JP3692288B2 - Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same - Google Patents

Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same Download PDF

Info

Publication number
JP3692288B2
JP3692288B2 JP2000316876A JP2000316876A JP3692288B2 JP 3692288 B2 JP3692288 B2 JP 3692288B2 JP 2000316876 A JP2000316876 A JP 2000316876A JP 2000316876 A JP2000316876 A JP 2000316876A JP 3692288 B2 JP3692288 B2 JP 3692288B2
Authority
JP
Japan
Prior art keywords
film
opp film
foam
polypropylene resin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000316876A
Other languages
Japanese (ja)
Other versions
JP2002120338A (en
Inventor
正夫 大井
英志 浅田
康雄 今井
卓 西岡
静男 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2000316876A priority Critical patent/JP3692288B2/en
Publication of JP2002120338A publication Critical patent/JP2002120338A/en
Application granted granted Critical
Publication of JP3692288B2 publication Critical patent/JP3692288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges

Description

【0001】
【発明の属する技術分野】
本発明は、新規なポリプロピレン系樹脂積層発泡体とその製造方法、ならびに上記積層発泡体を用いた、食品包装容器等に好適に使用される成形品に関するものである。
【0002】
【従来の技術】
従来、コンビニエンスストアやスーパーマーケット等において販売される弁当、丼などの食品包装容器その他の一般包装容器としては、保温性、断熱性、強度等を考慮して、発泡ポリスチレン製のものが広く用いられてきた。
しかし近時、一般家庭などへの電子レンジの普及や、あるいはコンビニエンスストアにおける、電子レンジを用いた弁当等の加熱調理サービスの普及に伴って、特に食品包装容器に、発泡ポリスチレン製の容器では得られない高い耐熱性、耐油性が要求されるようになってきた。
【0003】
かかる耐熱性、耐油性に優れ、電子レンジ調理が可能な食品包装容器としては現在、タルク等のフィラーを充填した、ポリプロピレンシート製の非発泡の容器が一般に利用されている。
しかし、上記容器は非発泡ゆえに断熱性が不十分であり、特に電子レンジによる加熱調理後に容器を取り出す際に、その壁面や底面が高温になるという問題があった。
【0004】
また、上記容器はフィラーを多量に含有しているため、リサイクルが難しいという問題もあった。
そこで、発泡ポリスチレンに比べて耐熱性、耐油性に優れる上、発泡構造を有するため断熱性に優れ、なおかつ殆どの場合はフィラーを含有しないためリサイクル性にも優れた、ポリプロピレン系樹脂の発泡シートを熱成形して食品包装容器を製造することが検討された。
【0005】
ところが、上記ポリプロピレン系樹脂の発泡シートを単独で熱成形して製造した容器は剛性が低く、特に電子レンジによる加熱調理後の高温の状態では強度が大きく低下するために、例えば弁当容器や麺類容器、カレー容器、スパゲッティ容器のように開口部の広い容器において、内容物の重みで容器の全体が湾曲、変形して、内容物がこぼれやすくなるという問題があった。
そこで現在は、発泡シートの目付重量を上げることで高温時の湾曲、変形に対応しているが、このことが容器のコスト上昇を招くという新たな問題を生じている。
【0006】
また、上記ポリプロピレン系樹脂の発泡シートを熱成形して容器を製造する際に、成形装置の加熱ゾーンにおいてシートが大きく垂れ下がるドローダウンや、あるいはシートが波打つコルゲート等を生じる結果、シートの加熱が不均一になって良好な容器を製造できなくなるという問題もある。特に前記のように目付重量の大きい発泡シートを使用するほど、この傾向が強い。
そこで、発泡シート単独でのこうした問題を解決するために、例えば特許第2904337号公報や、あるいは特開平11−170455号公報等において、ポリプロピレン系樹脂の発泡シートに、同系である二軸延伸ポリプロピレン系樹脂フィルム(以下「OPPフィルム」と略記する)を積層した積層発泡体を使用することが提案された。
【0007】
かかる積層発泡体は、フィルムの積層によって高温時の容器の剛性を改良したものゆえ、加熱調理時に大きく湾曲、変形することが防止され、しかもこの積層によって発泡シートの目付重量を小さくできるため、上述した製造工程上の問題を解決できるものと考えられる。
【0008】
【発明が解決しようとする課題】
しかし発明者らが検討したところ、上記従来の積層発泡体は、下記の問題を有することが明らかとなった。
すなわち従来の積層発泡体を熱成形して容器を製造するに際しては、特に容器の底部から側壁にかけての立ち上がりの隅部や、あるいは補強、意匠性などのために容器の底部や側壁などに設けたリブの、立ち上がりの隅部などで、発泡シート1とOPPフィルム2とが、図4(a)に示すように一体となってきれいに成形されず、熱成形時に、同図(b)に示すように両者の界面で局部的にはく離して、OPPフィルム2が発泡シート1から浮き上がってしまうという問題があった。
【0009】
また浮き上がりなくきれいに成形できたとしても、容器を長期間にわたって保管しておいたり、あるいは内部に食品を収容した状態で、電子レンジなどによって加熱調理したりすると、やはりOPPフィルム2が発泡シート1から浮き上がってしまうという問題があった。
この隅部などでのOPPフィルムの浮き上がりの問題は、特に発泡シート1とOPPフィルム2との界面に、同図(a)(b)に示すように、意匠性を向上させるための印刷層3を設けた際に顕著に発生していた。
【0010】
本発明の目的は、電子レンジ調理等に使用できる耐熱性、耐油性、断熱性を有し、かつ高温時の剛性にすぐれる上、熱成形時や、熱成形後の加熱調理時等に隅部などでOPPフィルムが浮き上がる問題が改善された、新規なポリプロピレン系樹脂積層発泡体と、その製造方法とを提供することにある。
また本発明の他の目的は、上述した各特性に優れるため、食品包装容器等に好適に使用することができる、新規な成形品を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、発明者らは、従来の積層発泡体を熱成形した際や、あるいは熱成形後の容器を加熱調理に使用した際などに、隅部などでOPPフィルムの浮き上がりが生じやすい原因について検討した結果、以下の事実を見出した。
すなわち積層発泡体を熱成形して食品包装容器等を製造する工程では、積層発泡体が、熱を受けながら容器形状に沿って引き伸ばされるのであるが、この工程でOPPフィルム2には、上記引き伸ばしの力〔図4(a)(b)中に実線の矢印で示す〕に対抗して、延伸を緩和しようとして熱収縮する力〔同図(a)(b)中に一点鎖線の矢印で示す〕が生じる。
【0012】
そしてこの力が、積層発泡体の引き伸ばし量が最も大きくなる容器の隅部などに集中する結果、元々密着力があまり高くない発泡シート1とOPPフィルム2とが、当該隅部などで互いにはく離して、図(b)に白矢印で示すようにOPPフィルム2の浮き上がりが発生する。
特に両者の界面に印刷層3が形成されている場合には、当該印刷層3が、OPPフィルム2の、発泡シート1に対する密着力をさらに低下させて、はく離を促進するので、上記はく離と、それに伴う浮き上がりとがより一層、顕著に発生する。
【0013】
また熱成形時には浮き上がりがなくきれいに成形できたとしても、OPPフィルム2中には、収縮力が、応力として蓄積されるため、前記のように長期間にわたって保管した際には、時間の経過とともに、OPPフィルム2が、蓄積された応力を緩和すべく徐々に収縮する結果、特に隅部などにおいてOPPフィルム2のはく離と浮き上がりとを生じる。また加熱調理した際には、上記OPPフィルム2の収縮が急速に進行する結果、やはり隅部などにおいてOPPフィルム2のはく離と浮き上がりとを生じる。
【0014】
そこで発明者らは、はく離の原因となる加熱時のOPPフィルムの熱収縮を抑制するとともに、積層発泡体を構成する各層間の密着力をこれまでよりも高めるべく、ポリプロピレン系樹脂積層発泡体の層構成についてさらに検討した。
その結果、OPPフィルムを、当該OPPフィルムの厚みの40%以上の厚みを有する無延伸ポリプロピレン系樹脂フィルム(以下「CPPフィルム」と略記する)を介して、ポリプロピレン系樹脂の発泡シートに積層してやると、当該CPPフィルムが、発泡シートおよびOPPフィルムと同系のポリプロピレン系樹脂からなる、均一な厚みを有するフィルムであって、
(1) 発泡シートおよびOPPフィルムの両方に対して均一に、密着性よく密着して、これまでよりも各層の界面での密着力を高めるために機能するとともに、
(2) かかる密着状態において、OPPフィルムの、加熱によって熱収縮しようとする力を吸収して、その熱収縮を抑制するために機能するので、
たとえ発泡シートとCPPフィルムとの界面、もしくはCPPフィルムとOPPフィルムとの界面に印刷層が設けられた場合であっても、OPPフィルムのはく離と、それに伴う浮き上がりとを、これまでに比べてより確実に防止できることを見出し、本発明を完成するに至った。
【0015】
したがって本発明のポリプロピレン系樹脂積層発泡体は、ポリプロピレン系樹脂の発泡シートの少なくとも片面に、二軸延伸ポリプロピレン系樹脂フィルム(OPPフィルム)を、当該二軸延伸ポリプロピレン系樹脂フィルムの厚みの40%以上の厚みを有する無延伸ポリプロピレン系樹脂フィルム(CPPフィルム)を介して積層したことを特徴とするものである。
なお本発明において、CPPフィルムの厚みがOPPフィルムの厚みの40%以上に限定されるのは、CPPフィルムの厚みがこの範囲内であれば、上記(1)(2)の機能が十分に発揮されるため、隅部などでのOPPフィルムの浮き上がりを確実に防止できるが、CPPフィルムの厚みが上記の範囲未満ではこれらの機能が得られないためである。
【0016】
上記本発明のポリプロピレン系樹脂積層発泡体は、従来公知の種々の方法で製造することが考えられるが、あらかじめ作製しておいた発泡シート、CPPフィルム、およびOPPフィルムを、サーマルラミネート法によって直接に積層し、熱接着する本発明の製造方法によって製造するのが最も好ましい。
上記各層を、例えばホットメルト接着剤を介して熱接着した場合には、当該ホットメルト接着剤の溶融温度が、一般的に、ポリプロピレン系樹脂の熱成形温度や、あるいは電子レンジによる食品の加熱調理温度などよりもかなり低いため、熱成形によって容器を製造する際や、あるいは容器を、内部の食品ごと電子レンジなどで加熱調理する際に、ホットメルト接着剤が溶融して接着力が著しく低下する結果、前述したOPPフィルムの熱収縮による、隅部などでのはく離と浮き上がりとを誘発するおそれがある。
【0017】
また例えば、発泡シートとOPPフィルムとの間に、溶融状態にあるポリプロピレン系樹脂を押し出して、CPPフィルムに相当する中間層を形成するのと同時に、当該中間層を介して発泡シートとOPPフィルムとを積層、接着する押出ラミネート法を採用した場合には、発泡シートとOPPフィルムとの層間に溶融状態で押し出された、非常に高温(一般的には280℃程度)のポリプロピレン系樹脂が冷却されて上記中間層が形成されるまでの間、サーマルラミネート法に比べてより多くの熱量が、発泡シート、およびOPPフィルムに加えられることになる。
【0018】
このため製造された積層発泡体は、他のラミネート法で製造した場合と比較して、特にOPPフィルムに生じる収縮力の蓄積によってより高い緊張状態を生じており、当該積層発泡体を熱成形した場合には、その成形直後こそ、中間層の働きによってOPPフィルムのはく離と浮き上がりを生じにくいものの、長期間にわたって保管した際には時間の経過とともに徐々に、また加熱調理した際には急速に、OPPフィルム2が収縮する結果、特に隅部などにおいてOPPフィルム2のはく離と浮き上がりとを生じるおそれがある。
【0019】
また上記の押出ラミネート法では、その製造上の制約から、中間層の厚みを小さくすることが困難で、当該中間層の厚みがおよそ100μm程度とかなり大きくなるため、積層発泡体を熱成形する際に多くの熱量を要し、それによってOPPフィルムに蓄積される応力がさらに大きくなって、当該OPPフィルムの、隅部などにおけるはく離と浮き上がりとをさらに促進することになる他、熱成形のサイクルが長くなるという問題も生じる。
【0020】
これに対し、前記本発明の製造方法によれば、ホットメルト接着剤を使用することなく直接に、また押出ラミネート法のように発泡シートとOPPフィルムとを長時間にわたって高温にさらすことなく、例えば後述するように熱ロールとニップロールとの間を通過させる間のごく短時間だけ加熱するだけで、ポリプロピレン系樹脂積層発泡体を製造できる上、CPPフィルムの厚みを、押出ラミネート法で形成される中間層に比べて小さくすることが可能であり、上述した問題を全て解消して、前述した各特性に優れたポリプロピレン系樹脂積層発泡体を、効率よく製造することができる。
【0021】
さらに本発明の成形品は、上記ポリプロピレン系樹脂積層発泡体を熱成形して製造されるため、電子レンジ調理に適した食品包装容器等に好適に使用することができる。
【0022】
【発明の実施の形態】
以下に本発明を説明する。
〈ポリプロピレン系樹脂積層発泡体とその製造方法〉
本発明のポリプロピレン系樹脂積層発泡体は、例えば図1(a)に示すようにポリプロピレン系樹脂の発泡シート1の少なくとも片面(図では片面であるが、両面の場合も含む)に、OPPフィルム2を、当該OPPフィルム2の厚みの40%以上の厚みを有するCPPフィルム4を介して積層したものである。なお図中符号3は、意匠性を向上させるための印刷層であり、図では発泡シート1とCPPフィルム4との界面に形成されているが、CPPフィルム4とOPPフィルム2との界面に印刷層3が形成されてもよい。
【0023】
上記積層発泡体においては、先に述べたように発泡シート1とOPPフィルム2との間に介装されたCPPフィルム4が、発泡シート1およびOPPフィルム2の両方に対して均一に、密着性よく密着して、これまでよりも各層の界面での密着力を高めるとともに、かかる密着状態において、OPPフィルム2の、加熱によって熱収縮しようとする力を吸収して、その熱収縮を抑制するために機能する。
【0024】
それゆえ熱成形することによって、発泡シート1、OPPフィルム2、印刷層3、およびCPPフィルム4の各層が、隅部などにおいてもOPPフィルム2のはく離とそれに伴う浮き上がりなどを生じることなく、図1(b)に示すように一体となってきれいに成形される。また成形後の時間の経過や加熱調理時の熱によっても、OPPフィルム2のはく離や浮き上がりを生じることが防止される。
(発泡シート1)
上記積層発泡体のうち発泡シート1を構成するポリプロピレン系樹脂としては無架橋のポリプロピレン系樹脂が好ましく、かかる無架橋のポリプロピレン系樹脂としては、
(A) 分子中に自由末端長鎖分岐を有する、メルトテンションが6g以上、40g以下のポリプロピレン系樹脂〔以下「樹脂(A)」とする〕、および
(B) メルトテンションが0.01g以上、6g未満で、かつ重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが3〜8であるポリプロピレン系樹脂〔以下「樹脂(B)」とする〕
からなる群より選ばれた少なくとも1種が好適に使用される。
【0025】
このうち樹脂(A)のメルトテンションの好適範囲が6g以上、40g以下とされるのは、6g未満では良好な発泡性を得ることができず、逆に40gを超えた場合には流動性が極端に悪くなったり、あるいはゲルを生じやすくなったりして押出加工性が低下するおそれがあるからである。なお樹脂(A)のメルトテンションは、発泡性と押し出しか構成とのバランスを考慮すると、上記の範囲内でも特に20〜30gであるのが好ましい。
【0026】
このような自由末端長鎖分岐を有する樹脂(A)としては、例えばモンテルSDKサンライズ社から発泡用グレードとして販売されている、商品名Pro−fax PF−814、Pro−fax SD−632などが挙げられる。
上記樹脂(A)は、押出発泡等によって発泡させた際の発泡性が良好であり、例えばその密度が0.3g/cm3未満といった、低密度で発泡倍率の高い、断熱性に特に優れた発泡シート1を形成するのに適している。
【0027】
したがって上記樹脂(A)を単独で使用して発泡シート1を形成してもよいが、樹脂(A)は高価で、製品コストの上昇をもたらすおそれがあるため、通常は、ポリプロピレン系樹脂として樹脂(A)と樹脂(B)とを併用して発泡シート1を形成するのが好ましい。その場合にも、比較的低密度で発泡倍率の高い、断熱性に優れた発泡シート1を形成することができる。
上記樹脂(B)のメルトテンションの好適範囲が、前記のように0.01g以上、6g未満とされるのは、0.01g未満では張力が低すぎるために、得られる発泡シート1が連続気泡構造となり易く、逆に6g以上では、樹脂の溶融粘度が高くなって融点近傍まで樹脂温度を下げることが困難となる結果、やはり連続気泡構造となり易く、このいずれの場合にも発泡シート1の品質が低下するおそれがあるからである。なお樹脂(B)のメルトテンションは、張力と溶融粘度とのバランスを考慮すると、上記の範囲内でも特に0.1g以上、6g未満であるのが好ましく、0.1g以上、3g未満であるのがさらに好ましい。
【0028】
このような樹脂(B)としては、例えばプロピレンの単独重合体やエチレン−プロピレン共重合体などの汎用のポリプロピレン系樹脂のうち、上記条件を満足するものが挙げられる。
上記樹脂(A)と樹脂(B)との総量に対する、樹脂(A)の占める割合は、前記のように10〜50重量%であるのが好ましく、10〜40重量%であるのがさらに好ましい。この理由は下記のとおりである。
【0029】
すなわち樹脂(A)は、その分子中に導入した自由末端長鎖分岐の働きによって、通常はあまり発泡性が良好でない無架橋の汎用ポリプロピレン系樹脂、つまり樹脂(B)の発泡性を向上させて、断熱性、耐油性、耐熱性を備えた発泡シート1を得るために貢献する。
しかし、自由末端長鎖分岐を有するポリプロピレン系樹脂は、自由末端長鎖分岐を有しない汎用のポリプロピレン系樹脂に比べ、剛性に劣るという問題を有している。また自由末端長鎖分岐を有するポリプロピレン系樹脂高価であるため、製品の製造コストを上昇もたらす。
【0030】
それゆえ、樹脂(A)と樹脂(B)との総量に対する、樹脂(A)の占める割合が、前記のように50重量%以下、特に40重量%以下であるのが好ましい。また一方、前述した樹脂(B)の発泡性を向上して、前記樹脂(A)単独の場合と同様に、その密度が0.3g/cm3未満といった低密度で発泡倍率の高い、断熱性に優れた発泡シート1を形成するためには、樹脂(A)と樹脂(B)との総量に対する、樹脂(A)の占める割合は、10重量%以上であるのが好ましい。
【0031】
なお前述したように樹脂(B)は、通常はあまり発泡性が良好でないものの、例えばその密度が0.3g/cm3以上といった、比較的発泡倍率の低い発泡シート1を製造することは可能である。したがって、ポリプロピレン系樹脂として樹脂(B)を単独で使用して発泡シート1を形成してもよい。
発泡シート1は、上記のポリプロピレン系樹脂を、例えば発泡剤とともに押出機を用いて溶融混練し、次いで押出機先端に接続した金型を通して押出発泡することによって製造される。
【0032】
金型には円形スリットダイ、T型ダイなどがあるが、円形スリットダイを通して押出発泡させた円筒状の発泡体を、その円周上の1個所または2個所以上で切開して発泡シート1を製造するのが好ましい。
押出発泡に使用する発泡剤としては、種々の揮発性発泡剤や分解型発泡剤、あるいは二酸化炭素、窒素ガス、水等が挙げられる。
このうち揮発性発泡剤としては、例えばプロパン、ブタン、ペンタン等の炭化水素や、テトラフルオロエタン、クロロジフルオロエタン、ジフルオロエタン等のハロゲン化炭化水素などの1種または2種以上が挙げられ、とくにブタンが好適に使用される。ブタンとしてはノルマルブタン、もしくはイソブタンをそれぞれ単独で使用してもよいし、ノルマルブタンとイソブタンとを任意の割合で併用してもよい。
【0033】
また分解型発泡剤としては、例えばアゾジカルボンアミド、ジニトロソペンタメチレンテトラミンなどの有機系発泡剤、クエン酸等の有機酸もしくはその塩と、重炭酸ナトリウム等の重炭酸塩との組み合わせなどの無機系発泡剤が挙げられる。
これらの発泡剤はいずれかを1種単独で使用してもよいし、2種以上を併用してもよい。
【0034】
またポリプロピレン系樹脂にはあらかじめ、または押出機で溶融混練する際に、例えばタルクや、あるいはクエン酸と重炭酸ナトリウム等の、発泡の際に気泡の大きさを調整するための気泡調整剤や、顔料、安定剤、充てん剤、帯電防止剤等の種々の添加剤を、本発明の効果を損なわない範囲で適宜、添加してもよい。このうち充てん剤は、成形品の強度、高温での剛性、耐久性および耐熱性を向上するために添加されるもので、かかる充てん剤としては、例えばタルク、炭酸カルシウム、シリカ、アルミナ、酸化チタン、クレー等の無機充てん剤が挙げられる。無機充てん剤の添加量は、ポリプロピレン系樹脂100重量部に対して5〜50重量部であるのが好ましい。
【0035】
かくして形成される発泡シート1は、その密度が0.1〜0.85g/cm3であるのが好ましい。
発泡シート1の密度が0.1g/cm3未満では、成形品の強度や高温での剛性が低下するおそれがあり、逆に0.85g/cm3を超えた場合には、成形品の断熱性が低下するおそれがある。なお発泡シート1の密度は、成形品の強度や剛性と、断熱性とのバランスを考慮すると、上記の範囲内でも特に0.18〜0.6g/cm3であるのが好ましい。
【0036】
また発泡シート1の厚みは、目的とする成形品の仕様などにもよるが、熱成形性を勘案すると0.3〜5mmであるのが好ましく、0.5〜3mmであるのがさらに好ましい。
(OPPフィルム2)
上記発泡シート1とともにポリプロピレン系樹脂積層発泡体を構成するOPPフィルム2のもとになるポリプロピレン系樹脂としては、例えばプロピレンの単独重合体が挙げられる他、プロピレンと他の樹脂とのブロック共重合体、またはランダム共重合体などが単独で、あるいは2種以上、混合して使用される。
【0037】
プロピレン以外の他のオレフィンとしては、エチレンや、あるいは炭素数が4〜10のα−オレフィン(1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン等)の1種または2種以上が挙げられる。
特に好適なポリプロピレン系樹脂としては、例えばプロピレンの単独重合体、プロピレン−エチレンランダム共重合体、プロピレン−エチレン−α−オレフィンランダム共重合体、並びにプロピレン成分とプロピレン−エチレンランダム共重合体成分とを含むブロック共重合体などが挙げられる。
【0038】
またポリプロピレン系樹脂には、本発明の効果を阻害しない範囲で、他の樹脂を混合しても良い。
当該他の樹脂としては、例えばエチレン、α−オレフィン等の単独重合体もしくは共重合体、ポリオレフィン系ワックス、ポリオレフィン系エラストマー等のオレフィン系樹脂の他、石油樹脂、テルペン樹脂等の炭化水素系樹脂などが、1種単独で、または2種以上混合して使用される。
【0039】
また上記ポリプロピレン系樹脂には、必要に応じて帯電防止剤、防曇剤、アンチブロッキング剤、酸化防止剤、光安定剤、結晶核剤、滑剤、すべり性付与およびアンチブロッキング性付与を目的とした界面活性剤、フィラー等の種々の添加剤を、本発明の効果を損なわない範囲で適宜、添加してもよい。
OPPフィルム2は、例えば上記のポリプロピレン系樹脂を、押出機を用いて溶融混練し、次いで押出機先端に接続した金型を通してフィルム状に押出成形するとともに、押出成形されたフィルムを、樹脂の押出方向(縦方向、MD)と、それと直交する方向(横方向、TD)の2方向に逐次に、あるいは同時に延伸(二軸延伸)することによって製造される。
【0040】
このうち逐次二軸延伸法としては、例えば押出機を用いて溶融した樹脂を、押出機の先端に接続したTダイよりフィルム状に押出し、冷却ロール上で冷却固化した後、加熱ロール延伸機を用いてMD方向に延伸し、続いてテンター横延伸機を用いてTD方向に延伸する方法などが挙げられる。また、同時二軸延伸法としてはテンター法、チューブラーインフレーション法などが挙げられる。
OPPフィルム2の延伸量などは特に限定されないが、その面積延伸倍率、すなわち
面積延伸倍率=(MD方向の延伸倍率)×(TD方向の延伸倍率)
は4〜50倍であるのが好ましい。
【0041】
面積延伸倍率が4倍未満では、OPPフィルム2を積層したことによる、積層発泡体のドローダウンを改善する効果や、あるいは成形品の強度、高温での剛性等を向上する効果が不十分になるおそれがある。一方、面積延伸倍率が50倍を超えた場合には、積層発泡体の熱成形性が低下するおそれがある。なお面積延伸倍率は、ドローダウンの改善効果や、成形品の強度および剛性を向上する効果と、積層発泡体の熱成形性とのバランスを考慮すると、上記の範囲内でも特に15〜35倍であるのが好ましい。
【0042】
またMD方向およびTD方向の延伸倍率は、ともに2〜10倍であるのが好ましい。
延伸倍率が2倍未満では、OPPフィルム2を積層したことによる、積層発泡体のドローダウンを改善する効果や、あるいは成形品の強度、高温での剛性等を向上する効果が不十分になるおそれがある。一方、延伸倍率が10倍を超えた場合には、積層発泡体の熱成形性が低下するおそれがある。なおMD方向およびTD方向の延伸倍率は、ドローダウンの改善効果や、成形品の強度および剛性を向上する効果と、積層発泡体の熱成形性とのバランスを考慮すると、上記の範囲内でも特に3〜9倍であるのが好ましい。
【0043】
OPPフィルム2の厚みは、5〜50μmであるのが好ましい。
厚みが5μm未満では、積層発泡体のドローダウンを改善するとともにコルゲートの発生を防止する効果や、あるいは成形品の、高温での剛性を改善する効果が不十分になるおそれがあり、逆に50μmを超えた場合には、OPPフィルム2を発泡シート1に積層して積層発泡体を作製する際や、あるいは作製した積層発泡体を熱成形して成形品を製造する際などに多くの熱量を必要とするため製造効率が悪くなり、また発泡シート1が熱によって侵されて、熱成形時に局部的に伸ばされた部分が生じるなどして、成形体の外観が悪化するおそれもある。なおOPPフィルム2の厚みは、上記各特性のバランスを考慮すると、上記の範囲内でも特に6〜45μmであるのが好ましい。
【0044】
また、例えばプロピレンの単独重合体などで形成される一般的なOPPフィルムは透明性と表面の光沢に優れ、厚みが小さいほど、かかる透明性や光沢が向上する傾向を示す。また機械的強度に優れており、厚みが小さくても十分な強度を発揮することができる。しかも熱成形時の伸びが低いため、厚みが大きくなるほど熱成形性が低下する傾向がある。このため一般的なOPPフィルムを使用する場合、その厚みは小さいほど好ましく、上記透明性、光沢、および機械的強度と、熱成形性とのバランスを考慮すると、前記の範囲内でも特に6〜25μmであるのが好ましい。
【0045】
また近時、一般的なOPPフィルムに比べて機械的強度は若干、低下するものの、伸びが著しく改善されたOPPフィルムが開発された。かかるOPPフィルムは、例えば特開平7−241906号公報に記載されているようにエチレン含有量が1〜4重量%のプロピレン−エチレンランダム共重合体、またはエチレン含有量が0.5〜3.0重量%、1−ブテン含有量が4〜15重量%のプロピレン−エチレン−1−ブテンランダム共重合体などの、比較的融点の低いプロピレン系共重合体にて形成されるもので、一般的なOPPフィルムに比べて熱成形時の伸びが良く、深絞りなどが可能で良好な成形品を得ることが可能ある。ただし前記のように機械的強度が若干、低いため、十分な強度と剛性とを有する成形品を製造するためには、その厚みができるだけ大きいことが好ましく、前記の範囲内でも特に20〜45μmであるのが好ましい。
【0046】
OPPフィルム2の表面には、例えば印刷性等を向上すべく、コロナ放電処理等の表面処理を施しても良い。
OPPフィルム2は単層のものには限定されず、例えば組成の異なるポリプロピレン系樹脂からなるOPPフィルム同士、あるいは延伸倍率の異なるOPPフィルム同士などの、2層以上のOPPフィルムを積層した積層フィルムを用いることもできる。その場合、全てのOPPフィルムの合計の厚みが、前述した好適範囲となるように、各層の厚みを設定するのが好ましい。
【0047】
またOPPフィルム2には、本発明の効果を損なわない範囲で、例えばガスバリヤ性等の向上を目的として、エチレン−ビニルアルコール共重合体からなるフィルムなど、組成の異なる他のフィルムを積層してもよい。
(CPPフィルム4)
上記OPPフィルム2と発泡シート1との間に介装されるCPPフィルム4のもとになるポリプロピレン系樹脂としては、OPPフィルム2の場合と同様のポリプロピレン系樹脂が挙げられる。当該ポリプロピレン系樹脂に、発明の効果を阻害しない範囲で他の樹脂を混合できる点も同様であり、当該他の樹脂の種類も、OPPフィルム2の場合と同様である。さらにポリプロピレン系樹脂に添加してもよい添加剤の種類も、先の場合と同様である。
【0048】
CPPフィルム4は、ポリプロピレン系樹脂を、押出機を用いて溶融混練し、次いで押出機先端に接続した金型を通して押出成形したフィルムを、実質的に延伸しないことで製造される。
CPPフィルム4の厚みは、前述した理由で、OPPフィルム2の厚みの40%以上に限定される。
なおCPPフィルム4の厚みは、上記範囲内でも特に、OPPフィルム2の厚みの500%以下であるのが好ましい。
【0049】
CPPフィルム4の厚みが、OPPフィルム2の厚みの500%を超える場合には、CPPフィルム4が厚すぎて、OPPフィルム2の熱収縮力を緩和する効果が過剰になる結果、熱成形時の積層発泡体にドローダウンやコルゲートなどが発生しやすくなるおそれがある。なおCPPフィルム4の厚みは、OPPフィルム2の熱収縮力を緩和する効果と、熱成形時の積層発泡体にドローダウンやコルゲートなどが生じるのを防止する効果とのバランスを考慮すると、上記範囲内でも特に、OPPフィルム2の厚みの50〜450%であるのが好ましい。
【0050】
また上記CPPフィルム4の具体的な厚みは、5〜80μmであるのが好ましい。
厚みが5μm未満では、前述した発泡シート1およびOPPフィルム2の両方に対して均一に、密着性よく密着して、これまでよりも各層の界面での密着力を高める機能や、あるいはかかる密着状態において、OPPフィルム2の、加熱によって熱収縮しようとする力を吸収して、その熱収縮を抑制する機能が十分に発揮されないため、OPPフィルム2の、隅部などにおけるはく離と浮き上がりとを確実に防止できないおそれがある。逆に80μmを超えた場合には、積層発泡体を熱成形する際に多くの熱量を要し、それによってOPPフィルム2に蓄積される応力がさらに大きくなって、当該OPPフィルム2の、隅部などにおけるはく離と浮き上がりとをさらに促進することになるおそれがある他、熱成形のサイクルが長くなるおそれもある。また発泡シート1が熱によって侵されて、熱成形時に局部的に伸ばされた部分が生じるなどして、成形体の外観が悪化するおそれもある。なおCPPフィルム4の厚みは、上記各特性のバランスを考慮すると、上記の範囲内でも特に10〜50μmであるのが好ましい。
【0051】
CPPフィルム4の表面には、例えば印刷性等を向上すべく、コロナ放電処理等の表面処理を施しても良い。
CPPフィルム4は単層のものには限定されず、例えば組成の異なるポリプロピレン系樹脂からなるCPPフィルム同士などの、2層以上のCPPフィルムを積層した積層フィルムを用いることもできる。その場合、全てのCPPフィルムの合計の厚みが、前述した好適範囲となるように、各層の厚みを設定するのが好ましい。
【0052】
またCPPフィルム4には、OPPフィルム2の場合と同様に、例えばガスバリヤ性等の向上を目的として、エチレン−ビニルアルコール共重合体からなるフィルムなど、組成の異なる他のフィルムを積層してもよい。
上記CPPフィルム4と、その上に積層されるOPPフィルム2との合計の厚みは、20〜120μmであるのが好ましい。
厚みが20μm未満では、成形品の強度や、高温での剛性を改善する効果が不十分になるおそれがあり、逆に120μmを超えた場合には、積層発泡体を熱成形する際に多くの熱量を要し、発泡シート1が熱によって侵されて、熱成形時に局部的に伸ばされた部分が生じるなどして、成形体の外観が悪化するおそれがある。なおOPPフィルム2とCPPフィルム4の厚みの合計は、これらの特性のバランスを考慮すると、上記範囲内でも特に30〜90μmであるのが好ましい。
【0053】
(印刷層3)
意匠性などを向上させるための印刷層3は、発泡シート1とOPPフィルム2との間に位置する各層の界面のいずれか、具体的には前記のように発泡シート1とCPPフィルム4との界面、もしくはCPPフィルム4とOPPフィルム2との界面のいずれか一方または両方に形成される。
より具体的には、
(i) 発泡シート1の、CPPフィルム4側の表面、
(ii) CPPフィルム4の、発泡シート1側の表面、
(iii) CPPフィルム4の、OPPフィルム2側の表面、
(iv) OPPフィルム2の、CPPフィルム4側の表面、
のいずれかに、積層に先立ってあらかじめ印刷層3を形成しておき、それを積層、接着することで、上記所定の位置に印刷層3が形成される。
【0054】
このうち特に(i)の、発泡シート1の表面を除く、(ii)〜(iv)のいずれかの表面に印刷層3を形成するのが、平滑性に優れ、美麗な印刷を施すことができるため好ましい。
一方、接着性向上の効果を考慮すると、発泡シート1とCPPフィルム4との界面、すなわち(i)または(ii)のいずれかの表面に印刷層3を形成するのが好ましい。
【0055】
上記(i)〜(iv)の構成では、印刷層3を、透明でかつ光沢のあるOPPフィルム2を通して見ることになるため、OPPフィルム2の光沢と相まって美麗な発色を放つ外観が得られる。この外観は、熱成形後の容器においても保持されるため、意匠性に優れた容器が得られる。
例えば赤や黒の絵柄模様の印刷層3を、グラビア印刷等で、上記いずれかの面に形成してやると、漆器のような発色を有する容器が得られる。
【0056】
また印刷層3の下地となる層に顔料を練りこんで着色することで、印刷層3とともに、さらに美麗な外観を形作ることもできる。
また印刷層3を、同一のOPPフィルム2の外側から見ることのできる2つの界面に形成することで、その2つの印刷層3の重ね合わせによって、さらに美麗な外観を形成することもできる。
また印刷層3を形成せずに、発泡シート1、OPPフィルム2、およびCPPフィルム4いずれかに顔料を練りこんで着色するだけでも、特有の美麗な外観を形成できる。例えば、CPPフィルム4に顔料を練りこんで赤や黒に着色してやると、当該着色を、透明でかつ光沢のあるOPPフィルム2を通して見ることになるため、OPPフィルム2の光沢と相まって、やはり漆器のような発色を有する容器が得られる。
【0057】
印刷層3を形成するための印刷方法としては、上記グラビア印刷が好適に採用される他、上記各表面に印刷可能なインキを使用できる、従来公知の種々の印刷方法が、いずれも採用可能である。
また各層に練りこむ顔料としては、ポリプロピレン系樹脂との相溶性、分散性に優れた種々の顔料が、いずれも使用可能である。
(積層発泡体)
本発明の積層発泡体は、前述したようにポリプロピレン系樹脂の発泡シート1の片面もしくは両面に、OPPフィルム2を、当該OPPフィルム2の厚みの40%以上の厚みを有するCPPフィルム4を介して積層するとともに、各層のいずれかの界面に、印刷層3を形成することで構成される。
【0058】
すなわち本発明の積層発泡体は、基本的には、下記(I)〜(XIV)の14種の積層構造を包含する(実際にはここへ、前記のようにOPPフィルム2やCPPフィルム4の積層構造などによるバリエーションが加わるのであるが、記載が煩雑になるので、下記分類中のOPPフィルム2、CPPフィルム4には、単層のものの他にそのような積層構造を有するものも全て含むものとする)。
(I) OPPフィルム2/CPPフィルム4/発泡シート1の3層構造。
【0059】
(II) OPPフィルム2/印刷層3/CPPフィルム4/発泡シート1の4層構造。
(III) OPPフィルム2/CPPフィルム4/印刷層3/発泡シート1の4層構造。
(IV) OPPフィルム2/印刷層3/CPPフィルム4/印刷層3/発泡シート1の5層構造。
【0060】
(V) OPPフィルム2/CPPフィルム4/発泡シート1/CPPフィルム4/OPPフィルム2の5層構造。
(VI) OPPフィルム2/印刷層3/CPPフィルム4/発泡シート1/CPPフィルム4/OPPフィルム2の6層構造。
(VII) OPPフィルム2/CPPフィルム4/印刷層3/発泡シート1/CPPフィルム4/OPPフィルム2の6層構造。
【0061】
(VIII) OPPフィルム2/印刷層3/CPPフィルム4/印刷層3/発泡シート1/CPPフィルム4/OPPフィルム2の7層構造。
(IX) OPPフィルム2/印刷層3/CPPフィルム4/発泡シート1/CPPフィルム4/印刷層3/OPPフィルム2の7層構造。
(X) OPPフィルム2/CPPフィルム4/印刷層3/発泡シート1/印刷層3/CPPフィルム4/OPPフィルム2の7層構造。
【0062】
(XI) OPPフィルム2/印刷層3/CPPフィルム4/発泡シート1/印刷層3/CPPフィルム4/OPPフィルム2の7層構造。
(XII) OPPフィルム2/印刷層3/CPPフィルム4/印刷層3/発泡シート1/CPPフィルム4/印刷層3/OPPフィルム2の8層構造。
(XIII) OPPフィルム2/印刷層3/CPPフィルム4/印刷層3/発泡シート1/印刷層3/CPPフィルム4/OPPフィルム2の8層構造。
【0063】
(XIV) OPPフィルム2/印刷層3/CPPフィルム4/印刷層3/発泡シート1/印刷層3/CPPフィルム4/印刷層3/OPPフィルム2の9層構造。
(積層発泡体の製造方法)
上記の各層を積層して本発明の積層発泡体を製造する方法としては、前記のようにサーマルラミネート法が好適に採用される。
【0064】
例えば前記(I)〜(IV)のように発泡シート1の片面に、CPPフィルム4を介してOPPフィルムを積層した積層発泡体を、上記サーマルラミネート法によって連続的に製造する場合を例にとると、図2(a)に示す逐次ラミネートと、図2(b)に示す同時ラミネートとが採用できる。
このうち図2(a)の逐次ラミネートによるサーマルラミネート法では、まずあらかじめ押出発泡して製造し、ロール状に巻回しておいた発泡シート1を、そのロール10から一定速度で繰り出しながら、まず予熱ヒータH1を通して50〜90℃に予熱したのち、加熱ローラR1aとニップローラR1bとからなる第1のローラ対R1に供給する。
【0065】
そこへ、これもあらかじめ押出成形して製造し、また必要に応じてそのいずれかの面、もしくは両面に印刷層3を施した状態で、ロール状に巻回しておいたCPPフィルム4を、そのロール40から一定速度で繰り出しながら、ガイドローラGR1を介して上記第1のローラ対R1に供給して、発泡シート1の片面に重ね合わせつつ連続的に加熱、加圧してラミネートする。
第1のローラ対R1によるラミネートの好適な条件は、発泡シート1およびCPPフィルム4の通過速度5〜15m/分、加熱ローラR1aの加熱温度180〜210℃、ニップローラR1bのニップ圧力4〜10kg/cm2である。
【0066】
次に、上記の積層体を一定速度で送りながら、加熱ローラR2aとニップローラR2bとからなる第2のローラ対R2に供給する。
そこへ、これもあらかじめ押出成形したのち二軸延伸して製造し、また必要に応じてそのいずれかの面、もしくは両面に印刷層3を施した状態で、ロール状に巻回しておいたOPPフィルム2を、そのロール20から一定速度で繰り出しながら、ガイドローラGR2を介して上記第2のローラ対R2に供給して、発泡シート1とCPPフィルム4との積層体の、CPPフィルム4側の表面に重ね合わせつつ連続的に加熱、加圧してラミネートする。
【0067】
そうすると、前記のように発泡シート1の片面に、CPPフィルム4を介してOPPフィルムが積層された積層発泡体が連続的に製造される。
第2のローラ対R2によるラミネートの好適な条件は、前記と同様である。すなわち発泡シート1、CPPフィルム4、およびOPPフィルム2の通過速度5〜15m/分、加熱ローラR2aの加熱温度180〜210℃、ニップローラR2bのニップ圧力4〜10kg/cm2である。
【0068】
一方、図2(b)の同時ラミネートによるサーマルラミネート法では、前記と同様にあらかじめ押出発泡して製造し、ロール状に巻回しておいた発泡シート1を、そのロール10から一定速度で繰り出しながら、まず予熱ヒータH1を通して50〜90℃に予熱したのち、加熱ローラRaとニップローラRbとからなるローラ対Rに供給する。
そこへ、あらかじめ押出成形して製造し、また必要に応じてそのいずれかの面、もしくは両面に印刷層3を施した状態で、ロール状に巻回しておいたCPPフィルム4と、あらかじめ押出成形したのち二軸延伸して製造し、また必要に応じてそのいずれかの面、もしくは両面に印刷層3を施した状態で、ロール状に巻回しておいたOPPフィルム2とを、それぞれのロール40、20から一定速度で繰り出しながらガイドローラGRで重ね合わせて上記ローラ対Rに供給する。
【0069】
そして、発泡シート1、CPPフィルム4、OPPフィルム2の順に重ね合わせつつ連続的に加熱、加圧してラミネートすると、上記各層がこの順に積層された積層発泡体が連続的に製造される。
ローラ対Rによるラミネートの好適な条件は、前記と同様である。すなわち発泡シート1、CPPフィルム4、およびOPPフィルム2の通過速度5〜15m/分、加熱ローラRaの加熱温度180〜210℃、ニップローラRbのニップ圧力4〜10kg/cm2である。
【0070】
なお発泡シート1は、図(a)(b)の装置に直結した押出機から押出発泡したものを直接に、図(a)の場合は第1のローラ対R1に、また図(b)の場合はローラ対Rに供給してもよい。その場合、発泡直後の発泡シート1は余熱を持っているので、予熱ヒータH1を省略することもできる。
〈成形品〉
上記積層発泡体から本発明の成形品を製造するための熱成形の方法としては、例えば真空成形や圧空成形、あるいはこれらの応用としてのマッチド・モールド成形、プラグアシスト成形等の、従来公知の種々の成形法を採用することができる。
【0071】
かくして製造される本発明の成形品は、当該容器を構成する発泡シート1、CPPフィルム4、およびOPPフィルム2がいずれもポリプロピレン系樹脂にて形成されるため耐熱性、耐油性、耐薬品性に優れている上、リサイクルも容易である。
また発泡シート1を含有するため断熱性、保温性に優れる上、当該発泡シート1を、OPPフィルム2で補強した構造を有するため、高温での剛性や、あるいは低温での耐衝撃性にも優れている。
【0072】
しかも発泡シート1とOPPフィルム2との間にCPPフィルム4が介装されており、このCPPフィルム4の機能によって、前述したように熱成形時や成形後の保管時、加熱調理時などに、OPPフィルム2が、成形品の隅部などではく離して浮き上がることが確実に防止される。特に従来、接着性が劣るとされていた印刷層3を設けても、上記はく離や浮き上がりが生じない。
また特に発泡シート1とOPPフィルム2との間に位置する各層の界面のいずれかに印刷層3を設けたり、CPPフィルム4などに顔料を練り込んで着色したりした場合には、透明で光沢のあるOPPフィルム2を通して、下地の印刷層3や着色が透けて見えるため、OPPフィルム2の光沢とあいまって美麗な発色を放つ外観が得られ、意匠性が格段に優れた容器となる。特に赤又は黒の顔料で着色された場合や、またはグラビア印刷された絵柄模様などの場合には、漆器のような発色を放ち特に好ましい容器となる。
【0073】
したがって、上記本発明の成形品は各種容器として好適であるが、特に内容物である食品が冷蔵あるいは冷凍処理された状態で、配送センターから各店舗に配送され、店頭で、もしくは家庭に持ち帰ってそのまま電子レンジで加熱調理に供される、コンビニエンスストア等の食品包装容器に最適である。
成形品の一例としてのパスタ容器Cを図3(a)(b)に示す。
図のパスタ容器Cは、浅い椀状の容器本体C1と、当該容器本体C1の上端開口より外方に延設された、蓋体(図示せず)を嵌合するための鍔部C2と、上記容器本体C1の底部から上方へ突設された、補強のためのリブC3とを、前記のように本発明の積層発泡体から熱成形して製造されるものである。
【0074】
上記パスタ容器Cは従来、例えばその外形に対応した凹部を有する金型を使用して、OPPフィルムが容器の内側に位置するように、積層発泡体を熱成形して製造した際や、あるいは製造後の保管時、加熱調理時等に、図中一点鎖線で囲んだリブC3の立ち上がりの隅部C4などにおいて、前述したOPPフィルムのはく離と浮き上がりが多発していたが、本発明の構成を採用することで、これらの問題を解決することが可能となったものである。
【0075】
【実施例】
以下に本発明を、実施例、比較例に基づいて説明する。
なお本発明の各実施例、比較例で使用したポリプロピレン系樹脂、発泡シート、および製造した積層発泡体、成形品の各特性は、それぞれ下記の方法によって測定、ならびに評価を行った。
〈メルトテンション測定〉
ポリプロピレン系樹脂のメルトテンションは、(株)東洋精機製作所製の測定装置〔キャピログラフPMD−C〕を使用して、以下のようにして測定した。
【0076】
すなわち試料樹脂を、230℃に加熱して溶融させた状態で、上記装置の、ピストン押出式プラストメーターのノズル(口径2.095mm、長さ8mm)から、ピストンの降下速度を10mm/minの一定速度に保ちつつ紐状に押出しながら、この紐状物を、上記ノズルの下方35cmに位置する張力検出プーリーに通過させた後、巻き取りロールを用いて、その巻き取り速度を、約66m/min2程度の加速度でもって徐々に増加させつつ巻き取って行き、当該紐状物が切れた時点での張力をもって、試料樹脂のメルトテンションとした。
【0077】
〈発泡シートの密度測定〉
発泡シートの密度は、発泡シートの重量と体積とを測定して、重量(g)÷体積(cm3)により求めた。
〈積層発泡体の熱成形性評価〉
積層発泡体の熱成形性は、積層発泡体を、OPPフィルム側の面が容器の内側になるようにプラグアシスト成形して製造した、成形品としてのパスタ容器〔図3(a)(b)に示す外観を有し、外径200mm、深さ30mmのもの〕の外観を目視にて観察して、下記の3段階で評価した。
【0078】
×:破れ等を生じ、所定の成形品の形状に成形することができなかった。熱成形性不良。
△:成形時の伸びが悪く、局部的に厚みの薄い部分を生じた。熱成形性やや不良。
○:成形時の伸びが良好であり、厚みが均一でかつ寸法精度の高い良好な成形品が得られた。熱成形性良好。
【0079】
〈OPPフィルムの浮き上がり評価〉
OPPフィルムの、熱成形時および加熱調理時における浮き上がりの有無を、下記の基準で評価した。
(熱成形時)
積層発泡体を、前記と同様にOPPフィルム側の面が容器の内側になるようにプラグアシスト成形することで、同形状、同寸法のパスタ容器を連続的に製造し、各実施例、比較例ごとに、その中から無作為に100個ずつ抽出したサンプルを目視にて観察して、下記の基準により、OPPフィルムの浮き上がりの有無を評価した。
【0080】
◎:100個のサンプルの全てに、OPPフィルムの浮き上がりは全く見られなかった。OPPフィルムの密着性極めて良好。
○:100個中、10個以下のサンプルに、OPPフィルムの浮き上がりが見られた。OPPフィルムの密着性良好。
△:100個中、10個を超えて20個以下のサンプルに、OPPフィルムの浮き上がりが見られたものの、実用上差し支えなし。OPPフィルムの密着性やや良好。
【0081】
×:100個中、20個を超えるサンプルに、OPPフィルムの浮き上がりが見られた。OPPフィルムの密着性不良。
(加熱調理時)
上記各実施例、比較例のサンプルからOPPフィルムの浮き上がりの生じていないものを10個ずつ抽出し、そのそれぞれに200ccの熱湯(98℃)を入れて、出力500Wの電子レンジで4分間、加熱したのち、目視にて観察して、下記の基準により、OPPフィルムの浮き上がりの有無を評価した。
【0082】
◎:10個のサンプルの全てに、OPPフィルムの浮き上がりは全く見られなかった。OPPフィルムの密着性極めて良好。
○:10個中、2個以下のサンプルに、OPPフィルムの浮き上がりが見られた。OPPフィルムの密着性良好。
△:10個中、2個を超えて5個以下のサンプルに、OPPフィルムの浮き上がりが見られたものの、実用上差し支えなし。OPPフィルムの密着性やや良好。
【0083】
×:10個中、5個を超えるサンプルに、OPPフィルムの浮き上がりが見られた。OPPフィルムの密着性不良。
〈成形品の断熱性評価〉
上記各実施例、比較例の容器に200ccの熱湯(98℃)を入れて、出力500Wの電子レンジで2分間、加熱したのち、加熱直後の容器を素手で電子レンジから取り出したときの状態から、その断熱性を、下記の基準で評価した。
【0084】
◎:熱さを殆ど感じることなく、問題なく取り出すことができた。断熱性極めて良好。
○:ぬくもりを感じる程度で、問題なく取り出すことができた。断熱性良好。
△:熱さを感じ、長く持っていることができなかった。断熱性やや不良。
×:熱くて、素手では取り出すことができなかった。断熱性不良。
また以下の各実施例、比較例においては、発泡シートを製造するために、前記樹脂(A)に属する下記A−1の樹脂、並びに樹脂(B)に属する下記B−1、B−2の樹脂を、それぞれ表1に示す割合で含有するポリプロピレン系樹脂PP1〜PP4のいずれかを選択して用いた。
〈樹脂A−1〉
モンテルSDKサンライズ社製のプロピレン−エチレンブロック共重合体、商品名SD632。
【0085】
メルトテンション:21.9g
メルトインデックス(MI)値:3
密度:0.90g/cm3
〈樹脂B−1〉
モンテルSDKサンライズ社製のプロピレン単独重合体、商品名PM600A。
【0086】
メルトテンション:0.8g
MI値:7.5
密度:0.90g/cm3
〈樹脂B−2〉
モンテルSDKサンライズ社製のプロピレン単独重合体、商品名PL500A。
【0087】
メルトテンション:1.8g
MI値:3.3
密度:0.90g/cm3
【0088】
【表1】

Figure 0003692288
【0089】
またCPPフィルムとしては、下記4種のフィルムの中から1種を選択して用いた。
〈フィルムC−1〉
プロピレンの単独重合体からなる、厚み20μmのCPPフィルム〔東洋紡績社製の商品名P−1111〕。
〈フィルムC−2〉
プロピレンの単独重合体からなる、厚み25μmのCPPフィルム〔東洋紡績社製の商品名P−1111〕。
〈フィルムC−3〉
プロピレンの単独重合体からなり、顔料を練りこむことで赤色に着色された、厚み25μmのCPPフィルム〔東洋紡績社製の商品名P−1111〕。
〈フィルムC−4〉
プロピレンの単独重合体からなる、厚み30μmのCPPフィルム〔東洋紡績社製の商品名P−1111〕。
【0090】
さらにOPPフィルムとしては、下記6種のフィルムの中から1種を選択して用いた。
〈フィルムO−1〉
プロピレンの単独重合体からなる、熱収縮温度142℃、厚み7μmのOPPフィルム〔東レ社製〕。
〈フィルムO−2〉
プロピレンの単独重合体からなる、熱収縮温度142℃、厚み10μmのOPPフィルム〔東レ社製〕。
〈フィルムO−3〉
プロピレンの単独重合体からなる、熱収縮温度138℃、厚み25μmのOPPフィルム〔東洋紡績社製の商品名P−2161〕。
〈フィルムO−4〉
プロピレン−エチレンランダム共重合体からなる、熱収縮温度118℃、厚み40μmのOPPフィルム〔サントックス社製の商品名SF−21〕。
〈フィルムO−5〉
プロピレンの単独重合体からなる、熱収縮温度138℃、厚み50μmのOPPフィルム〔東洋紡績社製の商品名P−2161〕。
〈フィルムO−6〉
プロピレンの単独重合体からなる、熱収縮温度138℃、厚み60μmのOPPフィルム〔東洋紡績社製の商品名P−2161〕。
【0091】
OPPフィルムの熱収縮温度は、下記の方法で測定した。
〈OPPフィルムの熱収縮温度測定〉
10cm角に切り出したフィルムを、恒温槽(オーブン)にて、設定温度で10分間、加熱したのち、槽外に取り出し、フィルムのMD方向とTD方向の寸法を測定した。なお恒温槽の設定温度は90℃から150℃まで10℃刻みで設定して、上記の測定を各設定温度ごとに行った。
【0092】
そして横軸に設定温度、縦軸に収縮率〔=(加熱前の寸法−加熱後の寸法)÷加熱前の寸法×100〕をとったグラフを、フィルムのMD方向とTD方向のそれぞれについてプロットして、このいずれかの方向の収縮率が5%に達する温度をグラフから読み取って熱収縮温度とした。
なおO−4のOPPフィルムは、先に述べたように比較的融点の低いプロピレン系共重合体にて形成されたもので、それ以外の他の、汎用のOPPフィルムより熱成形時の伸びが良く、良好な成形品が得られるものであった。
【0093】
実施例1
〈発泡シートの作製〉
表1のPP1のポリプロピレン系樹脂100重量部と、気泡調整剤〔ベーリンガー社製の商品名ハイドロセロールHK−70〕0.4重量部とをドライブレンドし、この混合物を、第1および第2の2台の押出機を有するタンデム押出機(口径φ90−φ115)のホッパーに供給し、当該ホッパーに接続された第1押出機内で溶融、混合しつつ、発泡剤としてのブタン(イソブタン/ノルマルブタン=65/35)を圧入した。ブタンの圧入量は、樹脂100重量部あたり2.0重量部とした。
【0094】
そしてさらに溶融、混合した溶融混合物を、第1押出機から第2押出機に連続的に供給し、当該第2押出機内で均一に冷却したのち、第2押出機の先端に接続した、口径240mmの円筒状ダイから、毎時120kgの吐出量で、大気中に連続的に、円筒状に押し出しながら発泡させた。
次に、得られた円筒状の発泡体を、24℃の水で冷却された、直径672mmのマンドレルに沿わせて円筒の内部から冷却し、また円筒の外形より大きいエアリングからエアーを吹き付けて円筒の外部から冷却したのち、円周上の2点でカッターによって切開して、密度0.25g/cm3、厚み1.5mm、幅1045mmの長尺の発泡シートを作製した。
【0095】
〈積層発泡体の製造〉
上記で作製した発泡シートの片面に、CPPフィルムとしての、同幅の長尺のフィルムC−2と、OPPフィルムとしての、同幅の長尺のフィルムO−1とを、図2(b)に示す同時ラミネートによるサーマルラミネート法で積層、接着して積層発泡体を製造した。積層の条件は下記のとおりとした。またCPPフィルムの厚みは、OPPフィルムの厚みの357%であった。
【0096】
予熱ヒータH1による発泡シート1の予熱温度:65℃
加熱ローラRaの加熱温度:190℃
ニップローラRbのニップ圧力:6kg/cm2
各層の送り速度:10m/分
〈成形品の製造〉
上記積層発泡体を、そのOPPフィルム側が容器の内面側となるようにプラグアシスト成形して、成形品としての前記パスタ容器を製造した。
【0097】
実施例2
〈発泡シートの作製〉
表1のPP2のポリプロピレン系樹脂100重量部を用いたこと以外は実施例1と同様にして、密度0.34g/cm3、厚み1mm、幅1045mmの長尺の発泡シートを作製した。
〈積層発泡体の製造〉
上記で作製した発泡シートの片面に、CPPフィルムとしての、同幅の長尺のフィルムC−3と、OPPフィルムとしての、同幅の長尺のフィルムO−3とを、図2(a)に示す逐次ラミネートによるサーマルラミネート法で積層、接着して積層発泡体を製造した。積層の条件は下記のとおりとした。またCPPフィルムの厚みは、OPPフィルムの厚みの100%であった。
【0098】
予熱ヒータH1による発泡シート1の予熱温度:70℃
加熱ローラR1aの加熱温度:190℃
ニップローラR1bのニップ圧力:6kg/cm2
加熱ローラR2aの加熱温度:190℃
ニップローラR2bのニップ圧力:6kg/cm2
各層の送り速度:10m/分
〈成形品の製造〉
上記積層発泡体を、そのOPPフィルム側が容器の内面側となるように、実施例1と同様にプラグアシスト成形して、成形品としての前記パスタ容器を製造した。
【0099】
実施例3
〈発泡シートの作製〉
表1のPP3のポリプロピレン系樹脂100重量部を用いたこと以外は実施例1と同様にして、密度0.33g/cm3、厚み1.02mm、幅1045mmの長尺の発泡シートを作製した。
〈積層発泡体の製造〉
上記で作製した発泡シートの片面に、CPPフィルムとしての、同幅の長尺のフィルムC−2と、OPPフィルムとしての、同幅の長尺のフィルムO−1とを、図2(a)に示す逐次ラミネートによるサーマルラミネート法で積層、接着して積層発泡体を製造した。積層の条件は実施例2と同様とした。またCPPフィルムの厚みは、OPPフィルムの厚みの357%であった。またCPPフィルムの発泡シート側の表面に、あらかじめグラビア印刷によって印刷層を形成することで、発泡シートとCPPフィルムとの界面に上記印刷層を介装した。
【0100】
〈成形品の製造〉
上記積層発泡体を、そのOPPフィルム側が容器の内面側となるように、実施例1と同様にプラグアシスト成形して、成形品としての前記パスタ容器を製造した。
実施例4
CPPフィルムとして、そのOPPフィルム側の表面に、あらかじめグラビア印刷によって印刷層を形成したものを用いて、CPPフィルムとOPPフィルムとの界面に上記印刷層を介装したこと以外は実施例3と同様にして積層発泡体、およびパスタ容器を製造した。
【0101】
実施例5
OPPフィルムとして、発泡シートと同幅の長尺のフィルムO−3を用いたこと以外は実施例4と同様にして積層発泡体、およびパスタ容器を製造した。CPPフィルムの厚みは、OPPフィルムの厚みの100%であった。
実施例6
OPPフィルムとして、発泡シートと同幅の長尺のフィルムO−4を用いたこと以外は実施例3と同様にして積層発泡体、およびパスタ容器を製造した。CPPフィルムの厚みは、OPPフィルムの厚みの62.5%であった。
【0102】
実施例7
実施例2で製造したのと同じ発泡シートの片面に、CPPフィルムとしての、同幅の長尺のフィルムC−4と、OPPフィルムとしての、同幅の長尺のフィルムO−5とを、図2(a)に示す逐次ラミネートによるサーマルラミネート法で積層、接着して積層発泡体を製造し、実施例1と同様にプラグアシスト成形してパスタ容器を製造した。積層の条件は実施例2と同様とした。またCPPフィルムの厚みは、OPPフィルムの厚みの60%であった。またOPPフィルムのCPPフィルム側の表面に、あらかじめグラビア印刷によって印刷層を形成することで、CPPフィルムとOPPフィルムとの界面に上記印刷層を介装した。
【0103】
実施例8
〈発泡シートの作製〉
表1のPP4のポリプロピレン系樹脂100重量部を用いたこと以外は実施例1と同様にして、密度0.46g/cm3、厚み0.89mm、幅1045mmの長尺の発泡シートを作製した。
〈積層発泡体の製造〉
上記で作製した発泡シートの片面に、CPPフィルムとしての、同幅の長尺のフィルムC−4と、OPPフィルムとしての、同幅の長尺のフィルムO−2とを、図2(b)に示す同時ラミネートによるサーマルラミネート法で積層、接着して積層発泡体を製造した。積層の条件は実施例1と同様とした。またCPPフィルムの厚みは、OPPフィルムの厚みの300%であった。またCPPフィルムの発泡シート側の表面に、あらかじめグラビア印刷によって印刷層を形成することで、発泡シートとCPPフィルムとの界面に上記印刷層を介装した。
【0104】
〈成形品の製造〉
上記積層発泡体を、そのOPPフィルム側が容器の内面側となるように、実施例1と同様にプラグアシスト成形して、成形品としての前記パスタ容器を製造した。
比較例1
CPPフィルムを省略して、発泡シートと、OPPフィルムとしてのフィルムO−3とを直接に積層したこと以外は実施例5と同様にして積層発泡体、およびパスタ容器を製造した。
【0105】
比較例2
OPPフィルムの、発泡シート側の表面に、あらかじめグラビア印刷によって印刷層を形成することで、発泡シートとOPPフィルムとの界面に上記印刷層を介装したこと以外は比較例1と同様にして積層発泡体、およびパスタ容器を製造した。
比較例3
実施例3で製造したのと同じ発泡シートの片面に、CPPフィルムとしての、同幅の長尺のフィルムC−1と、OPPフィルムとしての、同幅の長尺のフィルムO−6とを、図2(a)に示す逐次ラミネートによるサーマルラミネート法で積層、接着して積層発泡体を製造し、実施例1と同様にプラグアシスト成形してパスタ容器を製造した。積層の条件は実施例2と同様とした。またCPPフィルムの厚みは、OPPフィルムの厚みの33.3%であった。またCPPフィルムの発泡シート側の表面に、あらかじめグラビア印刷によって印刷層を形成することで、発泡シートとCPPフィルムとの界面に上記印刷層を介装した。
【0106】
以上の結果を表2にまとめた。
【0107】
【表2】
Figure 0003692288
【0108】
表より、CPPフィルムを省略して発泡シートとOPPフィルムとを直接に積層した比較例1、2はともに、熱成形後の加熱調理時にOPPフィルムの浮き上がりが多数発生し、特に両層の間に印刷層を設けた比較例2は、熱成形時にも僅かながらOPPフィルムの浮き上がりが発生することが確認された。
またCPPフィルムを介装したものの、その厚みが、OPPフィルムの厚みの40%未満であった比較例3は、OPPフィルムの厚みが60μmと大きいことも相まって、熱成形時からOPPフィルムの浮き上がりが多数発生した。また熱成形性もやや不良であった。
【0109】
これに対し各実施例はいずれも、熱成形時にOPPフィルムの浮き上がりが見られず、また加熱調理時にも殆どの実施例でOPPフィルムの浮き上がりが見られない上、成形性、断熱性ともに実用可能なレベルに達していることが確認された。
また各実施例のうち、同じCPPフィルムとOPPフィルムを組み合わせた実施例1、3および4を比較すると、発泡シートの密度および厚みの相違に起因して、断熱性の結果こそ実施例1が極めて良好で、実施例3、4が良好という違いがあったものの、OPPフィルムの浮き上がりは、熱成形時および加熱調理時のいずれの時点でも全く見られず、このことから本発明の構成によれば、印刷層の有無やその形成位置に拘らず、OPPフィルムの密着性を著しく向上できることがわかった。
【0110】
またOPPフィルムの厚みを違えることで、CPPフィルムの厚みの、OPPフィルムの厚みに対する割合を変化させた実施例3〜6、あるいは実施例2、7を比較すると、いずれも実用可能な範囲内であるものの、上記割合が大きくなるほど、OPPフィルムの浮き上がりが減少して、その密着性が向上することが確認された。
また各実施例の中でOPPフィルムの厚みが特に大きい実施例6、7を比較すると、実施例7に見るように汎用のOPPフィルムを用いた場合は、その厚みゆえに成形性が僅かに低下するが、実施例6に示すように、前述した伸びのよいOPPフィルムを用いることで、成形性を改善できることが確認された。
【0111】
さらに実施例8の結果より、発泡シートを前記樹脂(B)のみで形成した場合には、当該発泡シートを樹脂(A)のみ、もしくは樹脂(A)(B)で形成した場合に比べて、密度の小さい、高い断熱性を有する積層発泡体こそ得られないものの、中程度の密度を有する積層発泡体を形成できる、その場合にも本発明の構成を採用することで、OPPフィルムの密着性を向上できることが確認された。
【0112】
【発明の効果】
以上、詳述したように本発明によれば、電子レンジ調理等に使用できる耐熱性、耐油性、断熱性を有し、かつ高温時の剛性にすぐれる上、熱成形時や、熱成形後の加熱調理時等に隅部などでOPPフィルムが浮き上がる問題が改善された、新規なポリプロピレン系樹脂積層発泡体と、その効率的な製造方法と、上述した各特性に優れた良好な成形品とを提供できるという特有の作用効果を奏する。
【図面の簡単な説明】
【図1】同図(a)は、本発明のポリプロピレン系樹脂積層発泡体の、実施の形態の一例を示す拡大断面図、同図(b)は、上記積層発泡体を熱成形した際の、隅部の状態を示す拡大断面図である。
【図2】上記例の積層発泡体を、サーマルラミネート法によって製造する工程を説明する図であって、同図(a)は逐次ラミネートによるサーマルラミネート法、同図(b)は同時ラミネートによるサーマルラミネート法の説明図。
【図3】積層発泡体から製造される成形品の一例としてのパスタ容器を示す図であって、同図(a)は平面図、同図(b)は縦断面図である。
【図4】同図(a)は、従来の積層発泡体を熱成形した際の、隅部の理想的な状態を示す拡大断面図、同図(b)は、上記従来の積層発泡体を熱成形した際の、隅部にOPPフィルムの浮き上がりが生じた状態を示す拡大断面図である。
【符号の説明】
1 発泡シート
2 CPPフィルム
3 印刷層
4 OPPフィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel polypropylene-based resin laminate foam, a method for producing the same, and a molded article suitably used for food packaging containers and the like using the laminate foam.
[0002]
[Prior art]
Conventionally, as for food packaging containers such as lunch boxes and salmon sold at convenience stores and supermarkets, and other general packaging containers, those made of expanded polystyrene have been widely used in consideration of heat retention, heat insulation, strength, etc. It was.
However, recently, with the spread of microwave ovens to general households, or the spread of cooking services such as lunch boxes using microwave ovens at convenience stores, it is especially useful for food packaging containers and foam polystyrene containers. High heat resistance and oil resistance that cannot be achieved have been demanded.
[0003]
As a food packaging container excellent in heat resistance and oil resistance and capable of cooking in a microwave oven, a polypropylene sheet non-foamed container filled with a filler such as talc is generally used.
However, since the container is non-foamed, its heat insulation is insufficient, and there is a problem that the wall surface and the bottom surface of the container become high temperature when the container is taken out after cooking with a microwave oven.
[0004]
Further, since the container contains a large amount of filler, there is a problem that recycling is difficult.
Therefore, a polypropylene resin foam sheet having excellent heat resistance and oil resistance compared to expanded polystyrene, excellent heat insulation because it has a foam structure, and also excellent recyclability because it contains no filler in most cases. It has been studied to produce food packaging containers by thermoforming.
[0005]
However, a container made by thermoforming the above-mentioned polypropylene resin foam sheet alone has low rigidity, and the strength is greatly reduced particularly in a high temperature state after cooking by heating with a microwave oven. In a container having a wide opening, such as a curry container or a spaghetti container, there is a problem that the entire container is bent and deformed by the weight of the contents, and the contents are easily spilled.
Therefore, at present, the weight per unit area of the foam sheet is increased to cope with bending and deformation at a high temperature, but this causes a new problem of increasing the cost of the container.
[0006]
In addition, when a container is manufactured by thermoforming the polypropylene resin foam sheet, the sheet is drastically drooped in the heating zone of the molding apparatus, or the sheet corrugates. There is also a problem that it becomes impossible to manufacture a good container evenly. In particular, this tendency is stronger as the foam sheet having a larger weight per unit area is used.
Therefore, in order to solve such a problem with the foam sheet alone, for example, in Japanese Patent No. 2904337 or Japanese Patent Application Laid-Open No. 11-170455, a biaxially stretched polypropylene system similar to a polypropylene resin foam sheet is used. It has been proposed to use a laminated foam in which a resin film (hereinafter abbreviated as “OPP film”) is laminated.
[0007]
Since such a laminated foam is obtained by improving the rigidity of the container at high temperature by laminating films, it is prevented from being greatly bent and deformed during cooking, and the weight of the foam sheet can be reduced by this lamination. It is considered that the problems in the manufacturing process can be solved.
[0008]
[Problems to be solved by the invention]
However, as a result of investigations by the inventors, it has been clarified that the conventional laminated foam has the following problems.
That is, when a container is manufactured by thermoforming a conventional laminated foam, it is provided at the corner of the rising from the bottom of the container to the side wall, or at the bottom or side wall of the container for reinforcement, design, etc. As shown in FIG. 4B, the foam sheet 1 and the OPP film 2 are not integrally molded as shown in FIG. 4A at the rising corners of the ribs. However, there is a problem that the OPP film 2 is lifted off the foam sheet 1 by locally peeling at the interface between the two.
[0009]
Even if the container can be molded beautifully without being lifted up, if the container is stored for a long period of time, or is cooked by a microwave oven or the like with food stored inside, the OPP film 2 is still removed from the foam sheet 1. There was a problem of floating up.
The problem of floating of the OPP film at the corners or the like is that the printing layer 3 for improving the design property, particularly at the interface between the foamed sheet 1 and the OPP film 2, as shown in FIGS. It was generated remarkably when it was provided.
[0010]
The object of the present invention is to have heat resistance, oil resistance and heat insulation that can be used for cooking in a microwave oven, etc., and excellent in rigidity at high temperature, and at the time of thermoforming and cooking after thermoforming. An object of the present invention is to provide a novel polypropylene-based resin laminated foam in which the problem that the OPP film is lifted at a part or the like is improved, and a method for producing the same.
Another object of the present invention is to provide a novel molded product that can be suitably used for food packaging containers and the like because of its excellent properties described above.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the inventors have raised the OPP film at the corners when the conventional laminated foam is thermoformed or when the container after thermoforming is used for cooking. As a result of examining easy causes, the following facts were found.
That is, in the process of manufacturing a food packaging container or the like by thermoforming the laminated foam, the laminated foam is stretched along the shape of the container while receiving heat. In this process, the stretched foam is applied to the OPP film 2. Contrary to the force (shown by solid line arrows in FIGS. 4 (a) and (b)), the force of thermal contraction to ease stretching [shown by the dashed line arrows in FIGS. 4 (a) and (b)] ] Occurs.
[0012]
This force concentrates on the corner of the container where the amount of stretch of the laminated foam is the largest, and as a result, the foam sheet 1 and the OPP film 2 that are not originally so close to each other are separated from each other at the corner. As a result, the OPP film 2 is lifted as indicated by white arrows in FIG.
In particular, when the printing layer 3 is formed at the interface between the two, the printing layer 3 further reduces the adhesion of the OPP film 2 to the foam sheet 1 and promotes the peeling. The resulting lift is even more prominent.
[0013]
Moreover, even if it can be molded beautifully without being lifted at the time of thermoforming, since the shrinkage force is accumulated as stress in the OPP film 2, when stored over a long period of time as described above, As a result of the OPP film 2 gradually contracting to relieve the accumulated stress, the OPP film 2 is peeled off and lifted off, particularly at the corners. Further, when cooking, the OPP film 2 contracts rapidly, and as a result, the OPP film 2 peels off and rises at the corners.
[0014]
Therefore, the inventors of the polypropylene resin laminate foam in order to suppress the thermal shrinkage of the OPP film during heating, which causes peeling, and to increase the adhesion between each layer constituting the laminate foam more than before. The layer structure was further examined.
As a result, when the OPP film is laminated on the polypropylene resin foam sheet via an unstretched polypropylene resin film (hereinafter abbreviated as “CPP film”) having a thickness of 40% or more of the thickness of the OPP film. The CPP film is a film having a uniform thickness made of a polypropylene resin similar to the foam sheet and the OPP film,
(1) It adheres to both the foam sheet and the OPP film uniformly and with good adhesion, and functions to increase the adhesion at the interface of each layer than before,
(2) In such a close contact state, the OPP film functions to absorb the force of heat shrinkage due to heating and suppress the heat shrinkage.
Even if a printing layer is provided at the interface between the foam sheet and the CPP film, or the interface between the CPP film and the OPP film, the peeling of the OPP film and the resulting lift are more The inventors have found that it can be surely prevented, and have completed the present invention.
[0015]
Therefore, in the polypropylene resin laminate foam of the present invention, a biaxially stretched polypropylene resin film (OPP film) is formed on at least one side of a polypropylene resin foam sheet, and the thickness of the biaxially stretched polypropylene resin film is 40% or more. It is characterized by being laminated through an unstretched polypropylene-based resin film (CPP film) having a thickness of 5 mm.
In the present invention, the thickness of the CPP film is limited to 40% or more of the thickness of the OPP film. If the thickness of the CPP film is within this range, the functions (1) and (2) are sufficiently exhibited. Therefore, it is possible to reliably prevent the OPP film from being lifted at corners or the like, but these functions cannot be obtained when the thickness of the CPP film is less than the above range.
[0016]
The polypropylene resin laminated foam of the present invention can be produced by various conventionally known methods. However, a foam sheet, a CPP film, and an OPP film prepared in advance are directly bonded by a thermal laminating method. It is most preferable to manufacture by the manufacturing method of the present invention, which is laminated and thermally bonded.
When the above layers are heat-bonded via, for example, a hot-melt adhesive, the melting temperature of the hot-melt adhesive is generally the thermoforming temperature of the polypropylene resin, or cooking food by a microwave oven. Since the temperature is much lower than the temperature, etc., when the container is manufactured by thermoforming, or when the container is cooked together with the food inside the microwave oven, the hot melt adhesive melts and the adhesive strength decreases significantly. As a result, there is a risk of causing peeling at the corners and lifting due to the above-described thermal contraction of the OPP film.
[0017]
Further, for example, a polypropylene resin in a molten state is extruded between the foam sheet and the OPP film to form an intermediate layer corresponding to the CPP film, and at the same time, the foam sheet and the OPP film are interposed through the intermediate layer. When the extrusion laminating method that laminates and adheres is adopted, the very high temperature (typically around 280 ° C) polypropylene resin extruded in the molten state between the foam sheet and the OPP film is cooled. Until the intermediate layer is formed, a larger amount of heat is applied to the foamed sheet and the OPP film than the thermal laminating method.
[0018]
For this reason, the laminated foam produced has a higher tension, particularly due to the accumulation of shrinkage force generated in the OPP film, as compared with the case produced by other lamination methods, and the laminated foam was thermoformed. In some cases, immediately after the molding, the OPP film hardly peels off and rises due to the action of the intermediate layer, but when stored over a long period of time, it gradually increases over time and rapidly when cooked. As a result of the shrinkage of the OPP film 2, there is a risk that the OPP film 2 may peel off and rise, particularly at the corners.
[0019]
Further, in the above extrusion laminating method, it is difficult to reduce the thickness of the intermediate layer due to manufacturing restrictions, and the thickness of the intermediate layer becomes as large as about 100 μm. This requires a large amount of heat, which further increases the stress accumulated in the OPP film and further promotes peeling and lifting of the OPP film at the corners, etc. There is also the problem of lengthening.
[0020]
On the other hand, according to the production method of the present invention, without using a hot melt adhesive, and without exposing the foamed sheet and the OPP film to a high temperature for a long time as in the extrusion laminating method, for example, As will be described later, a polypropylene resin laminate foam can be produced by heating only for a very short time while passing between a hot roll and a nip roll, and the thickness of the CPP film can be formed by an extrusion lamination method. It can be made smaller than the layer, all the above-mentioned problems can be solved, and the above-described polypropylene-based resin laminated foam excellent in each characteristic can be efficiently produced.
[0021]
Furthermore, since the molded article of the present invention is manufactured by thermoforming the above-mentioned polypropylene resin laminate foam, it can be suitably used for food packaging containers suitable for microwave cooking.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below.
<Polypropylene-based resin laminated foam and its manufacturing method>
For example, as shown in FIG. 1 (a), the polypropylene-based resin laminate foam of the present invention has an OPP film 2 on at least one side (in the figure, one side but includes both sides) of a polypropylene-based resin foam sheet 1. Are laminated via a CPP film 4 having a thickness of 40% or more of the thickness of the OPP film 2. Reference numeral 3 in the figure is a printing layer for improving the design properties. In the figure, it is formed at the interface between the foamed sheet 1 and the CPP film 4, but is printed at the interface between the CPP film 4 and the OPP film 2. Layer 3 may be formed.
[0023]
In the laminated foam, the CPP film 4 interposed between the foamed sheet 1 and the OPP film 2 is uniformly adhered to both the foamed sheet 1 and the OPP film 2 as described above. In order to prevent the thermal contraction of the OPP film 2 by absorbing the force of the OPP film 2 to be thermally contracted by heating in the close contact state, as well as improving the adhesive force at the interface of each layer than before. To work.
[0024]
Therefore, by thermoforming, the foamed sheet 1, the OPP film 2, the printed layer 3, and the CPP film 4 do not cause peeling of the OPP film 2 and the accompanying lifting at the corners or the like. As shown in (b), it is integrally molded neatly. Further, the OPP film 2 is prevented from being peeled off or lifted by the passage of time after molding or heat during cooking.
(Foam sheet 1)
Of the laminated foams, the polypropylene resin constituting the foam sheet 1 is preferably a non-crosslinked polypropylene resin, and as such a non-crosslinked polypropylene resin,
(A) a polypropylene resin having a free-end long-chain branch in the molecule and a melt tension of 6 g or more and 40 g or less (hereinafter referred to as “resin (A)”), and
(B) Polypropylene resin having a melt tension of 0.01 g or more and less than 6 g and a ratio Mw / Mn of weight average molecular weight Mw to number average molecular weight Mn of 3 to 8 [hereinafter referred to as “resin (B)” ]
At least one selected from the group consisting of is preferably used.
[0025]
Among these, the preferable range of the melt tension of the resin (A) is 6 g or more and 40 g or less. If the resin tension is less than 6 g, good foamability cannot be obtained. This is because there is a possibility that the extrudability may be deteriorated due to extreme deterioration or easy formation of a gel. The melt tension of the resin (A) is particularly preferably 20 to 30 g even within the above range, considering the balance between foamability and extrusion or composition.
[0026]
Examples of the resin (A) having such a free-end long chain branch include trade names Pro-fax PF-814 and Pro-fax SD-632, which are sold as foaming grades from Montel SDK Sunrise. It is done.
The resin (A) has good foamability when foamed by extrusion foaming or the like, for example, its density is 0.3 g / cm.ThreeIt is suitable for forming a foam sheet 1 having a low density, a high expansion ratio, and particularly excellent heat insulation.
[0027]
Therefore, the above-mentioned resin (A) may be used alone to form the foamed sheet 1. However, since the resin (A) is expensive and may increase the product cost, the resin is usually used as a polypropylene resin. It is preferable to form the foamed sheet 1 by using (A) and the resin (B) in combination. Even in that case, it is possible to form the foam sheet 1 having a relatively low density and a high expansion ratio and excellent heat insulation.
The preferred range of the melt tension of the resin (B) is 0.01 g or more and less than 6 g as described above, since the tension is too low if it is less than 0.01 g, the resulting foam sheet 1 is open-celled. On the other hand, if it is 6 g or more, the melt viscosity of the resin becomes high and it becomes difficult to lower the resin temperature to near the melting point. As a result, an open cell structure tends to be obtained. It is because there exists a possibility that it may fall. In view of the balance between the tension and the melt viscosity, the resin (B) has a melt tension of preferably 0.1 g or more and less than 6 g, and more preferably 0.1 g or more and less than 3 g, even within the above range. Is more preferable.
[0028]
Examples of such a resin (B) include those satisfying the above conditions among general-purpose polypropylene resins such as a homopolymer of propylene and an ethylene-propylene copolymer.
The ratio of the resin (A) to the total amount of the resin (A) and the resin (B) is preferably 10 to 50% by weight as described above, and more preferably 10 to 40% by weight. . The reason for this is as follows.
[0029]
That is, the resin (A) improves the foaming property of the non-crosslinked general-purpose polypropylene resin, that is, the resin (B), which is usually not very foamable by the action of free-end long chain branching introduced into the molecule. It contributes to obtaining the foam sheet 1 having heat insulation, oil resistance and heat resistance.
However, a polypropylene resin having a free end long chain branch has a problem that it is inferior in rigidity as compared to a general-purpose polypropylene resin having no free end long chain branch. Moreover, since the polypropylene resin having a free-end long chain branch is expensive, the production cost of the product is increased.
[0030]
Therefore, the ratio of the resin (A) to the total amount of the resin (A) and the resin (B) is preferably 50% by weight or less, particularly 40% by weight or less as described above. On the other hand, the foamability of the resin (B) is improved, and the density is 0.3 g / cm as in the case of the resin (A) alone.ThreeIn order to form a foam sheet 1 having a low density, a high expansion ratio, and excellent heat insulation, the ratio of the resin (A) to the total amount of the resin (A) and the resin (B) is 10% by weight. % Or more is preferable.
[0031]
As described above, although the resin (B) is usually not very foamable, for example, its density is 0.3 g / cm.ThreeIt is possible to manufacture the foam sheet 1 having a relatively low expansion ratio as described above. Therefore, the foam sheet 1 may be formed by using the resin (B) alone as a polypropylene resin.
The foam sheet 1 is manufactured by melt-kneading the above polypropylene resin together with a foaming agent using an extruder, for example, and then extrusion-foaming through a mold connected to the tip of the extruder.
[0032]
There are circular slit dies, T-shaped dies, etc., but a cylindrical foam obtained by extrusion foaming through a circular slit die is cut at one or two or more locations on the circumference of the foam sheet 1. Preferably it is manufactured.
Examples of the foaming agent used for extrusion foaming include various volatile foaming agents, decomposable foaming agents, carbon dioxide, nitrogen gas, and water.
Among these, examples of the volatile blowing agent include one or more hydrocarbons such as propane, butane and pentane, and halogenated hydrocarbons such as tetrafluoroethane, chlorodifluoroethane and difluoroethane. Preferably used. As butane, normal butane or isobutane may be used alone, or normal butane and isobutane may be used in any proportion.
[0033]
Examples of the decomposable foaming agent include inorganic foaming agents such as an organic foaming agent such as azodicarbonamide and dinitrosopentamethylenetetramine, a combination of an organic acid such as citric acid or a salt thereof, and a bicarbonate such as sodium bicarbonate. Type foaming agents.
One of these foaming agents may be used alone, or two or more thereof may be used in combination.
[0034]
In addition, when melt-kneaded with a polypropylene-based resin in advance or with an extruder, for example, talc, or citric acid and sodium bicarbonate, such as a bubble adjusting agent for adjusting the size of bubbles when foaming, Various additives such as pigments, stabilizers, fillers, antistatic agents and the like may be appropriately added within a range not impairing the effects of the present invention. Among them, the filler is added to improve the strength of the molded product, rigidity at high temperature, durability and heat resistance. Examples of the filler include talc, calcium carbonate, silica, alumina, and titanium oxide. And inorganic fillers such as clay. The addition amount of the inorganic filler is preferably 5 to 50 parts by weight with respect to 100 parts by weight of the polypropylene resin.
[0035]
The foamed sheet 1 thus formed has a density of 0.1 to 0.85 g / cm.ThreeIs preferred.
The density of the foam sheet 1 is 0.1 g / cmThreeIs less than 0.85 g / cm, the strength of the molded product and the rigidity at high temperatures may decrease.ThreeIf it exceeds, the heat insulating property of the molded product may be lowered. The density of the foamed sheet 1 is 0.18 to 0.6 g / cm, particularly within the above range, considering the balance between strength and rigidity of the molded product and heat insulation.ThreeIs preferred.
[0036]
Further, the thickness of the foam sheet 1 is preferably 0.3 to 5 mm, more preferably 0.5 to 3 mm in consideration of thermoformability, although it depends on the specifications of the target molded product.
(OPP film 2)
Examples of the polypropylene resin used as the basis of the OPP film 2 constituting the polypropylene resin laminated foam together with the foam sheet 1 include a propylene homopolymer, and a block copolymer of propylene and another resin. Or a random copolymer or the like may be used alone or in admixture of two or more.
[0037]
As other olefins other than propylene, ethylene or an α-olefin having 4 to 10 carbon atoms (1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, etc.) or 2 More than species.
Particularly suitable polypropylene resins include, for example, propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene-α-olefin random copolymer, and propylene component and propylene-ethylene random copolymer component. Examples thereof include a block copolymer.
[0038]
In addition, other resins may be mixed with the polypropylene resin as long as the effects of the present invention are not impaired.
Examples of the other resins include homopolymers or copolymers such as ethylene and α-olefin, olefin resins such as polyolefin wax and polyolefin elastomer, and hydrocarbon resins such as petroleum resins and terpene resins. However, it is used individually by 1 type or in mixture of 2 or more types.
[0039]
In addition, the above-mentioned polypropylene-based resin is intended to provide an antistatic agent, an antifogging agent, an antiblocking agent, an antioxidant, a light stabilizer, a crystal nucleating agent, a lubricant, a slipperiness and an antiblocking property as necessary. You may add suitably various additives, such as surfactant and a filler, in the range which does not impair the effect of this invention.
The OPP film 2 is obtained by, for example, melt-kneading the above-described polypropylene resin using an extruder, and then extruding the extruded film into a film shape through a die connected to the tip of the extruder. It is manufactured by stretching (biaxial stretching) sequentially or simultaneously in two directions: a direction (longitudinal direction, MD) and a direction perpendicular to the direction (transverse direction, TD).
[0040]
Among these, as the sequential biaxial stretching method, for example, a resin melted by using an extruder is extruded into a film shape from a T die connected to the tip of the extruder, cooled and solidified on a cooling roll, and then a heating roll stretching machine is used. And stretching in the MD direction, followed by stretching in the TD direction using a tenter transverse stretching machine. Examples of the simultaneous biaxial stretching method include a tenter method and a tubular inflation method.
The stretch amount of the OPP film 2 is not particularly limited, but the area stretch ratio, that is,
Area stretch ratio = (MD direction stretch ratio) × (TD direction stretch ratio)
Is preferably 4 to 50 times.
[0041]
When the area stretch ratio is less than 4 times, the effect of improving the drawdown of the laminated foam or the improvement of the strength of the molded product, the rigidity at high temperature, etc. due to the lamination of the OPP film 2 becomes insufficient. There is a fear. On the other hand, when the area stretch ratio exceeds 50 times, the thermoformability of the laminated foam may be lowered. The area stretch ratio is 15 to 35 times, especially within the above range, considering the balance between the effect of improving drawdown, the effect of improving the strength and rigidity of the molded product, and the thermoformability of the laminated foam. Preferably there is.
[0042]
Moreover, it is preferable that the draw ratio of MD direction and TD direction is 2-10 times.
If the draw ratio is less than 2, the effect of improving the drawdown of the laminated foam or the effect of improving the strength of the molded product, the rigidity at high temperature, etc. due to the lamination of the OPP film 2 may be insufficient. There is. On the other hand, when the draw ratio exceeds 10 times, the thermoformability of the laminated foam may be lowered. The draw ratio in the MD direction and the TD direction is particularly within the above range in consideration of the effect of improving drawdown, the effect of improving the strength and rigidity of the molded product, and the thermoformability of the laminated foam. It is preferably 3 to 9 times.
[0043]
The thickness of the OPP film 2 is preferably 5 to 50 μm.
If the thickness is less than 5 μm, the effect of improving the drawdown of the laminated foam and preventing the occurrence of corrugation or the effect of improving the rigidity of the molded product at high temperature may be insufficient. When the OPP film 2 is exceeded, a large amount of heat is generated when a laminated foam is produced by laminating the OPP film 2 on the foam sheet 1 or when a molded product is produced by thermoforming the produced laminated foam. Since it is necessary, the production efficiency is deteriorated, and the foamed sheet 1 is attacked by heat, and a part stretched locally at the time of thermoforming may be generated. The thickness of the OPP film 2 is particularly preferably 6 to 45 μm even within the above range, considering the balance of the above characteristics.
[0044]
Further, for example, a general OPP film formed of a propylene homopolymer is excellent in transparency and surface gloss, and the transparency and gloss tend to improve as the thickness decreases. Moreover, it is excellent in mechanical strength and can exhibit sufficient strength even if the thickness is small. And since the elongation at the time of thermoforming is low, there exists a tendency for thermoformability to fall, so that thickness becomes large. For this reason, when a general OPP film is used, the thickness is preferably as small as possible. Considering the balance between the transparency, gloss, mechanical strength, and thermoformability, it is particularly 6 to 25 μm even within the above range. Is preferred.
[0045]
Recently, an OPP film having a significantly improved elongation has been developed, although the mechanical strength is slightly lower than that of a general OPP film. Such an OPP film is, for example, a propylene-ethylene random copolymer having an ethylene content of 1 to 4% by weight or an ethylene content of 0.5 to 3.0 as described in JP-A-7-241906. It is formed from a propylene-based copolymer having a relatively low melting point, such as a propylene-ethylene-1-butene random copolymer having a 1% -butene content of 4 to 15% by weight. Compared with the OPP film, the elongation at the time of thermoforming is good, deep drawing and the like are possible, and a good molded product can be obtained. However, since the mechanical strength is slightly low as described above, it is preferable that the thickness is as large as possible in order to produce a molded product having sufficient strength and rigidity. Preferably there is.
[0046]
The surface of the OPP film 2 may be subjected to a surface treatment such as a corona discharge treatment in order to improve, for example, printability.
The OPP film 2 is not limited to a single layer, for example, a laminated film in which two or more OPP films such as OPP films made of polypropylene resins having different compositions or OPP films having different draw ratios are laminated. It can also be used. In that case, it is preferable to set the thickness of each layer so that the total thickness of all the OPP films falls within the above-described preferable range.
[0047]
Further, the OPP film 2 may be laminated with other films having different compositions, such as a film made of an ethylene-vinyl alcohol copolymer, for the purpose of improving gas barrier properties, etc., within a range not impairing the effects of the present invention. Good.
(CPP film 4)
Examples of the polypropylene resin used as the basis of the CPP film 4 interposed between the OPP film 2 and the foamed sheet 1 include the same polypropylene resin as in the case of the OPP film 2. The point that other resins can be mixed with the polypropylene resin within a range not impairing the effects of the invention is the same, and the types of the other resins are the same as in the case of the OPP film 2. Further, the types of additives that may be added to the polypropylene resin are the same as in the previous case.
[0048]
The CPP film 4 is produced by melting and kneading a polypropylene resin using an extruder and then extruding the film through a mold connected to the tip of the extruder without substantially stretching.
The thickness of the CPP film 4 is limited to 40% or more of the thickness of the OPP film 2 for the reason described above.
The thickness of the CPP film 4 is preferably 500% or less of the thickness of the OPP film 2 even within the above range.
[0049]
When the thickness of the CPP film 4 exceeds 500% of the thickness of the OPP film 2, the CPP film 4 is too thick and the effect of relaxing the heat shrinkage force of the OPP film 2 becomes excessive. There is a possibility that drawdown, corrugation and the like are likely to occur in the laminated foam. The thickness of the CPP film 4 is within the above range in consideration of the balance between the effect of relaxing the heat shrinkage force of the OPP film 2 and the effect of preventing the draw down and corrugation from occurring in the laminated foam during thermoforming. Of these, 50 to 450% of the thickness of the OPP film 2 is particularly preferable.
[0050]
The specific thickness of the CPP film 4 is preferably 5 to 80 μm.
If the thickness is less than 5 μm, the function of adhering to both the foamed sheet 1 and the OPP film 2 uniformly and with good adhesion and increasing the adhesion at the interface of each layer than before, or such an adhesion state In this case, since the function of absorbing the heat shrinkage of the OPP film 2 by heating and suppressing the heat shrinkage is not sufficiently exerted, the peeling and lifting of the OPP film 2 at the corners and the like are ensured. There is a risk that it cannot be prevented. On the other hand, when the thickness exceeds 80 μm, a large amount of heat is required when thermoforming the laminated foam, and the stress accumulated in the OPP film 2 is further increased. In addition to the possibility of further promoting the peeling and lifting in the process, there is a possibility that the thermoforming cycle becomes longer. In addition, the foamed sheet 1 is attacked by heat, and a part stretched locally at the time of thermoforming may be generated, which may deteriorate the appearance of the molded body. The thickness of the CPP film 4 is particularly preferably 10 to 50 μm even within the above range, considering the balance of the above characteristics.
[0051]
The surface of the CPP film 4 may be subjected to a surface treatment such as a corona discharge treatment in order to improve, for example, printability.
The CPP film 4 is not limited to a single layer, and a laminated film obtained by laminating two or more layers of CPP films such as CPP films made of polypropylene resins having different compositions can also be used. In that case, it is preferable to set the thickness of each layer so that the total thickness of all the CPP films falls within the above-described preferable range.
[0052]
Further, similar to the case of the OPP film 2, the CPP film 4 may be laminated with other films having different compositions such as a film made of an ethylene-vinyl alcohol copolymer for the purpose of improving gas barrier properties. .
The total thickness of the CPP film 4 and the OPP film 2 laminated thereon is preferably 20 to 120 μm.
If the thickness is less than 20 μm, the effect of improving the strength of the molded product and the rigidity at high temperature may be insufficient. Conversely, if the thickness exceeds 120 μm, many of the laminated foams may be thermoformed. The amount of heat is required, and the foamed sheet 1 is attacked by heat, resulting in a part that is locally stretched during thermoforming. The total thickness of the OPP film 2 and the CPP film 4 is preferably 30 to 90 μm even within the above range, considering the balance of these characteristics.
[0053]
(Print layer 3)
The printing layer 3 for improving the designability is one of the interfaces of each layer located between the foam sheet 1 and the OPP film 2, specifically, the foam sheet 1 and the CPP film 4 as described above. It is formed at one or both of the interface and the interface between the CPP film 4 and the OPP film 2.
More specifically,
(i) The surface of the foam sheet 1 on the CPP film 4 side,
(ii) The surface of the CPP film 4 on the foam sheet 1 side,
(iii) The surface of the OPP film 2 side of the CPP film 4,
(iv) The surface of the OPP film 2 on the CPP film 4 side,
In any of the above, the printing layer 3 is formed in advance prior to the lamination, and the printing layer 3 is formed at the predetermined position by laminating and bonding them.
[0054]
Of these, the formation of the printing layer 3 on any one of the surfaces (ii) to (iv) excluding the surface of the foamed sheet 1 in (i) is excellent in smoothness and gives beautiful printing. This is preferable because it is possible.
On the other hand, considering the effect of improving adhesiveness, it is preferable to form the printing layer 3 on the interface between the foamed sheet 1 and the CPP film 4, that is, on the surface of either (i) or (ii).
[0055]
In the configurations (i) to (iv) described above, since the printing layer 3 is viewed through the transparent and glossy OPP film 2, an appearance that emits a beautiful color coupled with the gloss of the OPP film 2 is obtained. Since this appearance is maintained even in a container after thermoforming, a container having excellent design properties can be obtained.
For example, when the printed layer 3 having a red or black pattern is formed on any one of the above surfaces by gravure printing or the like, a container having a color like a lacquer is obtained.
[0056]
In addition, a more beautiful appearance can be formed together with the printing layer 3 by kneading and coloring a pigment as a base layer of the printing layer 3.
Further, by forming the printing layer 3 at two interfaces that can be seen from the outside of the same OPP film 2, a more beautiful appearance can be formed by superimposing the two printing layers 3.
Further, a unique and beautiful appearance can be formed by merely kneading and coloring the foam sheet 1, the OPP film 2, and the CPP film 4 without forming the printing layer 3. For example, if the pigment is kneaded into the CPP film 4 and colored in red or black, the color will be seen through the transparent and glossy OPP film 2, and therefore, combined with the gloss of the OPP film 2, A container having such a color is obtained.
[0057]
As a printing method for forming the printing layer 3, in addition to the above gravure printing, various conventionally known printing methods that can use ink that can be printed on each surface can be employed. is there.
Further, as the pigment kneaded in each layer, any of various pigments excellent in compatibility and dispersibility with the polypropylene resin can be used.
(Laminated foam)
In the laminated foam of the present invention, as described above, the OPP film 2 is disposed on one or both sides of the polypropylene resin foam sheet 1 via the CPP film 4 having a thickness of 40% or more of the thickness of the OPP film 2. In addition to the lamination, the printing layer 3 is formed at any interface of each layer.
[0058]
That is, the laminated foam of the present invention basically includes the following 14 kinds of laminated structures (I) to (XIV) (in practice, here, as described above, the OPP film 2 and the CPP film 4). Variations due to the laminated structure and the like are added, but the description becomes complicated, so the OPP film 2 and CPP film 4 in the following classifications include all those having such a laminated structure in addition to those of a single layer. ).
(I) Three-layer structure of OPP film 2 / CPP film 4 / foamed sheet 1.
[0059]
(II) A four-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / foamed sheet 1.
(III) Four-layer structure of OPP film 2 / CPP film 4 / printing layer 3 / foamed sheet 1.
(IV) 5-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / printing layer 3 / foamed sheet 1.
[0060]
(V) 5 layer structure of OPP film 2 / CPP film 4 / foamed sheet 1 / CPP film 4 / OPP film 2.
(VI) 6-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / foamed sheet 1 / CPP film 4 / OPP film 2.
(VII) 6-layer structure of OPP film 2 / CPP film 4 / printing layer 3 / foamed sheet 1 / CPP film 4 / OPP film 2.
[0061]
(VIII) 7-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / printing layer 3 / foamed sheet 1 / CPP film 4 / OPP film 2.
(IX) 7-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / foamed sheet 1 / CPP film 4 / printing layer 3 / OPP film 2.
(X) 7-layer structure of OPP film 2 / CPP film 4 / printing layer 3 / foamed sheet 1 / printing layer 3 / CPP film 4 / OPP film 2.
[0062]
(XI) 7-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / foamed sheet 1 / printing layer 3 / CPP film 4 / OPP film 2.
(XII) Eight-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / printing layer 3 / foamed sheet 1 / CPP film 4 / printing layer 3 / OPP film 2.
(XIII) 8 layer structure of OPP film 2 / printing layer 3 / CPP film 4 / printing layer 3 / foamed sheet 1 / printing layer 3 / CPP film 4 / OPP film 2.
[0063]
(XIV) 9-layer structure of OPP film 2 / printing layer 3 / CPP film 4 / printing layer 3 / foamed sheet 1 / printing layer 3 / CPP film 4 / printing layer 3 / OPP film 2.
(Method for producing laminated foam)
As a method for producing the laminated foam of the present invention by laminating the above layers, the thermal laminating method is suitably employed as described above.
[0064]
For example, a case where a laminated foam in which an OPP film is laminated on one side of the foamed sheet 1 via the CPP film 4 as in the above (I) to (IV) is continuously produced by the thermal laminating method is taken as an example. Further, the sequential lamination shown in FIG. 2 (a) and the simultaneous lamination shown in FIG. 2 (b) can be adopted.
Of these, in the thermal laminating method by sequential laminating shown in FIG. 2 (a), the foamed sheet 1 that has been manufactured by extrusion foaming in advance and wound in a roll shape is first preheated while being fed from the roll 10 at a constant speed. After preheating to 50 to 90 ° C. through the heater H1, it is supplied to a first roller pair R1 comprising a heating roller R1a and a nip roller R1b.
[0065]
There, this is also produced by extrusion molding in advance, and if necessary, the CPP film 4 wound in a roll shape with the printing layer 3 applied on either side or both sides thereof, While being fed from the roll 40 at a constant speed, it is supplied to the first roller pair R1 through the guide roller GR1, and laminated by heating and pressurizing continuously while being superposed on one surface of the foam sheet 1.
Suitable conditions for laminating by the first roller pair R1 are: the passing speed of the foam sheet 1 and the CPP film 4 is 5 to 15 m / min, the heating temperature of the heating roller R1a is 180 to 210 ° C., and the nip pressure of the nip roller R1b is 4 to 10 kg / min. cm2It is.
[0066]
Next, the laminate is fed to a second roller pair R2 composed of a heating roller R2a and a nip roller R2b while being fed at a constant speed.
There, it was also extruded and then biaxially stretched and manufactured, and OPP was wound into a roll with the printing layer 3 applied on either side or both sides as necessary. The film 2 is supplied from the roll 20 at a constant speed to the second roller pair R2 via the guide roller GR2, and the laminate of the foam sheet 1 and the CPP film 4 on the CPP film 4 side is supplied. Laminate by continuous heating and pressurization while superposing on the surface.
[0067]
If it does so, the laminated foam by which the OPP film was laminated | stacked through the CPP film 4 on the single side | surface of the foam sheet 1 as mentioned above will be manufactured continuously.
Suitable conditions for lamination by the second roller pair R2 are the same as described above. That is, the passing speed of the foam sheet 1, the CPP film 4 and the OPP film 2 is 5 to 15 m / min, the heating temperature of the heating roller R2a is 180 to 210 ° C., and the nip pressure of the nip roller R2b is 4 to 10 kg / cm.2It is.
[0068]
On the other hand, in the thermal laminating method by simultaneous laminating shown in FIG. 2 (b), the foamed sheet 1 manufactured by extruding and foaming in the same manner as described above and wound in a roll shape is fed from the roll 10 at a constant speed. First, after preheating to 50 to 90 ° C. through the preheating heater H1, it is supplied to a roller pair R composed of a heating roller Ra and a nip roller Rb.
There, CPP film 4 which was manufactured by extruding in advance and wound in a roll shape with printing layer 3 on either side or both sides as necessary, and extruding in advance After that, the biaxially stretched OPP film 2 that is manufactured in a roll shape with the printing layer 3 on either side or both sides as necessary is rolled into each roll. While being fed out from 40 and 20 at a constant speed, they are superposed on the guide roller GR and supplied to the roller pair R.
[0069]
Then, when the foamed sheet 1, the CPP film 4, and the OPP film 2 are laminated in this order and continuously heated and pressed to laminate, a laminated foam in which the above layers are laminated in this order is continuously produced.
The preferred conditions for laminating with the roller pair R are the same as described above. That is, the passing speed of the foam sheet 1, the CPP film 4 and the OPP film 2 is 5 to 15 m / min, the heating temperature of the heating roller Ra is 180 to 210 ° C., and the nip pressure of the nip roller Rb is 4 to 10 kg / cm.2It is.
[0070]
The foam sheet 1 is directly extruded and foamed from an extruder directly connected to the apparatus shown in FIGS. (A) and (b). In the case of FIG. (A), the first roller pair R1 is used. In this case, the roller pair R may be supplied. In that case, since the foam sheet 1 immediately after foaming has residual heat, the preheater heater H1 can be omitted.
<Molding>
Examples of the thermoforming method for producing the molded product of the present invention from the above-mentioned laminated foam include various conventionally known methods such as vacuum forming and pressure forming, or matched mold forming and plug assist forming as applications thereof. The molding method can be employed.
[0071]
The molded article of the present invention thus produced has heat resistance, oil resistance, and chemical resistance because the foam sheet 1, CPP film 4, and OPP film 2 constituting the container are all formed of a polypropylene resin. It is excellent and easy to recycle.
In addition, since the foamed sheet 1 is contained, the heat insulating property and the heat retaining property are excellent, and since the foamed sheet 1 has a structure reinforced by the OPP film 2, it is excellent in rigidity at high temperature and impact resistance at low temperature. ing.
[0072]
Moreover, a CPP film 4 is interposed between the foamed sheet 1 and the OPP film 2, and the function of the CPP film 4 allows for, as described above, during thermoforming, during storage after molding, during cooking, etc. The OPP film 2 is reliably prevented from being lifted off at the corners of the molded product. In particular, even if the printing layer 3 that has been conventionally considered to be inferior in adhesiveness is provided, the above-described peeling or lifting does not occur.
In particular, when the printing layer 3 is provided at any of the interfaces of the layers located between the foam sheet 1 and the OPP film 2 or when a pigment is kneaded and colored in the CPP film 4 or the like, it is transparent and glossy. Since the underlying printed layer 3 and coloring can be seen through the OPP film 2, the appearance that gives off a beautiful color combined with the gloss of the OPP film 2 can be obtained, and the container has an excellent design. In particular, when it is colored with a red or black pigment, or when it is a gravure-printed pattern or the like, it emits a color like a lacquer ware and becomes a particularly preferable container.
[0073]
Therefore, although the molded article of the present invention is suitable as various containers, the food, which is the contents, is delivered from the delivery center to each store in a state of being refrigerated or frozen, and taken back to the store or home. It is most suitable for food packaging containers such as convenience stores that are directly cooked in a microwave oven.
A pasta container C as an example of a molded product is shown in FIGS.
The illustrated pasta container C includes a shallow bowl-shaped container body C1, and a collar part C2 for fitting a lid (not shown) extending outward from the upper end opening of the container body C1, The reinforcing rib C3 projecting upward from the bottom of the container main body C1 is manufactured by thermoforming the laminated foam of the present invention as described above.
[0074]
The pasta container C is conventionally manufactured by, for example, manufacturing a laminated foam by thermoforming the OPP film so that the OPP film is located inside the container using a mold having a recess corresponding to the outer shape of the pasta container C, or manufacturing the pasta container C. During the subsequent storage, cooking, etc., the above-described peeling and lifting of the OPP film occurred frequently at the corner C4 of the rising edge of the rib C3 surrounded by the one-dot chain line in the figure, but the configuration of the present invention was adopted. By doing so, these problems can be solved.
[0075]
【Example】
Hereinafter, the present invention will be described based on examples and comparative examples.
In addition, each characteristic of the polypropylene resin used by each Example of this invention and the comparative example, the foam sheet, the laminated foam body manufactured, and a molded article was measured and evaluated by the following method, respectively.
<Melt tension measurement>
The melt tension of the polypropylene resin was measured as follows using a measuring device [Capillograph PMD-C] manufactured by Toyo Seiki Seisakusho.
[0076]
That is, in a state where the sample resin was heated to 230 ° C. and melted, the piston descending speed was constant at 10 mm / min from the piston extrusion type plastometer nozzle (2.095 mm in diameter and 8 mm in length) of the above apparatus. While extruding into a string while maintaining the speed, the string is passed through a tension detection pulley located 35 cm below the nozzle, and then the winding speed is about 66 m / min using a winding roll.2The sample resin was wound up while gradually increasing at a certain acceleration, and the tension at the time when the string-like material was cut was used as the melt tension of the sample resin.
[0077]
<Density measurement of foam sheet>
The density of the foam sheet is determined by measuring the weight and volume of the foam sheet, and the weight (g) / volume (cmThree).
<Evaluation of thermoformability of laminated foam>
The thermoformed formability of the laminated foam is determined by the pasta container as a molded product produced by plug-assist molding of the laminated foam so that the OPP film side surface is inside the container [FIGS. 3 (a) (b) The outer appearance of those having an outer diameter of 200 mm and an outer diameter of 30 mm] was visually observed and evaluated in the following three stages.
[0078]
X: Breaking or the like occurred, and the product could not be formed into a predetermined shape. Poor thermoformability.
(Triangle | delta): The elongation at the time of shaping | molding was bad and the part with thin thickness produced locally. Somewhat poor thermoformability.
◯: A good molded article having good elongation at molding, uniform thickness and high dimensional accuracy was obtained. Good thermoformability.
[0079]
<Uplift evaluation of OPP film>
The presence or absence of lifting of the OPP film during thermoforming and cooking was evaluated according to the following criteria.
(During thermoforming)
As described above, pasted containers having the same shape and the same dimensions are continuously manufactured by plug assist molding so that the surface on the OPP film side is the inner side of the container in the same manner as described above. Every time, 100 samples randomly extracted from each sample were visually observed, and the presence or absence of lifting of the OPP film was evaluated according to the following criteria.
[0080]
A: No lifting of the OPP film was observed in all 100 samples. Very good adhesion of OPP film.
○: Uplift of the OPP film was observed in 10 or less of the 100 samples. Good adhesion of OPP film.
Δ: OPP film was lifted in more than 10 samples but not more than 10 out of 100 samples, but there was no practical problem. Good adhesion of OPP film.
[0081]
X: The lifting of the OPP film was observed in more than 20 samples out of 100. Poor adhesion of OPP film.
(When cooking)
Ten samples of the OPP film that are not lifted are extracted from the samples of the above examples and comparative examples, 200 cc of hot water (98 ° C.) is added to each sample, and heated in a microwave oven with an output of 500 W for 4 minutes. Then, it observed visually and evaluated the presence or absence of the lifting of an OPP film according to the following reference | standard.
[0082]
A: The lifting of the OPP film was not observed at all in all 10 samples. Very good adhesion of OPP film.
○: The lifting of the OPP film was observed in 2 or less of the 10 samples. Good adhesion of OPP film.
Δ: OPP film was lifted in more than 2 samples but not more than 5 out of 10 samples, but there was no practical problem. Good adhesion of OPP film.
[0083]
X: Lifting of the OPP film was observed in more than 5 samples out of 10. Poor adhesion of OPP film.
<Insulation evaluation of molded products>
After putting 200 cc of hot water (98 ° C.) into the containers of each of the above Examples and Comparative Examples and heating them in a microwave oven with an output of 500 W for 2 minutes, the container immediately after heating was taken out from the microwave oven with bare hands. The thermal insulation was evaluated according to the following criteria.
[0084]
(Double-circle): It was able to take out without a problem without almost feeling heat. Very good thermal insulation.
○: It was able to be taken out without any problem as long as it felt warm. Good thermal insulation.
Δ: felt hot and could not hold for a long time. Somewhat poor insulation.
X: It was hot and could not be taken out with bare hands. Insulation failure.
Moreover, in each of the following Examples and Comparative Examples, in order to produce a foam sheet, the following A-1 resin belonging to the resin (A), and the following B-1 and B-2 belonging to the resin (B) Any one of polypropylene resins PP1 to PP4 each containing a resin shown in Table 1 was used.
<Resin A-1>
Propylene-ethylene block copolymer manufactured by Montelu SDK Sunrise, Inc., trade name SD632.
[0085]
Melt tension: 21.9g
Melt index (MI) value: 3
Density: 0.90 g / cmThree
<Resin B-1>
Propylene homopolymer manufactured by Montelu SDK Sunrise, Inc., trade name PM600A.
[0086]
Melt tension: 0.8g
MI value: 7.5
Density: 0.90 g / cmThree
<Resin B-2>
Propylene homopolymer manufactured by Montelu SDK Sunrise, Inc., trade name PL500A.
[0087]
Melt tension: 1.8g
MI value: 3.3
Density: 0.90 g / cmThree
[0088]
[Table 1]
Figure 0003692288
[0089]
As the CPP film, one of the following four types of films was selected and used.
<Film C-1>
A 20-μm thick CPP film (trade name P-1111 manufactured by Toyobo Co., Ltd.) made of a propylene homopolymer.
<Film C-2>
A CPP film (trade name P-1111 manufactured by Toyobo Co., Ltd.) made of a homopolymer of propylene and having a thickness of 25 μm.
<Film C-3>
A 25-μm thick CPP film (trade name P-1111 manufactured by Toyobo Co., Ltd.) made of a homopolymer of propylene and colored red by kneading a pigment.
<Film C-4>
A 30-μm-thick CPP film (trade name P-1111 manufactured by Toyobo Co., Ltd.) made of a homopolymer of propylene.
[0090]
Further, as the OPP film, one of the following six kinds of films was selected and used.
<Film O-1>
An OPP film (made by Toray Industries, Inc.) made of a propylene homopolymer and having a heat shrink temperature of 142 ° C. and a thickness of 7 μm.
<Film O-2>
An OPP film (manufactured by Toray Industries, Inc.) having a heat shrink temperature of 142 ° C. and a thickness of 10 μm made of a propylene homopolymer.
<Film O-3>
An OPP film (trade name P-2161 manufactured by Toyobo Co., Ltd.) made of a homopolymer of propylene and having a heat shrink temperature of 138 ° C. and a thickness of 25 μm.
<Film O-4>
An OPP film made of a propylene-ethylene random copolymer and having a heat shrinkage temperature of 118 ° C. and a thickness of 40 μm (trade name SF-21 manufactured by Santox).
<Film O-5>
An OPP film (trade name P-2161 manufactured by Toyobo Co., Ltd.) made of a propylene homopolymer and having a heat shrink temperature of 138 ° C. and a thickness of 50 μm.
<Film O-6>
An OPP film (trade name P-2161 manufactured by Toyobo Co., Ltd.) made of a homopolymer of propylene and having a heat shrink temperature of 138 ° C. and a thickness of 60 μm.
[0091]
The heat shrink temperature of the OPP film was measured by the following method.
<Measurement of heat shrink temperature of OPP film>
The film cut into a 10 cm square was heated in a thermostatic bath (oven) at a set temperature for 10 minutes, then taken out of the bath, and the dimensions of the film in the MD direction and the TD direction were measured. The set temperature of the thermostatic bath was set in increments of 10 ° C. from 90 ° C. to 150 ° C., and the above measurement was performed for each set temperature.
[0092]
A graph with the set temperature on the horizontal axis and the shrinkage ratio [= (size before heating−size after heating) ÷ size before heating × 100] on the vertical axis is plotted for each of the MD direction and the TD direction of the film. Then, the temperature at which the shrinkage rate in either direction reached 5% was read from the graph and defined as the heat shrinkage temperature.
The O-4 OPP film is formed of a propylene-based copolymer having a relatively low melting point as described above, and the elongation during thermoforming is higher than that of other general-purpose OPP films. Good and good molded products were obtained.
[0093]
Example 1
<Production of foam sheet>
100 parts by weight of a polypropylene resin of PP1 in Table 1 and 0.4 parts by weight of a cell regulator [trade name Hydrocerol HK-70 manufactured by Boehringer Co., Ltd.] are dry blended, and this mixture is mixed with the first and second components. Of butane as a blowing agent (isobutane / normal butane) = 65/35). The amount of butane injected was 2.0 parts by weight per 100 parts by weight of the resin.
[0094]
Further, the melted and mixed molten mixture is continuously supplied from the first extruder to the second extruder, cooled uniformly in the second extruder, and then connected to the tip of the second extruder. From the cylindrical die, foaming was performed while continuously extruding into a cylindrical shape at a discharge rate of 120 kg / hour.
Next, the obtained cylindrical foam is cooled from the inside of the cylinder along a mandrel having a diameter of 672 mm cooled with water at 24 ° C., and air is blown from an air ring larger than the outer shape of the cylinder. After cooling from the outside of the cylinder, it is cut with a cutter at two points on the circumference, and the density is 0.25 g / cm.ThreeA long foam sheet having a thickness of 1.5 mm and a width of 1045 mm was produced.
[0095]
<Manufacture of laminated foam>
A long film C-2 having the same width as the CPP film and a long film O-1 having the same width as the OPP film are provided on one side of the foamed sheet prepared above. A laminated foam was produced by laminating and adhering by the thermal laminating method by simultaneous laminating shown in FIG. The conditions for lamination were as follows. The thickness of the CPP film was 357% of the thickness of the OPP film.
[0096]
Preheating temperature of the foam sheet 1 by the preheating heater H1: 65 ° C.
Heating temperature of the heating roller Ra: 190 ° C.
Nip pressure of nip roller Rb: 6 kg / cm2
Feed speed of each layer: 10m / min
<Manufacture of molded products>
The laminated foam was plug-assisted molded so that the OPP film side was the inner surface side of the container, and the pasta container as a molded product was manufactured.
[0097]
Example 2
<Production of foam sheet>
The density was 0.34 g / cm in the same manner as in Example 1 except that 100 parts by weight of the PP2 polypropylene resin in Table 1 was used.ThreeA long foam sheet having a thickness of 1 mm and a width of 1045 mm was produced.
<Manufacture of laminated foam>
A long film C-3 having the same width as the CPP film and a long film O-3 having the same width as the OPP film are provided on one side of the foamed sheet prepared above. A laminated foam was produced by laminating and adhering by the thermal laminating method using sequential lamination as shown in FIG. The conditions for lamination were as follows. The thickness of the CPP film was 100% of the thickness of the OPP film.
[0098]
Preheating temperature of the foam sheet 1 by the preheating heater H1: 70 ° C.
Heating temperature of the heating roller R1a: 190 ° C.
The nip pressure of the nip roller R1b: 6 kg / cm2
Heating temperature of heating roller R2a: 190 ° C
Nip pressure of nip roller R2b: 6 kg / cm2
Feed speed of each layer: 10m / min
<Manufacture of molded products>
The laminated foam was plug-assisted molded in the same manner as in Example 1 so that the OPP film side was the inner surface side of the container, and the pasta container as a molded product was manufactured.
[0099]
Example 3
<Production of foam sheet>
The density was 0.33 g / cm in the same manner as in Example 1 except that 100 parts by weight of the PP3 polypropylene resin in Table 1 was used.ThreeA long foam sheet having a thickness of 1.02 mm and a width of 1045 mm was produced.
<Manufacture of laminated foam>
A long film C-2 having the same width as a CPP film and a long film O-1 having the same width as an OPP film are provided on one side of the foamed sheet prepared above as shown in FIG. A laminated foam was produced by laminating and adhering by the thermal laminating method using sequential lamination as shown in FIG. The lamination conditions were the same as in Example 2. The thickness of the CPP film was 357% of the thickness of the OPP film. Moreover, the said printing layer was interposed in the interface of a foam sheet and a CPP film by previously forming the printing layer by the gravure printing on the surface at the side of the foam sheet of a CPP film.
[0100]
<Manufacture of molded products>
The laminated foam was plug-assisted molded in the same manner as in Example 1 so that the OPP film side was the inner surface side of the container, and the pasta container as a molded product was manufactured.
Example 4
The same as in Example 3 except that a CPP film having a printed layer previously formed by gravure printing on the surface of the OPP film was used and the printed layer was interposed at the interface between the CPP film and the OPP film. Thus, a laminated foam and a pasta container were produced.
[0101]
Example 5
A laminated foam and a pasta container were produced in the same manner as in Example 4 except that a long film O-3 having the same width as the foam sheet was used as the OPP film. The thickness of the CPP film was 100% of the thickness of the OPP film.
Example 6
A laminated foam and a pasta container were produced in the same manner as in Example 3 except that a long film O-4 having the same width as the foam sheet was used as the OPP film. The thickness of the CPP film was 62.5% of the thickness of the OPP film.
[0102]
Example 7
On one side of the same foam sheet produced in Example 2, a long film C-4 having the same width as a CPP film and a long film O-5 having the same width as an OPP film, A laminated foam was produced by laminating and adhering by the thermal laminating method by sequential lamination shown in FIG. 2 (a), and a pasta container was produced by plug assist molding in the same manner as in Example 1. The lamination conditions were the same as in Example 2. The thickness of the CPP film was 60% of the thickness of the OPP film. Moreover, the said printing layer was interposed in the interface of a CPP film and an OPP film by previously forming the printing layer by the gravure printing on the surface at the side of the CPP film of an OPP film.
[0103]
Example 8
<Production of foam sheet>
The density was 0.46 g / cm in the same manner as in Example 1 except that 100 parts by weight of the PP4 polypropylene resin in Table 1 was used.ThreeA long foam sheet having a thickness of 0.89 mm and a width of 1045 mm was produced.
<Manufacture of laminated foam>
On one side of the foamed sheet prepared above, a long film C-4 having the same width as the CPP film and a long film O-2 having the same width as the OPP film are shown in FIG. A laminated foam was produced by laminating and adhering by the thermal laminating method by simultaneous laminating shown in FIG. The lamination conditions were the same as in Example 1. The thickness of the CPP film was 300% of the thickness of the OPP film. Moreover, the said printing layer was interposed in the interface of a foam sheet and a CPP film by previously forming the printing layer by the gravure printing on the surface at the side of the foam sheet of a CPP film.
[0104]
<Manufacture of molded products>
The laminated foam was plug-assisted molded in the same manner as in Example 1 so that the OPP film side was the inner surface side of the container, and the pasta container as a molded product was manufactured.
Comparative Example 1
A laminated foam and a pasta container were produced in the same manner as in Example 5 except that the CPP film was omitted and the foamed sheet and the film O-3 as the OPP film were directly laminated.
[0105]
Comparative Example 2
Laminate in the same manner as in Comparative Example 1 except that the printed layer is formed on the surface of the OPP film on the foamed sheet side by gravure printing in advance, and the printed layer is interposed at the interface between the foamed sheet and the OPP film. Foam and pasta containers were produced.
Comparative Example 3
On one side of the same foamed sheet produced in Example 3, a long film C-1 having the same width as a CPP film and a long film O-6 having the same width as an OPP film, A laminated foam was produced by laminating and adhering by the thermal laminating method by sequential lamination shown in FIG. 2 (a), and a pasta container was produced by plug assist molding in the same manner as in Example 1. The lamination conditions were the same as in Example 2. The thickness of the CPP film was 33.3% of the thickness of the OPP film. Moreover, the said printing layer was interposed in the interface of a foam sheet and a CPP film by previously forming the printing layer by the gravure printing on the surface at the side of the foam sheet of a CPP film.
[0106]
The above results are summarized in Table 2.
[0107]
[Table 2]
Figure 0003692288
[0108]
From the table, in Comparative Examples 1 and 2 in which the CPP film is omitted and the foamed sheet and the OPP film are directly laminated, a large number of the OPP film floats during cooking after thermoforming, especially between the two layers. In Comparative Example 2 provided with the print layer, it was confirmed that the OPP film was slightly lifted even during thermoforming.
Moreover, although the thickness of the OPP film was less than 40% of the thickness of the OPP film, the thickness of the OPP film was 60 μm, and the thickness of the OPP film increased from the time of thermoforming. Many occurred. The thermoformability was also somewhat poor.
[0109]
In contrast, in each of the examples, there is no lifting of the OPP film during thermoforming, and there is no lifting of the OPP film in most embodiments during cooking, and both formability and heat insulation are practical. It was confirmed that this level was reached.
Moreover, when Examples 1, 3 and 4 which combined the same CPP film and OPP film among each Example are compared, due to the difference in the density and thickness of the foamed sheet, the result of the heat insulation is the result of Example 1. Although it was good and there was a difference that Examples 3 and 4 were good, the lifting of the OPP film was not observed at all at the time of thermoforming and cooking, and from this, according to the configuration of the present invention. It was found that the adhesion of the OPP film can be remarkably improved regardless of the presence or absence of the printing layer and the formation position thereof.
[0110]
Further, when Examples 3 to 6 or Examples 2 and 7 in which the ratio of the thickness of the CPP film to the thickness of the OPP film was changed by changing the thickness of the OPP film were compared, both were within the practical range. However, it was confirmed that as the ratio increased, the lift of the OPP film decreased and the adhesion was improved.
Further, when Examples 6 and 7 in which the thickness of the OPP film is particularly large in each example are compared, when a general-purpose OPP film is used as seen in Example 7, the moldability is slightly lowered due to the thickness. However, as shown in Example 6, it was confirmed that the moldability can be improved by using the above-described OPP film having good elongation.
[0111]
Furthermore, from the result of Example 8, when the foam sheet was formed only from the resin (B), compared to the case where the foam sheet was formed from the resin (A) alone or the resin (A) (B), Although it is not possible to obtain a laminated foam having a low density and a high heat insulating property, it is possible to form a laminated foam having a medium density. In this case, the adhesiveness of the OPP film can be obtained by adopting the configuration of the present invention. It was confirmed that it can be improved.
[0112]
【The invention's effect】
As described above in detail, according to the present invention, heat resistance, oil resistance, heat insulation that can be used for cooking in a microwave oven, and the like are excellent in rigidity at high temperature, and at the time of thermoforming or after thermoforming. A novel polypropylene-based resin laminate foam that has improved the problem of the OPP film floating at the corners, etc. during cooking, an efficient manufacturing method thereof, and a good molded product excellent in each of the above-mentioned properties There is a specific effect that can be provided.
[Brief description of the drawings]
FIG. 1 (a) is an enlarged sectional view showing an example of an embodiment of a polypropylene resin laminated foam of the present invention, and FIG. 1 (b) is a diagram when the laminated foam is thermoformed. It is an expanded sectional view which shows the state of a corner.
FIGS. 2A and 2B are diagrams illustrating a process for producing the laminated foam of the above example by a thermal laminating method, in which FIG. 2A is a thermal laminating method by sequential lamination, and FIG. 2B is a thermal laminating by simultaneous lamination. Explanatory drawing of the lamination method.
FIGS. 3A and 3B are views showing a pasta container as an example of a molded product manufactured from a laminated foam, in which FIG. 3A is a plan view and FIG. 3B is a longitudinal sectional view.
FIG. 4 (a) is an enlarged sectional view showing an ideal state of a corner when a conventional laminated foam is thermoformed, and FIG. 4 (b) shows the conventional laminated foam. FIG. 5 is an enlarged cross-sectional view showing a state in which the OPP film is lifted at the corner when thermoformed.
[Explanation of symbols]
1 Foam sheet
2 CPP film
3 Print layer
4 OPP film

Claims (9)

ポリプロピレン系樹脂の発泡シートの少なくとも片面に、二軸延伸ポリプロピレン系樹脂フィルムを、当該二軸延伸ポリプロピレン系樹脂フィルムの厚みの40%以上の厚みを有する無延伸ポリプロピレン系樹脂フィルムを介して積層したことを特徴とするポリプロピレン系樹脂積層発泡体。A biaxially stretched polypropylene resin film is laminated on at least one surface of a polypropylene resin foam sheet via an unstretched polypropylene resin film having a thickness of 40% or more of the thickness of the biaxially stretched polypropylene resin film. A polypropylene resin laminate foam characterized by the following. 二軸延伸ポリプロピレン系樹脂フィルムの厚みが5〜50μm、無延伸ポリプロピレン系樹脂フィルムの厚みが5〜80μmで、かつ両フィルムの厚みの合計が20〜120μmであることを特徴とする請求項1記載のポリプロピレン系樹脂積層発泡体。The biaxially stretched polypropylene resin film has a thickness of 5 to 50 µm, the unstretched polypropylene resin film has a thickness of 5 to 80 µm, and the total thickness of both films is 20 to 120 µm. Polypropylene-based resin laminate foam. 発泡シートと二軸延伸ポリプロピレン系樹脂フィルムとの間に位置する各層の界面のいずれかに、印刷層が設けられたことを特徴とする請求項1記載のポリプロピレン系樹脂積層発泡体。2. The polypropylene-based resin laminated foam according to claim 1, wherein a printed layer is provided at any of the interfaces of the respective layers located between the foamed sheet and the biaxially stretched polypropylene-based resin film. 印刷層が、発泡シートと無延伸ポリプロピレン系樹脂フィルムとの界面に設けられたことを特徴とする請求項3記載のポリプロピレン系樹脂積層発泡体。4. The polypropylene resin laminate foam according to claim 3, wherein the printed layer is provided at an interface between the foam sheet and the unstretched polypropylene resin film. 無延伸ポリプロピレン系樹脂フィルムが、当該フィルムを形成するポリプロピレン系樹脂中に顔料を練りこむことによって着色されたことを特徴とする請求項1記載のポリプロピレン系樹脂積層発泡体。2. The polypropylene resin laminated foam according to claim 1, wherein the unstretched polypropylene resin film is colored by kneading a pigment into the polypropylene resin forming the film. 発泡シートが、
(A) 分子中に自由末端長鎖分岐を有する、メルトテンションが6g以上、40g以下のポリプロピレン系樹脂10〜50重量%と、
(B) メルトテンションが0.01g以上、6g未満で、かつ重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが3〜8であるポリプロピレン系樹脂90〜50重量%と
を混合し、押出発泡して形成されたことを特徴とする請求項1記載のポリプロピレン系樹脂積層発泡体。
Foam sheet
(A) 10-50% by weight of a polypropylene resin having a free-end long-chain branch in the molecule and a melt tension of 6 g or more and 40 g or less,
(B) 90 to 50% by weight of a polypropylene resin having a melt tension of 0.01 g or more and less than 6 g and a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 3 to 8 is mixed; The polypropylene-based resin laminate foam according to claim 1, which is formed by extrusion foaming.
発泡シートの密度が0.1〜0.85g/cm3であることを特徴とする請求項1記載のポリプロピレン系樹脂積層発泡体。The polypropylene-based resin laminate foam according to claim 1, wherein the density of the foam sheet is 0.1 to 0.85 g / cm 3 . 請求項1ないし7のいずれかに記載のポリプロピレン系樹脂積層発泡体を製造する方法であって、あらかじめ作製した発泡シート、無延伸ポリプロピレン系樹脂フィルム、および二軸延伸ポリプロピレン系樹脂フィルムを、サーマルラミネート法によって直接に積層、接着することを特徴とするポリプロピレン系樹脂積層発泡体の製造方法。A method for producing the polypropylene resin laminate foam according to any one of claims 1 to 7, wherein a foam sheet, an unstretched polypropylene resin film, and a biaxially stretched polypropylene resin film prepared in advance are thermally laminated. A method for producing a polypropylene-based resin laminate foam, characterized by directly laminating and adhering by a method. 請求項1ないし7のいずれかに記載のポリプロピレン系樹脂積層発泡体を熱成形して製造されたことを特徴とする成形品。A molded article produced by thermoforming the polypropylene resin laminated foam according to any one of claims 1 to 7.
JP2000316876A 2000-10-17 2000-10-17 Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same Expired - Fee Related JP3692288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316876A JP3692288B2 (en) 2000-10-17 2000-10-17 Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316876A JP3692288B2 (en) 2000-10-17 2000-10-17 Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same

Publications (2)

Publication Number Publication Date
JP2002120338A JP2002120338A (en) 2002-04-23
JP3692288B2 true JP3692288B2 (en) 2005-09-07

Family

ID=18795763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316876A Expired - Fee Related JP3692288B2 (en) 2000-10-17 2000-10-17 Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same

Country Status (1)

Country Link
JP (1) JP3692288B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330521A (en) * 2005-05-27 2006-12-07 Nippon Zeon Co Ltd Grid polarizing film, method for manufacturing grid polarizing film, optical laminate, method for manufacturing optical laminate, and liquid crystal display apparatus
JP5597361B2 (en) * 2009-05-21 2014-10-01 日本ポリプロ株式会社 Thermoforming sheet comprising polyolefin resin laminated foam sheet and thermoforming article using the same
JP2015004368A (en) * 2013-06-19 2015-01-08 大倉工業株式会社 Manufacturing method of outer packing material for vacuum heat insulation material, manufacturing method of vacuum heat insulation material, and outer packing material for vacuum heat insulation material and vacuum heat insulation material
JP7089843B2 (en) * 2016-10-26 2022-06-23 中央化学株式会社 Synthetic resin laminated foam sheet and its manufacturing method, food container

Also Published As

Publication number Publication date
JP2002120338A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
US6391402B1 (en) Easily recyclable container
JP5579394B2 (en) In-mold label
CN106794664B (en) Abrasion strength, clarity and conformability enhanced films
EP2127852A1 (en) Biaxially stretched multilayered film and related label and method
WO2008001916A1 (en) Heat-shrinkable laminated film, and moldings, heat shrinkable labels and containers, made by using the film
JP2001315277A (en) Polypropylene resin-laminated foam and molded container using the foam
JP3718635B2 (en) Laminated foam molded product of polypropylene resin, laminated foam used in the production thereof, and production method thereof
JPS63178945A (en) Plastic vessel with multilayer label attached through labelling molding
JP3692288B2 (en) Polypropylene-based resin laminated foam, method for producing the same, and molded article using the same
EP0252767B1 (en) Heat-shrinkable sheet
JP4616042B2 (en) Polypropylene resin laminate foam and molded product thereof
JP7003875B2 (en) Heat shrinkable laminated films, packaging materials, molded products and containers
JP4906662B2 (en) Easy-to-open multi-layer container
JP6870405B2 (en) Heat-shrinkable laminated porous film and coated article
CA2004238A1 (en) Clear thermoplastic polymer composite material
JP4689031B2 (en) Plastic container with lid and manufacturing method thereof
JP2002011838A (en) Foamed polypropylene resin laminate and molding using the same
JP5429852B2 (en) Package
JP4335073B2 (en) LAMINATED SHEET MANUFACTURING METHOD, LAMINATED SHEET, AND MOLDED ARTICLE
JP6934371B2 (en) Resin laminated foam board, its thermoformed product and assembly box
JP2003231224A (en) Laminated sheet and method for manufacturing the same
JP2005292461A (en) Thermo-shrinkable cylindrical label
JP3763814B2 (en) Polypropylene resin laminated sheet and molded container using the same
JP4976530B2 (en) Polypropylene resin laminate foam and molded product thereof
JP2005289472A (en) Thermoformed multi-layer container and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees