JP3968846B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP3968846B2
JP3968846B2 JP00880598A JP880598A JP3968846B2 JP 3968846 B2 JP3968846 B2 JP 3968846B2 JP 00880598 A JP00880598 A JP 00880598A JP 880598 A JP880598 A JP 880598A JP 3968846 B2 JP3968846 B2 JP 3968846B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
stroke amount
control means
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00880598A
Other languages
Japanese (ja)
Other versions
JPH11200917A (en
Inventor
和喜 荒巻
祐一 入矢
久司 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP00880598A priority Critical patent/JP3968846B2/en
Publication of JPH11200917A publication Critical patent/JPH11200917A/en
Application granted granted Critical
Publication of JP3968846B2 publication Critical patent/JP3968846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は直噴式の火花点火式内燃機関に適合する燃料噴射装置に関する。
【0002】
【従来の技術と解決すべき課題】
火花点火式内燃機関において、主として圧縮行程以降に筒内に直接燃料を噴射供給して成層燃焼させることにより燃費、出力、排気エミッション性能を改善するようにしたものが知られている。こうした直噴式機関の特徴を充分に発揮させるためには、筒内に噴射供給する燃料粒子を運転状態に応じて適切に制御することが望ましく、このために例えば特開平7−166927号公報に開示されているように、燃料噴射弁に供給する燃料の圧力を可変制御することにより燃料の微粒化の程度を制御するようにしたものが提案されている。。
【0003】
ところで、本出願人は、成層運転時の燃焼安定性が成層化の度合いの影響を強く受けるため同じ成層運転時であっても運転状態によって適切な燃料噴射率(単位時間当たりの燃料噴射量)が異なることを実験により確認した。燃料圧力を変化させれば、燃料の微粒化だけでなく燃料噴射率も変化するのであるが、上記従来技術では燃料の微粒化のみに着目しているため、成層燃焼時は一律に燃料圧力を高くするだけであった。また、燃料圧力だけで適切な燃料噴射率を得ようとすると、非常に幅広い燃料圧力と高燃圧に対応させるために容量の大きな燃料ポンプが必要となるためコストが上昇し、同時にその駆動負担が大きくなるため燃費が悪化するという問題が生じる。
【0004】
また、上記従来技術とは別に、燃料噴射弁の弁体のストローク量を可変制御することによって燃料噴射率を制御する技術が特開平5−321786号公報に開示されているが、これは単位重量当たりの発熱量が異なる2種類の燃料を切り換えて使用する場合に燃料噴射率を可変制御するものであり、成層燃焼を行わせる直噴式内燃機関への適用については開示がない。
【0005】
本発明はこのような従来の問題点に着目してなされたもので、直噴式の火花点火式機関において、少なくとも成層燃焼運転時に燃料噴射弁の弁体のストローク量を精度良く可変制御することにより幅広い機関運転域にて最適燃料噴射が可能な燃料噴射弁および燃料噴射装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記問題を解決するために、請求項1の発明は、機関運転状態を検出する手段と、燃料噴射弁の開弁期間と開弁時期とを機関運転状態に応じて制御する燃料噴射制御手段とを備え、燃料噴射制御手段は機関が所定の運転域にあるときには燃料を主に圧縮行程後半に噴射して成層燃焼を行い、前記以外の運転状態にあるときには燃料を主に吸気行程に噴射して均質燃焼を行うようにした直噴式の火花点火機関の燃料噴射制御装置において、前記燃料噴射弁にその最大ストローク量を変化させる可変ストローク機構と、少なくとも前記成層燃焼時の機関運転状態に応じて燃料噴射弁の最大ストローク量を制御し、成層運転時の高負荷域では最大ストローク量を低負荷域よりも小さくするストローク量制御手段と、を備える
【0008】
請求項2の発明は、上記請求項1において、成層運転時の高回転域では燃料噴射弁の最大ストローク量を低回転域よりも大きくするものとした。
【0009】
請求項3の発明は、上記請求項1又は2の発明において、均質運転時の高回転かつ高負荷域では燃料噴射弁の最大ストローク量を低回転または低負荷域よりも大きくするものとした。
【0010】
請求項4の発明は、上記請求項1から3の発明において、成層運転時のアイドル状態では燃料噴射弁の最大ストローク量を小さくするものとした。
【0011】
請求項5の発明は、上記請求項1から4の発明において、燃料噴射弁に供給する燃料の圧力を機関運転状態に応じて制御する圧力制御手段を備え、成層運転時の高回転域では低回転域よりも燃料圧力を上昇させるものとした。
【0012】
請求項6の発明は、上記請求項5の発明において、均質運転時の高回転かつ高負荷域では低回転または低負荷域よりも燃料圧力を上昇させるものとした。
【0013】
請求項7の発明は、上記請求項5又は6の発明において、成層運転時のアイドル状態では燃料圧力を低減させるものとした。
【0014】
【作用・効果】
