JP3691795B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method Download PDF

Info

Publication number
JP3691795B2
JP3691795B2 JP2002019527A JP2002019527A JP3691795B2 JP 3691795 B2 JP3691795 B2 JP 3691795B2 JP 2002019527 A JP2002019527 A JP 2002019527A JP 2002019527 A JP2002019527 A JP 2002019527A JP 3691795 B2 JP3691795 B2 JP 3691795B2
Authority
JP
Japan
Prior art keywords
coating
optical fiber
base material
preform
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002019527A
Other languages
Japanese (ja)
Other versions
JP2003221259A (en
Inventor
正俊 田中
真也 山取
悟基 川西
和宣 鈴木
寛和 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002019527A priority Critical patent/JP3691795B2/en
Publication of JP2003221259A publication Critical patent/JP2003221259A/en
Application granted granted Critical
Publication of JP3691795B2 publication Critical patent/JP3691795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸方向に延びる複数の孔を有する光ファイバの製造方法に関する。
【0002】
【従来の技術】
近年、光ファイバの需要は、光通信用途や光エネルギー伝達用途を中心に増大している。なかでも石英ガラスファイバは、低損失であるため広く用いられ需要の増加も著しい。
【0003】
この石英ガラス光ファイバは、脆性材料である石英ガラスより形成されているため、表面にウレタンアクリレート樹脂等の樹脂をコーティング(被覆)して、傷がつかないように表面を保護している。樹脂被覆は、光ファイバを母材より加熱延伸してボビンに巻き取る途中に、樹脂を入れたダイスを通過させ、その後に熱や紫外線等で樹脂を硬化させることにより行う。このとき、光ファイバの周方向に樹脂が均一な厚みで被覆されていないと、樹脂硬化時の収縮により光ファイバが曲がってしまったり、被覆の薄い部分が破損して光ファイバに傷がついたりするといった不具合が生じ品質不良となる。従って、光ファイバ周方向における被覆厚みを測定して、その厚み情報に従ってダイスの位置を調整して均一な被覆厚みとなるように被覆を調節している。
【0004】
上記被覆厚み測定は、図2に示すように、被覆直後の光ファイバ2の横二方向から可視光レーザを照射して、その回折像21をスクリーン13に映して行っている。また、二つの可視光レーザは互いに直交している。図6及び図7に示すように、細孔を有しない通常の中実な光ファイバ2の回折像21では、中心にレーザスポットが明点41として観察され、そこから両側に明線43が延びていって、その明線43の途中にそれぞれ暗点42が観察される。この明点41と暗点42との間の二つの距離が等しければ、レーザ光に垂直な光ファイバ2径方向において光ファイバ2の石英ガラス部分26の両側の被覆25の厚みが等しいということである(図6参照)。従って、これら明点41と暗点42との間の二つの距離が等しくなるようにダイスの位置を調整することにより、被覆25厚みを均一に調整している。
【0005】
【発明が解決しようとする課題】
しかしながら、図8のように、フォトニッククリスタルファイバ等のファイバ軸方向に複数の細孔27が存する光ファイバ2では、回折像21に多数の暗点42が現れて、被覆25厚みを確認することができない。このため、複数の細孔を有する光ファイバ27を製造するときは、被覆25厚みを調節しないまま製造を行わざるをえないため、上述の品質不良が生じていた。
【0006】
本発明はこのような事情に鑑みてなされたものであり、その目的とするところは、ファイバ軸方向に延びる複数の細孔を有する光ファイバを加熱延伸により製造している最中に被覆厚みを調節しなくても、周方向に均一な厚みの被覆を容易且つ簡単に形成することができる光ファイバの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明は、棒状の石英ガラスであって軸方向に延びる複数の孔を有する第一母材と中実な棒状石英ガラスであって該第一母材と略同径の第二母材とを中心軸を互いに一致させて接合しファイバ母材を形成する母材形成工程と、上記母材形成工程で形成したファイバ母材を上記第二母材側の端部より加熱延伸する加熱延伸工程と、上記加熱延伸工程で加熱延伸された光ファイバ表面に樹脂を被覆する被覆工程と、上記加熱延伸工程で第二母材が加熱延伸されている間に、上記被覆工程における被覆厚みを光ファイバ周方向において略均一となるよう調節する被覆調節工程と、を備えることを特徴とする光ファイバの製造方法とした。
【0008】
ここでいう石英ガラスとは、純粋な石英のガラス及び純粋石英ガラスに種々の添加物、例えばBやGe、F等が添加されているもののことである。また、中実とは、中空部が存せず、全て石英ガラスが詰まっていることである。
【0009】
請求項1の製造方法であれば、ファイバ母材が軸方向において第一母材と第二母材との略同径で且つ中心軸が一致した二つの部分を有し、第二母材の部分から加熱延伸を開始して光ファイバとし、しかも、第二母材の部分を加熱延伸している間に樹脂の被覆厚みがファイバ周方向において略均一になるように調節をするので、同じ条件で加熱延伸をしていく限り樹脂の被覆厚みは略均一のまま光ファイバが製造され続ける。従って、第一母材の部分を加熱延伸して複数の細孔を有する光ファイバを製造するときにも、ファイバ周方向に略均一な厚みで被覆が行われるため、この間の被覆厚みを測定することができなくても問題はない。即ち、第一母材の部分を加熱延伸する工程では、被覆厚みを調節するための被覆調節機構を固定したまま、被覆厚みの調節を行わないで、光ファイバを製造する。さらに、孔を多数有する複雑な構成の光ファイバを製造するときは、例えば、大径の石英パイプの中空部に多数の石英キャピラリーを詰め込むことにより、容易に貫通孔を有する第一母材を製造することができ、これを第二母材と接合することで母材形成工程を簡単に行える。
【0010】
次に、請求項2の発明は、請求項1において、被覆調節工程は、被覆を行う被覆機器の位置を移動させる被覆調節機構により行われる工程であることを特徴とする光ファイバの製造方法とした。
【0011】
請求項2の製造方法であれば、被覆調節を容易に行うことができて、被覆厚みむらのある不良品の発生を少なくできる。
【0012】
次に、請求項3の発明は、中実な石英ガラスの棒に、一端のみに開口し該棒の軸方向に延びる複数の穴を未貫通な状態で形成してファイバ母材を形成する母材形成工程と、上記母材形成工程で形成したファイバ母材を上記穴が未開口の端部より加熱延伸する加熱延伸工程と、上記加熱延伸工程で加熱延伸された光ファイバ表面に樹脂を被覆する被覆工程と、上記加熱延伸工程でファイバ母材の穴のある部分が加熱延伸される前に、上記被覆工程における被覆厚みを光ファイバ周方向において略均一となるように被覆厚みを調節する被覆調節工程と、を備えることを特徴とする光ファイバの製造方法とした。
【0013】
請求項3の製造方法であれば、通常の中実なファイバ母材に複数の穴を開けることにより、容易に母材を製造することができ、母材形成工程を簡単に行える。他の点については、請求項1と同様である。
【0014】
次に、請求項4の発明は請求項3において、被覆調節工程は、被覆を行う被覆機器の位置を移動させる被覆調節機構により行われる工程であることを特徴とする光ファイバの製造方法とした。
【0015】
請求項4の製造方法であれば、被覆調節を容易に行うことができて、被覆厚みむらのある不良品の発生を少なくできる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0017】
(第一の実施形態)
第一の実施形態の光ファイバ製造装置の模式図を図1に示す。ファイバ母材1を電気炉14で加熱し、引き取りキャプスタン16により延伸して光ファイバ2を作製し、巻き取りボビン17に巻き取る。電気炉14と引き取りキャプスタン16との間には、被覆用樹脂が満たされたダイス11(被覆機器)が設置されていて、光ファイバ2はダイス11を通過して表面に樹脂を被覆され、この樹脂は硬化装置15により硬化される。光ファイバ2がこの硬化装置15に入る前に樹脂の被覆厚みが測定される。被覆厚みの測定は、光ファイバ2に横からレーザ光を当てて、その回折像をスクリーン13に映し出して行う。なお、12はレーザ出力装置である。
【0018】
上記ファイバ母材1は、図3に示すように、軸方向に延びる複数の孔3を有する第一母材31とこの第一母材31と略同径の中実な第二母材32とを中心軸を互いに一致させて接合したものである。この接合は、図5に示す母材形成工程で行われる。即ち、第一母材31及び第二母材32の端面を加熱して突き合わせ接合する。加熱は火炎により行ってもよいし、ヒータやレーザ加熱等で行ってもよいし、これらを組み合わせても良い。また、第一母材31は、例えば、図11に示すように、大径の石英パイプ52の内側の中空部分53に多数の石英キャピラリー54を詰め込んで作製すればよい。なお、中心部には、キャピラリー54の代わりにコアとなる石英ロッド51が配置されている。
【0019】
このファイバ母材1を加熱延伸工程にて加熱延伸し、光ファイバ2とする(図4参照)。なお、加熱は電気炉14にて行い、延伸は引き取りキャプスタン16にて行う。このとき、加熱延伸を開始するのは、中実な第二母材32側の端部からである。中実な光ファイバ2をまず製造することにより、被覆25厚みを略均一となるように被覆調節工程にて被覆の調節ができる。これは、上述のように、細孔を有する光ファイバ2では、被覆25厚みを確認することができず、厚み調節ができないからである。
【0020】
この樹脂の被覆は、ダイス11を用いて被覆工程において行われる。被覆調節工程は、樹脂を塗布された光ファイバ2の被覆25厚みをダイス11から出たところで測定して、この情報を基にダイス11の位置を図9に示す調節装置28(被覆調節機構)で調節して行う。被覆25厚みの測定方法は、上述の通りである。この調節装置28は、基板23とその上に設置された台24と基板23を光ファイバ2に垂直な面内で移動させるXYステージ22とからなる。ダイス11は、台24の上に設置されている。被覆25厚みのむらの情報よりXYステージ22を作動させてダイス11の位置を微調節することにより、被覆25厚みを光ファイバ2の周方向において略均一にする。なお、ダイス11は、樹脂を満たした逆円錐形状をしていて、先端に孔が開いていてそこに光ファイバ2が通されている。この孔と光ファイバ2との相対位置を調節することで、被覆25の厚みが調節される。この被覆25厚みの調節は、第一母材31の部分が加熱延伸されるようになる前に終了させる。第一母材31の部分が加熱延伸されているときは、被覆25厚みの調節は上述のようにできないが、第二母材32の部分と同じ条件で加熱延伸する限りは、被覆の条件も変わらないので、被覆25厚みは略均一のまま第一母材31の部分も加熱延伸及び被覆されて光ファイバ2となる。つまり、第一母材31の部分を加熱延伸しているときは、調節装置28は固定しておいて動かさない。
【0021】
今まで説明してきたように、本実施形態では、軸方向に延びる複数の孔を有する第一母材31と中実な第二母材32とを接合して光ファイバ母材1として、第二母材32側の端部から加熱延伸を開始して光ファイバ2とし、その表面に樹脂を被覆し、第二母材32部分が加熱延伸されている間に被覆25厚みを略均一となるように調節してしまうので、第一母材31の部分を加熱延伸して製造される軸方向に延びる複数の孔を有する光ファイバ2もファイバ2周方向において略均一な厚みの被覆25を備えることとなる。従って、軸方向に延びる複数の孔を有し且つ被覆25厚みが均一な光ファイバ2を容易に製造することができる。また、第一母材31と第二母材32とを接合させてファイバ母材1を形成するので、複雑な構成の軸方向に延びる複数の孔を有する光ファイバ2であっても容易に作製できる。さらに、第二母材32から加熱延伸することで、延伸し始めに発生する不良部分は全て中実な光ファイバ2となり、軸方向に延びる複数の孔を有する光ファイバ2は第一母材31を無駄にすることなく作製することができ、歩留まりが向上する。
【0022】
(第二の実施形態)
第二の実施形態は、ファイバ母材1として、中実な石英ガラスの棒の一端から途中まで棒の軸方向に延びる複数の穴5を開けたものを用いる(図10参照)。即ち、複数の穴を開けた部分33が第一の実施形態の第一母材31の部分に当たり、穴の開いていない部分34が第一の実施形態の第二母材32に当たる。
【0023】
このファイバ母材1は、中実な石英ガラスの棒にドリル等で穴5を開けて形成すればよい。これが、母材形成工程となる。これ以降の工程は、第一の実施形態と同じである。
【0024】
第二実施形態では、中実な石英ガラスの棒に穴5を開けることでファイバ母材1を形成できるので、母材形成工程が短時間で容易に行える。特に、2〜40個のように穴5の数が少ない場合に本実施形態を好ましく適用できる。この母材形成工程以外の作用効果は、第一の実施形態と同様である。
【0025】
(その他の実施形態)
今まで説明した二つの実施形態は例であって、本発明はこれらの例に限定されない。例えば、ファイバ母材1のコアとなる部分にのみGe等を添加してもよいし、ファイバ母材1の任意の場所に任意の添加物を添加して分散補償や偏波保持等の機能を有する光ファイバ2を製造してもよい。被覆する材料もウレタンアクリレート樹脂等どのようなものでもよい。また、ファイバ母材1における孔3又は穴5の配置も任意であって、例えば、コアとなる中心部を六個の孔3又は穴5で六角形に囲む配置や、さらにその外側に同心上に六角形に孔3又は穴5を配置してコアとなる部分を幾重かに囲んでも構わない。また、孔3又は穴5の形状は、断面が円形、楕円形、多角形等どのようなものでも構わないし、これらが混在していてもよい。また、孔3又は穴5の大きさも全て同じであってもよいし、孔径又は穴径が複数あっても構わない。孔3又は穴5の数は、2個以上あればよいが、コアの部分を一重以上に取り巻くよう6個以上あれば好ましい。また、フォトニッククリスタルファイバとして機能するように60個以上あればより好ましい。
【0026】
また、加熱延伸を開始する第二母材32又は穴の開いていない部分34の長さは、ファイバ母材1の径が20mm以上60mm未満のときは3〜8cm、ファイバ母材1の径が60mm以上120mm未満のときは5〜20cm、ファイバ母材1の径が120mm以上のときは10〜50cmであれば、第一母材31又は穴を開けた部分33を加熱延伸する前に被覆25厚みを略均一に調節できる必要にして十分な長さであるため好ましい。
【0027】
製造工程も、予備加熱や清浄化等の他の工程を加えてもよい。第一の実施形態において第一母材31を石英棒材への穿孔加工により形成してもよいし、第二の実施形態においてファイバ母材1の複数の未貫通の穴5は、石英ガラスの棒に大径の穴を開けてそこにキャピラリーを詰め込むことにより形成してもよい。ダイス11は、逆円錐形状に限定されずどのような形状でも構わない。また、ダイス11として加圧式ダイスを用いてもよい。また、被覆の作製はダイス11以外の方法、例えばスプレー等で行ってもよい。被覆厚みの測定もレーザ光による回折像の観察によるものに限定されず、電気的測定法等どのようなものでもよい。加熱延伸工程の加熱は電気炉以外の例えばレーザ等によるものでもよい。
【0028】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に述べる効果を奏する。
【0029】
ファイバ母材を軸方向において、穴が存せず中実な部分と軸方向に延びる複数の穴の存する部分との二つの部分より構成し、中実な部分から加熱延伸して表面を被覆し、その被覆厚みをファイバ周方向で略均一になるように中実な部分を延伸中に調節してしまうので、穴の存する部分を加熱延伸中は被覆厚みを調節しなくても略均一な厚みで被覆が行われ、軸方向に延びる複数の細孔を有する高品質の光ファイバを簡単で安価な方法で得ることができる。
【図面の簡単な説明】
【図1】光ファイバの製造装置の模式図である。
【図2】レーザによる被覆厚みの測定を示す図である。
【図3】第一の実施形態に係るファイバ母材を示す図である。
【図4】第一の実施形態に係るファイバ母材を加熱延伸している図である。
【図5】第一の実施形態に係るファイバ母材の接合を示す図である。
【図6】均一な被覆厚みを有する中実な光ファイバ及びその回折像を示す図である。
【図7】不均一な被覆厚みを有する中実な光ファイバ及びその回折像を示す図である。
【図8】均一な被覆厚みを有するフォトニッククリスタルファイバ及びその回折像を示す図である。
【図9】ダイスの調節装置を示す図である。
【図10】第二の実施形態に係るファイバ母材を示す図である。
【図11】第一の実施形態に係る第一母材の端面図である。
【符号の説明】
1 ファイバ母材
2 光ファイバ
3 孔
5 穴
25 被覆
28 被覆調節装置
31 第一母材
32 第二母材
33 光ファイバ母材の穴のない部分
34 光ファイバ母材の穴のある部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an optical fiber having a plurality of holes extending in the axial direction.
[0002]
[Prior art]
In recent years, the demand for optical fibers has increased mainly in optical communication applications and optical energy transmission applications. Among them, quartz glass fiber is widely used because of its low loss, and the demand for the glass fiber is greatly increased.
[0003]
Since this quartz glass optical fiber is made of quartz glass, which is a brittle material, the surface is coated with a resin such as urethane acrylate resin to protect the surface from scratching. The resin coating is performed by passing a die containing resin while heating and drawing an optical fiber from a base material and winding it around a bobbin, and then curing the resin with heat or ultraviolet rays. At this time, if the resin is not coated with a uniform thickness in the circumferential direction of the optical fiber, the optical fiber may bend due to shrinkage when the resin is cured, or the thin portion of the coating may be damaged and the optical fiber may be damaged. This causes a problem such as failure, resulting in poor quality. Accordingly, the coating thickness in the circumferential direction of the optical fiber is measured, and the position of the die is adjusted according to the thickness information to adjust the coating so as to obtain a uniform coating thickness.
[0004]
As shown in FIG. 2, the coating thickness measurement is performed by irradiating a visible light laser from two lateral directions of the optical fiber 2 immediately after coating and projecting the diffraction image 21 on the screen 13. The two visible light lasers are orthogonal to each other. As shown in FIGS. 6 and 7, in the diffraction image 21 of a normal solid optical fiber 2 having no pores, a laser spot is observed as a bright spot 41 at the center, and bright lines 43 extend from both sides thereof. Accordingly, dark spots 42 are observed in the middle of the bright lines 43, respectively. If the two distances between the bright spot 41 and the dark spot 42 are equal, the thickness of the coating 25 on both sides of the quartz glass portion 26 of the optical fiber 2 is equal in the radial direction of the optical fiber 2 perpendicular to the laser beam. Yes (see FIG. 6). Accordingly, the thickness of the coating 25 is adjusted uniformly by adjusting the position of the die so that the two distances between the bright spot 41 and the dark spot 42 are equal.
[0005]
[Problems to be solved by the invention]
However, as shown in FIG. 8, in the optical fiber 2 having a plurality of pores 27 in the fiber axial direction, such as a photonic crystal fiber, a large number of dark spots 42 appear in the diffraction image 21, and the thickness of the coating 25 is confirmed. I can't. For this reason, when manufacturing the optical fiber 27 having a plurality of pores, the above-described quality defect has occurred because the manufacture must be performed without adjusting the thickness of the coating 25.
[0006]
The present invention has been made in view of such circumstances. The object of the present invention is to reduce the coating thickness during the production of an optical fiber having a plurality of pores extending in the fiber axial direction by heating and stretching. An object of the present invention is to provide an optical fiber manufacturing method that can easily and easily form a coating having a uniform thickness in the circumferential direction without adjustment.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a rod-shaped quartz glass comprising a first base material having a plurality of axially extending holes and a solid rod-shaped quartz glass, wherein the first matrix A base material forming step in which a fiber base material is formed by joining a base material and a second base material having substantially the same diameter so that the central axes coincide with each other; and the fiber base material formed in the base material forming step is used as the second base material. While the second base material is heat-stretched in the heat-stretching step, the heat-stretching step of heat-stretching from the end on the side, the coating step of coating the resin on the surface of the optical fiber heat-stretched in the heat-stretching step And a coating adjustment step of adjusting the coating thickness in the coating step so as to be substantially uniform in the circumferential direction of the optical fiber.
[0008]
The term “quartz glass” as used herein refers to pure quartz glass and those obtained by adding various additives such as B, Ge, and F to pure quartz glass. Further, the term “solid” means that there is no hollow portion and all quartz glass is clogged.
[0009]
According to the manufacturing method of claim 1, the fiber preform has two portions in which the first preform and the second preform have substantially the same diameter in the axial direction and the central axes coincide with each other. Since the optical fiber is started by heating and stretching from the portion, and the resin coating thickness is adjusted to be substantially uniform in the fiber circumferential direction while the second preform portion is heated and stretched, the same conditions are applied. As long as the film is heated and stretched, the optical fiber continues to be manufactured with the resin coating thickness being substantially uniform. Accordingly, even when an optical fiber having a plurality of pores is manufactured by heating and stretching the portion of the first base material, the coating is performed with a substantially uniform thickness in the circumferential direction of the fiber. There is no problem if you can't. That is, in the step of heating and stretching the portion of the first base material, the optical fiber is manufactured without adjusting the coating thickness while fixing the coating adjusting mechanism for adjusting the coating thickness. Furthermore, when manufacturing an optical fiber with a complicated configuration having a large number of holes, for example, a first base material having a through hole is easily manufactured by packing a large number of quartz capillaries in the hollow portion of a large-diameter quartz pipe. The base material forming step can be easily performed by joining this to the second base material.
[0010]
Next, the invention of claim 2 is the method of manufacturing an optical fiber according to claim 1, wherein the coating adjustment step is a step performed by a coating adjustment mechanism that moves the position of the coating device for coating. did.
[0011]
According to the manufacturing method of claim 2, the coating adjustment can be easily performed, and the generation of defective products with uneven coating thickness can be reduced.
[0012]
Next, a third aspect of the present invention provides a base for forming a fiber preform by forming a plurality of holes that are open only at one end and extend in the axial direction of a solid quartz glass rod in an unpenetrated state. A material forming step, a heat stretching step in which the fiber preform formed in the base material forming step is heated and stretched from an end portion where the hole is not opened, and a resin is coated on the surface of the optical fiber that has been heat stretched in the heat stretching step. A coating step for adjusting the coating thickness so that the coating thickness in the coating step is substantially uniform in the circumferential direction of the optical fiber before the holed portion of the fiber preform is heated and stretched in the heating and stretching step. An optical fiber manufacturing method comprising: an adjusting step.
[0013]
If it is the manufacturing method of Claim 3, a base material can be easily manufactured by making a some hole in a normal solid fiber base material, and a base material formation process can be performed easily. The other points are the same as in the first aspect.
[0014]
Next, the invention of claim 4 is the method of manufacturing an optical fiber according to claim 3, wherein the coating adjustment step is a step performed by a coating adjustment mechanism that moves a position of a coating device that performs coating. .
[0015]
If it is the manufacturing method of Claim 4, covering adjustment can be performed easily and generation | occurrence | production of the inferior goods with coating thickness unevenness can be decreased.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
(First embodiment)
The schematic diagram of the optical fiber manufacturing apparatus of 1st embodiment is shown in FIG. The fiber preform 1 is heated by an electric furnace 14 and drawn by a take-up capstan 16 to produce an optical fiber 2 and wound on a take-up bobbin 17. Between the electric furnace 14 and the take-up capstan 16, a die 11 (coating device) filled with a coating resin is installed, and the optical fiber 2 passes through the die 11 and the surface is coated with the resin. This resin is cured by the curing device 15. The resin coating thickness is measured before the optical fiber 2 enters the curing device 15. The coating thickness is measured by applying laser light from the side to the optical fiber 2 and projecting the diffraction image on the screen 13. Reference numeral 12 denotes a laser output device.
[0018]
As shown in FIG. 3, the fiber preform 1 includes a first preform 31 having a plurality of axially extending holes 3 and a solid second preform 32 having substantially the same diameter as the first preform 31. Are joined with their central axes coinciding with each other. This joining is performed in the base material forming step shown in FIG. That is, the end surfaces of the first base material 31 and the second base material 32 are heated and butt-joined. Heating may be performed by a flame, may be performed by a heater, laser heating, or the like, or may be combined. In addition, the first base material 31 may be produced by, for example, filling a large number of quartz capillaries 54 in a hollow portion 53 inside a large-diameter quartz pipe 52 as shown in FIG. A quartz rod 51 serving as a core is disposed at the center instead of the capillary 54.
[0019]
The fiber preform 1 is heated and stretched in a heating and stretching process to obtain an optical fiber 2 (see FIG. 4). The heating is performed in the electric furnace 14 and the stretching is performed in the take-up capstan 16. At this time, heating and stretching are started from the end on the solid second base material 32 side. By first manufacturing the solid optical fiber 2, the coating can be adjusted in the coating adjusting step so that the thickness of the coating 25 becomes substantially uniform. This is because, as described above, in the optical fiber 2 having pores, the thickness of the coating 25 cannot be confirmed, and the thickness cannot be adjusted.
[0020]
This resin coating is performed in the coating process using the die 11. In the coating adjustment step, the thickness of the coating 25 of the optical fiber 2 coated with resin is measured when it is removed from the die 11, and the position of the die 11 is adjusted based on this information as shown in FIG. 9 (coating adjustment mechanism). Adjust with. The method for measuring the thickness of the coating 25 is as described above. The adjusting device 28 includes a substrate 23, a table 24 installed on the substrate 23, and an XY stage 22 that moves the substrate 23 in a plane perpendicular to the optical fiber 2. The dice 11 are installed on a table 24. By operating the XY stage 22 and finely adjusting the position of the die 11 based on information on the unevenness of the thickness of the coating 25, the thickness of the coating 25 is made substantially uniform in the circumferential direction of the optical fiber 2. The die 11 has an inverted conical shape filled with resin, and has a hole at the tip, and the optical fiber 2 is passed therethrough. The thickness of the coating 25 is adjusted by adjusting the relative position between the hole and the optical fiber 2. The adjustment of the thickness of the covering 25 is finished before the portion of the first base material 31 is heated and stretched. When the portion of the first base material 31 is heated and stretched, the thickness of the coating 25 cannot be adjusted as described above. However, as long as it is heated and stretched under the same conditions as the portion of the second base material 32, the coating conditions are also Since the thickness does not change, the thickness of the coating 25 remains substantially uniform, and the portion of the first preform 31 is also heated and stretched and coated to form the optical fiber 2. That is, when the part of the first base material 31 is heated and stretched, the adjusting device 28 is fixed and does not move.
[0021]
As described so far, in the present embodiment, the first preform 31 having a plurality of holes extending in the axial direction and the solid second preform 32 are joined to form the second optical fiber preform 1. Heat drawing is started from the end on the base material 32 side to form the optical fiber 2, and the surface thereof is coated with resin so that the thickness of the coating 25 becomes substantially uniform while the second base material 32 portion is heat drawn. Therefore, the optical fiber 2 having a plurality of axially extending holes manufactured by heating and stretching the first base material 31 is also provided with a coating 25 having a substantially uniform thickness in the circumferential direction of the fiber 2. It becomes. Therefore, it is possible to easily manufacture the optical fiber 2 having a plurality of holes extending in the axial direction and having a uniform coating 25 thickness. Moreover, since the fiber preform 1 is formed by joining the first preform 31 and the second preform 32, even the optical fiber 2 having a plurality of holes extending in the axial direction with a complicated configuration can be easily manufactured. it can. Further, when the second base material 32 is heated and stretched, any defective portion that occurs at the beginning of stretching becomes the solid optical fiber 2, and the optical fiber 2 having a plurality of holes extending in the axial direction is the first base material 31. Can be manufactured without wasting, and the yield is improved.
[0022]
(Second embodiment)
In the second embodiment, a fiber preform 1 having a plurality of holes 5 extending in the axial direction from one end of a solid quartz glass rod to the middle is used (see FIG. 10). That is, a portion 33 having a plurality of holes hits a portion of the first base material 31 of the first embodiment, and a portion 34 having no holes hits the second base material 32 of the first embodiment.
[0023]
The fiber preform 1 may be formed by forming a hole 5 in a solid quartz glass rod with a drill or the like. This is a base material forming step. The subsequent steps are the same as in the first embodiment.
[0024]
In the second embodiment, since the fiber preform 1 can be formed by making a hole 5 in a solid quartz glass rod, the preform forming process can be easily performed in a short time. In particular, this embodiment can be preferably applied when the number of holes 5 is small, such as 2 to 40. The effects other than the base material forming step are the same as in the first embodiment.
[0025]
(Other embodiments)
The two embodiments described so far are examples, and the present invention is not limited to these examples. For example, Ge or the like may be added only to the core portion of the fiber preform 1, or any additive may be added to any location of the fiber preform 1 to provide functions such as dispersion compensation and polarization maintenance. You may manufacture the optical fiber 2 which has. The material to be coated may be any material such as urethane acrylate resin. Further, the arrangement of the holes 3 or the holes 5 in the fiber preform 1 is also arbitrary. For example, the center portion that is the core is surrounded by the six holes 3 or 5 in a hexagonal shape, and further concentrically outside thereof. Alternatively, the hole 3 or the hole 5 may be arranged in a hexagonal shape so as to surround the core portion several times. Moreover, the shape of the hole 3 or the hole 5 may be any shape such as a circular cross section, an elliptical shape, or a polygonal cross section, and these may be mixed. Further, the size of the holes 3 or 5 may all be the same, or there may be a plurality of hole diameters or hole diameters. The number of holes 3 or 5 may be two or more, but preferably six or more so as to surround the core portion in a single layer or more. Further, it is more preferable that 60 or more so as to function as a photonic crystal fiber.
[0026]
Also, the length of the second preform 32 or the portion 34 where the hole is not opened is 3 to 8 cm when the diameter of the fiber preform 1 is 20 mm or more and less than 60 mm, and the diameter of the fiber preform 1 is When the diameter is 60 mm or more and less than 120 mm, and when the diameter of the fiber preform 1 is 120 mm or more, it is 10 to 50 cm. If the first preform 31 or the perforated portion 33 is heated and stretched, the coating 25 is applied. It is preferable because the thickness is sufficiently long as necessary to be able to adjust the thickness substantially uniformly.
[0027]
The manufacturing process may include other processes such as preheating and cleaning. In the first embodiment, the first base material 31 may be formed by drilling a quartz rod. In the second embodiment, the plurality of non-through holes 5 of the fiber base material 1 are made of quartz glass. You may form by making a large diameter hole in a stick | rod and stuffing a capillary there. The die 11 is not limited to the inverted conical shape and may have any shape. Further, a pressure die may be used as the die 11. Further, the coating may be produced by a method other than the die 11, such as spraying. The measurement of the coating thickness is not limited to that by observation of a diffraction image with a laser beam, and any method such as an electrical measurement method may be used. The heating in the heating and stretching step may be performed by a laser other than the electric furnace, for example.
[0028]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0029]
The fiber preform is composed of two parts, a solid part with no holes in the axial direction and a part with multiple holes extending in the axial direction, and the surface is coated by heating and stretching from the solid parts. Since the solid part is adjusted during stretching so that the coating thickness becomes substantially uniform in the fiber circumferential direction, the uniform thickness can be obtained without adjusting the coating thickness during heat stretching of the part where the hole exists. A high-quality optical fiber having a plurality of pores extending in the axial direction can be obtained by a simple and inexpensive method.
[Brief description of the drawings]
FIG. 1 is a schematic view of an optical fiber manufacturing apparatus.
FIG. 2 is a diagram showing measurement of coating thickness by a laser.
FIG. 3 is a view showing a fiber preform according to the first embodiment.
FIG. 4 is a drawing in which the fiber preform according to the first embodiment is heated and stretched.
FIG. 5 is a view showing joining of fiber preforms according to the first embodiment.
FIG. 6 is a diagram showing a solid optical fiber having a uniform coating thickness and a diffraction image thereof.
FIG. 7 is a diagram showing a solid optical fiber having a non-uniform coating thickness and its diffraction image.
FIG. 8 is a diagram showing a photonic crystal fiber having a uniform coating thickness and a diffraction image thereof.
FIG. 9 is a view showing a die adjusting device.
FIG. 10 is a view showing a fiber preform according to a second embodiment.
FIG. 11 is an end view of the first base material according to the first embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fiber preform 2 Optical fiber 3 Hole 5 Hole 25 Coating 28 Covering adjustment device 31 First preform 32 Second preform 33 Portionless portion of optical fiber preform 34 Portion of optical fiber preform

Claims (4)

棒状の石英ガラスであって軸方向に延びる複数の孔を有する第一母材と中実な棒状石英ガラスであって該第一母材と略同径の第二母材とを中心軸を互いに一致させて接合しファイバ母材を形成する母材形成工程と、
上記母材形成工程で形成したファイバ母材を上記第二母材側の端部より加熱延伸する加熱延伸工程と、
上記加熱延伸工程で加熱延伸された光ファイバ表面に樹脂を被覆する被覆工程と、
上記加熱延伸工程で第二母材が加熱延伸されている間に、上記被覆工程における被覆厚みを光ファイバ周方向において略均一となるよう調節する被覆調節工程と、を備えることを特徴とする光ファイバの製造方法。
A first base material having a plurality of holes extending in the axial direction, which is a rod-shaped quartz glass, and a solid rod-shaped quartz glass, the first base material and a second base material having substantially the same diameter as each other, with the central axes thereof A base material forming step of forming a fiber base material by joining them together; and
A heating and stretching step of heating and stretching the fiber preform formed in the preform formation step from the end on the second preform side; and
A coating step of coating a resin on the surface of the optical fiber heated and stretched in the heating and stretching step;
A coating adjusting step of adjusting the coating thickness in the coating step so as to be substantially uniform in the circumferential direction of the optical fiber while the second base material is heated and stretched in the heating and stretching step. Fiber manufacturing method.
請求項1において、
被覆調節工程は、被覆を行う被覆機器の位置を移動させる被覆調節機構により行われる工程であることを特徴とする光ファイバの製造方法。
In claim 1,
The method of manufacturing an optical fiber, wherein the coating adjustment step is a step performed by a coating adjustment mechanism that moves a position of a coating device that performs coating.
中実な石英ガラスの棒に、一端のみに開口し該棒の軸方向に延びる複数の穴を未貫通な状態で形成してファイバ母材を形成する母材形成工程と、
上記母材形成工程で形成したファイバ母材を上記穴が未開口の端部より加熱延伸する加熱延伸工程と、
上記加熱延伸工程で加熱延伸された光ファイバ表面に樹脂を被覆する被覆工程と、
上記加熱延伸工程でファイバ母材の穴のある部分が加熱延伸される前に、上記被覆工程における被覆厚みを光ファイバ周方向において略均一となるように被覆厚みを調節する被覆調節工程と、を備えることを特徴とする光ファイバの製造方法。
A preform forming step for forming a fiber preform by forming a plurality of holes that are open at only one end and extending in the axial direction of the rod in a solid quartz glass rod in an unpenetrated state;
A heating and stretching step in which the fiber preform formed in the preform forming step is heated and stretched from the end where the hole is not opened; and
A coating step of coating a resin on the surface of the optical fiber heated and stretched in the heating and stretching step;
A coating adjustment step of adjusting the coating thickness so that the coating thickness in the coating step is substantially uniform in the circumferential direction of the optical fiber before the holed portion of the fiber preform is heated and stretched in the heating and stretching step; An optical fiber manufacturing method comprising:
請求項3において、
被覆調節工程は、被覆を行う被覆機器の位置を移動させる被覆調節機構により行われる工程であることを特徴とする光ファイバの製造方法。
In claim 3,
The method of manufacturing an optical fiber, wherein the coating adjustment step is a step performed by a coating adjustment mechanism that moves a position of a coating device that performs coating.
JP2002019527A 2002-01-29 2002-01-29 Optical fiber manufacturing method Expired - Fee Related JP3691795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019527A JP3691795B2 (en) 2002-01-29 2002-01-29 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019527A JP3691795B2 (en) 2002-01-29 2002-01-29 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2003221259A JP2003221259A (en) 2003-08-05
JP3691795B2 true JP3691795B2 (en) 2005-09-07

Family

ID=27743335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019527A Expired - Fee Related JP3691795B2 (en) 2002-01-29 2002-01-29 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3691795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052541A1 (en) * 2009-10-26 2011-05-05 株式会社フジクラ Testing device and testing method

Also Published As

Publication number Publication date
JP2003221259A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP2665389B2 (en) Fiber optic coupler and method of manufacturing the same
JP2007197273A (en) Optical fiber strand and production method therefor
JPS5848014A (en) Manufacture of optical distributor
JP3691795B2 (en) Optical fiber manufacturing method
JP4116479B2 (en) Tapered photonic crystal fiber, manufacturing method thereof, and connection method of photonic crystal fiber
JPH0273312A (en) Manufacture of optical fiber coupler
JPS59164522A (en) Manufacture of optical distributing circuit
JPH11302042A (en) Production of optical fiber and apparatus for production
KR19990022290A (en) Manufacturing method of optical fiber product
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
JPH0323241A (en) Optical fiber cable and preparation thereof and optical fiber coupler
US20090178440A1 (en) Method for fabricating micro/nano optical wires and device for fabricating the same
JP4172440B2 (en) Optical fiber manufacturing method
US20240150219A1 (en) Hollow core optical fibers and methods of making
JP3025045B2 (en) Manufacturing method of optical fiber ribbon
JP4215943B2 (en) Manufacturing method of optical fiber
JP2968680B2 (en) Optical fiber manufacturing method
JP3408591B2 (en) Optical fiber manufacturing method
JP3872796B2 (en) Photonic crystal fiber manufacturing method
JP2005263545A (en) Optical fiber manufacturing method
JP2004029087A (en) Apparatus and method for manufacturing optical fiber ribbon and optical fiber ribbon
JPH0715744U (en) Optical fiber resin coating device
JP2006027981A (en) Optical fiber manufacturing method
JP2003212588A (en) Production method of optical fiber
KR20230100493A (en) Method for fabricating a single mode optical fiber via heat elongation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees