal heat exchanger 105 and the use is fixed. By reducing the amount of decompression when fully opened, for example, by increasing the nozzle diameter of the expansion valve B5, it is possible to suppress a decrease in the high-pressure side inlet temperature of the internal heat exchanger 105 and improve the heat exchange efficiency. .
[0109]
  Further, when the expansion valve B5 is controlled in the closing direction and the expansion valve A2 is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases, and the refrigerant temperature difference from the low-pressure refrigerant becomes small. Heat exchanger capacity is reduced. For this reason, in the heat absorber, the heating area increases and the heat absorption capacity decreases. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling. At this time, if the expansion valve B5 is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.
[0110]
  On the contrary, when the expansion valve B5 is controlled to open and the expansion valve A2 is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and the refrigerant temperature difference with the low-pressure refrigerant increases, resulting in internal heat. Increases exchange capacity. For this reason, in a heat absorber, a heating zone decreases and heat absorption capability increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0111]
  At this time, if the amount of refrigerant circulation is small, the flow rate of the refrigerant decreases, so the heat exchange time increases, and the heat exchange efficiency of the internal heat exchanger 105 improves, so the capacity needs to be suppressed.
[0112]
  Using such a refrigeration cycle operation, the compressor intake temperature is set according to the detected value of the compressor intake pressure sensor 16, and the set value of the compressor intake temperature is corrected according to the refrigerant circulation amount. The controller 7 controls the opening degree of the expansion valve A2 and the expansion valve B5 so that the detected value of the compressor suction temperature sensor 15 is equal to the set value, so that the refrigeration cycle is in an efficient state. Can be adjusted.
[0113]
  (referenceExample3)
  FIG. 7 illustrates the present invention.Reference Example 3The cycle block diagram of an air conditioning hot-water supply apparatus is shown. The compressor 101, the radiator 102, the expansion mechanism 103, the heat absorber 104, the internal heat exchanger 18 having a plurality of circuits, and the low-pressure electromagnetic provided in one of the low-pressure side circuits of the internal heat exchanger 18 A high-pressure solenoid valve A20, a high-pressure solenoid valve B21, a high-pressure solenoid valve C22, a compressor suction temperature sensor 15, and a high-pressure solenoid valve C22 provided in a high-pressure side circuit other than the high-pressure side circuit that exchanges heat with the circuit provided with the low-pressure solenoid valve 19, Refrigeration by providing a heat absorber refrigerant temperature sensor 23 and a controller 24 for controlling the opening and closing of the low pressure solenoid valve 19, the high pressure solenoid valve A20, the high pressure solenoid valve B21 and the high pressure solenoid valve C22 with the detection values of these sensors as inputs. Configure the cycle device.
[0114]
  With the above configuration, a refrigerant that can be in a supercritical state is enclosed by a radiator such as carbon dioxide, and the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 passes through the radiator 102 and becomes a warm high-pressure refrigerant gas close to normal temperature. The internal heat exchanger 18 becomes a low-temperature high-pressure refrigerant gas. Then, the expansion mechanism 103 depressurizes and becomes a low-temperature and low-pressure two-phase refrigerant, absorbs heat in the heat absorber 104 and becomes low-pressure refrigerant gas, is heated through the internal heat exchanger 18, and returns to the compressor 101. . At this time, the capacity of the internal heat exchanger 18 is controlled by opening and closing the electromagnetic valves. Specifically, the maximum capacity is reached when all the solenoid valves are opened, and the capacity is changed stepwise by the number of the high-pressure solenoid valves ABC to be closed. Further, when all the high pressure solenoid valves ABC are closed and the low pressure solenoid valve 19 is closed, the heat exchange is almost impossible, so that the minimum capacity is obtained.
[0115]
  In this manner, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.
[0116]
  Further, when the capacity of the internal heat exchanger 18 is controlled to decrease the internal heat exchanger capacity, the heat absorber increases the heating region and decreases the heat absorption capacity. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling.
[0117]
  When the capacity of the internal heat exchanger is increased, the heat absorption area of the heat absorber is reduced and the heat absorption capacity is increased. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
Using such a refrigeration cycle operation, the compressor intake temperature is set according to the detected value of the heat absorber refrigerant temperature sensor 23 so that the detected value of the compressor intake temperature sensor 15 becomes this set value. In addition, the refrigeration cycle can be adjusted to an efficient state by controlling the opening and closing of the electromagnetic valves by the controller 24.
[0118]
  (Example5)
  FIG. 8 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. In additionreferenceExample3The same reference numerals are assigned to the same components and detailed description is omitted. The reversal of the refrigeration cycle between the outdoor heat exchanger 1, the expansion valve A2, the use side heat exchanger 3, the cooling / heating switching four-way valve 4, and the outdoor heat exchanger 1 and the use side heat exchanger 3 A flow path switching four-way valve 10 that prevents the refrigerant flow direction of the expansion valve A2 and the internal heat exchanger 18 from changing, a heat exchange medium temperature sensor 6 that exchanges heat in the use-side heat exchanger 3, and A refrigeration cycle apparatus is configured by including a controller 24 that controls the opening and closing of each solenoid valve with the detection value of the heat exchange medium temperature sensor 6 as an input.
[0119]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the usage-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is The cooling / heating switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas close to room temperature, and the internal heat exchanger 18 becomes a low-temperature high-pressure refrigerant gas via the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Is heated through the internal heat exchanger 18 and returned to the compressor 101.
[0120]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. It becomes a warm high-pressure refrigerant gas close to, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18 via the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returned to the compressor 101.
[0121]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 18, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0122]
  The capacity of the internal heat exchanger 18 is controlled by opening / closing the electromagnetic valves. Specifically, the maximum capacity is reached when all the solenoid valves are opened, and the capacity is changed stepwise by the number of the high-pressure solenoid valves ABC to be closed. Further, when all the high pressure solenoid valves ABC are closed and the low pressure solenoid valve 19 is closed, the heat exchange is almost impossible, so that the minimum capacity is obtained.
[0123]
  In this manner, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.
[0124]
  Further, when the capacity of the internal heat exchanger 18 is controlled to decrease the internal heat exchanger capacity, the heat absorber increases the heating region and decreases the heat absorption capacity. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling.
[0125]
  When the capacity of the internal heat exchanger is increased, the heat absorption area of the heat absorber is reduced and the heat absorption capacity is increased. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0126]
  Utilizing such a refrigeration cycle operation, the controller 24 controls the opening and closing of the solenoid valves so that the detected value of the heat exchange medium temperature sensor 6 becomes a set value. Can adjust the ability.
[0127]
  (Example6)
  FIG. 9 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. Examples5The same reference numerals are assigned to the same components and detailed description is omitted. A refrigeration cycle is provided with an internal heat exchanger low-pressure side inlet temperature sensor 8, an internal heat exchanger low-pressure side outlet temperature sensor 9, and a controller 24 that controls the opening and closing of each solenoid valve using the detection values of these sensors as inputs. Configure the device.
[0128]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is cooled or heated. The switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas close to room temperature, and passes through the flow path switching four-way valve 10 and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the low-pressure refrigerant gas is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10, and the cooling / heating switching four-way valve 4 Heated through the internal heat exchanger 18, returns to the compressor 101.
[0129]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. It becomes a warm high-pressure refrigerant gas close to, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18 via the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returned to the compressor 101.
[0130]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 18, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0131]
  The capacity of the internal heat exchanger 18 is controlled by opening / closing the electromagnetic valves. Specifically, the maximum capacity is reached when all the solenoid valves are opened, and the capacity is changed stepwise by the number of the high-pressure solenoid valves ABC to be closed. Further, when all the high pressure solenoid valves ABC are closed and the low pressure solenoid valve 19 is closed, the heat exchange is almost impossible, so that the minimum capacity is obtained.
[0132]
  In this manner, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.
[0133]
  Further, when the capacity of the internal heat exchanger 18 is controlled to decrease the internal heat exchanger capacity, the heat absorber increases the heating region and decreases the heat absorption capacity. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling.
[0134]
  When the capacity of the internal heat exchanger is increased, the heat absorption area of the heat absorber is reduced and the heat absorption capacity is increased. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0135]
  Using such a refrigeration cycle operation, a low-pressure refrigerant outlet temperature is set according to a detection value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and a detection value of the internal heat exchanger low-pressure side outlet temperature sensor 9 is The refrigeration cycle can be adjusted to an efficient state by controlling the opening and closing of each solenoid valve by the controller 24 so that the set value becomes this value.
[0136]
  (Example7)
  FIG. 10 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. Examples5The same reference numerals are assigned to the same components and detailed description is omitted. Internal heat exchanger low pressure side inlet temperature sensor 8, internal heat exchanger high pressure side inlet temperature sensor 11, compressor rotation speed detection device 12, and opening / closing of each solenoid valve using the detection values of these sensors as inputs A refrigeration cycle apparatus is configured by including the controller 24 to be controlled.
[0137]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is cooled or heated. The switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas close to room temperature, and passes through the flow path switching four-way valve 10 and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the low-pressure refrigerant gas is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10, and the cooling / heating switching four-way valve 4 Heated through the internal heat exchanger 18, returns to the compressor 101.
[0138]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. It becomes a warm high-pressure refrigerant gas close to, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18 via the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returned to the compressor 101.
[0139]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 18, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0140]
  The capacity of the internal heat exchanger 18 is controlled by opening / closing the electromagnetic valves. Specifically, the maximum capacity is reached when all the solenoid valves are opened, and the capacity is changed stepwise by the number of the high-pressure solenoid valves ABC to be closed. Further, when all the high pressure solenoid valves ABC are closed and the low pressure solenoid valve 19 is closed, the heat exchange is almost impossible, so that the minimum capacity is obtained.
[0141]
  In this manner, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.
[0142]
  Further, when the capacity of the internal heat exchanger 18 is controlled to decrease the internal heat exchanger capacity, the heat absorber increases the heating region and decreases the heat absorption capacity. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling.
[0143]
  When the capacity of the internal heat exchanger is increased, the heat absorption area of the heat absorber is reduced and the heat absorption capacity is increased. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0144]
  At this time, if the rotation speed of the compressor is small, the amount of refrigerant circulation decreases accordingly, and the refrigerant flow rate decreases, so the heat exchange time increases, and the heat exchange efficiency of the internal heat exchanger 105 improves. Therefore, it is necessary to suppress ability.
[0145]
  Using such a refrigeration cycle operation, the high-pressure refrigerant inlet temperature is set according to the detected value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and the high-pressure refrigerant inlet temperature is further set according to the rotation speed of the compressor. By correcting the set value and controlling the opening and closing of each solenoid valve by the controller 24 so that the detected value of the internal heat exchanger high pressure side inlet temperature sensor 11 becomes the set value, the refrigeration cycle is controlled. It can be adjusted to an efficient state.
[0146]
  In this embodiment, the rotational speed of the compressor is detected by using the rotational speed detection device, but an output or a set value of an inverter or the like may be used.
[0147]
  (Example9)
  FIG. 11 shows a cycle configuration diagram of the air conditioning and hot water supply apparatus of the present invention. Examples5The same reference numerals are assigned to the same components and detailed description is omitted. A refrigeration cycle apparatus includes a compressor suction temperature sensor 15, a compressor suction pressure sensor 16, a refrigerant circulation meter 17, and a controller 24 that controls the opening and closing of the solenoid valves by using detection values of these sensors as inputs. Configure.
[0148]
  With the above configuration, when a refrigerant that can be in a supercritical state is sealed with a radiator such as carbon dioxide, and the use-side heat exchanger 3 is operated as a heat absorber, the high-pressure and high-temperature refrigerant gas compressed by the compressor 101 is cooled or heated. The switching four-way valve 4 passes through the outdoor heat exchanger 1 and becomes a warm high-pressure refrigerant gas close to room temperature, and passes through the flow path switching four-way valve 10 and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the low-pressure refrigerant gas is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10, and the cooling / heating switching four-way valve 4 Heated through the internal heat exchanger 18, returns to the compressor 101.
[0149]
  Conversely, when operating the use side heat exchanger 3 as a radiator, the high-pressure high-temperature refrigerant gas compressed by the compressor 101 passes through the use-side heat exchanger 3 in the cooling / heating switching four-way valve 4 at room temperature. It becomes a warm high-pressure refrigerant gas close to, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18 via the flow path switching four-way valve 10. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returned to the compressor 101.
[0150]
  Thus, the internal heat exchanger can be made to function in any of the refrigeration cycles in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow switching four-way valve 10 is used. As a result, in the internal heat exchanger 18, the flow of the high-pressure refrigerant and the low-pressure refrigerant becomes an opposite flow, so that heat exchange with high heat exchange efficiency can be performed.
[0151]
  The capacity of the internal heat exchanger 18 is controlled by opening / closing the electromagnetic valves. Specifically, the maximum capacity is reached when all the solenoid valves are opened, and the capacity is changed stepwise by the number of the high-pressure solenoid valves ABC to be closed. Further, when all the high pressure solenoid valves ABC are closed and the low pressure solenoid valve 19 is closed, the heat exchange is almost impossible, so that the minimum capacity is obtained.
[0152]
  In this manner, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.
[0153]
  Further, when the capacity of the internal heat exchanger 18 is controlled to decrease the internal heat exchanger capacity, the heat absorber increases the heating region and decreases the heat absorption capacity. And in a radiator, since the superheat degree by compressor suction | inhalation reduces, discharge temperature reduces, and capability decreases by the refrigerant | coolant temperature of a radiator falling.
[0154]
  When the capacity of the internal heat exchanger is increased, the heat absorption area of the heat absorber decreases and the heat absorption capacity increases. And in a radiator, since the superheat degree by compressor suction | inhalation rises, discharge temperature rises and the capability increases because the refrigerant | coolant temperature of a radiator rises.
[0155]
  At this time, if the amount of refrigerant circulation is small, the flow rate of the refrigerant decreases, so the heat exchange time increases, and the heat exchange efficiency of the internal heat exchanger 105 improves, so the capacity needs to be suppressed.
[0156]
  Using such a refrigeration cycle operation, the compressor intake temperature is set according to the detected value of the compressor intake pressure sensor 16, and the set value of the compressor intake temperature is corrected according to the refrigerant circulation amount. The refrigeration cycle can be adjusted to an efficient state by controlling the opening and closing of each solenoid valve by the controller 24 so that the detected value of the compressor intake temperature sensor 15 becomes the set value. .
[0157]
【The invention's effect】
  As is clear from the above examples, according to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the internal heat exchanger can function even when the reversible cycle of the refrigeration cycle is achieved. And a refrigeration cycle apparatus having a control method for effectively functioning the internal heat exchanger of the refrigeration cycle apparatus.
[Brief description of the drawings]
FIG. 1 of the present inventionreferenceCycle configuration diagram of refrigeration cycle apparatus of Example 1
FIG. 2 of the present inventionreferenceCycle configuration diagram of refrigeration cycle apparatus of Example 2
FIG. 3 shows an embodiment of the present invention.1Cycle diagram of refrigeration cycle equipment
FIG. 4 shows an embodiment of the present invention.2Cycle diagram of refrigeration cycle equipment
FIG. 5 shows an embodiment of the present invention.3Cycle diagram of refrigeration cycle equipment
FIG. 6 shows an embodiment of the present invention.4Cycle diagram of refrigeration cycle equipment
FIG. 7 shows the present invention.referenceExample3Cycle diagram of refrigeration cycle equipment
FIG. 8 shows an embodiment of the present invention.5Cycle diagram of refrigeration cycle equipment
FIG. 9 shows an embodiment of the present invention.6Cycle diagram of refrigeration cycle equipment
FIG. 10 shows an embodiment of the present invention.7Cycle diagram of refrigeration cycle equipment
FIG. 11 shows an embodiment of the present invention.8Cycle diagram of refrigeration cycle equipment
FIG. 12 is a cycle configuration diagram of a conventional refrigeration cycle apparatus.
[Explanation of symbols]
1 outdoor heat exchanger
2 Expansion valve A
3 Use side heat exchanger
4 Cooling / heating switching four-way valve
5 Expansion valve B
6 Heat exchange medium temperature
7 Controller
8 Internal heat exchanger low pressure side inlet temperature sensor
9 Internal heat exchanger low pressure side outlet temperature sensor
10 Channel switching four-way valve
11 Internal heat exchanger high pressure side inlet temperature sensor
12 Rotation speed detector
13 Use side heat exchanger refrigerant temperature sensor
14 Outdoor heat exchanger refrigerant temperature sensor
15 Compressor intake temperature sensor
16 Compressor suction pressure sensor
17 Refrigerant circulation meter
18 Internal heat exchanger
19 Low pressure solenoid valve
20 High pressure solenoid valve A
21 High pressure solenoid valve B
22 High pressure solenoid valve C
23 Endothermic refrigerant temperature sensor
24 controller

Claims (19)

圧縮機と室外熱交換器と膨張機構部と利用側熱交換器と内部熱交換器からなる冷凍サイクル装置において、放熱時に超臨界状態となりうる冷媒が封入され、前記膨張機構部を第1の膨張機構部と第2の膨張機構部に分けて前記内部熱交換器の高圧冷媒側出入口にそれぞれ設け、前記利用側熱交換器と前記圧縮機吸入部を接続する配管と、前記室外熱交換器と前記圧縮機吐出部を接続する配管に冷凍サイクルを逆転させる冷暖切替四方弁を設け、前記内部熱交換器の高圧冷媒出入口に冷凍サイクルの逆転に対し前記内部熱交換器の冷媒流れ方向を変えないようにする流路切替四方弁を設けたことを特徴とする冷凍サイクル装置。 In a refrigeration cycle apparatus including a compressor, an outdoor heat exchanger, an expansion mechanism, a use-side heat exchanger, and an internal heat exchanger, a refrigerant that can be in a supercritical state during heat dissipation is enclosed, and the expansion mechanism is expanded into the first expansion. mechanism and divided into the second expansion mechanism section respectively provided on the high-pressure refrigerant side entrance of the internal heat exchanger, a pipe connecting the compressor suction unit and the utilization side heat exchanger, and the outdoor heat exchanger the cooling and heating changeover four-way valve for reversing the refrigeration cycle to the pipe which connects the compressor discharge section provided, without changing the refrigerant flow direction of the internal heat exchanger with respect to the reversal of the refrigeration cycle high pressure refrigerant entrance of the internal heat exchanger A refrigeration cycle apparatus provided with a flow path switching four-way valve. 圧縮機と室外熱交換器と第1の膨張機構部と利用側熱交換器と内部熱交換器からなる冷凍サイクル装置において、放熱時に超臨界状態となりうる冷媒が封入され、前記利用側熱交換器と前記圧縮機吸入部を接続する配管と、前記室外熱交換器と前記圧縮機吐出部を接続する配管に冷凍サイクルを逆転させる冷暖切替四方弁を設け、前記内部熱交換器の高圧冷媒出入口に冷凍サイクルの逆転に対し前記内部熱交換器の冷媒流れ方向を変えないようにする流路切替四方弁を設け、前記内部熱交換器の高圧冷媒出口と前記流路切替四方弁の間に前記第1の膨張機構部を設けたことを特徴とする冷凍サイクル装置。   In a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, a first expansion mechanism, a use side heat exchanger, and an internal heat exchanger, a refrigerant that can be in a supercritical state during heat dissipation is enclosed, and the use side heat exchanger And a pipe connecting the compressor suction section, and a pipe connecting the outdoor heat exchanger and the compressor discharge section, a cooling / heating switching four-way valve for reversing the refrigeration cycle is provided, and at the high-pressure refrigerant inlet / outlet of the internal heat exchanger A flow path switching four-way valve that prevents the refrigerant flow direction of the internal heat exchanger from changing with respect to the reversal of the refrigeration cycle is provided, and the A refrigeration cycle apparatus comprising: 1 expansion mechanism. 内部熱交換器の高圧冷媒入口に第2の膨張機構部を設けた請求項記載の冷凍サイクル装置。Refrigeration cycle apparatus according to claim 2, wherein the high pressure refrigerant inlet of the internal heat exchanger provided with the second expansion mechanism section. 第2の膨張機構部の全開時減圧量が、膨張機構部の全開時の減圧量より小さいことを特徴とする請求項記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 3, wherein the amount of decompression when the second expansion mechanism portion is fully opened is smaller than the amount of decompression when the expansion mechanism portion is fully opened. 