請求項1の発明によれば、可変ストローク機構を有する燃料噴射弁を用いたことにより、直噴式火花点火機関の成層燃焼時の運転状態に応じて最適な噴射率にて高精度な燃料噴射制御を行うことができるので、機関に幅広い運転域にて良好な出力、運転性および排気エミッション性能を発揮させることが可能である。そして、ストローク量制御手段は、成層運転時の高負荷域では燃料噴射弁の最大ストローク量を低負荷域よりも小さくするものとしたことから、要求燃料量の噴射期間を長くして、多量の燃料が集中しすぎることによるスモークの発生を回避することができる。
【0016】
請求項2の発明によれば、ストローク量制御手段を、成層運転時の高回転域では燃料噴射弁の最大ストローク量を低回転域よりも大きくするものとしたことから、空気流動が活発で燃料が拡散しやすい高回転域にて要求燃料量を短時間内に供給して燃料をある程度集中させ、これにより適切な成層燃焼を行わせることができる。また、請求項5の発明によれば、成層運転時の高回転域では低回転域よりも燃料圧力を上昇させるようにしたことから、噴射弁ノズル部からの燃料の噴霧角を小さくするとともに燃料粒子の貫通力を強めてピストンキャビティ部等への燃料の集中をより促すことができる。
【0017】
請求項3の発明によれば、ストローク量制御手段を、均質運転時の高回転かつ高負荷域では燃料噴射弁の最大ストローク量を低回転または低負荷域よりも大きくするものとしたことから、燃料の量が多くてスモークを生じやすいこの運転域での噴射率を高めてスモークの発生を抑制することができる。また、請求項6の発明によれば、均質運転時の高回転かつ高負荷域では低回転または低負荷域よりも燃料圧力を上昇させるので、噴射率をより高めることが可能である。
【0018】
請求項4の発明によれば、ストローク量制御手段を、成層運転時のアイドル状態では燃料噴射弁の最大ストローク量を小さくするものとしたことから、シリンダ内の空気流動が弱いアイドル運転域での噴射期間を長くして燃料の適度な拡散を促し良好な燃焼性を確保することができる。また、請求項7の発明によれば、成層運転時のアイドル状態では燃料圧力を低減させるものとしたことから、噴射燃料の噴霧角を広げつつ燃料粒子の貫通力を低減させて燃料の拡散をより促すことができる。
【0019】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。
【0020】
図1は本発明が適用可能な直噴式内燃機関の概略構成を示したものである。図において、1は直噴式内燃機関の本体(シリンダブロック)、2はシリンダヘッド、3はピストン、4は点火プラグ、5は燃料噴射弁、6は吸気通路、7は排気通路、8は絞り弁、9は吸気弁、10は排気弁を示している。11はCPU,ROM,RAM,I/0等からなるマイクロコンピュータにより構成された制御装置であり、上記本発明の圧力制御手段、燃料噴射制御手段、ストローク量制御手段等を構成するものである。この制御装置11は、以下の運転状態検出手段からの信号に基づいて燃料噴射量、噴射時期、燃料圧力および噴射弁の開弁ストローク量を制御する。
【0021】
運転状態検出手段としては、吸入空気量を検出するエアフロメータ12、機関回転数を検出するクランク角センサ13、冷却水温を検出する水温センサ14、排気酸素濃度を検出する排気酸素センサ15、スロットルバルブの開度を検出するスロットル開度センサ16、車両の走行速度を検出する車速センサ17、燃料噴射弁5に供給する燃料の圧力を検出する燃圧センサ18を備えている。20は制御装置からの指令に基づいて燃料噴射弁5に供給する燃料の圧力を可変制御する燃圧制御装置である。
【0022】
図2に上記燃料噴射弁5の詳細を示す。図において、51は噴射弁のハウジング、52はハウジング51の先端部に嵌合されたノズル部、53はハウジング51内のノズル部背後側に嵌合されたコア部である。ハウジング51とコア部53によって形成される空間にはソレノイドコイル54が設置されている。
【0023】
コア部53の中心部の筒内にはばねシート57が螺合されており、このばねシート57にはばね58が一端を固定され、このばね58の他端部はノズル部52に収装された弁体(針弁)59に背後から当接している。
【0024】
ソレノイドコイル54に通電してない状態では針弁59はばね58の付勢力によってノズル部52の先端部に設けられた噴孔63の内側に押しつけられており、閉弁状態を維持している。これに対してソレノイドコイル54に通電するとコア部53とその周囲の磁性体により磁気回路が形成され、ばね58の張力に抗して弁体59が上昇して噴孔63が開放する。
【0025】
燃料はコア部53の端部に設けられた燃料入口部55からばねシート57およびばね8の中空部を通り、さらに弁体59とノズル部52との間に設けられた隙間ないし溝部を経由して噴孔63部分に導かれる。
【0026】
弁体59の中間部にはフランジ状に係止部64が設けられており、この係止部64と所定の間隙を隔てて対向する位置にはピエゾ素子からなる環状の規制部65が設置され、これらによって弁体59の閉弁位置からの最大ストローク量を変化させる可変ストローク機構が構成される。すなわち、コイル4に電流が流れたときの弁体59の変位量は係止部64と規制部65が接触することによって規制され、このときピエゾ素子からなる規制部65に制御電流を付与してその軸方向の長さを増大させることによりこの増大分だけ弁体59のストローク量が減少して噴射弁は小流量特性となる。これに対して、規制部65に制御電流を付与しない場合または前記と逆方向の制御電流を付与した場合には規制部65の軸方向の長さが小となり、それだけ弁体59のストローク量が大となるため噴射弁は大流量特性となる。
【0027】
図3は上記制御装置11の動作の概要を示した流れ図である。まず運転状態検出手段(12〜18)からの信号を受け、制御装置11は現在の機関運転状態を判断する(ステップ301〜302)。ここで、例えば図4に示したような運転域設定に基づいてまず成層燃焼を行うか均質燃焼を行うかを決定し、それぞれの運転状態に応じて噴射弁ストローク量(規制部65への制御電圧)、燃料圧力、噴射時期、噴射量(噴射パルス幅)を決定する(ステップ303〜306、308〜311)。この各種制御量の設定は、機関回転数と負荷とに応じて図4に示したような設定を付与するマップをあらかじめ形成しておき、これを検索することで行うようにしている。このようにして設定した前記各制御量は最終的に燃料噴射弁5または燃圧制御装置20に出力する(ステップ307)。このような制御ループが所定の周期で繰り返して実行され、これにより燃料噴射量等が常に機関運転状態に応じた適切な量に制御される。
【0028】
図4は、本実施形態の成層燃焼および均質燃焼領域と燃料圧力、噴射弁ストロークの設定例を示したものである。図において斜線を施した比較的負荷および回転数の低い領域で成層燃焼を行い、それよりも負荷または回転数の高い領域で均質燃料を行う設定となっている。また、それぞれの領域内で予め設定した運転状態のときに燃料圧力と噴射弁ストローク量とを制御している。
【0029】
図4において▲1▼は成層燃焼域での比較的負荷の高い領域であり、この領域では燃料噴射量が多いので噴射率が高いと燃料が集中しすぎてスモークの発生が増え、燃焼の安定度も低下しがちとなる。そこでこの領域では噴射弁ストローク量を小さくして低流量特性とすることにより噴射時間を長くする。
【0030】
▲2▼は成層燃焼域での比較的回転数の高い領域であり、この領域ではシリンダ内の空気流動が活発になって燃料が拡散しやすくなるため噴射率を高めて燃料を集中傾向としたほうがよい。そこで噴射弁ストローク量を大きくして大流量特性とし、短時間のあいだに必要燃料を噴射供給できるように図る。また、燃料圧力を高めることにより噴射弁ノズル部からの噴霧角が小さくなり、噴射燃料粒子の貫通力も強くなるのでピストンキャビティ部に燃料をより集中させることができる。
【0031】
▲3▼は成層燃焼域でのアイドル回転域であり、この領域ではシリンダ内の空気流動が弱くて燃料が集中しすぎる傾向があるので噴射弁ストローク量を小さくして噴射期間を長くすることにより燃料をある程度拡散させるのが好ましい。また、このようにすることにより燃料噴射弁のダイナミックレンジが小流量方向に広がって小流量域での噴射量制御精度が高められる。このアイドル域では同時に燃料圧力を低下させることにより噴射弁ノズル部からの燃料噴霧角が大きくなり、噴射燃料粒子の貫通力も弱くなるので燃料の拡散を促すことができる。
【0032】
▲4▼は均質燃焼域での比較的負荷および回転数が高い領域であり、このように燃料の絶対量が多い領域では燃料噴射期間が長いとスモークを発生しやすくなるので、噴射弁ストローク量を増やして燃料の噴射率を高めるのが好ましい。また、このストローク量の増大により燃料噴射弁のダイナミックレンジを大流量方向に拡大することができる。この運転域にてさらに燃料圧力を増大させると、噴射率をより高めて良好な燃焼性を得ることが可能である。
【図面の簡単な説明】
【図1】本発明を適用可能な直噴式機関の実施形態を示す概略構成図。
【図2】燃料噴射弁の実施形態を示す縦断面図。
【図3】本発明の実施形態の制御動作の概略を示す流れ図。
【図4】上記実施形態における機関運転状態と燃料圧力および燃料噴射弁ストローク量の関係を示す説明図。
【符号の説明】
1 直噴式内燃機関の本体(シリンダブロック)
2 シリンダヘッド
3 ピストン
4 点火プラグ
5 燃料噴射弁
6 吸気通路
7 排気通路
8 絞り弁
9 吸気弁
10 排気弁
11 制御装置
12 エアフロメータ
13 クランク角センサ
14 水温センサ
15 排気酸素センサ
16 スロットル開度センサ
17 車速センサ
18 燃圧センサ
20 燃圧制御装置
51 燃料噴射弁のハウジング
52 ノズル部
53 コア部
54 ソレノイドコイル
55 燃料入口部
57 ばねシート
58 ばね
59 弁体
62 ノズル部
63 噴孔
64 係止部
65 規制部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection device suitable for a direct injection type spark ignition type internal combustion engine.
[0002]
[Prior art and problems to be solved]
In a spark ignition type internal combustion engine, one that improves fuel efficiency, output, and exhaust emission performance by stratified combustion by injecting and supplying fuel directly into a cylinder mainly after the compression stroke is known. In order to fully exhibit the characteristics of such a direct injection engine, it is desirable to appropriately control the fuel particles injected and supplied into the cylinder in accordance with the operating state. For this purpose, for example, disclosed in JP-A-7-166927 As described above, there has been proposed an apparatus in which the degree of atomization of fuel is controlled by variably controlling the pressure of fuel supplied to the fuel injection valve. .
[0003]
By the way, since the combustion stability at the time of stratification operation is strongly influenced by the degree of stratification, the applicant of the present application has an appropriate fuel injection rate (fuel injection amount per unit time) even in the same stratification operation. Was confirmed by experiments. If the fuel pressure is changed, not only the fuel atomization but also the fuel injection rate changes. However, since the above prior art focuses only on the fuel atomization, the fuel pressure is uniformly applied during stratified combustion. It only increased. In addition, if an appropriate fuel injection rate is obtained only by the fuel pressure, a high-capacity fuel pump is required to cope with a very wide range of fuel pressure and high fuel pressure. The problem arises that fuel consumption deteriorates due to the increase.
[0004]
In addition to the above-described prior art, a technique for controlling the fuel injection rate by variably controlling the stroke amount of the valve body of the fuel injection valve is disclosed in Japanese Patent Laid-Open No. 5-321786. The fuel injection rate is variably controlled when switching between two types of fuels having different heat generation amounts per hit, and there is no disclosure of application to a direct injection internal combustion engine that performs stratified combustion.
[0005]
The present invention has been made paying attention to such conventional problems, and in a direct injection type spark ignition engine, at least during the stratified combustion operation, the stroke amount of the valve body of the fuel injection valve is variably controlled with high accuracy. An object of the present invention is to provide a fuel injection valve and a fuel injection device capable of optimal fuel injection in a wide range of engine operation.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, the invention of claim 1 includes means for detecting an engine operating state, fuel injection control means for controlling a valve opening period and a valve opening timing of the fuel injection valve in accordance with the engine operating state, and The fuel injection control means performs stratified combustion by mainly injecting fuel in the latter half of the compression stroke when the engine is in a predetermined operating range, and injecting fuel mainly in the intake stroke when in an operating state other than the above. In a fuel injection control device for a direct injection spark ignition engine configured to perform homogeneous combustion, a variable stroke mechanism that changes the maximum stroke amount of the fuel injection valve, and at least the engine operating state during stratified combustion Stroke amount control means for controlling the maximum stroke amount of the fuel injection valve and making the maximum stroke amount smaller in the high load region during the stratified operation than in the low load region .
[0008]
According to a second aspect of the present invention, in the first aspect of the present invention, the maximum stroke amount of the fuel injection valve is made larger in the high rotation range during the stratified operation than in the low rotation range.
[0009]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the maximum stroke amount of the fuel injection valve is set to be larger than that of the low rotation or low load region in a high rotation and high load region during homogeneous operation.
[0010]
According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the maximum stroke amount of the fuel injection valve is reduced in an idle state during stratified operation.
[0011]
According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, there is provided pressure control means for controlling the pressure of the fuel supplied to the fuel injection valve in accordance with the engine operating state, and the pressure is low in the high rotation range during the stratified operation. The fuel pressure was increased above the rotation range.
[0012]
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the fuel pressure is increased in a high rotation and high load range during homogeneous operation than in a low rotation or low load range.
[0013]
The invention of claim 7 is the invention of claim 5 or 6, wherein the fuel pressure is reduced in an idle state during stratified operation.
[0014]
[Action / Effect]
According to the first aspect of the invention, by using the fuel injection valve having the variable stroke mechanism, high-precision fuel injection control at an optimal injection rate in accordance with the operating state during stratified combustion of the direct injection spark ignition engine. Therefore, it is possible to cause the engine to exhibit good output, operability and exhaust emission performance in a wide operating range. The stroke amount control means is designed to make the maximum stroke amount of the fuel injection valve smaller in the high load range during the stratified operation than in the low load region. The generation of smoke due to excessive concentration of fuel can be avoided.
[0016]
According to the invention of claim 2 , since the stroke amount control means is configured to make the maximum stroke amount of the fuel injection valve larger in the high rotation range during the stratified operation than in the low rotation range, the air flow is active and the fuel Therefore, the required fuel amount can be supplied within a short time in a high rotational speed range in which the fuel is easily diffused to concentrate the fuel to some extent, thereby enabling appropriate stratified combustion. According to the invention of claim 5, since the fuel pressure is increased in the high rotation region during the stratification operation than in the low rotation region, the fuel spray angle from the injection valve nozzle portion is reduced and the fuel is increased. It is possible to increase the penetration force of the particles and further promote the concentration of fuel in the piston cavity portion or the like.
[0017]
According to the invention of claim 3 , since the stroke amount control means is configured to increase the maximum stroke amount of the fuel injection valve in the high rotation and high load range during homogeneous operation, than in the low rotation or low load range, It is possible to suppress the generation of smoke by increasing the injection rate in this operating region where the amount of fuel is large and smoke is likely to be generated. According to the invention of claim 6, the fuel pressure is increased in the high rotation and high load range during the homogeneous operation than in the low rotation or low load range, so that the injection rate can be further increased.
[0018]
According to the invention of claim 4 , since the stroke amount control means is designed to reduce the maximum stroke amount of the fuel injection valve in the idle state during the stratified operation, in the idle operation region where the air flow in the cylinder is weak. By extending the injection period, it is possible to promote appropriate diffusion of fuel and ensure good combustibility. Further, according to the invention of claim 7, since the fuel pressure is reduced in the idling state during the stratified operation, the penetration force of the fuel particles is reduced while the spray angle of the injected fuel is widened, thereby spreading the fuel. Can encourage more.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 shows a schematic configuration of a direct injection internal combustion engine to which the present invention is applicable. In the figure, 1 is a body (cylinder block) of a direct injection internal combustion engine, 2 is a cylinder head, 3 is a piston, 4 is a spark plug, 5 is a fuel injection valve, 6 is an intake passage, 7 is an exhaust passage, and 8 is a throttle valve. , 9 indicates an intake valve, and 10 indicates an exhaust valve. Reference numeral 11 denotes a control device composed of a microcomputer comprising a CPU, ROM, RAM, I / 0, etc., which constitutes the pressure control means, fuel injection control means, stroke amount control means, etc. of the present invention. The control device 11 controls the fuel injection amount, the injection timing, the fuel pressure, and the valve opening stroke amount of the injection valve based on the following signals from the operating state detecting means.
[0021]
The operating state detection means includes an air flow meter 12 that detects the intake air amount, a crank angle sensor 13 that detects the engine speed, a water temperature sensor 14 that detects the cooling water temperature, an exhaust oxygen sensor 15 that detects the exhaust oxygen concentration, and a throttle valve. A throttle opening sensor 16 for detecting the opening of the vehicle, a vehicle speed sensor 17 for detecting the traveling speed of the vehicle, and a fuel pressure sensor 18 for detecting the pressure of the fuel supplied to the fuel injection valve 5. Reference numeral 20 denotes a fuel pressure control device that variably controls the pressure of the fuel supplied to the fuel injection valve 5 based on a command from the control device.
[0022]
FIG. 2 shows details of the fuel injection valve 5. In the figure, 51 is a housing of the injection valve, 52 is a nozzle part fitted to the tip of the housing 51, and 53 is a core part fitted to the back side of the nozzle part in the housing 51. A solenoid coil 54 is installed in a space formed by the housing 51 and the core portion 53.
[0023]
A spring seat 57 is screwed into the cylinder at the center of the core portion 53, and one end of the spring 58 is fixed to the spring seat 57, and the other end of the spring 58 is accommodated in the nozzle portion 52. The valve body (needle valve) 59 abuts from behind.
[0024]
When the solenoid coil 54 is not energized, the needle valve 59 is pressed against the inner side of the nozzle hole 63 provided at the tip of the nozzle portion 52 by the urging force of the spring 58 and maintains the valve closed state. On the other hand, when the solenoid coil 54 is energized, a magnetic circuit is formed by the core portion 53 and the surrounding magnetic body, the valve body 59 rises against the tension of the spring 58, and the nozzle hole 63 is opened.
[0025]
The fuel passes from the fuel inlet portion 55 provided at the end portion of the core portion 53 through the spring seat 57 and the hollow portion of the spring 8, and further passes through a gap or a groove portion provided between the valve body 59 and the nozzle portion 52. Then, it is guided to the nozzle hole 63 portion.
[0026]
An intermediate portion of the valve body 59 is provided with a locking portion 64 in a flange shape, and an annular regulating portion 65 made of a piezo element is installed at a position facing the locking portion 64 with a predetermined gap. Thus, a variable stroke mechanism that changes the maximum stroke amount from the valve closing position of the valve body 59 is configured. That is, the amount of displacement of the valve body 59 when a current flows through the coil 4 is regulated by contact between the locking portion 64 and the regulating portion 65. At this time, a control current is applied to the regulating portion 65 made of a piezo element. By increasing the length in the axial direction, the stroke amount of the valve body 59 is reduced by this increase, and the injection valve has a small flow rate characteristic. On the other hand, when the control current is not applied to the restricting portion 65 or when the control current in the opposite direction is applied, the length of the restricting portion 65 in the axial direction is small, and the stroke amount of the valve body 59 is accordingly increased. Since it becomes large, the injection valve has a large flow rate characteristic.
[0027]
FIG. 3 is a flowchart showing an outline of the operation of the control device 11. First, upon receiving a signal from the operating state detecting means (12 to 18), the control device 11 determines the current engine operating state (steps 301 to 302). Here, for example, whether to perform stratified combustion or homogeneous combustion is first determined based on the operating range setting as shown in FIG. 4, and the injection valve stroke amount (control to the restricting portion 65 is controlled) according to each operating state. Voltage), fuel pressure, injection timing, and injection amount (injection pulse width) are determined (steps 303 to 306, 308 to 311). The various control amounts are set by previously forming a map for assigning settings as shown in FIG. 4 according to the engine speed and load, and searching for the map. The control amounts thus set are finally output to the fuel injection valve 5 or the fuel pressure control device 20 (step 307). Such a control loop is repeatedly executed at a predetermined cycle, whereby the fuel injection amount and the like are always controlled to an appropriate amount according to the engine operating state.
[0028]
FIG. 4 shows a setting example of the stratified combustion and homogeneous combustion region, fuel pressure, and injection valve stroke of the present embodiment. In the figure, stratified combustion is performed in a relatively low load and low rotational speed region, which is shaded, and homogeneous fuel is set in a higher load or rotational speed region. Further, the fuel pressure and the injection valve stroke amount are controlled in the operation state set in advance in each region.
[0029]
In FIG. 4, (1) is a region with a relatively high load in the stratified combustion region. In this region, the amount of fuel injection is large. Therefore, if the injection rate is high, the fuel is excessively concentrated and the generation of smoke increases and the combustion is stabilized. Tend to decrease. Therefore, in this region, the injection time is lengthened by reducing the injection valve stroke amount to provide low flow characteristics.
[0030]
(2) is a region with a relatively high rotational speed in the stratified combustion region. In this region, the air flow in the cylinder becomes active and the fuel tends to diffuse, so the injection rate is increased and the fuel tends to concentrate. Better. Therefore, the stroke amount of the injection valve is increased to obtain a large flow rate characteristic so that necessary fuel can be injected and supplied for a short time. Further, by increasing the fuel pressure, the spray angle from the injection valve nozzle portion is reduced and the penetration force of the injected fuel particles is also increased, so that the fuel can be more concentrated in the piston cavity portion.
[0031]
(3) is the idle rotation region in the stratified combustion region. In this region, the air flow in the cylinder is weak and the fuel tends to concentrate too much. By reducing the injection valve stroke amount and extending the injection period, It is preferable to diffuse the fuel to some extent. Further, by doing so, the dynamic range of the fuel injection valve is expanded in the small flow rate direction, and the injection amount control accuracy in the small flow rate region is enhanced. In this idling region, simultaneously reducing the fuel pressure increases the fuel spray angle from the injection nozzle and the penetration force of the injected fuel particles is weakened, so that the diffusion of fuel can be promoted.
[0032]
(4) is a region where the load and rotation speed are relatively high in the homogeneous combustion region, and in such a region where the absolute amount of fuel is large, smoke tends to be generated if the fuel injection period is long. To increase the fuel injection rate. Moreover, the dynamic range of the fuel injection valve can be expanded in the large flow rate direction by increasing the stroke amount. If the fuel pressure is further increased in this operating range, it is possible to increase the injection rate and obtain good combustibility.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a direct injection engine to which the present invention is applicable.
FIG. 2 is a longitudinal sectional view showing an embodiment of a fuel injection valve.
FIG. 3 is a flowchart showing an outline of a control operation according to the embodiment of the present invention.
4 is an explanatory diagram showing the relationship between the engine operating state, fuel pressure, and fuel injection valve stroke amount in the embodiment. FIG.
[Explanation of symbols]
1. Body of a direct injection internal combustion engine (cylinder block)
2 Cylinder head 3 Piston 4 Spark plug 5 Fuel injection valve 6 Intake passage 7 Exhaust passage 8 Throttle valve 9 Intake valve 10 Exhaust valve 11 Control device 12 Air flow meter 13 Crank angle sensor 14 Water temperature sensor 15 Exhaust oxygen sensor 16 Throttle opening sensor 17 Vehicle speed sensor 18 Fuel pressure sensor 20 Fuel pressure control device 51 Fuel injection valve housing 52 Nozzle part 53 Core part 54 Solenoid coil 55 Fuel inlet part 57 Spring seat 58 Spring 59 Valve body 62 Nozzle part 63 Injection hole 64 Locking part 65 Restriction part

Claims (7)

機関運転状態を検出する手段と、燃料噴射弁の開弁期間と開弁時期とを機関運転状態に応じて制御する燃料噴射制御手段とを備え、燃料噴射制御手段は機関が所定の運転域にあるときには燃料を主に圧縮行程後半に噴射して成層燃焼を行い、前記以外の運転状態にあるときには燃料を主に吸気行程に噴射して均質燃焼を行うようにした直噴式の火花点火機関の燃料噴射装置において、
前記燃料噴射弁にその最大ストローク量を変化させる可変ストローク機構と、
少なくとも前記成層燃焼時の機関運転状態に応じて燃料噴射弁の最大ストローク量を制御し、成層運転時の高負荷域では最大ストローク量を低負荷域よりも小さくするストローク量制御手段と、
を備えることを特徴とする燃料噴射装置。
A means for detecting an engine operating state; and a fuel injection control means for controlling a valve opening period and a valve opening timing of the fuel injection valve according to the engine operating state. In some cases, the direct injection type spark ignition engine in which fuel is mainly injected in the latter half of the compression stroke to perform stratified combustion, and in other operating states, fuel is mainly injected into the intake stroke to perform homogeneous combustion. In the fuel injection device,
A variable stroke mechanism for changing the maximum stroke amount of the fuel injection valve ;
Stroke amount control means for controlling the maximum stroke amount of the fuel injection valve according to at least the engine operating state at the time of stratified combustion , and making the maximum stroke amount smaller than the low load region in the high load region during stratified operation ,
Fuel injection system, characterized in that it comprises a.
ストローク量制御手段は、成層運転時の高回転域では燃料噴射弁の最大ストローク量を低回転域よりも大きくすることを特徴とする請求項1に記載の燃料噴射装置。  2. The fuel injection device according to claim 1, wherein the stroke amount control means makes the maximum stroke amount of the fuel injection valve larger than that in the low rotation region in the high rotation region during the stratified operation. ストローク量制御手段は、均質運転時の高回転かつ高負荷域では燃料噴射弁の最大ストローク量を低回転または低負荷域よりも大きくすることを特徴とする請求項1又は2に記載の燃料噴射装置。 3. The fuel injection according to claim 1 , wherein the stroke amount control means makes the maximum stroke amount of the fuel injection valve larger in the high rotation and high load range during the homogeneous operation than in the low rotation or low load range. apparatus. ストローク量制御手段は、成層運転時のアイドル状態では燃料噴射弁の最大ストローク量を小さくすることを特徴とする請求項1から3のいずれか一つに記載の燃料噴射装置。The fuel injection device according to any one of claims 1 to 3, wherein the stroke amount control means reduces the maximum stroke amount of the fuel injection valve in an idle state during stratified operation. 燃料噴射弁に供給する燃料の圧力を機関運転状態に応じて制御する圧力制御手段を備え、
圧力制御手段は、成層運転時の高回転域では低回転域よりも燃料圧力を上昇させるように構成されていることを特徴とする請求項1から4のいずれか一つに記載の燃料噴射装置。
Pressure control means for controlling the pressure of the fuel supplied to the fuel injection valve according to the engine operating state;
The fuel injection device according to any one of claims 1 to 4, wherein the pressure control means is configured to increase the fuel pressure in a high rotation range during stratified operation than in a low rotation range. .
圧力制御手段は、均質運転時の高回転かつ高負荷域では低回転または低負荷域よりも燃料圧力を上昇させるように構成されていることを特徴とする請求項5に記載の燃料噴射装置。6. The fuel injection device according to claim 5, wherein the pressure control means is configured to increase the fuel pressure in a high rotation and high load range during homogeneous operation than in a low rotation or low load range. 圧力制御手段は、成層運転時のアイドル状態では燃料圧力を低減させるように構成されていることを特徴とする請求項5又は6に記載の燃料噴射装置。The fuel injection device according to claim 5 or 6, wherein the pressure control means is configured to reduce the fuel pressure in an idle state during stratified operation .
JP00880598A 1998-01-20 1998-01-20 Fuel injection device Expired - Lifetime JP3968846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00880598A JP3968846B2 (en) 1998-01-20 1998-01-20 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00880598A JP3968846B2 (en) 1998-01-20 1998-01-20 Fuel injection device

Publications (2)

Publication Number Publication Date
JPH11200917A JPH11200917A (en) 1999-07-27
JP3968846B2 true JP3968846B2 (en) 2007-08-29

Family

ID=11703066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00880598A Expired - Lifetime JP3968846B2 (en) 1998-01-20 1998-01-20 Fuel injection device

Country Status (1)

Country Link
JP (1) JP3968846B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097317A (en) * 2001-09-26 2003-04-03 Hitachi Ltd Method for controlling ignition timing of premixed compression-ignition engine
JP5352241B2 (en) * 2006-02-06 2013-11-27 オービタル・オーストラリア・ピーティワイ・リミテッド Fuel injection device

Also Published As

Publication number Publication date
JPH11200917A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
KR100647754B1 (en) Apparatus and Method for Injecting Fuel into Cylinder of Internal Combustion Engine
US6318074B1 (en) Control device for direct injection engine
EP1389679B1 (en) Compression ignition internal combustion engine
EP0719937B1 (en) Method of and system for purifying exhaust gas for vehicles
US6062201A (en) Fuel injection control for internal combustion engine
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
US6899089B2 (en) Control apparatus for internal combustion engine and control method for internal combustion engine combustion method for internal combustion engine and direct injection engine
JPH0585728B2 (en)
US5063886A (en) Two-stroke engine
US6032652A (en) Fuel injection system having variable fuel atomization control
JP2004060474A (en) Combustion control device for internal combustion engine
US6920861B2 (en) Fuel injection control devices for internal combustion engines
JP3968846B2 (en) Fuel injection device
JP4548204B2 (en) In-cylinder injection internal combustion engine
JP3900210B2 (en) Ignition device
JP3692745B2 (en) Fuel injection control device for internal combustion engine
JP2599953B2 (en) Diesel engine combustion control device
JP2003511608A (en) Fuel metering with fuel injectors
JP3044876B2 (en) Electronically controlled fuel injection device for internal combustion engines
JP3800725B2 (en) Fuel injection device for direct injection internal combustion engine
JP2000045781A (en) Cylinder injection type engine
JP3532098B2 (en) In-cylinder direct injection internal combustion engine
JPH04237822A (en) Cylinder injection type internal combustion engine
JPS5930892B2 (en) internal combustion engine
JPH02146239A (en) Intra-tube direct injection type spark ignition engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

EXPY Cancellation because of completion of term