JP3692745B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3692745B2
JP3692745B2 JP34659497A JP34659497A JP3692745B2 JP 3692745 B2 JP3692745 B2 JP 3692745B2 JP 34659497 A JP34659497 A JP 34659497A JP 34659497 A JP34659497 A JP 34659497A JP 3692745 B2 JP3692745 B2 JP 3692745B2
Authority
JP
Japan
Prior art keywords
fuel injection
drive voltage
valve
voltage
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34659497A
Other languages
Japanese (ja)
Other versions
JPH11182378A (en
Inventor
康治 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34659497A priority Critical patent/JP3692745B2/en
Publication of JPH11182378A publication Critical patent/JPH11182378A/en
Application granted granted Critical
Publication of JP3692745B2 publication Critical patent/JP3692745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直噴火花点火式内燃機関の燃料噴射制御装置に関し、特に機関運転条件に応じて燃料噴射率を変化させる燃料噴射制御装置に関する。
【0002】
【従来の技術】
従来の直噴火花点火式内燃機関の燃料噴射制御装置として、特開平7−63061号公報に開示されているものがある。
このものでは、燃料噴射弁から燃焼室内に直接燃料噴射を行うと共に、点火プラグにより直接着火を行うようにした直噴火花点火式内燃機関において、燃焼室が、主燃焼室と、該主燃焼室を取り囲むように環状に形成された外側燃焼室とによって構成され、燃料噴射弁からの燃料噴射が、低負荷時には主燃焼室に向けて行われ、高負荷時には主燃焼室及び外側燃焼室に向けて行われるように設定されている。
【0003】
燃料噴射弁は、燃焼室外周縁部に配置され、主燃焼室に指向する第1噴孔と、外側燃焼室に指向する第2噴孔とを有し、第1噴孔からの燃料噴射量に対する第2噴孔からの燃料噴射量の割合が、機関負荷が大きいときは、小さいときに比して、大きくされる。
このような制御のため、燃料噴射弁は、機関負荷に応じてリフトされる可変リフト弁を有し、第1噴孔と第2噴孔とが、可変リフト弁のリフト方向にオフセットして配設されている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の燃料噴射制御装置にあっては、次のような問題点があった。
燃料噴射率を制御する際、可変リフト弁にて行っているが、リフト量の可変機構は技術的に困難であり、実用化の可能性は極めて低い。
【0005】
また、ホールノズル型の燃料噴射弁での複数噴射孔を想定しているが、スワールノズル型の燃料噴射弁を用いる場合、リフト方向にオフセットされた複数噴射孔を用いることは不可能である。
また、直噴火花点火式内燃機関の成層燃焼において、高回転側での燃料拡散による燃焼不安定と、高負荷側での過濃による燃焼不安定及びプラグくすぶりとは、トレードオフの関係にあり、解決困難な問題である。
【0006】
本発明は、このような実状に鑑み、直噴火花点火式内燃機関において、より簡単な方法で、機関運転条件に応じ燃料噴射率を可変として、燃焼性能を向上させることのできる燃料噴射制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、本発明者らは、鋭意研究の結果、直噴火花点火式内燃機関においては、高圧で燃料を噴射するため、噴射時間が比較的短いことから、燃料噴射弁を開弁動作させる駆動電圧を変化させることにより、燃料噴射弁の開弁動作時の開弁速度を変化させることで、燃料噴射率を変化させ得ることを見い出し、次のような発明に至った。
【0008】
請求項1に係る発明では、燃焼室内に直接燃料を噴射する電磁式の燃料噴射弁を備える直噴火花点火式内燃機関において、機関運転条件に応じて前記燃料噴射弁の開弁速度を変化させるために、前記燃料噴射弁を開弁動作させるための駆動電圧を変化させる駆動電圧可変手段を設けて、燃料噴射制御装置を構成する。
ここでいう駆動電圧とは、燃料噴射弁を開弁動作させるための比較的大きな開弁動作電圧と、燃料噴射弁を開弁保持するための比較的小さな開弁保持電圧とのうち、前者である。
【0009】
請求項2に係る発明では、前記駆動電圧可変手段は、成層燃焼(圧縮行程にて燃料を噴射することにより点火プラグ回りに集中的に層状の混合気を形成して行う成層燃焼)時に、機関回転数及び負荷に応じて、駆動電圧を変化させるものであることを特徴とする。
請求項3に係る発明では、前記駆動電圧可変手段は、成層燃焼時に、機関回転数が増大する程、また機関負荷が減少する程、駆動電圧を大きくするものであることを特徴とする。
【0010】
請求項4に係る発明では、前記駆動電圧可変手段は、均質燃焼(吸気行程にて燃料を噴射することにより燃焼室内に燃料を拡散させ均質な混合気を形成して行う均質燃焼)時に、高回転・高負荷程、駆動電圧を大きくするものであることを特徴とする。
請求項5に係る発明では、前記駆動電圧可変手段による駆動電圧の変化に合わせて、噴射時間を決定するパルス幅を補正するパルス幅補正手段を設けたことを特徴とする。
【0011】
【発明の効果】
請求項1に係る発明によれば、直噴火花点火式内燃機関において、機関運転条件に応じて燃料噴射弁への駆動電圧を変化させることにより、燃料噴射弁の開弁動作時の開弁速度を変化させることで、燃料噴射率を変化させることができる。よって、極めて簡単な方法で、機関運転条件に応じ燃料噴射率を可変として、燃焼性能を向上させることができる。
【0012】
請求項2に係る発明によれば、成層燃焼時に、機関回転数及び負荷に応じて、駆動電圧を変化させることで、成層燃焼は一般的に低回転・低負荷の燃料噴射量が比較的小さい領域で行われるので、駆動電圧による燃料噴射率の変化が顕著であり、また層状化の程度(燃料のかたまり具合)が燃焼性能に大きき影響することから、極めて有効である。
【0013】
請求項3に係る発明によれば、成層燃焼時に、機関回転数が増大する程、また機関負荷が減少する程、駆動電圧を大きくすることで、トレードオフの関係を解決できる。すなわち、高回転側では、流動の影響を受けて燃料が拡散しやすくなるが、駆動電圧を大きくして燃料噴射率を大きくすることで、燃料の拡散を防止して、良好な成層燃焼を実現できる。また、高負荷側では、燃料噴射量が比較的大きくなることから、点火プラグ回りに燃料が集中し過ぎてプラグのくすぶり等を生じることがあるが、駆動電圧を小さくして燃料噴射率を小さくすることで、燃料をある程度拡散させ、プラグのくすぶり等を防止できる。
【0014】
請求項4に係る発明によれば、均質燃焼時に、高回転・高負荷程、駆動電圧を大きくすることで、成層燃焼時ほどの効果はないものの、燃焼性能をある程度改善できる。
請求項5に係る発明によれば、駆動電圧の変化に合わせて噴射時間を決定するパルス幅を補正することで、空燃比のずれを確実に防止できる。。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すシステム図である。
直噴火花点火式内燃機関1において、ピストン2の頂面の偏心位置に凹部(キャビティ)3が形成されて、シリンダヘッド4との間に燃焼室5が形成される。そして、シリンダヘッド4の略中心位置に点火プラグ6が取付けられて、燃焼室5に臨んでいる。一方、燃料噴射弁7は、シリンダ壁に取付けられて、燃焼室5に臨んでいる。
【0016】
ここにおいて、燃料噴射弁7から圧縮行程にて燃料を噴射することにより点火プラグ6回りに集中的に層状の混合気を形成して、成層燃焼を行わせることができ、また、吸気行程にて燃料を噴射することにより燃焼室5内に燃料を拡散させ均質な混合気を形成して、均質燃焼を行わせることができる。
燃料噴射弁7は、電磁式(ソレノイド駆動式)であり、図2〜図4に示すように構成されている。
【0017】
図2を参照し、ターミナル11を介してコイル12に電圧信号が印加されると、コイル12に電流が流れ、コア13、ヨーク14、プランジャ15で磁気回路が構成され、プランジャ15がスプリング16に抗してコア13側に吸引される。プランジャ16が移動すると、これと一体になっているボール弁17が移動して、ノズル18のシート面19から離れ、噴孔20を開口する。これにより、燃料噴射がなされる。
【0018】
また、ボール弁17を囲んで、筒状のスワラー21が設けられている。このスワラー21には、図3及び図4に示すように、接線方向に燃料を案内する複数の燃料溝22が形成されており、これにより噴射燃料に旋回力が付与される。
この燃料噴射弁7への電圧信号は、図1中の駆動回路8より印加される。
駆動回路8は、図1中のコントロールユニット9から、エンジン回転に同期した燃料噴射タイミング(成層燃焼時は圧縮行程、均質燃焼時は吸気行程)にて出力される噴射パルス信号(機関運転条件に応じて演算されたパルス幅を持つ信号)と、駆動電圧の指令値とを受け、パルスの立上がり部分の一定時間が指令された比較的大きな駆動電圧(開弁動作電圧)で、その後部分が比較的小さな一定の開弁保持電圧である電圧信号(図5参照)を生成して、燃料噴射弁7に与える。
【0019】
ここで、コントロールユニット9内にソフトウエア的に構成される駆動電圧可変手段9Aにより、機関運転条件に応じて、駆動電圧が可変制御される。また、パルス幅補正手段9Bにより、駆動電圧の変化に合わせて、パルス幅を補正する。
図5は駆動電圧を大きくした場合と駆動電圧を小さくした場合とを示し、図6は駆動電圧大の場合の弁リフト特性と駆動電圧小の場合の弁リフト特性とを示している。
【0020】
駆動電圧を可変とすると、弁の移動速度が可変となり、その結果、燃料噴射率が可変となる。具体的には、駆動電圧を大きくすると、弁の移動速度が早くなり、燃料噴射率が大きくなる。
同量の燃料を噴射する場合、駆動電圧が大きいと、燃料噴射率が大きくなるため、パルス幅(噴射時間)は短くする(図5参照)。
【0021】
図7には燃料噴射率の大小による成層燃焼時の筒内燃料の動きを示している。噴射率の違いにより、燃料の空間密度が異なる。噴射率が大きい場合、図7(A)に示すように、筒内に燃料が拡散しにくく、その結果、成層燃焼の安定につながる。噴射率が小さい場合、図7(B)に示すように、筒内の燃料が拡散しやすく、成層燃焼での高負荷側で燃料の過濃を防ぎ、プラグのくすぶりを防止できる。また、均質燃焼時に筒内の燃料の混合が促進され、燃焼の安定及び排気エミッションの低減につながる。
【0022】
次により具体的な制御例について説明する。
図8は制御例1のフローチャートである。
ステップ1(図にはS1と記す。以下同様)では、機関回転数及び負荷(例えば吸入空気量)を読込む。
ステップ2では、機関回転数と負荷とをパラメータとして駆動電圧を定めた図9(A)のマップを参照して、駆動電圧を設定する。この部分が駆動電圧可変手段に相当する。
【0023】
ステップ3では、図9(A)のマップと対応させて、機関回転数と負荷とをパラメータとしてパルス幅を定めた図9(B)のマップを参照して、パルス幅を設定する。この部分がパルス幅補正手段に相当する。
ここで、図9(A)のマップは、低回転・低負荷領域での成層燃焼時には、機関回転数が増大する程、また、機関負荷が減少する程、駆動電圧を大きくしてある。
【0024】
これにより、成層燃焼時の高回転側では、流動の影響を受けて燃料が拡散しやすくなるが、駆動電圧を大きくして燃料噴射率を大きくすることで、燃料の拡散を防止して、良好な成層燃焼を実現できる。また、成層燃焼時の高負荷側では、燃料噴射量が比較的大きくなることから、点火プラグ回りに燃料が集中し過ぎてプラグのくすぶり等を生じることがあるが、駆動電圧を小さくして燃料噴射率を小さくすることで、燃料をある程度拡散させ、プラグのくすぶり等を防止できる。
【0025】
また、均質燃焼時は、高回転・高負荷程、駆動電圧を大きくすることで、成層燃焼時ほどの効果はないものの、燃焼性能をある程度改善できる。
また、図9(B)のマップは、機関回転数及び負荷に応じた基本パルス幅にそのときの駆動電圧に対応させた補正分を含んで設定されるもので、駆動電圧が高い場合にパルス幅を短く、駆動電圧が低い場合にパルス幅を長くする。
【0026】
図10は制御例2のフローチャートである。
ステップ11では、機関回転数及び負荷(例えば吸入空気量)を読込む。
ステップ12では、機関回転数と負荷とをパラメータとして駆動電圧が一定(基本駆動電圧)の場合を想定して基本パルス幅を定めた図11(A)のマップを参照して、基本パルス幅を設定する。
【0027】
ステップ13では、図11(A)のマップと対応させて、機関回転数と負荷とをパラメータとして電圧補正係数を定めた図11(B)のマップを参照して、電圧補正係数を設定する。
ステップ14では、基本駆動電圧(定数)に電圧補正係数を乗算して、駆動電圧を設定する。この部分が駆動電圧可変手段に相当する。
【0028】
ステップ15では、基本パルス幅を電圧補正係数で除算し(基本パルス幅に電圧補正係数の逆数を乗算し)、更に補正係数(実験などによりマッチングされる定数)を乗算して、パルス幅を設定する。この部分がパルス幅補正手段に相当する。
この制御例2は、制御例1と方法が異なるのみで、特性的には同じである。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すシステム図
【図2】 燃料噴射弁の断面図
【図3】 燃料噴射弁のノズル部の拡大図
【図4】 図3のA−A’断面図
【図5】 駆動電圧の説明図
【図6】 駆動電圧の大小による弁リフト特性を示す図
【図7】 噴射率の大小による成層燃焼時の筒内燃料の動きを示す図
【図8】 制御例1のフローチャート
【図9】 制御例1で用いるマップを示す図
【図10】 制御例2のフローチャート
【図11】 制御例2で用いるマップを示す図
【符号の説明】
1 直噴火花点火式内燃機関
5 燃焼室
6 点火プラグ
7 燃料噴射弁
8 駆動回路
9 コントロール
9A 駆動電圧可変手段
9B パルス幅補正手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for a direct injection spark ignition type internal combustion engine, and more particularly to a fuel injection control device that changes a fuel injection rate in accordance with engine operating conditions.
[0002]
[Prior art]
A conventional fuel injection control device for a direct injection spark ignition type internal combustion engine is disclosed in Japanese Patent Laid-Open No. 7-63061.
In this, in a direct injection spark ignition type internal combustion engine in which fuel is directly injected from a fuel injection valve into a combustion chamber and is directly ignited by an ignition plug, the combustion chamber includes a main combustion chamber and the main combustion chamber. And an outer combustion chamber formed in an annular shape so as to surround the fuel, and fuel injection from the fuel injection valve is performed toward the main combustion chamber when the load is low, and toward the main combustion chamber and the outer combustion chamber when the load is high Is set to be done.
[0003]
The fuel injection valve is disposed at the outer peripheral edge of the combustion chamber, has a first injection hole directed to the main combustion chamber, and a second injection hole directed to the outer combustion chamber, and corresponds to a fuel injection amount from the first injection hole. The ratio of the fuel injection amount from the second nozzle hole is increased when the engine load is large compared to when the engine load is small.
For such control, the fuel injection valve has a variable lift valve that is lifted according to the engine load, and the first injection hole and the second injection hole are arranged offset in the lift direction of the variable lift valve. It is installed.
[0004]
[Problems to be solved by the invention]
However, such a conventional fuel injection control device has the following problems.
When the fuel injection rate is controlled, a variable lift valve is used. However, a variable mechanism for the lift amount is technically difficult, and the possibility of practical use is extremely low.
[0005]
Further, although a plurality of injection holes in the hole nozzle type fuel injection valve are assumed, it is impossible to use a plurality of injection holes offset in the lift direction when a swirl nozzle type fuel injection valve is used.
In addition, in stratified combustion of a direct-injection spark ignition internal combustion engine, combustion instability due to fuel diffusion on the high rotation side, combustion instability due to overconcentration on the high load side, and plug smoldering are in a trade-off relationship. It is a difficult problem to solve.
[0006]
In view of such a situation, the present invention provides a fuel injection control device capable of improving combustion performance in a direct-injection spark-ignition internal combustion engine by changing the fuel injection rate according to engine operating conditions in a simpler manner. The purpose is to provide.
[0007]
[Means for Solving the Problems]
For this reason, as a result of diligent research, the present inventors, in a direct injection spark ignition internal combustion engine, inject fuel at a high pressure, and therefore the injection time is relatively short. It has been found that by changing the voltage, the fuel injection rate can be changed by changing the valve opening speed during the valve opening operation of the fuel injection valve, leading to the following invention.
[0008]
In a first aspect of the invention, in a direct injection spark ignition internal combustion engine having an electromagnetic fuel injection valve that directly injects fuel into the combustion chamber, the valve opening speed of the fuel injection valve is changed according to engine operating conditions . Therefore, the provided driving voltage varying means for varying a driving voltage for opening operation of the fuel injection valve, a fuel injection control apparatus.
The driving voltage referred to here is the former among the relatively large valve opening operation voltage for opening the fuel injection valve and the relatively small valve opening holding voltage for holding the fuel injection valve open. is there.
[0009]
In the invention according to claim 2, the drive voltage varying means is used for engine combustion during stratified combustion (stratified combustion performed by intensively forming a stratified mixture around the spark plug by injecting fuel in the compression stroke). The drive voltage is changed according to the rotation speed and the load.
The invention according to claim 3 is characterized in that the drive voltage varying means increases the drive voltage as the engine speed increases and the engine load decreases during stratified combustion.
[0010]
In the invention according to claim 4, the drive voltage varying means is high during homogeneous combustion (homogeneous combustion in which fuel is diffused into the combustion chamber by injecting fuel during the intake stroke to form a homogeneous mixture). It is characterized in that the driving voltage is increased as the rotation and the load become higher.
The invention according to claim 5 is characterized in that pulse width correction means for correcting a pulse width for determining the ejection time is provided in accordance with a change in drive voltage by the drive voltage variable means.
[0011]
【The invention's effect】
According to the first aspect of the present invention, in the direct injection spark ignition internal combustion engine, the valve opening speed during the valve opening operation of the fuel injector is changed by changing the drive voltage to the fuel injector according to the engine operating conditions. By changing the fuel injection rate, the fuel injection rate can be changed. Therefore, it is possible to improve the combustion performance by making the fuel injection rate variable according to the engine operating conditions by an extremely simple method.
[0012]
According to the second aspect of the present invention, during stratified combustion, the drive voltage is changed in accordance with the engine speed and the load, so that the stratified combustion generally has a relatively small amount of fuel injection at low rotation and low load. Since it is performed in the region, the change in the fuel injection rate due to the drive voltage is significant, and the degree of stratification (the degree of fuel clumping) greatly affects the combustion performance, which is extremely effective.
[0013]
According to the invention of claim 3, the trade-off relationship can be solved by increasing the drive voltage as the engine speed increases and the engine load decreases during stratified combustion. In other words, on the high speed side, the fuel is more likely to diffuse due to the influence of flow, but by increasing the drive voltage and the fuel injection rate, fuel diffusion is prevented and good stratified combustion is achieved. it can. On the high load side, since the fuel injection amount is relatively large, the fuel may concentrate too much around the spark plug, causing smoldering of the plug, etc., but the drive voltage is reduced to reduce the fuel injection rate. By doing so, the fuel can be diffused to some extent and smoldering of the plug can be prevented.
[0014]
According to the fourth aspect of the present invention, the combustion performance can be improved to some extent by increasing the drive voltage at higher rotation speed and higher load during homogeneous combustion, although the effect is not as good as during stratified combustion.
According to the fifth aspect of the present invention, by correcting the pulse width that determines the injection time in accordance with the change of the drive voltage, it is possible to reliably prevent the deviation of the air-fuel ratio. .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram showing an embodiment of the present invention.
In the direct-injection spark-ignition internal combustion engine 1, a recess (cavity) 3 is formed at an eccentric position of the top surface of the piston 2, and a combustion chamber 5 is formed between the cylinder head 4. A spark plug 6 is attached to a substantially central position of the cylinder head 4 and faces the combustion chamber 5. On the other hand, the fuel injection valve 7 is attached to the cylinder wall and faces the combustion chamber 5.
[0016]
Here, by injecting fuel from the fuel injection valve 7 in the compression stroke, a stratified mixture can be formed intensively around the spark plug 6 to cause stratified combustion, and in the intake stroke By injecting the fuel, the fuel is diffused into the combustion chamber 5 to form a homogeneous air-fuel mixture, and homogeneous combustion can be performed.
The fuel injection valve 7 is of an electromagnetic type (solenoid drive type) and is configured as shown in FIGS.
[0017]
Referring to FIG. 2, when a voltage signal is applied to the coil 12 via the terminal 11, a current flows through the coil 12, and a magnetic circuit is formed by the core 13, the yoke 14, and the plunger 15. The core 13 is sucked against it. When the plunger 16 moves, the ball valve 17 integrated with it moves away from the seat surface 19 of the nozzle 18 and opens the nozzle hole 20. Thereby, fuel injection is performed.
[0018]
A cylindrical swirler 21 is provided surrounding the ball valve 17. As shown in FIGS. 3 and 4, the swirler 21 is formed with a plurality of fuel grooves 22 that guide the fuel in the tangential direction, thereby imparting a turning force to the injected fuel.
The voltage signal to the fuel injection valve 7 is applied from the drive circuit 8 in FIG.
The drive circuit 8 outputs an injection pulse signal (according to engine operating conditions) output from the control unit 9 in FIG. 1 at a fuel injection timing synchronized with engine rotation (compression stroke during stratified combustion, intake stroke during homogeneous combustion). A signal with a pulse width calculated in response) and the command value of the drive voltage, and a comparatively large drive voltage (valve opening voltage) commanded for a certain period of time at the rising edge of the pulse, the subsequent part is compared A voltage signal (see FIG. 5), which is a small constant valve-opening holding voltage, is generated and applied to the fuel injection valve 7.
[0019]
Here, the drive voltage is variably controlled according to the engine operating conditions by the drive voltage varying means 9A configured in software in the control unit 9. Further, the pulse width is corrected by the pulse width correcting means 9B in accordance with the change of the driving voltage.
FIG. 5 shows a case where the drive voltage is increased and a case where the drive voltage is reduced, and FIG. 6 shows a valve lift characteristic when the drive voltage is large and a valve lift characteristic when the drive voltage is small.
[0020]
When the drive voltage is variable, the moving speed of the valve is variable, and as a result, the fuel injection rate is variable. Specifically, when the drive voltage is increased, the moving speed of the valve is increased and the fuel injection rate is increased.
When injecting the same amount of fuel, if the drive voltage is large, the fuel injection rate increases, so the pulse width (injection time) is shortened (see FIG. 5).
[0021]
FIG. 7 shows the movement of in-cylinder fuel during stratified combustion depending on the fuel injection rate. The spatial density of fuel varies depending on the injection rate. When the injection rate is large, as shown in FIG. 7A, the fuel is difficult to diffuse into the cylinder, and as a result, stratified combustion is stabilized. When the injection rate is small, as shown in FIG. 7 (B), the fuel in the cylinder is likely to diffuse, preventing excessive fuel concentration on the high load side in stratified combustion and preventing smoldering of the plug. In addition, mixing of fuel in the cylinder is promoted during homogeneous combustion, leading to stable combustion and reduced exhaust emissions.
[0022]
A specific control example will be described below.
FIG. 8 is a flowchart of the control example 1.
In step 1 (denoted as S1 in the figure, the same applies hereinafter), the engine speed and load (for example, intake air amount) are read.
In step 2, the drive voltage is set with reference to the map of FIG. 9A in which the drive voltage is determined using the engine speed and the load as parameters. This portion corresponds to drive voltage varying means.
[0023]
In step 3, the pulse width is set with reference to the map of FIG. 9B in which the pulse width is determined using the engine speed and the load as parameters in correspondence with the map of FIG. 9A. This part corresponds to the pulse width correction means.
Here, in the map of FIG. 9A, at the time of stratified combustion in the low rotation / low load region, the drive voltage is increased as the engine speed increases and the engine load decreases.
[0024]
As a result, on the high rotation side during stratified combustion, fuel tends to diffuse due to the influence of flow, but by increasing the drive voltage and increasing the fuel injection rate, fuel diffusion is prevented and good Stratified combustion can be realized. On the high load side during stratified combustion, the amount of fuel injected is relatively large, so fuel may concentrate too much around the spark plug and cause smoldering of the plug. By reducing the injection rate, fuel can be diffused to some extent and smoldering of the plug can be prevented.
[0025]
Also, during homogeneous combustion, increasing the drive voltage at higher speeds and loads makes it possible to improve the combustion performance to some extent, although not as effective as during stratified combustion.
Further, the map of FIG. 9B is set so that the basic pulse width corresponding to the engine speed and the load includes a correction corresponding to the driving voltage at that time, and the pulse is generated when the driving voltage is high. When the width is short and the driving voltage is low, the pulse width is lengthened.
[0026]
FIG. 10 is a flowchart of the control example 2.
In step 11, the engine speed and load (for example, intake air amount) are read.
In step 12, the basic pulse width is determined by referring to the map of FIG. 11A in which the basic pulse width is determined assuming that the drive voltage is constant (basic drive voltage) using the engine speed and load as parameters. Set.
[0027]
In step 13, the voltage correction coefficient is set with reference to the map of FIG. 11B in which the voltage correction coefficient is determined using the engine speed and the load as parameters in correspondence with the map of FIG.
In step 14, the basic drive voltage (constant) is multiplied by a voltage correction coefficient to set the drive voltage. This portion corresponds to drive voltage varying means.
[0028]
In step 15, the pulse width is set by dividing the basic pulse width by the voltage correction coefficient (multiplying the basic pulse width by the inverse of the voltage correction coefficient) and further multiplying by the correction coefficient (a constant that is matched by experiment etc.). To do. This part corresponds to the pulse width correction means.
This control example 2 is the same in characteristics as the control example 1 except for the method.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the present invention. FIG. 2 is a cross-sectional view of a fuel injection valve. FIG. 3 is an enlarged view of a nozzle portion of the fuel injection valve. FIG. 5 is an explanatory diagram of drive voltage. FIG. 6 is a diagram showing valve lift characteristics depending on the magnitude of the drive voltage. FIG. 7 is a diagram showing movement of in-cylinder fuel during stratified combustion by the magnitude of the injection rate. Flowchart of Example 1 [FIG. 9] Diagram showing a map used in Control Example 1. [FIG. 10] Flowchart of Control Example 2. [FIG. 11] Diagram showing a map used in Control Example 2. [Explanation of Symbols]
DESCRIPTION OF SYMBOLS 1 Direct injection spark ignition internal combustion engine 5 Combustion chamber 6 Spark plug 7 Fuel injection valve 8 Drive circuit 9 Control 9A Drive voltage variable means 9B Pulse width correction means

Claims (5)

燃焼室内に直接燃料を噴射する電磁式の燃料噴射弁を備える直噴火花点火式内燃機関において、
燃料噴射を行うときに、燃料噴射弁の開弁用コイルに対し、初めに比較的大きな電圧である駆動電圧を印加して燃料噴射弁を開弁動作させ、次いで比較的小さな電圧である開弁保持電圧を印加して燃料噴射弁を開弁状態に保持する構成とし、
機関運転条件に応じて前記燃料噴射弁の開弁速度を変化させるために、前記燃料噴射弁を開弁動作させるための駆動電圧と、その後の開弁保持電圧とのうち、前記駆動電圧の大きさを変化させる駆動電圧可変手段を設けたことを特徴とする内燃機関の燃料噴射制御装置。
In a direct-injection spark-ignition internal combustion engine equipped with an electromagnetic fuel injection valve that directly injects fuel into a combustion chamber,
When fuel injection is performed, a drive voltage that is a relatively large voltage is first applied to a valve opening coil of the fuel injection valve to open the fuel injection valve, and then a valve that is relatively small in voltage is opened. It is configured to hold the fuel injection valve in an open state by applying a holding voltage,
In order to change the valve opening speed of the fuel injection valve according to the engine operating conditions, the drive voltage of the drive voltage for opening the fuel injection valve and the valve opening holding voltage thereafter is the magnitude of the drive voltage. the fuel injection control device for an internal combustion engine, characterized in that a driving voltage varying means for varying a of.
前記駆動電圧可変手段は、成層燃焼時に、機関回転数及び負荷に応じて、駆動電圧を変化させるものであることを特徴とする請求項1記載の内燃機関の燃料噴射制御装置。2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the drive voltage varying means changes the drive voltage according to the engine speed and load during stratified combustion. 前記駆動電圧可変手段は、成層燃焼時に、機関回転数が増大する程、また機関負荷が減少する程、駆動電圧を大きくするものであることを特徴とする請求項2記載の内燃機関の燃料噴射制御装置。3. The fuel injection for an internal combustion engine according to claim 2, wherein the drive voltage varying means increases the drive voltage as the engine speed increases and the engine load decreases during stratified combustion. Control device. 前記駆動電圧可変手段は、均質燃焼時に、高回転・高負荷程、駆動電圧を大きくするものであることを特徴とする請求項3記載の内燃機関の燃料噴射制御装置。4. The fuel injection control device for an internal combustion engine according to claim 3, wherein the drive voltage varying means increases the drive voltage at higher revolutions and higher loads during homogeneous combustion. 前記駆動電圧可変手段による駆動電圧の変化に合わせて、噴射時間を決定するパルス幅を補正するパルス幅補正手段を設けたことを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の燃料噴射制御装置。The pulse width correction means for correcting the pulse width for determining the ejection time in accordance with the change in the drive voltage by the drive voltage variable means is provided. Fuel injection control device for internal combustion engine.
JP34659497A 1997-12-16 1997-12-16 Fuel injection control device for internal combustion engine Expired - Lifetime JP3692745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34659497A JP3692745B2 (en) 1997-12-16 1997-12-16 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34659497A JP3692745B2 (en) 1997-12-16 1997-12-16 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11182378A JPH11182378A (en) 1999-07-06
JP3692745B2 true JP3692745B2 (en) 2005-09-07

Family

ID=18384493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34659497A Expired - Lifetime JP3692745B2 (en) 1997-12-16 1997-12-16 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3692745B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19833830A1 (en) 1998-07-28 2000-02-03 Bosch Gmbh Robert System for energizing magnetic valves controlling fuel injection in IC engine, using increased starting voltage and engine operating characteristic(s)
JP2010236496A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Method and device for controlling internal combustion engine
JP2013036332A (en) * 2011-08-03 2013-02-21 Toyota Motor Corp Exhaust gas purification system for internal combustion engine

Also Published As

Publication number Publication date
JPH11182378A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
EP1291512B1 (en) Control apparatus for a direct-injection spark-ignition engine, direct-injection spark-ignition engine, engine control method therefor, computer-readable storage and computer program
JP2002339789A (en) Control device for spark ignition type direct-injection engine and fuel injection time setting method
JP4161789B2 (en) Fuel injection control device
JPWO2003010428A1 (en) In-cylinder direct injection internal combustion engine
JP2002188447A (en) Internal combustion engine of direct in cylinder fuel injection
JP2004036554A (en) Fuel injection device, internal combustion engine, and controlling method of fuel injection device
JP4069750B2 (en) In-cylinder direct injection spark ignition internal combustion engine
EP1223329B1 (en) Fuel injection control device and method for direct injection spark-ignition engine
JP3692745B2 (en) Fuel injection control device for internal combustion engine
JP2000008913A (en) Variable mixture concentration distribution control method for spark-ignition engine
JPH11107792A (en) Premix compression ignition type engine
JP4126977B2 (en) In-cylinder direct injection internal combustion engine
JP3968846B2 (en) Fuel injection device
JPH0559271B2 (en)
JP3362317B2 (en) Fuel injection control device for internal combustion engine
US6837211B2 (en) Stratified air-fuel mixture forming apparatus for internal combustion engine and method thereof
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4029737B2 (en) Direct-injection spark ignition internal combustion engine
JPH04237822A (en) Cylinder injection type internal combustion engine
JP4078894B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006266119A (en) Control device for in-cylinder direct injection type spark ignition internal combustion engine
JP3823612B2 (en) Direct-injection spark ignition internal combustion engine
JP2006046128A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4134735B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

EXPY Cancellation because of completion of term