請求項1、3、または4記載の冷凍サイクル装置において、利用側熱交換器で冷媒と熱交換する媒体の温度検知手段を設け、この検知値によって設定された温度となるように第1の膨張機構部と第2の膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 5. The refrigeration cycle apparatus according to claim 1, 3 or 4, wherein a temperature detecting means for a medium for exchanging heat with the refrigerant in the use side heat exchanger is provided, and the first expansion is performed so that the temperature set by the detected value is obtained. A control method for a refrigeration cycle apparatus, wherein the mechanism section and the second expansion mechanism section are controlled to adjust the internal heat exchanger capacity. 請求項1、3、4または5記載の冷凍サイクル装置において、内部熱交換器の低圧冷媒出入口温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 6. The refrigeration cycle apparatus according to claim 1, 3, 4 or 5, wherein temperature detecting means for detecting a low-pressure refrigerant inlet / outlet temperature of the internal heat exchanger is provided, and the first expansion mechanism section and the second expansion are detected by these detected values. A control method for a refrigeration cycle apparatus, wherein a mechanism is controlled to adjust an internal heat exchanger capacity. 請求項1、3、4または5記載の冷凍サイクル装置において、内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 6. The refrigeration cycle apparatus according to claim 1, 3, 4 or 5, further comprising temperature detecting means for detecting a high-pressure refrigerant inlet temperature and a low-pressure refrigerant inlet temperature of the internal heat exchanger, and the first expansion mechanism section based on these detected values. And controlling the second expansion mechanism and adjusting the internal heat exchanger capacity. 請求項1、3、4または5記載の冷凍サイクル装置において、吸熱交換部分と圧縮機吸入の冷媒温度を検知する温度検知手段を設け、これらの検知値によって第1の膨張機構部と第2膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 6. The refrigeration cycle apparatus according to claim 1, wherein a temperature detecting means for detecting a heat absorption exchange part and a refrigerant temperature of the compressor suction is provided, and the first expansion mechanism and the second expansion are detected by these detected values. A control method for a refrigeration cycle apparatus, wherein a mechanism is controlled to adjust an internal heat exchanger capacity. 請求項1、3、4または5記載の冷凍サイクル装置において、圧縮機吸入部の温度と圧力を検知する検知手段を設け、これらの検知値によって第1の膨張機構部と第2の膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 6. The refrigeration cycle apparatus according to claim 1, 3, 4 or 5, wherein a detecting means for detecting the temperature and pressure of the compressor suction portion is provided, and the first expansion mechanism portion and the second expansion mechanism portion are detected by these detected values. And controlling the internal heat exchanger capacity to control the refrigeration cycle apparatus. 請求項1、3、4、6、7、8または9記載の冷凍サイクル装置において、圧縮機の回転数を検知する検知手段を設け、この検知値によって第1の膨張機構部と第2の膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 10. The refrigeration cycle apparatus according to claim 1, 3, 4, 6, 7, 8 or 9, wherein a detecting means for detecting the rotational speed of the compressor is provided, and the first expansion mechanism section and the second expansion are detected by the detected value. A control method for a refrigeration cycle apparatus, wherein a mechanism is controlled to adjust an internal heat exchanger capacity. 請求項1、3、4、6、7、8または9記載の冷凍サイクル装置において、冷凍サイクルの冷媒循環量を検知する検知手段を設け、この検知値によって第1の膨張機構部と第2の膨張機構部を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。 10. The refrigeration cycle apparatus according to claim 1, 3, 4, 6, 7, 8, or 9, wherein detection means for detecting a refrigerant circulation amount of the refrigeration cycle is provided, and the first expansion mechanism portion and the second refrigeration cycle device are detected by the detected value. A control method for a refrigeration cycle apparatus, characterized by controlling an expansion mechanism and adjusting an internal heat exchanger capacity. 圧縮機と室外熱交換器と膨張機構部と利用側熱交換器からなる冷凍サイクル装置において、放熱時に超臨界状態となりうる冷媒が封入され、前記膨張機構部にて減圧される前の高圧冷媒と前記圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設け、この内部熱交換器は複数の冷媒回路で構成され、前記複数の冷媒回路毎に開閉弁を設け、前記利用側熱交換器と前記圧縮機吸入部を接続する配管と、前記室外熱交換器と前記前記圧縮機吐出部を接続する配管に冷凍サイクルを逆転させる冷暖切替四方弁を設け、前記利用側熱交換器と膨張機構部を接続する配管と、前記室外熱交換器と前記膨張機構部を接続する配管に冷凍サイクルの逆転に対し前記膨張機構部の冷媒流れ方向を変えないようにする流路切替四方弁を設け、前記膨張機構部にて減圧される前の高圧冷媒と前記圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交換器を設けた冷凍サイクル装置。 In a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion mechanism section, and a use side heat exchanger, a refrigerant that can be in a supercritical state during heat dissipation is enclosed, and the high-pressure refrigerant before being depressurized by the expansion mechanism section An internal heat exchanger for exchanging heat with the low-pressure refrigerant before sucking the compressor is provided, the internal heat exchanger is composed of a plurality of refrigerant circuits, and an on-off valve is provided for each of the plurality of refrigerant circuits, a pipe connecting the exchanger the compressor suction unit, the heating and cooling switching four-way valve for reversing the refrigeration cycle to the pipe which connects the said outdoor heat exchanger the compressor discharge section provided, and the utilization-side heat exchanger A flow path switching four-way valve that prevents the refrigerant flow direction of the expansion mechanism section from being changed with respect to the reversal of the refrigeration cycle in the piping connecting the expansion mechanism section and the piping connecting the outdoor heat exchanger and the expansion mechanism section. Providing the expansion mechanism Refrigeration cycle apparatus provided with an internal heat exchanger for heat exchange between the low pressure refrigerant before the compressor suction and high-pressure refrigerant before being decompressed by. 請求項12記載の冷凍サイクル装置において、利用側熱交換器で冷媒と熱交換する媒体の温度検知手段を設け、この検知値によって設定された温度となるように開閉弁を制御し、複数の冷媒回路を有する内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。13. The refrigeration cycle apparatus according to claim 12, further comprising a temperature detection means for a medium that exchanges heat with the refrigerant in the use-side heat exchanger, and controls the on-off valve so that the temperature is set by the detected value, and a plurality of refrigerants A control method for a refrigeration cycle apparatus, comprising adjusting an internal heat exchanger capacity having a circuit. 請求項12または13記載の冷凍サイクル装置において、複数の冷媒回路を有する内部熱交換器の低圧冷媒出入口温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。14. The refrigeration cycle apparatus according to claim 12 or 13, further comprising temperature detecting means for detecting a low-pressure refrigerant inlet / outlet temperature of an internal heat exchanger having a plurality of refrigerant circuits, and controlling an on-off valve according to these detected values, thereby performing internal heat exchange. A control method for a refrigeration cycle apparatus, characterized by adjusting the vessel capacity. 請求項12または13記載の冷凍サイクル装置において、複数の冷媒回路を有する内部熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。14. The refrigeration cycle apparatus according to claim 12, further comprising temperature detecting means for detecting a high-pressure refrigerant inlet temperature and a low-pressure refrigerant inlet temperature of an internal heat exchanger having a plurality of refrigerant circuits, and the on-off valve is controlled by these detected values. And the control method of the refrigerating-cycle apparatus characterized by adjusting an internal heat exchanger capability. 請求項12または13記載の冷凍サイクル装置において、吸熱交換部分と圧縮機吸入の冷媒温度を検知する温度検知手段を設け、これらの検知値によって開閉弁を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。14. The refrigeration cycle apparatus according to claim 12 or 13, wherein temperature detection means for detecting the heat absorption exchange portion and the refrigerant temperature of the compressor suction is provided, and the on-off valve is controlled by these detection values to adjust the internal heat exchanger capacity. A control method for a refrigeration cycle apparatus. 請求項12または13記載の冷凍サイクル装置において、圧縮機吸入部の温度と圧力を検知する検知手段を設け、これらの検知値によって開閉弁を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。14. The refrigeration cycle apparatus according to claim 12 or 13, wherein a detecting means for detecting the temperature and pressure of the compressor suction portion is provided, the on-off valve is controlled by these detected values, and the internal heat exchanger capacity is adjusted. A control method for the refrigeration cycle apparatus. 請求項12、13、14、15、16または17記載の冷凍サイクル装置において、圧縮機の回転数を検知する検知手段を設け、この検知値によって開閉弁を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。18. The refrigeration cycle apparatus according to claim 12, 13, 14, 15, 16 or 17 , provided with a detecting means for detecting the number of rotations of the compressor, and controlling the on-off valve according to the detected value to adjust the internal heat exchanger capacity. A control method for a refrigeration cycle apparatus, comprising: 請求項12、13、14、15、16または17記載の冷凍サイクル装置において、冷凍サイクルの冷媒循環量を検知する検知手段を設け、この検知値によって開閉弁を制御し、内部熱交換器能力を調整することを特徴とした冷凍サイクル装置の制御方法。18. The refrigeration cycle apparatus according to claim 12, 13, 14, 15, 16 or 17, further comprising a detecting means for detecting a refrigerant circulation amount of the refrigeration cycle, and controlling the on-off valve according to the detected value, thereby improving the internal heat exchanger capability. A control method of a refrigeration cycle apparatus characterized by adjusting.
JP2000322313A 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method Expired - Fee Related JP3693562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000322313A JP3693562B2 (en) 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000322313A JP3693562B2 (en) 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method

Publications (2)

Publication Number Publication Date
JP2002130856A JP2002130856A (en) 2002-05-09
JP3693562B2 true JP3693562B2 (en) 2005-09-07

Family

ID=18800216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000322313A Expired - Fee Related JP3693562B2 (en) 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method

Country Status (1)

Country Link
JP (1) JP3693562B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178353B2 (en) * 2004-02-19 2007-02-20 Advanced Thermal Sciences Corp. Thermal control system and method
US7178362B2 (en) 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system
JP2007278655A (en) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd Heat storage type hot water supplier
EP2198217B1 (en) * 2007-10-09 2017-05-10 BE Aerospace, Inc. Thermal control system
JP4884365B2 (en) * 2007-12-28 2012-02-29 三菱電機株式会社 Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
JP5571429B2 (en) * 2010-03-30 2014-08-13 東プレ株式会社 Gas-liquid heat exchange type refrigeration equipment
CN102997527B (en) * 2011-09-09 2016-03-23 东普雷股份有限公司 Gas-liquid heat exchange type refrigeration device
JP6368205B2 (en) * 2014-09-24 2018-08-01 東芝キヤリア株式会社 Heat pump system
CN109959182A (en) * 2019-04-15 2019-07-02 广东美的制冷设备有限公司 Refrigeration system and air conditioner
JP2024047891A (en) * 2022-09-27 2024-04-08 三菱重工サーマルシステムズ株式会社 Air conditioners
WO2024079852A1 (en) * 2022-10-13 2024-04-18 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2002130856A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
EP1467158B1 (en) Refrigeration cycle apparatus
EP2631562B1 (en) Heat pump-type air-warming device
JP6545375B2 (en) Heat pump type air conditioner water heater
JP2004340470A (en) Refrigeration unit
JP2008232508A (en) Water heater
JPH05264133A (en) Air conditioner
JP2008008523A (en) Refrigerating cycle and water heater
JP3693562B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP3884591B2 (en) Air conditioner
JP2003139429A (en) Refrigeration unit
JPH07151429A (en) Air conditioner
JP2005164104A (en) Heat pump device
JP4687326B2 (en) Air conditioner
JPH10185342A (en) Heat pump type air conditioner
US20060117778A1 (en) Cooling/heating system and method for controlling the same
JP2005016881A (en) Air conditioning system
GB2578533A (en) Refrigeration cycle device
JPWO2018055739A1 (en) Air conditioner
JPH10148409A (en) Air conditioner
JP2010190537A (en) Air conditioner
JP7407920B2 (en) Refrigeration cycle equipment
JPH08285393A (en) Air conditioner for multi-room
JP7435671B1 (en) Refrigeration equipment
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees