JP3693299B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP3693299B2
JP3693299B2 JP34151892A JP34151892A JP3693299B2 JP 3693299 B2 JP3693299 B2 JP 3693299B2 JP 34151892 A JP34151892 A JP 34151892A JP 34151892 A JP34151892 A JP 34151892A JP 3693299 B2 JP3693299 B2 JP 3693299B2
Authority
JP
Japan
Prior art keywords
paper
density
electrolytic
thickness
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34151892A
Other languages
Japanese (ja)
Other versions
JPH06168848A (en
Inventor
順一 丑本
達治 田内
浩昭 和田
昌彦 上田
泰司 溝淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kodoshi Corp
Original Assignee
Nippon Kodoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kodoshi Corp filed Critical Nippon Kodoshi Corp
Priority to JP34151892A priority Critical patent/JP3693299B2/en
Publication of JPH06168848A publication Critical patent/JPH06168848A/en
Application granted granted Critical
Publication of JP3693299B2 publication Critical patent/JP3693299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【0001】
【産業上の利用分野】
本発明は陽極箔と陰極箔との間に、長網抄紙機にて紙層形成された高密度層と円網抄紙機にて紙層形成された低密度層とを抄紙機上で重ねて抄き合わせた電解紙を介在させて構成した電解コンデンサにかかり、特には中高圧用の電解コンデンサにおいて、耐電圧(絶縁破壊電圧)及びショート不良率を維持向上させるとともに電解液の含浸性及びインピーダンス特性をも同時に向上させるものである。
【0002】
【従来の技術】
一般に電解コンデンサ、特にアルミ電解コンデンサは、陽極アルミ箔と陰極アルミ箔との間にセパレータとして電解紙を介在させて巻付け形成してコンデンサ素子を作成し、このコンデンサ素子を液状の電解液中に浸漬して電解質を含浸させ、封口して製作している。電解液としては通常エチレングリコール(EG),ジメチルホルムアミド(DMF)又はγ−ブチロラクトン(GBL)等を溶媒とし、これらの溶媒に硼酸やアジピン酸,アゼライン酸又はこれらのアンモニウム塩を溶解したものを用いてコンデンサ素子の両端から浸透させて製作している。
【0003】
これら従来のアルミ電解コンデンサは電解紙中に電解液を含浸させているため、コンデンサとしてのインピーダンス特性、特に等価直列抵抗(以下ESRと略する)が高くなり易く、又使用中にも経時劣化するおそれがある。そのためインピーダンス特性を良くするために電解液の抵抗を下げたり、電解紙を薄くするか密度を低くすることが考えられる。しかしながら、電解液の抵抗値を下げると、アルミ箔に対して腐蝕性を与える原因となり、一方、電解紙を薄くしたり密度を低くすると、コンデンサ素子に巻き取る際にショート不良率が増大し、仮にショートしなかった場合でも製品化されて市場に出された後のショート不良率が高くなる難点がある。
【0004】
そこで、インピーダンス特性を良くするために電解紙については構成する繊維の形状や配向性が検討され、電解紙の原料を通常の木材クラフトパルプからマニラ麻パルプ、エスパルトパルプに変更する手段が用いられている。そして、かかる原料によれば低密度紙を簡単に抄紙することができるため、インピーダンス特性が良く、しかも低密度紙であっても十分な引張強度を有しており、広く使用されて、相応の効果を挙げている。
【0005】
しかし、これらはいずれも低密度紙であり、中高圧用の電解コンデンサのインピーダンス特性を向上するには不向きであった。従来、中高圧用の電解コンデンサにおいては耐電圧を確保するために充分な高い密度と厚さを有する電解紙が電気特性を犠牲にしても使用されているのである。
【0006】
即ち、中高圧用の電解コンデンサに使用する電解紙は、使用電圧が高くなるほど陽極箔同士の接触による短絡事故、箔バリや端子取付部でのショートの危険性が増大するため、高叩解原料により長網抄紙機で抄紙されたピンホールの存在しない密度0.70〜0.88g/cm3の高密度の電解紙(以下長網一重紙と略する)や長網一重紙の2枚使用のものが使用されている。特に近年、中高圧用の電解コンデンサの高信頼性化に伴い耐電圧の高い電解紙の要望が顕著となっている。
【0007】
【発明が解決しようとする課題】
ここで、耐電圧と電解液の含浸性について述べれば次の通りである。先ず、耐電圧を向上させるためには電解紙の厚さを厚くするか、叩解度を進めた原料で密度を高くするのが通例である。電解紙の厚さを厚くすると電解液の保液性やショート不良の危険性を防止する上では有効であるが、ESRの悪化を招き、更にコンデンサ素子の大径化により小型化に対して不都合となる。一方、叩解の程度を示すJIS P 8121によるCSF(Canadian StandardFreeness)の数値を小さくした原料で高密度に抄紙した電解紙は、耐電圧の向上に対しては有効であるが、繊維間の接触点が増加して繊維間空隙が減少することによりESRの悪化や電解液の含浸性を悪化させる結果となる。即ち、耐電圧を確保するために、電解紙の厚さを厚くし密度を高めると、一方においてESRの悪化と共に電解液の含浸性をも悪化させるという相反する結果となるのである。
【0008】
よって、従来、中高圧用の電解コンデンサとして一般的に使用されている前記した0.70〜0.88g/cm3の高密度の長網一重紙や長網一重紙の2枚使用の電解紙はESRの悪化と共に電解液の含浸性が極めて悪く、電解コンデンサ製作での生産性向上の阻害要因にもなっている。
【0009】
そこで、出願人は先に電解紙にエンボス加工により凹状溝を幅方向に形成し含浸性を向上させた電解紙(特公昭62−62451)や、高叩解原料で抄紙した電解紙に抄紙後の二次加工によるエンボス加工により凹凸パターンを施して厚さを実質的に厚くすると共に密度を下げて、ESRと含浸性の双方を向上させた電解紙(特公平2−52847)を提供し、相応の効果を発揮して好評を得ている。特に大型サイズや高信頼性の電解コンデンサへ採用されるに致っている。
【0010】
しかしながら、これらは抄紙後の二次加工を必要とするため、種々の問題点が判明してきた。即ち、エンボスロールの加圧により強制的に紙面に凹凸を施すため、繊維劣化を免れず紙力強度が低下する。特に原紙厚さが薄く強度の弱い電解紙の場合は、エンボス加工により更に強度低下を招くため、比較的紙幅の狭いコンデンサにおいては、コンデンサ素子の巻取工程中に紙切れが発生する場合があり、返って生産性を低下させる等の問題が発生している。そのため、二次加工前の原紙の厚さが25μm以下の電解紙の場合は実質上量産できていないのが現状である。更に、二次加工を必要とするため、製造工程が複雑化し、製造コストが高くなり電解紙自体が高価格となる。
【0011】
そこで、本発明は上記事情に鑑みて、中高圧用の電解コンデンサにおいて、二次加工を施すことなく抄紙のみにて、耐電圧を維持向上させるとともに含浸性及びESRを同時に向上させて電気特性と共に生産性の高い電解コンデンサを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するために、陽極箔と陰極箔との間に長網抄紙機にて紙層形成された高密度層と円網抄紙機にて紙層形成された低密度層とを抄紙機上で重ねて抄き合わせた電解紙を介在してなる電解コンデンサにおいて、低密度層は、厚さが10〜60μm,密度が0.20〜0.40g/cm であるとともに原料として断面円形で硬質のコットンリンターパルプが40%以上配合されており、高密度層は、厚さが10〜50μm,密度が0.88〜1.00g/cm である構成を提供する。また、前記電解紙は全体厚さ20〜110μm,全体密度0.50〜0.80g/cmである構成を提供する。
【0013】
【作用】
上記構成の本発明によれば、高密度層と低密度層の二層構造とした電解紙を使用した電解コンデンサは高密度層の存在により電解紙全体として耐電圧を高く維持することができると共に、低密度層の存在により電解紙全体としてインピーダンス特性を向上させることができ、更に素子巻取工程を簡素化することできる。特に低密度層の原料として抄紙時の圧力によって変形し難く断面が円形状であるコットンリンターパルプを原料として使用したため、繊維が層状に積層され密度が高くなる原料との混合であっても、硬質な繊維が不均一に積層され、繊維間隙が生じて低密度抄紙が可能となる。特に高密度層を厚さ10〜50μm,密度0.88〜1.00g/cmとし、低密度層を厚さ10〜60μm,密度0.20〜0.40g/cmの範囲とすることにより、電解液を含浸して繊維が膨潤しても液浸透に必要な繊維間隙を充分に保持することができて含浸性、保液性が向上されESRも良好となる。よって、これらの電解紙を使用して製作した中高圧用の電解コンデンサは、電解紙の含浸性、保液性が良好であるためエージングの際、酸化皮膜の欠陥部修復が円滑に行われ、ESRの低減化によりコンデンサの発熱が抑制されて、ガス発生を減少させることができると共に、電解紙自体が充分な耐電圧を保有しているため、エージングショート不良を格段に減少させることができる。従って従来困難とされてきた中高圧用の電解コンデンサのESRとエージングショート不良率の双方を同時に向上できると共に、コンデンサ製作の生産性をも向上させることができる。
【0014】
【実施例】
以下に本発明の構成を各種実施例とともに説明する。本発明にかかる電解コンデンサは、長網抄紙機にて紙層形成された高密度層と、円網抄紙機にて紙層形成された低密度層とを抄紙機上で重ねて抄き合わせた電解紙(以下長網円網二重紙と略する)を介在してなる電解コンデンサにかかるものである。
【0015】
高密度層と低密度層の二層構造からなる長網円網二重紙は、高叩解された原料で可能な限りの高密度層を形成させるか、従来と同密度域であれば厚さの厚い高密度層を形成することにより充分な耐電圧を保持することができる。同時に低密度層を逆に可能なかぎり密度を下げて十分な繊維間隙を保有した紙層として形成することにより電解液の保液性や含浸速度を向上させることができるのである。
【0016】
長網円網二重紙の高密度層に使用する原料は特に限定はなく、高叩解が可能で高密度の紙層形成が可能な原料であれば何れであっても良く、適宜の天然繊維パルプを選択するのが適当であり、針葉樹クラフトパルプ、マニラ麻パルプ等が通常使用される。一方、低密度層に使用する原料としては、紙層形成の際の抄紙機上の圧力にて変形せず断面が円形状であって高密度化傾向のない硬質な天然繊維パルプ又は再生セルロース繊維を単独若しくはこれらの混合原料更に通常のクラフトパルプを混合したものを使用する。なお、硬質な繊維は少なくとも40%以上配合されていることが好ましい。硬質な天然繊維としてはマニラ麻パルプ,サイザル麻パルプ,エスパルトパルプ,竹パルプ,コットンリンターパルプや、パルプ製造上公知で高αセルロースパルプを得る目的で施される冷アルカリ処理(以下マーセル化と略す)した針葉樹クラフトパルプ,広葉樹クラフトパルプ等を使用し、再生セルロース繊維としてはポリノジックレーヨン,有機溶剤紡糸レーヨン等を使用する。
【0017】
そして、低密度層の厚みに応じて、薄く抄紙する場合には硬質で繊維径の細く、断面形状が真円のエスパルトパルプや広葉樹パルプ及びマーセル化広葉樹パルプの配合を多くし、厚く抄紙する場合には硬質で保液性が良く断面形状が円状で繊維径が比較的大きいサイザル麻パルプ,コットンリンターパルプ,マーセル化針葉樹パルプを多く配合した原料とする。
【0018】
抄紙に際しては高密度層を長網抄紙機にて、低密度層を円網抄紙機にて抄紙するものであり、前記した原料を適度なCSFの数値に叩解し、所定の厚さの低密度層を円網抄紙機にて抄紙し、長網側から抄き出される高密度層と貼り合わせ長網円網二重紙の電解紙とする。なお、電解コンデンサの電気的特性,ショート不良等に悪影響を及ぼさないように、塵やごみ、鉄微粒子が除去されていることが必要であり、原料の精選とともに除塵機により処理を施しておく必要がある。このようにして得られた電解紙を陽極アルミ箔と陰極アルミ箔との間に介在させて巻きつけ形成した後、液状の電解液を含浸させ、封口して電解コンデンサを製作する。
【0019】
本発明は電解紙として高密度層と低密度層の二層構造を有する長網円網二重紙を使用しており、高密度層の密度が0.88g/cm未満の場合には、高密度層の密度が耐電圧の向上のためには不足するため、長網円網二重紙全体としての耐電圧を向上させるために、低密度層に針葉樹クラフトパルプの如く断面が扁平状で抄紙した場合に繊維が積層され高密度化傾向となる原料の使用や、マニラ麻パルプ等のように比較的硬質で円形状の繊維であっても過度に叩解した原料を使用して低密度層自体の密度を高め、全体密度を高めて抄紙することが必要である。ところが、電解液の含浸工程においては、電解液はコンデンサ素子の両端からのみ浸透するので、低密度層の密度を高くすればするほど、電解液含浸による繊維の膨潤によって、繊維間隙が益々減少し、コンデンサ素子の両端部分で膨潤繊維によるパッキング作用が生じ、素子中央部まで含浸するのに非常に時間がかかると共に、電気特性が悪化する。そこで、本発明の好ましい実施例としては高密度層の密度を0.88g/cm以上に高めることが適当である。一方含浸性の向上及びESRの向上のためには低密度層の密度が0.40g/cm以上ではその効果が少ないため大幅に低密度とすることが適当であり、具体的には高密度層の密度が0.88〜1.00g/cm、低密度層の密度が0.20〜0.40g/cmの範囲が効果が大きい。また、高密度層の厚さが10μmより薄くなると紙層形成は可能ではあっても、長網上での吸引脱水によるピンホールの存在しない良好な紙質を得るためには、生産性を度外視した抄紙速度の低下等、抄紙上の問題点が多くなる。逆に50μmよりも厚くなれば脱水困難や坪量増による繊維分散不良により地合不均一等の問題が発生してくる。そこで、高密度層の厚さが10〜50μm,低密度層の厚さが10〜60μmの範囲が適当である。そして、長網円網二重紙全体として厚さ20〜110μm,全体密度0.50〜0.80g/cmの範囲が適当である。現在の抄紙技術ではかかる密度0.88g/cm以上や従来密度域でも厚さの厚い高密度層の紙層形成が可能であり、大幅に密度を低めた低密度層との抄き合わせ長網円網二重紙の製造が可能である。
【0020】
以下に本発明にかかる電解コンデンサを得るための各種実施例及び使用した電解紙の評価結果と得られた電解コンデンサのESR,エージングショート不良率等を測定した結果を各種比較例と対比して示す。なお各試料の各測定値は次ぎの測定方法によって行なった。
【0021】
電解紙の評価方法
▲1▼厚さ,密度,引張強度
電解紙の厚さ,密度,引張強度はJIS C 2301(電解コンデンサ紙)に規定された方法で測定した。
【0022】
▲2▼電解紙の電解液含浸後の耐電圧
50×50cmの電解紙を所定の電解液にて15mmHgにて2時間真空含浸させ、更に85℃で2時間熱処理をして測定用試料とする。次いで99.99%のアルミ箔をプレス成型し20mmφのアルミキャップを製作し、上部のアルミキャップ上に100gの分銅をのせ、下部のアルミ平版の間に上記電解紙試料を介在させて、30mAの定電流により化成しショート発生電圧を測定した。
【0023】
▲3▼電解紙のESR
電解紙を38mmφに採取し、所定の電解液を15mmHgにて2時間真空含浸させ、更に85℃で2時間熱処理をした後、38mmφの電極間に挟み20℃,1000HZの周波数でLCRメータによって測定した。
【0024】
中高圧用の電解コンデンサの製作方法
陽極箔と陰極箔の間に両極が接触しないように電解紙を介在させ、アルミ箔端子を取付ながら巻取りして電解コンデンサ素子を作成した後、所定の電解液を含浸させてケースに封入し、エージングを行い、電解紙厚さ40μm,50μm紙は200WV,1000μFの電解コンデンサを,電解紙厚さ90μmは400WV,680μFの電解コンデンサを製作した。
【0025】
電解コンデンサの測定方法
▲1▼電解コンデンサ素子の含浸時間
200WV,400WVの箔を使用して、コンデンサ素子巻を製作し、85℃で4時間乾燥後、デシケータ内で室温まで冷却する。次いで他のデシケータ内のビーカーに入れ15mmHgまで減圧した後、負圧により所定の電解液をビーカー内に吸引し、LCRメーターで静電容量を測定して、箔から計算した理論容量の98%以上になった時間を含浸時間とした。
【0026】
▲2▼エージング中の不良率
各コンデンサ試料100個について、定格電圧の約110%まで徐々に昇圧していき、エージングを行なう。この時のエージングショート,防爆弁の作動は無論、液漏れ,封口部の膨れ等の外観異常を含めたコンデンサの個数を100個で除してショート不良率とした。
【0027】
▲3▼ESR(等価直列抵抗)
電解コンデンサのESRは20℃,1000HZの周波数でLCRメータによって測定した。
【0028】
▲4▼静電容量
電解コンデンサの静電容量は温度20℃,120HZの周波数でLCRメータで測定した。
【0029】
▲5▼もれ電流
電解コンデンサのもれ電流はコンデンサの定格直流電圧を負荷して、5分後電流値を測定した。
【0030】
実施例1
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ18.3μm,密度0.905g/cm3の高密度紙を長網部分で抄紙しつつ、エスパルトパルプ60%とマーセル化広葉樹クラフトパルプ40%の混合原料をCSF700mlに叩解し、円網部分で厚さ17.2μm,密度0.372g/cm3の紙を抄紙して抄き合せ、全体厚さ35.5μm,全体密度0.647g/cm3の長網円網二重紙を製作した。
【0031】
実施例2
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ25.0μm,密度0.975g/cm3の高密度紙を長網部分で抄紙しつつ、エスパルトパルプ40%とマーセル化広葉樹クラフトパルプ60%の混合原料をCSF680mlに叩解し、円網部分で厚さ15.2μm,密度0.367g/cm3の紙を抄紙して抄き合せ、全体厚さ40.2μm,全体密度0.745g/cm3の長網円網二重紙を製作した。ついで、この二重紙を電解紙として定格200WV,容量1000μFのアルミ電解コンデンサを製作した。
【0032】
実施例3
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ25.1μm,密度0.955g/cm3の高密度紙を長網部分で抄紙しつつ、コットンリンターパルプ50%と針葉樹クラフトパルプ50%の混合原料をCSF700mlに叩解し、円網部分で厚さ25.0μm,密度0.322g/cm3の紙を抄紙して抄き合せ、全体厚さ50.1μm,全体密度0.639g/cm3の長網円網二重紙を製作した。ついで、この二重紙を電解紙として定格200WV,容量1000μFのアルミ電解コンデンサを製作した。
【0033】
実施例4
マニラ麻パルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ29.5μm,密度0.895g/cm3の高密度紙を長網部分で抄紙しつつ、コットンリンターパルプ70%と有機溶剤紡糸レーヨン30%の混合原料をCSF720mlに叩解し、円網部分で厚さ30.5μm,密度0.238g/cm3の紙を抄紙して抄き合せ、全体厚さ60.0μm,全体密度0.561g/cm3の長網円網二重紙を製作した。
【0034】
実施例5
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ39.9μm,密度0.883g/cm3の高密度紙を長網部分で抄紙しつつ、コットンリンターパルプ70%とマーセル化針葉樹クラフトパルプ30%の混合原料をCSF700mlに叩解し、円網部分で厚さ50.2μm,密度0.337g/cm3の紙を抄紙して抄き合せ、全体厚さ90.1μm,全体密度0.579g/cm3の長網円網二重紙を製作した。ついで、この二重紙を電解紙として定格400WV,容量680μFのアルミ電解コンデンサを製作した。
【0035】
比較例1
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ20.1μm,密度0.745g/cm3の高密度紙を長網部分で抄紙しつつ、円網部分では針葉樹クラフトパルプをCSF350mlに叩解した原料で厚さ14.8μm,密度0.524g/cm3の紙を抄紙して抄き合せ、全体厚さ34.9μm,全体密度0.651g/cm3の長網円網二重紙を製作した。これは実施例1に対応させた電解紙である。
【0036】
比較例2
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ20.1μm,密度0.841g/cm3の高密度紙を長網部分で抄紙しつつ、円網部分では針葉樹クラフトパルプをCSF250mlに叩解した原料で厚さ10.1μm,密度0.625g/cm3の紙を抄紙して抄き合せ、全体厚さ30.2μm,全体密度0.768g/cm3の長網円網二重紙を製作した後、エンボス加工にて厚さ35.5μm,密度0.654g/cm3のエンボス加工紙を製作した。これは実施例1に対応したエンボス加工の電解紙である。
【0037】
比較例3
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ20.1μm,密度0.861g/cm3の高密度紙を長網部分で抄紙しつつ、円網部分では針葉樹クラフトパルプをCSF300mlに叩解した原料で厚さ20.0μm,密度0.645g/cm3の紙を抄紙して抄き合せ、全体厚さ40.1μm,全体密度0.753g/cm3の長網円網二重紙を製作した。ついで、この二重紙を電解紙として定格200WV,1000μFのアルミ電解コンデンサを製作した。これは実施例2に対応した電解紙及び電解コンデンサである。
【0038】
比較例4
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ21.2μm,密度0.772g/cm3の高密度紙を長網部分で抄紙しつつ、円網部分では針葉樹クラフトパルプをCSF500mlに叩解した原料で厚さ29.6μm,密度0.528g/cm3の紙を抄紙して抄き合せ、全体厚さ50.8μm,全体密度0.630g/cm3の長網円網二重紙を製作した。ついで、この二重紙を電解紙として定格200WV,1000μFのアルミ電解コンデンサを製作した。これは実施例3に対応した電解紙及び電解コンデンサである。
【0039】
比較例5
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ20.1μm,密度0.864g/cm3の高密度紙を長網部分で抄紙しつつ、円網部分では針葉樹クラフトパルプをCSF300mlに叩解した原料で厚さ20.5μm,密度0.658g/cm3の紙を抄紙して抄き合せ、全体厚さ40.6μm,全体密度0.760g/cm3の長網円網二重紙を製作した後、エンボス加工にて厚さ49.4μm,密度0.625g/cm3のエンボス加工紙を製作した。ついで、この二重紙を電解紙として定格200WV,1000μFのアルミ電解コンデンサを製作した。これは実施例3に対応した電解紙及び電解コンデンサである。
【0040】
比較例6
マニラ麻パルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ20.2μm,密度0.745g/cm3の高密度紙を長網部分で抄紙しつつ、マニラ麻パルプを叩解機でCSF550mlに叩解し、円網部分で厚さ40.0μm,密度0.465g/cm3の紙を抄紙して抄き合せ、全体厚さ60.2μm,全体密度0.559g/cm3の長網円網二重紙を製作した。これは実施例4に対応した電解紙である。
【0041】
比較例7
針葉樹クラフトパルプを叩解機でCSF5ml以下まで叩解したものを長網の抄紙原料とし、厚さ20.4μm,密度0.767g/cm3の高密度紙を長網部分で抄紙しつつ、円網部分では針葉樹クラフトパルプをCSF600mlに叩解した原料で厚さ70.1μm,密度0.528g/cm3の紙を抄紙して抄き合せ、全体厚さ90.5μm,全体密度0.582g/cm3の長網円網二重紙を製作した。ついで、この二重紙を電解紙として定格400WV,容量680μFのアルミ電解コンデンサを製作した。これは実施例5に対応した電解紙及び電解コンデンサである。
【0042】
以上のようにして得た実施例1〜5の電解紙の評価結果を表1に、比較例1〜7の電解紙の評価結果を表2に示す。また実施例2,3,5と比較例3,4,5,7に係わる電解コンデンサの含浸速度,エージング時のショート不良率,容量,漏れ電流,ESRの測定結果を表3に示す。
【0043】
【表1】

Figure 0003693299
【0044】
【表2】
Figure 0003693299
【0045】
【表3】
Figure 0003693299
【0046】
表1,表2,表3の結果に示した通り、高密度層と硬質繊維を使用した低密度層の二層構造とした長網円網二重紙からなる電解紙を使用したことにより、耐電圧,ESR,電解液含浸速度,エージング時のショート不良率共に優れた特性を有しており、しかも紙として充分な引張強度をも有している。特に表1の実施例1は密度を高密度層で0.88g/cm以上のより高密度に、低密度層で0.40g/cm以下のより低密度とした好ましい数値範囲内としたものであり、具体的には厚さ18.3μm,密度0.905g/cmの高密度層と、硬質で繊維径の細いエスパルトパルプとマーセル化広葉樹クラフトパルプを混合し、厚さ17.2μm,密度0.372g/cmの低密度層を抄き合せた長網円網二重紙であり、密度を高密度層で0.88g/cm以下の0.745g/cmとし、低密度層で0.40g/cm以上の0.524g/cmとした比較例1よりも引張強度は同等ではあるものの、耐電圧及びESRにおいて改善の効果が大きい。また、比較例2は抄紙後のエンボス加工により、実施例1と略同一の全体厚さ、密度としたものであるが、抄紙のみにより製作した実施例1の方が引張強度,ESR共に格段に改善されている。
【0047】
同様に実施例2は高密度側を厚さ25.0μm,密度0.975g/cm3とし、低密度側を厚さ15.2μm,密度0.367g/cm3としたものであるが、全体厚さ,密度を略同一とした比較例3に比してよりESRの改善効果が大きく、コンデンサ素子の電解液含浸速度も約1/3に短縮されている。
【0048】
実施例3は厚さ25.1μm,密度0.955g/cm3の高密度層と硬質,高吸液性で比較的繊維径の大きいコットンリンターパルプと通常の針葉樹クラフトパルプを混合して低密度層を抄紙し抄き合せたものであり、略同一全体厚さ,密度の比較例4及び比較例5のエンボス加工紙に比してより引張強度,耐電圧,ESR共に改善され、エージングショート不良率は0%となっている。また、含浸速度は比較例4に比較して1/2以下となり、含浸速度改善目的に製作している比較例5のエンボス加工紙とほぼ同等まで改善されている。
【0049】
実施例4は高密度側を厚さ29.5μm,密度0.895g/cm3とし、低密度側はコットンリンターパルプと有機溶剤紡糸レーヨンを混合して、厚さ30.5μm,密度0.238g/cm3の超低密度紙を抄き合せ全体厚さ60.0μm,密度0.561g/cm3としたものである。比較例6は高密度層,低密度層共にマニラ麻パルプを使用した長網円網二重紙であるが、実施例4の方が耐電圧、ESR共により大幅に改善されている。
【0050】
さらに実施例5は高密度側を厚さ39.9μm,密度0.883g/cm3で高密度層を形成し、低密度側はコットンリンターパルプとマーセル化針葉樹クラフトパルプを混合して抄紙し高密度層と抄き合せ、全体厚さ90.1μm,密度0.579g/cm3として、比較例7と略同一厚さ,密度としたものであるが、耐電圧,ESR共の改善のみならず、電解液の含浸速度は1/2に,エージングショート不良率は3%から0%により改善されている。
【0051】
【発明の効果】
以上詳細に説明した本発明によれば、高密度層と低密度層の二層構造とした電解紙を使用したため、高密度層の存在により電解紙全体として耐電圧を高く維持することができると共に、低密度層の存在により電解紙全体としてインピーダンス特性を向上させることができ、更に素子巻取工程を簡素化することができる。特に低密度層の原料として抄紙時の圧力によって変形し難く断面が円形状であるコットンリンターパルプを原料として使用したことにより、繊維が層状に積層され密度が高くなる原料との混合であっても、硬質な繊維が不均一に積層され、繊維間隙が生じて低密度抄紙が可能となる。特に高密度層を厚さ10〜50μm,密度0.88〜1.00g/cmとし、低密度層を厚さ10〜60μm,密度0.20〜0.40g/cmの範囲とすることにより、電解液を含浸して繊維が膨潤しても液浸透に必要な繊維間隙を充分に保持することができて含浸性、保液性が向上されESRも良好となる。よって、これらの電解紙を使用して製作した中高圧用の電解コンデンサは、電解紙の含浸性、保液性が良好であるためエージングの際、酸化皮膜の欠陥部修復が円滑に行われ、ESRの低減化によりコンデンサの発熱が抑制されて、ガス発生を現象させることができると共に、電解紙自体が充分な耐電圧を保有しているため、エージングショート不良を格段に減少させることができる。従って従来困難とされてきた中高圧用の電解コンデンサのESRとエージングショート不良率の双方を同時に向上できると共に、コンデンサ製作の生産性をも向上させることができる。[0001]
[Industrial application fields]
The present invention is provided between an anode foil and a cathode foil., A high-density layer formed with a paper web machine and a low-density layer formed with a circular paper machine were layered together on a paper machine.It is applied to the electrolytic capacitor constructed by interposing electrolytic paper, especially in the medium and high voltage electrolytic capacitor, maintaining and improving the withstand voltage (dielectric breakdown voltage) and short-circuit defect rate, and simultaneously impregnating electrolyte and impedance characteristics It is to improve.
[0002]
[Prior art]
In general, electrolytic capacitors, particularly aluminum electrolytic capacitors, are formed by winding electrolytic paper as a separator between an anode aluminum foil and a cathode aluminum foil to form a capacitor element, and this capacitor element is placed in a liquid electrolyte. It is manufactured by dipping and impregnating with electrolyte and sealing. As an electrolytic solution, ethylene glycol (EG), dimethylformamide (DMF), γ-butyrolactone (GBL) or the like is generally used as a solvent, and boric acid, adipic acid, azelaic acid or an ammonium salt thereof is dissolved in these solvents. It is manufactured by infiltrating from both ends of the capacitor element.
[0003]
Since these conventional aluminum electrolytic capacitors are impregnated with electrolytic solution in electrolytic paper, impedance characteristics as a capacitor, in particular, equivalent series resistance (hereinafter abbreviated as ESR) are likely to be high, and also deteriorate over time during use. There is a fear. Therefore, in order to improve the impedance characteristics, it is conceivable to reduce the resistance of the electrolytic solution, or to make the electrolytic paper thinner or lower in density. However, lowering the resistance value of the electrolytic solution causes corrosiveness to the aluminum foil. On the other hand, if the electrolytic paper is made thinner or the density is lowered, the short-circuit defect rate increases when winding the capacitor element, Even if there is no short circuit, there is a problem that the short circuit defect rate after being commercialized and put on the market becomes high.
[0004]
Therefore, in order to improve the impedance characteristics, the shape and orientation of the constituent fibers of the electrolytic paper are studied, and means for changing the raw material of the electrolytic paper from normal wood kraft pulp to Manila hemp pulp and esparto pulp are used. Yes. According to such a raw material, low-density paper can be easily made, so that impedance characteristics are good, and even low-density paper has sufficient tensile strength and is widely used. Has an effect.
[0005]
However, these are all low-density papers and are not suitable for improving the impedance characteristics of medium- and high-voltage electrolytic capacitors. Conventionally, in medium- and high-voltage electrolytic capacitors, electrolytic paper having a sufficiently high density and thickness to ensure a withstand voltage is used even at the expense of electrical characteristics.
[0006]
In other words, the electrolytic paper used for medium- and high-voltage electrolytic capacitors increases the risk of short-circuit accidents due to contact between anode foils, foil burrs, and short-circuits at terminal mounting points as the operating voltage increases. Density of 0.70 to 0.88 g / cm without pinholes made by a long paper machineThreeHigh-density electrolytic paper (hereinafter abbreviated as long net single paper) and two long net single paper are used. In particular, in recent years, the demand for electrolytic paper having a high withstand voltage has become remarkable with the increase in the reliability of electrolytic capacitors for medium and high voltages.
[0007]
[Problems to be solved by the invention]
Here, the withstand voltage and the impregnation property of the electrolytic solution are described as follows. First, in order to improve the withstand voltage, it is usual to increase the thickness of the electrolytic paper or increase the density with a raw material with advanced beating degree. Increasing the thickness of the electrolytic paper is effective in preventing electrolyte retention and risk of short-circuit failure, but it causes ESR deterioration and further increases the size of the capacitor element, which is inconvenient for downsizing. It becomes. On the other hand, an electrolytic paper made with high density with a raw material with a small CSF (Canadian Standard Freeness) value according to JIS P 8121 indicating the degree of beating is effective for improving the withstand voltage, but the contact point between fibers. As a result of the increase in the inter-fiber voids, the ESR deteriorates and the electrolyte impregnation property deteriorates. That is, when the thickness of the electrolytic paper is increased and the density is increased in order to ensure the withstand voltage, there is a conflicting result that, on the one hand, the ESR is deteriorated and the electrolyte impregnation is also deteriorated.
[0008]
Therefore, the above-described 0.70 to 0.88 g / cm, which is generally used as an electrolytic capacitor for medium and high pressures.ThreeElectrolytic paper using two sheets of high-density single-sheet long paper and single-sheet long-sheet paper has a very poor electrolyte impregnation property along with the deterioration of ESR, which has been an obstacle to productivity improvement in the production of electrolytic capacitors. .
[0009]
Therefore, the applicant first formed electrolytic grooves (Japanese Examined Patent Publication 62-62451) in which concave grooves were formed in the width direction by embossing on electrolytic paper to improve impregnation, and electrolytic paper made with high beating material after paper making. An electrolytic paper (Japanese Patent Publication No. 2-52847) is provided which has an uneven pattern formed by embossing by secondary processing to substantially increase the thickness and reduce the density, thereby improving both ESR and impregnation. Has gained popularity with its effects. In particular, it is suitable for large size and high reliability electrolytic capacitors.
[0010]
However, since these require secondary processing after papermaking, various problems have been found. That is, since the paper surface is forcibly made uneven by pressurizing the embossing roll, fiber strength is unavoidable and the paper strength is reduced. In particular, in the case of electrolytic paper with a thin base paper thickness and weak strength, the strength is further reduced by embossing, so in a capacitor with a relatively narrow paper width, a piece of paper may occur during the winding process of the capacitor element. There are problems, such as a decrease in productivity. For this reason, in the case of the electrolytic paper having a thickness of 25 μm or less before the secondary processing, the present situation is that the mass production is not practically possible. Further, since secondary processing is required, the manufacturing process is complicated, the manufacturing cost is increased, and the electrolytic paper itself is expensive.
[0011]
Therefore, in view of the above circumstances, the present invention, in an electrolytic capacitor for medium and high voltage, maintains and improves the withstand voltage and improves the impregnation and ESR at the same time with only the papermaking without performing secondary processing, together with the electrical characteristics. An object is to provide a highly productive electrolytic capacitor.
[0012]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention provides a high-density layer in which a paper layer is formed between a positive foil and a negative foil by a long paper machine, and a low-density layer in which a paper layer is formed by a circular paper machine. In the electrolytic capacitor that interposes the electrolyzed paper that is made by layering on the paper machine,The low density layer has a thickness of 10 to 60 μm and a density of 0.20 to 0.40 g / cm. 3 As well as40% or more of hard cotton linter pulp with a circular cross section is blended as a raw materialThe high-density layer has a thickness of 10 to 50 μm and a density of 0.88 to 1.00 g / cm. 3 InProvide a configuration.Also,The electrolytic paper has an overall thickness of 20 to 110 μm and an overall density of 0.50 to 0.80 g / cm.3Provide a configuration that is
[0013]
[Action]
According to the present invention configured as described above, the electrolytic capacitor using the electrolytic paper having a two-layer structure of the high density layer and the low density layer can maintain a high withstand voltage as the entire electrolytic paper due to the presence of the high density layer. Impedance characteristics of the entire electrolytic paper can be improved due to the presence of the low-density layer, and the element winding process can be simplified.Butit can. In particular, as a raw material for the low density layer, it is difficult to be deformed by the pressure during papermaking, and the cross section is circularRucoTon Linter PalTheSince it is used as a raw material, even if it is mixed with a raw material in which the fibers are laminated in layers and the density is increased, hard fibers are laminated non-uniformly, resulting in fiber gaps and low density papermaking. In particular, the high-density layer has a thickness of 10 to 50 μm and a density of 0.88 to 1.00 g / cm.3And a low density layer having a thickness of 10 to 60 μm and a density of 0.20 to 0.40 g / cm3By setting the amount within the above range, even when the fibers are impregnated and the fibers swell, the fiber gaps necessary for liquid permeation can be sufficiently maintained, the impregnation property and the liquid retention property are improved, and the ESR is also improved. Therefore, the electrolytic capacitors for medium and high pressure produced using these electrolytic papers have good impregnation properties and liquid retention properties of the electrolytic paper, so that during the aging, defective portions of the oxide film are smoothly repaired, By reducing the ESR, heat generation of the capacitor can be suppressed and gas generation can be reduced. In addition, since the electrolytic paper itself has a sufficient withstand voltage, aging short-circuit defects can be significantly reduced. Accordingly, it is possible to simultaneously improve both the ESR and the aging short-circuit defect rate of the medium- and high-voltage electrolytic capacitors, which have been considered difficult, and to improve the productivity of capacitor production.
[0014]
【Example】
The configuration of the present invention will be described below together with various examples. According to the present inventionElectrolytic capacitors areA high-density layer with a paper layer formed by a long paper machine and a low-density layer with a paper layer formed by a circular paper machine are overlapped on the paper machine.Electrolytic paper(Hereafter, abbreviated as long web double paper)It is applied to the electrolytic capacitor formed by interposing.
[0015]
A long-mesh round double-layered paper consisting of a two-layer structure consisting of a high-density layer and a low-density layer can be formed as much as possible with a high-beaten raw material, or the thickness can be as long as the same density range as before. By forming a thick high-density layer, a sufficient withstand voltage can be maintained. At the same time, by reducing the density as much as possible and forming the paper layer as a paper layer having a sufficient fiber gap, it is possible to improve the electrolyte retention and impregnation rate.
[0016]
The raw material used for the high-density layer of the long-mesh round net double paper is not particularly limited, and any raw material can be used as long as it is capable of forming a high-density paper layer that can be beaten at high density. It is appropriate to select pulp, and softwood kraft pulp, Manila hemp pulp and the like are usually used. On the other hand, the raw material used for the low density layer is a hard natural fiber pulp or regenerated cellulose fiber that is not deformed by the pressure on the paper machine at the time of paper layer formation and has a circular cross section and does not tend to increase in density. Or a mixture of these raw materials and ordinary kraft pulp. In addition, it is preferable that hard fiber is blended at least 40% or more. Hard natural fibers include manila hemp pulp, sisal hemp pulp, esparto pulp, bamboo pulp, cotton linter pulp, and cold alkali treatment (hereinafter abbreviated as mercerization) applied for the purpose of obtaining high alpha cellulose pulp. ) Softwood kraft pulp, hardwood kraft pulp, etc. are used, and polynosic rayon, organic solvent spinning rayon, etc. are used as regenerated cellulose fibers.
[0017]
And according to the thickness of the low-density layer, when making paper thinly, increase the blend of hard and thin fiber diameter, round shape cross section of esparto pulp, hardwood pulp and mercerized hardwood pulp, and make paper thickly In some cases, it is a raw material containing a large amount of sisal hemp pulp, cotton linter pulp, and mercerized softwood pulp that is hard, has good liquid retention, has a circular cross-sectional shape, and a relatively large fiber diameter.
[0018]
When making paper, the high density layer is made with a long paper machine, and the low density layer is made with a circular paper machine. The above raw materials are beaten to an appropriate CSF value, and a low density with a predetermined thickness is obtained. The layers are made with a circular paper machine, and a high-density layer drawn from the long mesh side is bonded to an electroplated paper with a long mesh double-bonded paper. In addition, it is necessary to remove dust, dust, and iron fine particles so as not to adversely affect the electrical characteristics and short-circuit defects of the electrolytic capacitor. There is. The electrolytic paper thus obtained is wound between an anode aluminum foil and a cathode aluminum foil, and then impregnated with a liquid electrolytic solution and sealed to produce an electrolytic capacitor.
[0019]
The present invention uses a long net double paper having a two-layer structure of a high density layer and a low density layer as electrolytic paper.HaveThe density of the high-density layer is 0.88 g / cm3In the case where the density is less than that, the density of the high-density layer is insufficient for improving the withstand voltage. In the case of paper making with a flat cross section like this, the use of raw materials that tend to be dense due to the lamination of fibers, or the use of raw materials that are excessively beaten even with relatively hard and circular fibers such as Manila hemp pulp Therefore, it is necessary to increase the density of the low-density layer itself and increase the overall density to make paper. However, in the electrolytic solution impregnation step, the electrolytic solution penetrates only from both ends of the capacitor element. Therefore, the higher the density of the low density layer, the more the fiber gap is reduced due to the swelling of the fiber by the electrolytic solution impregnation. The packing action by the swollen fibers occurs at both ends of the capacitor element, and it takes a very long time to impregnate up to the center of the element, and the electrical characteristics deteriorate. Therefore, as a preferred embodiment of the present invention, the density of the high density layer is 0.88 g / cm.3It is appropriate to increase it above. On the other hand, in order to improve impregnation and ESR, the density of the low density layer is 0.40 g / cm.3Since the effect is small in the above, it is appropriate to make the density significantly low. Specifically, the density of the high-density layer is 0.88 to 1.00 g / cm.3The density of the low density layer is 0.20 to 0.40 g / cm.3The range is very effective. In addition, although the paper layer can be formed when the thickness of the high-density layer is less than 10 μm, in order to obtain good paper quality without pinholes due to suction dewatering on a long net, productivity was ignored. There are many problems on paper making, such as a decrease in paper making speed. On the other hand, if it becomes thicker than 50 μm, problems such as uneven formation occur due to difficulty in dehydration and poor fiber dispersion due to increased basis weight. Therefore, it is appropriate that the high density layer has a thickness of 10 to 50 μm and the low density layer has a thickness of 10 to 60 μm. And, as a whole of the long-mesh circular double paper, the thickness is 20 to 110 μm, and the overall density is 0.50 to 0.80 g / cm.3The range of is appropriate. With the current papermaking technology, this density is 0.88 g / cm.3As described above, it is possible to form a thick high-density paper layer even in the conventional density region, and it is possible to manufacture a long-mesh double-sheet double paper by combining with a low-density layer having a significantly reduced density.
[0020]
The various examples for obtaining the electrolytic capacitor according to the present invention and the evaluation results of the electrolytic paper used and the results of measuring the ESR, the aging short defect rate, etc. of the obtained electrolytic capacitor are shown in comparison with various comparative examples. . In addition, each measured value of each sample was performed by the following measuring method.
[0021]
Electrolytic paper evaluation method
(1) Thickness, density, tensile strength
The thickness, density, and tensile strength of the electrolytic paper were measured by the methods specified in JIS C 2301 (electrolytic capacitor paper).
[0022]
(2) Withstand voltage after electrolytic paper impregnation with electrolytic paper
A 50 × 50 cm electrolytic paper is vacuum impregnated with a predetermined electrolytic solution at 15 mmHg for 2 hours, and further heat-treated at 85 ° C. for 2 hours to obtain a measurement sample. Next, a 99.99% aluminum foil was press-molded to produce a 20 mmφ aluminum cap, a 100 g weight was placed on the upper aluminum cap, and the electrolytic paper sample was interposed between the lower aluminum lithographic plates, and a current of 30 mA was obtained. A short-circuit occurrence voltage was measured by formation with a constant current.
[0023]
(3) Electrolytic paper ESR
Take the electrolytic paper to 38mmφ, vacuum impregnate the prescribed electrolyte solution at 15mmHg for 2 hours, heat-treat at 85 ° C for 2 hours, then sandwich between 38mmφ electrodes and measure with LCR meter at 20 ° C and 1000HZ frequency did.
[0024]
Manufacturing method of medium and high voltage electrolytic capacitors
An electrolytic paper is interposed between the anode foil and the cathode foil so that both electrodes do not contact each other, and an electrolytic capacitor element is created by winding while attaching an aluminum foil terminal, and then impregnated with a predetermined electrolyte and sealed in a case. Aging was performed, and electrolytic capacitors having a thickness of 40 μm and 50 μm were manufactured as electrolytic capacitors of 200 WV and 1000 μF, and an electrolytic capacitor having a thickness of 90 μm as 400 WV and 680 μF.
[0025]
Electrolytic capacitor measurement method
(1) Impregnation time of electrolytic capacitor element
Capacitor element windings are manufactured using 200 WV and 400 WV foils, dried at 85 ° C. for 4 hours, and then cooled to room temperature in a desiccator. Next, after putting in a beaker in another desiccator and reducing the pressure to 15 mmHg, a predetermined electrolytic solution is sucked into the beaker by negative pressure, and the electrostatic capacity is measured with an LCR meter. More than 98% of the theoretical capacity calculated from the foil The time at which this was reached was taken as the impregnation time.
[0026]
(2) Defect rate during aging
About 100 capacitor samples, the pressure is gradually increased to about 110% of the rated voltage, and aging is performed. The operation of the aging short and explosion-proof valve at this time is, of course, the number of capacitors including the appearance abnormality such as liquid leakage and the swelling of the sealing part is divided by 100 to obtain the short-circuit defect rate.
[0027]
(3) ESR (Equivalent Series Resistance)
The ESR of the electrolytic capacitor was measured with an LCR meter at 20 ° C. and a frequency of 1000 HZ.
[0028]
(4) Capacitance
The capacitance of the electrolytic capacitor was measured with an LCR meter at a temperature of 20 ° C. and a frequency of 120 HZ.
[0029]
(5) Leakage current
For the leakage current of the electrolytic capacitor, the rated DC voltage of the capacitor was loaded, and the current value was measured after 5 minutes.
[0030]
Example 1
Conifer kraft pulp beaten to a CSF of 5ml or less with a beating machine is used as a papermaking material for a long net, thickness 18.3μm, density 0.905g / cmThreeWhile making a paper of a high-density paper with a long mesh portion, a mixed raw material of 60% esparto pulp and 40% mercerized hardwood kraft pulp was beaten into 700 ml of CSF, and the circular mesh portion had a thickness of 17.2 μm and a density of 0.372 g / cmThreePaper and paper together, the overall thickness is 35.5μm, the overall density is 0.647g / cmThreeMade a long web of double mesh paper.
[0031]
Example 2
Coniferous kraft pulp beaten to a CSF of 5 ml or less with a beater is used as a papermaking raw material for a long net, thickness 25.0 μm, density 0.975 g / cmThreeWhile making a high density paper with a long mesh part, beat mixed raw material of 40% esparto pulp and 60% mercerized hardwood kraft pulp into 680 ml of CSF, and the thickness of the circular mesh part is 15.2 μm and the density is 0.367 g / cmThreePaper and paper together, the total thickness is 40.2μm, the overall density is 0.745g / cmThreeMade a long web of double mesh paper. Next, an aluminum electrolytic capacitor having a rating of 200 WV and a capacity of 1000 μF was manufactured using this double paper as electrolytic paper.
[0032]
Example 3
Coniferous kraft pulp beaten to a CSF of 5 ml or less with a beating machine is used as a papermaking raw material for a long net, thickness 25.1 μm, density 0.955 g / cmThreeWhile making high-density paper with a long mesh part, a mixed raw material of 50% cotton linter pulp and 50% softwood kraft pulp was beaten into 700 ml of CSF, and the thickness of the circular mesh part was 25.0 μm and the density was 0.322 g / cm.ThreePaper and paper together, the overall thickness is 50.1μm, the overall density is 0.639g / cmThreeMade a long web of double mesh paper. Next, an aluminum electrolytic capacitor having a rating of 200 WV and a capacity of 1000 μF was manufactured using this double paper as electrolytic paper.
[0033]
Example 4
Manila hemp pulp beaten to a CSF of 5 ml or less with a beater is used as a papermaking raw material for a long net, thickness 29.5 μm, density 0.895 g / cmThreeWhile making a paper of high density paper with a long mesh part, a mixed raw material of 70% cotton linter pulp and 30% organic solvent spinning rayon was beaten into 720 ml of CSF, and the thickness of the circular mesh part was 30.5 μm and the density was 0.238 g / cmThreePaper and paper together, total thickness 60.0μm, total density 0.561g / cmThreeMade a long web of double mesh paper.
[0034]
Example 5
Conifer kraft pulp beaten to a CSF of 5 ml or less with a beating machine is used as a papermaking material for a long net, thickness 39.9 μm, density 0.883 g / cmThreeWhile making a paper of high density paper with a long mesh portion, a mixed raw material of 70% cotton linter pulp and 30% mercerized softwood kraft pulp was beaten into 700 ml of CSF, and the thickness of the circular mesh portion was 50.2 μm and the density was 0.337 g / cmThreePaper and paper together, the overall thickness is 90.1μm, the overall density is 0.579g / cmThreeMade a long web of double mesh paper. Next, an aluminum electrolytic capacitor having a rating of 400 WV and a capacity of 680 μF was manufactured using this double paper as electrolytic paper.
[0035]
Comparative Example 1
Coniferous kraft pulp beaten to a CSF of 5 ml or less with a beating machine is used as a papermaking raw material for a long net, thickness 20.1 μm, density 0.745 g / cmThreeWhile making high-density paper with a long mesh portion, the circular mesh portion is made of a raw material obtained by beating softwood kraft pulp into 350 ml of CSF, and has a thickness of 14.8 μm and a density of 0.524 g / cm.ThreePaper and paper together, the total thickness 34.9μm, the overall density 0.651g / cmThreeMade a long web of double mesh paper. This is an electrolytic paper corresponding to Example 1.
[0036]
Comparative Example 2
Coniferous kraft pulp beaten to a CSF of 5ml or less with a beater is used as a papermaking raw material for a long net, thickness 20.1μm, density 0.841g / cmThreeWhile making a high-density paper with a long mesh portion, the circular mesh portion is made of a raw material obtained by beating softwood kraft pulp into 250 ml of CSF and having a thickness of 10.1 μm and a density of 0.625 g / cm.ThreePaper and paper together, the overall thickness is 30.2μm, the overall density is 0.768g / cmThreeAfter producing a long-mesh round double paper, the thickness was 35.5 μm and the density was 0.654 g / cm by embossing.ThreeOf embossed paper. This is an embossed electrolytic paper corresponding to Example 1.
[0037]
Comparative Example 3
Coniferous kraft pulp beaten to a CSF of 5 ml or less with a beater is used as a papermaking raw material for a long net, thickness 20.1 μm, density 0.861 g / cmThreeWhile making high-density paper with a long mesh portion, the circular mesh portion is made of a raw material obtained by beating softwood kraft pulp into 300 ml of CSF, and has a thickness of 20.0 μm and a density of 0.645 g / cm.ThreePaper and paper together, the total thickness is 40.1μm, the overall density is 0.753g / cmThreeMade a long web of double mesh paper. Next, an aluminum electrolytic capacitor having a rating of 200 WV and 1000 μF was manufactured using this double paper as electrolytic paper. This is an electrolytic paper and an electrolytic capacitor corresponding to Example 2.
[0038]
Comparative Example 4
Coniferous kraft pulp beaten to a CSF of 5 ml or less with a beater is used as a papermaking raw material for a long net, thickness 21.2 μm, density 0.772 g / cmThreeWhile making high-density paper with a long mesh portion, the circular mesh portion is made of a raw material obtained by beating softwood kraft pulp into CSF 500 ml, thickness 29.6 μm, density 0.528 g / cmThreePaper and paper together, total thickness 50.8μm, total density 0.630g / cmThreeMade a long web of double mesh paper. Next, an aluminum electrolytic capacitor having a rating of 200 WV and 1000 μF was manufactured using this double paper as electrolytic paper. This is an electrolytic paper and an electrolytic capacitor corresponding to Example 3.
[0039]
Comparative Example 5
Coniferous kraft pulp beaten to a CSF of 5ml or less with a beater is used as a papermaking raw material for a long net, thickness 20.1μm, density 0.864g / cmThreeWhile making high-density paper with a long mesh portion, the circular mesh portion is made of a raw material obtained by beating coniferous kraft pulp into 300 ml of CSF and has a thickness of 20.5 μm and a density of 0.658 g / cm.ThreePaper and paper together, the overall thickness is 40.6μm, the overall density is 0.760g / cmThreeAfter manufacturing a long-mesh circular double paper, the thickness was 49.4 μm and the density was 0.625 g / cm by embossing.ThreeOf embossed paper. Next, an aluminum electrolytic capacitor having a rating of 200 WV and 1000 μF was manufactured using this double paper as electrolytic paper. This is an electrolytic paper and an electrolytic capacitor corresponding to Example 3.
[0040]
Comparative Example 6
Manila hemp pulp beaten to a CSF of 5 ml or less with a beater is used as a papermaking raw material for a long net, thickness 20.2 μm, density 0.745 g / cmThreeWhile making high-density paper with a long mesh part, Manila hemp pulp was beaten to 550 ml of CSF with a beater, and the thickness of the circular mesh part was 40.0 μm and the density was 0.465 g / cm.ThreePaper and paper together, the overall thickness is 60.2μm, the overall density is 0.559g / cmThreeMade a long web of double mesh paper. This is an electrolytic paper corresponding to Example 4.
[0041]
Comparative Example 7
Coniferous kraft pulp beaten to a CSF of 5 ml or less with a beater is used as a papermaking raw material for a long web, thickness 20.4 μm, density 0.767 g / cmThreeWhile making a high-density paper with a long mesh part, the circular mesh part is made of a raw material obtained by beating softwood kraft pulp into 600 ml of CSF, and has a thickness of 70.1 μm and a density of 0.528 g / cm.ThreePaper and paper together, total thickness 90.5μm, total density 0.582g / cmThreeMade a long web of double mesh paper. Next, an aluminum electrolytic capacitor having a rating of 400 WV and a capacity of 680 μF was manufactured using this double paper as electrolytic paper. This is an electrolytic paper and an electrolytic capacitor corresponding to Example 5.
[0042]
The evaluation results of the electrolytic papers of Examples 1 to 5 obtained as described above are shown in Table 1, and the evaluation results of the electrolytic papers of Comparative Examples 1 to 7 are shown in Table 2. Table 3 shows the measurement results of the electrolytic capacitor impregnation rate, the short-circuit failure rate during aging, the capacity, the leakage current, and the ESR according to Examples 2, 3, and 5 and Comparative Examples 3, 4, 5, and 7.
[0043]
[Table 1]
Figure 0003693299
[0044]
[Table 2]
Figure 0003693299
[0045]
[Table 3]
Figure 0003693299
[0046]
As shown in the results of Table 1, Table 2, and Table 3, electrolytic paper made of a long-mesh circular double paper having a two-layer structure of a high-density layer and a low-density layer using hard fibers was used.ByIn addition, it has excellent characteristics such as withstand voltage, ESR, electrolyte impregnation rate, and short-circuit defect rate during aging, and also has sufficient tensile strength as paper. In particular, in Example 1 of Table 1, the density is 0.88 g / cm in the high density layer.30.40 g / cm for the higher density and lower density layer3The lower density is within the preferable numerical range described below. Specifically, the thickness is 18.3 μm and the density is 0.905 g / cm.3A high-density layer, hard and thin esparto pulp and mercerized hardwood kraft pulp are mixed, thickness 17.2 μm, density 0.372 g / cm3A long-mesh round double-layered paper made by combining low-density layers with a density of 0.88 g / cm for the high-density layer.30.745g / cm below3And 0.40 g / cm for the low density layer30.524g / cm above3Although the tensile strength is equal to that of Comparative Example 1 described above, the effect of improving the withstand voltage and ESR is large. In Comparative Example 2, the overall thickness and density were substantially the same as in Example 1 by embossing after paper making, but Example 1 produced only by paper making has much higher tensile strength and ESR. It has been improved.
[0047]
Similarly, in Example 2, the high density side has a thickness of 25.0 μm and a density of 0.975 g / cm.ThreeThe low density side is 15.2 μm thick and the density is 0.367 g / cm.ThreeHowever, the effect of improving ESR is greater than that of Comparative Example 3 in which the overall thickness and density are substantially the same, and the electrolytic solution impregnation rate of the capacitor element is shortened to about 1/3.
[0048]
Example 3 has a thickness of 25.1 μm and a density of 0.955 g / cm.ThreeA high density layer and a hard, highly liquid absorbent cotton linter pulp with a relatively large fiber diameter and ordinary softwood kraft pulp are mixed together to produce a low density layer, which are combined, and have approximately the same overall thickness. Compared with the embossed paper of density comparative example 4 and comparative example 5, the tensile strength, withstand voltage and ESR are improved, and the aging short-circuit defect rate is 0%. Further, the impregnation speed is ½ or less compared with Comparative Example 4, which is improved to almost the same as the embossed paper of Comparative Example 5 manufactured for the purpose of improving the impregnation speed.
[0049]
In Example 4, the high density side has a thickness of 29.5 μm and a density of 0.895 g / cm.ThreeOn the low density side, cotton linter pulp and organic solvent spinning rayon are mixed to obtain a thickness of 30.5 μm and a density of 0.238 g / cm.ThreeMade of ultra-low density paper, total thickness 60.0μm, density 0.561g / cmThreeIt is what. Comparative Example 6 is a long-mesh circular double paper using Manila hemp pulp for both the high-density layer and the low-density layer, but Example 4 is greatly improved by both withstand voltage and ESR.
[0050]
Further, in Example 5, the high density side has a thickness of 39.9 μm and a density of 0.883 g / cm.ThreeA high density layer is formed on the low density side, and the paper is made by mixing cotton linter pulp and mercerized softwood kraft pulp, and combined with the high density layer, the total thickness is 90.1 μm, the density is 0.579 g / cmThreeAs in Comparative Example 7, the thickness and density were almost the same, but not only the improvement in the withstand voltage and ESR, but also the electrolyte impregnation rate was reduced to 1/2, and the aging short-circuit defect rate was from 3% to 0. %.
[0051]
【The invention's effect】
According to the present invention described in detail above, since the electrolytic paper having a two-layer structure of the high-density layer and the low-density layer is used, the withstand voltage can be maintained high as the entire electrolytic paper due to the presence of the high-density layer. The presence of the low-density layer can improve the impedance characteristics of the entire electrolytic paper, and can further simplify the element winding process. In particular, as a raw material for the low density layer, it is difficult to be deformed by the pressure during papermaking, and the cross section is circularRucoTon Linter PalTheBy using it as a raw material, even when mixing with a raw material in which fibers are laminated in layers and the density is increased, hard fibers are laminated non-uniformly, resulting in fiber gaps and low density papermaking. In particular, the high-density layer has a thickness of 10 to 50 μm and a density of 0.88 to 1.00 g / cm.3And a low density layer having a thickness of 10 to 60 μm and a density of 0.20 to 0.40 g / cm3By setting the amount within the above range, even when the fibers are impregnated and the fibers swell, the fiber gaps necessary for liquid permeation can be sufficiently maintained, the impregnation property and the liquid retention property are improved, and the ESR is also improved. Therefore, the electrolytic capacitors for medium and high pressure produced using these electrolytic papers have good impregnation properties and liquid retention properties of the electrolytic paper, so that during the aging, defective portions of the oxide film are smoothly repaired, By reducing the ESR, heat generation of the capacitor can be suppressed and gas generation can be caused, and since the electrolytic paper itself has a sufficient withstand voltage, aging short-circuit defects can be significantly reduced. Accordingly, it is possible to simultaneously improve both the ESR and the aging short-circuit defect rate of the medium- and high-voltage electrolytic capacitors, which have been considered difficult, and to improve the productivity of capacitor production.

Claims (2)

陽極箔と陰極箔との間に、長網抄紙機にて紙層形成された高密度層と円網抄紙機にて紙層形成された低密度層とを抄紙機上で重ねて抄き合わせた電解紙を介在してなる電解コンデンサにおいて、
低密度層は、厚さが10〜60μm,密度が0.20〜0.40g/cm であるとともに原料として断面円形で硬質のコットンリンターパルプが40%以上配合されており、高密度層は、厚さが10〜50μm,密度が0.88〜1.00g/cm であることを特徴とする電解コンデンサ。
Between the anode foil and the cathode foil, a high-density layer formed with a paper web machine and a low-density layer formed with a circular paper machine are overlapped on the paper machine and laminated together. In electrolytic capacitors that are made by interposing electrolytic paper,
The low-density layer has a thickness of 10 to 60 [mu] m, density has been formulated hard cotton linter pulp 40% or more circular cross section as a starting material with a 0.20~0.40g / cm 3, high density layer electrolytic capacitor thickness of 10 to 50 [mu] m, density, wherein 0.88~1.00g / cm 3 der Rukoto.
前記電解紙は、全体厚さ20〜110μm,全体密度0.50〜0.80g/cmである請求項1に記載の電解コンデンサ。The electrolytic capacitor according to claim 1, wherein the electrolytic paper has an overall thickness of 20 to 110 μm and an overall density of 0.50 to 0.80 g / cm 3 .
JP34151892A 1992-11-27 1992-11-27 Electrolytic capacitor Expired - Lifetime JP3693299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34151892A JP3693299B2 (en) 1992-11-27 1992-11-27 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34151892A JP3693299B2 (en) 1992-11-27 1992-11-27 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH06168848A JPH06168848A (en) 1994-06-14
JP3693299B2 true JP3693299B2 (en) 2005-09-07

Family

ID=18346690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34151892A Expired - Lifetime JP3693299B2 (en) 1992-11-27 1992-11-27 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3693299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069146A1 (en) 2011-11-11 2013-05-16 ニッポン高度紙工業株式会社 Separator for electrolytic capacitor, and electrolytic capacitor
EP3573083A4 (en) * 2017-01-20 2020-11-04 Nippon Kodoshi Corporation Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250376A (en) * 1995-03-07 1996-09-27 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor
JPH10125560A (en) 1996-10-21 1998-05-15 Honda Motor Co Ltd Separator for capacitor setting organic solvent as electrolyte and its manufacture
JP3872853B2 (en) * 1996-12-05 2007-01-24 ニッポン高度紙工業株式会社 Electrolytic capacitor
JPH11283872A (en) * 1998-02-02 1999-10-15 Asahi Glass Co Ltd Electric double layer capacitor
US6270883B1 (en) * 1998-10-09 2001-08-07 The United States Of America As Represented By The Secretary Of Agriculture Composites containing cellulosic pulp fibers and methods of making and using the same
JP4560940B2 (en) * 1999-11-04 2010-10-13 パナソニック株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2001196269A (en) * 2000-01-06 2001-07-19 Nippon Chemicon Corp Electrolytic capacitor
JP2001196268A (en) * 2000-01-06 2001-07-19 Nippon Chemicon Corp Electrolytic capacitor
JP4585707B2 (en) * 2001-03-29 2010-11-24 日本バイリーン株式会社 Electric double layer capacitor separator and electric double layer capacitor
JP4726027B2 (en) * 2001-04-26 2011-07-20 日本バイリーン株式会社 Electric double layer capacitor separator and electric double layer capacitor
JP2003031440A (en) * 2001-07-18 2003-01-31 Nippon Kodoshi Corp Electric double layer capacitor
JP2004288837A (en) * 2003-03-20 2004-10-14 Jelmax Co Ltd Electrolytic capacitor and fuel cell driven vehicle using same
JP5179779B2 (en) * 2007-05-14 2013-04-10 日東電工株式会社 Aluminum electrolytic capacitor element winding tape and aluminum electrolytic capacitor
JP2009064959A (en) * 2007-09-06 2009-03-26 Hitachi Aic Inc Aluminum electrolytic capacitor
JP2010239093A (en) * 2009-03-31 2010-10-21 Nippon Chemicon Corp Method for manufacturing electrolytic capacitor
JP5713738B2 (en) * 2011-03-15 2015-05-07 ニッポン高度紙工業株式会社 Electrolytic capacitor
JP2013197297A (en) * 2012-03-19 2013-09-30 Nippon Kodoshi Corp Separator for electrolytic capacitor and electrolytic capacitor using the same
JP2014222706A (en) * 2013-05-13 2014-11-27 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2015015312A (en) * 2013-07-03 2015-01-22 ニッポン高度紙工業株式会社 Separator for electrolytic capacitor, and aluminum electrolytic capacitor
JP6338449B2 (en) * 2014-05-27 2018-06-06 ニッポン高度紙工業株式会社 Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
JP6775130B2 (en) * 2014-07-18 2020-10-28 ニッポン高度紙工業株式会社 Separator for power storage device and power storage device using the separator
JP6412805B2 (en) 2015-01-16 2018-10-24 ニッポン高度紙工業株式会社 Separator and aluminum electrolytic capacitor
HUE057888T2 (en) 2015-09-29 2022-06-28 Nippon Kodoshi Corp Separator for electrochemical device and electrochemical device
JP2018121013A (en) 2017-01-27 2018-08-02 ニッポン高度紙工業株式会社 Separator for electrochemical element and electrochemical element
CN107195460B (en) * 2017-06-30 2022-10-18 肇庆绿宝石电子科技股份有限公司 Novel lightning-proof aluminum electrolytic capacitor and preparation method thereof
JP6989414B2 (en) 2018-02-27 2022-01-05 ニッポン高度紙工業株式会社 Separator for electrochemical element and electrochemical element
JP2020107682A (en) 2018-12-26 2020-07-09 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP6827458B2 (en) * 2018-12-27 2021-02-10 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069146A1 (en) 2011-11-11 2013-05-16 ニッポン高度紙工業株式会社 Separator for electrolytic capacitor, and electrolytic capacitor
EP3573083A4 (en) * 2017-01-20 2020-11-04 Nippon Kodoshi Corporation Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JPH06168848A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
JP3693299B2 (en) Electrolytic capacitor
JP6674956B2 (en) Electrochemical element separator and electrochemical element
EP3246927B1 (en) Separator and aluminum electrolytic capacitor
JP3466206B2 (en) Electrolytic capacitor
JP2015088703A (en) Separator for capacitors, and capacitor using the same
WO2018135471A1 (en) Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
JP2000331663A (en) Separator, and electrolytic capacitor, electric double layer capacitor, nonaqueous battery using the separator
JP7012425B2 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP3473965B2 (en) Electrolytic capacitor
JP6850921B1 (en) Separator for electrochemical element and electrochemical element
JP2892412B2 (en) Electrolytic paper for electrolytic capacitors
JP3098549B2 (en) Electrolytic capacitor
WO2022202190A1 (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
WO2020129952A1 (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
WO2022039003A1 (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP3264688B2 (en) Electrolytic capacitor
JP2013207250A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP6338449B2 (en) Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
JP2013201406A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2003249421A (en) Polymer electrolytic complex for electrolytic-capacitor driving, electrolytic capacitor using the same, and manufacturing method of the same
US20220059291A1 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2014222706A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2001052962A (en) Electrolytic paper for electrolytic capacitor and electrolytic capacitor using the same
JPH11145003A (en) Electrolytic capacitor and its manufacture
JPS5832772B2 (en) Electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8