JP3691283B2 - Inexpensive stainless steel for natural seawater - Google Patents

Inexpensive stainless steel for natural seawater Download PDF

Info

Publication number
JP3691283B2
JP3691283B2 JP11420899A JP11420899A JP3691283B2 JP 3691283 B2 JP3691283 B2 JP 3691283B2 JP 11420899 A JP11420899 A JP 11420899A JP 11420899 A JP11420899 A JP 11420899A JP 3691283 B2 JP3691283 B2 JP 3691283B2
Authority
JP
Japan
Prior art keywords
stainless steel
seawater
natural seawater
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11420899A
Other languages
Japanese (ja)
Other versions
JP2000309855A (en
Inventor
亮 松橋
寛 紀平
裕滋 井上
正美 石原
公夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP11420899A priority Critical patent/JP3691283B2/en
Publication of JP2000309855A publication Critical patent/JP2000309855A/en
Application granted granted Critical
Publication of JP3691283B2 publication Critical patent/JP3691283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海水貯蔵用タンク類、海水輸送用ラインパイプ類などの自然海水を貯蔵、輸送する環境や河口堰、水門など直接自然海水と接する環境で優れた耐食性を有する廉価型自然海水用ステンレス鋼に関するものである。
【0002】
【従来の技術】
従来、海水貯蔵用タンク類、海水輸送用ラインパイプ類、河口堰、水門など自然海水に直接接触する機器類は海水濃度や温度条件によって、炭素鋼、低合金鋼、ステンレス鋼、銅合金、チタンなどが使い分けられている。また、これ以外に有機被覆鋼やFRPなども多く用いられているのが現状である。
ステンレス鋼においては、海水環境中ですきま腐食や約60℃以上の使用条件で応力腐食割れの生ずる可能性があるため、耐海水性ステンレス鋼として一般に用いられているのは20%Cr−25%Ni−4.5%Mo−1.5%Cu鋼や20%Cr−24%Ni−6%Mo鋼などのオ−ステナイト系ステンレス鋼、また、28%Cr−1.2%Ni−3.5%Mo鋼や29%Cr−2%Ni−4%Mo鋼などのフェライト系ステンレス鋼などが使用されている。
しかしながら、これらのステンレス鋼は海水淡水化プラントや海水熱交換機など比較的温度の高い領域で使用されており、高価なステンレス鋼である。これに対し、一般の自然海水では比較的安価なSUS304鋼やSUS316L鋼などのステンレス鋼が使用されているが、孔食やすきま腐食の発生を避けるために電気防食を施す必要がある。
【0003】
【発明が解決しようとする課題】
自然海水は、河川水や地下水と異なり、多くの塩類や微生物を含んでいる。このため、ステンレス鋼の表面にはバイオフィルムが形成され、ある程度の時間が経過すると微生物が堆積し、例えば海綿やフジツボ、ムラサキイガイのような生物が付着すると金属と生物との間のすきま部にすきま腐食が発生しやすくなるために耐すきま腐食性に優れたステンレス鋼を開発する必要がある。
本発明は、このような自然海水環境に適用可能な耐食性に優れ、自然海水貯蔵用タンク類、自然海水輸送用ラインパイプ類、河口堰、水門などの設備材料として使用できる、廉価型ステンレス鋼を提供しようとするものである。
【0004】
【課題を解決するための手段】
発明者らは、上記環境での耐食性に優れたステンレス鋼を鋭意検討の結果、最適な鋼成分の特定に至り本発明を完成したものであって、その要旨とするところは、以下の通りである。
【0005】
(1)質量%で、
C :0.005〜0.05%、 Si:0.01〜1%、
Mn:0.1〜2%、 P :0.04%以下、
S :0.005%以下、 Cr:17〜25%、
Ni:15〜20%、 N :0.01〜0.3%、
O :0.005%以下、 V :1.02〜4%
含有し、残部が鉄および不可避的不純物からなることを特徴とする廉価型自然海水用ステンレス鋼。
(2)さらに質量%で、
Cu:0.5〜4%
を含有することを特徴とする前記(1)記載の廉価型自然海水用ステンレス鋼。
)さらに質量%で、
Ca:0.001〜0.03%、 Ce:0.001〜0.03%
の1種または2種を含有し、下記(1)式を満たすことを特徴とする前記(1)または(2)に記載の廉価型自然海水用ステンレス鋼。
S+O−(0.8×Ca)−(0.3×Ce)≦40・・・・・・(1)
但し、式中S,O,Ca,Ceは各元素の鋼中含有量(ppm)を示す。
【0006】
【発明の実施の形態】
本発明者らは上述の観点からまず、材料がさらされる環境である自然海水と煮沸処理(沸騰、2時間)をおこなった自然海水(以後、煮沸海水と呼ぶ)中でのステンレス鋼の自然電位測定をおこなった。その結果を図1に示す。煮沸海水中での自然電位は初め約−200mVの卑な電位を示すが、その後緩やかに貴方向に遷移し、最終的に約−50mVまで電位が貴化している。
【0007】
一方、自然海水では、初めは煮沸海水と同じ卑な電位にあるが、電位の貴化が激しく浸漬後約3日目当たりから急激な電位の貴化(約200mV)現象が観察されている。その後、6〜9日目のあいだ、電位のプラトー状態が続き、9日目を過ぎた当たりから電位は緩やかに卑方向に遷移し、煮沸海水の電位に近づく傾向を示している。自然海水を観察すると9日目を過ぎた頃から海水が白濁していた。ここで、自然海水中では微生物が生息し、煮沸海水中では微生物が死滅しているとすると、自然海水中での電位の急激な貴化現象は微生物の作用(微生物の代謝物の作用)によるものと考えられる。
【0008】
また、9日目を過ぎた当たりから自然海水が白濁したのは微生物が栄養を失って死んだ死骸であり、微生物が死んだので電位が煮沸海水に近づいたものと知見されたのである。したがって、発明者らは、自然海水腐食に耐えるステンレス鋼を開発するためには、従来のASTM人工海水を用いた耐食性試験では評価できず、微生物が生息している自然海水中での耐食性評価による必要があるという結論に達したのである。
【0009】
そこで、本発明者らは上記知見に基づき、種々のステンレス鋼の自然海水中での長期間暴露試験を実施した。その結果、図2に試験結果の一例を示すように、鋼中にVやCuを添加したステンレス鋼は、これらを含有しないステンレス鋼に比較して格段に優れた耐食性を示すことを見出した。発明者らはかかる知見を基に自然海水中での使用に耐え得る鋼材の含有すべき元素とその量を限定し、本発明鋼を完成させた。
【0010】
以下に本発明の構成件の限定理由を述べる。
Cは、ステンレス鋼の耐食性に有害であるが、強度の観点からある程度の含有量は必要である。0.005%未満の極低C量では製造コストが高くなる。また、0.05%をえると耐食性を大幅に劣化させるため0.005%以上0.05%以下とした。
【0011】
Siは、耐食性に影響を及ぼさない範囲で熱間圧延可能な通常のステンレス鋼の成分範囲としてSi量を1.0%以下とした。また、Si量が0.01%未満では製造コストが高くなることから0.01%以上とした。
【0012】
Mnは、オーステナイト安定化元素であり、高価なNiの代替として添加することが可能であるが、本発明の対象としている自然海水中での耐食性は、2%超では効果が飽和するので、Mn量の上限として2.0%以下とした。また、Mn量が0.1%未満では、その低減のための製造コストが高くなることから0.1%以上とした。
【0013】
Pは、耐食性および熱間加工性の観点から少ないことが望ましい。0.04%を超えると熱間加工性が極端に劣化する。よって、P量は0.04%以下とした。P量を0.02%以下とすれば、さらに好ましい。
【0014】
Sは耐食性よりも熱間加工性に著しく影響する元素で、その量は低いほど良い。そこでS量は0.005%(50ppm)以下とした。
【0015】
OもSと同様に熱間加工性に著しく影響する元素であり、低いほど良い。Oは通常のステンレス鋼製鋼法で得られる0.005%(50ppm)以下と限定した。
【0016】
CaおよびCeは、溶鋼の脱酸素剤、脱硫剤として通常0.001%以上0.03%以下の範囲で、選択的に添加される。0.03%を超えて添加しても脱酸素効果および脱硫効果は飽和する。また、SおよびOに対してはCaおよびCeとの複合添加により、
S+O−(0.8×Ca(ppm))−(0.3×Ce(ppm))
で示される値が40以下を満足するCa量およびCe量を添加することで低S鋼中Oを固定してMnSの生成を防止し、熱間加工性を大幅に改善する。
【0017】
Crは、本発明の基本成分である。自然海水中で良好な耐食性をえるにはNi,N,V,Cuと共存しても17%以上の添加が必要である。Cr量が多いほど耐食性は向上するが、25%を超える場合には製造性が極端に困難になり、経済的にも高価となる。よって、Cr量の範囲を17%以上25%以下に限定した。
【0018】
Niは、Crとともに本発明のステンレス鋼の基本成分である。ステンレス鋼の厚板製造を容易にするために金属組織をオーステナイト相にする必要があり、Ni添加は必須である。本発明鋼をオーステナイト相にするための最低限のNi量は15%である。また、Ni量が多すぎると価格が高くなる。経済的にも安価でオーステナイト相を保つNi量の上限として20%とした。
【0019】
上記説明したように、自然海水での耐食性を維持するためにはVおよび/またはCuの添加が必須である。
Vは、1.02%未満の添加では十分な自然海水中での耐食性は得られない。V量が多いほど耐食性は向上するが、4%を超えて添加するとステンレス鋼の熱間加工性が著しく劣化し、鋼製造が困難となり、経済的にも高価となる。よって、V量の上限を4%に限定した
Cuも、0.5%未満の添加では十分な自然海水中での耐食性は得られない。また、4%を超えて添加するとステンレス鋼の熱間加工性が著しく劣化し、鋼製造が困難となる。よって、Cu量の上限を4%に限定した。
なお、VとCuを複合添加する場合は、合計量が4%以下となるようにするのが好ましい。
【0020】
Nは、強いオーステナイト形成元素であると同時にステンレス鋼の不動態皮膜を安定化させる働きをもち、安定した耐食性を得るためには、0.01%以上の添加が必要である。上限は、0.3%以下の添加であれば、靱性など他の特性に影響を与えない。
【0021】
【実施例】
以下に実施例に基づいて本発明を説明する。
表1は本発明鋼ならびに比較鋼の化学組成ならびに耐食性評価結果を示すもので、それぞれ電気炉真空溶解法によって溶解し鋳型に鋳込み、インゴットを作製した。その後、1150〜1250℃で0.5〜1時間のソーキング処理を施し、表面手入れ後、再び、1250℃に加熱し、板厚6mmまで熱間圧延をおこない、1100℃で30分加熱後、水焼き入れの固溶化熱処理をおこない、腐食試験片を採取し、実自然海水暴露試験に供した。
【0022】
【表1】

Figure 0003691283
【0023】
腐食試験片は固溶化熱処理を終えた板材から25幅×50長さ×4mm厚さの寸法の鋼片を切り出し、全面を400番のエメリー紙で湿式研磨をおこなったのち、アセトン中で超音波による脱脂を約10分おこない、熱風乾燥し、試験前重量を測定した。腐食試験は実自然海水中に3ヶ月間浸漬することでおこなった。所定の時間経過後、腐食試験片に付着している藻類、貝類、海綿類などの生物を丹念に歯ブラシなどを用いて水洗・除去し、アセトン中脱脂後、熱風乾燥し、試験前後の重量差から腐食速度を算出した。また、倍率5倍のルーペを用いて腐食発生の有無を観察した。これより、腐食速度が0.1mm/y以下若しくは腐食の発生が観られない材料を耐食性良好として○印で、また、そうでない材料を×印として耐食性の判定(評価)をおこなった。表1の腐食速度は本発明鋼が比較鋼に比べて腐食速度が低く0.1mm/y以下であり、極めて優れた耐食性を有する材料であることがわかる。
【0024】
【発明の効果】
以上に述べたように本発明鋼により、自然海水中での耐すきま腐食性を大幅に改善することが可能となり、実自然海水中で使用できる廉価な構造用材料を開発することができた。
【図面の簡単な説明】
【図1】図1は、SUS304ステンレス鋼の自然電位の経時変化を自然海水と煮沸海水とで比較したものである。自然海水(微生物生息)中での自然電位は最大約+200mVに達するのに対し、煮沸海水(微生物死滅)中では+50mVにしか達しない。
【図2】自然海水中で3ヶ月間暴露試験をおこなったステンレス鋼の腐食速度を示している。VもしくはCuを添加したステンレス鋼は、これらを含まないステンレス鋼に比べて腐食速度が極めて低い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inexpensive stainless steel for natural seawater having excellent corrosion resistance in an environment where natural seawater is stored and transported, such as tanks for seawater storage and line pipes for seawater transportation, and in an environment where it is in direct contact with natural seawater such as estuaries and sluices. It is about steel.
[0002]
[Prior art]
Conventionally, equipment for direct contact with natural seawater, such as seawater storage tanks, seawater transport line pipes, estuary weirs, sluices, etc., depends on the seawater concentration and temperature conditions, carbon steel, low alloy steel, stainless steel, copper alloy, titanium Etc. are used properly. In addition to this, organic coated steel, FRP, and the like are often used.
In stainless steel, crevice corrosion in the seawater environment and stress corrosion cracking may occur under operating conditions of about 60 ° C or higher. Therefore, 20% Cr-25% is generally used as seawater resistant stainless steel. Austenitic stainless steels such as Ni-4.5% Mo-1.5% Cu steel and 20% Cr-24% Ni-6% Mo steel, and 28% Cr-1.2% Ni-3. Ferritic stainless steels such as 5% Mo steel and 29% Cr-2% Ni-4% Mo steel are used.
However, these stainless steels are expensive stainless steels that are used in relatively high temperature regions such as seawater desalination plants and seawater heat exchangers. In contrast, in general natural seawater, relatively inexpensive stainless steel such as SUS304 steel and SUS316L steel is used. However, in order to avoid occurrence of pitting corrosion and crevice corrosion, it is necessary to perform anticorrosion.
[0003]
[Problems to be solved by the invention]
Unlike seawater and groundwater, natural seawater contains many salts and microorganisms. For this reason, a biofilm is formed on the surface of stainless steel, and microorganisms accumulate after a certain amount of time.If organisms such as sponges, barnacles, and mussels adhere to the stainless steel surface, a gap is formed in the gap between the metal and the organism. It is necessary to develop stainless steel with excellent crevice corrosion resistance because corrosion tends to occur.
The present invention is an inexpensive stainless steel that is excellent in corrosion resistance applicable to such a natural seawater environment and can be used as a facility material for natural seawater storage tanks, natural seawater transport line pipes, estuaries weirs, sluices, etc. It is something to be offered.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on stainless steels having excellent corrosion resistance in the above environment, the inventors have completed the present invention by identifying the optimum steel components. The gist of the present invention is as follows. is there.
[0005]
(1) In mass %,
C: 0.005 to 0.05%, Si: 0.01 to 1%,
Mn: 0.1 to 2%, P: 0.04% or less,
S: 0.005% or less, Cr: 17-25%,
Ni: 15-20%, N: 0.01-0.3%,
O: 0.005% or less, V: 1.02-4 %
Containing, inexpensive type natural seawater stainless steel balance being composed of iron and unavoidable impurities.
(2) Furthermore, in mass%,
Cu: 0.5 to 4%
The low-cost stainless steel for natural seawater according to (1) above, characterized by comprising
( 3 ) Furthermore, in mass %,
Ca: 0.001 to 0.03%, Ce: 0.001 to 0.03%
One or contain two, the following (1) above, wherein the satisfying formula (1) or inexpensive type natural seawater stainless steel according to (2) of the.
S + O− (0.8 × Ca) − (0.3 × Ce) ≦ 40 (1)
However, S, O, Ca, and Ce in the formula indicate the content (ppm) of each element in steel.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
From the above viewpoints, the present inventors firstly made the natural potential of stainless steel in natural seawater, which is the environment to which the material is exposed, and in natural seawater that has been boiled (boiling, 2 hours). Measurements were made. The result is shown in FIG. The natural potential in boiling seawater initially shows a base potential of about -200 mV, but then gradually transitions to a noble direction, and finally the potential becomes noble to about -50 mV.
[0007]
On the other hand, natural seawater is initially at the same base potential as boiling seawater, but abrupt potential nomination (about 200 mV) has been observed from about the third day after immersion. Thereafter, the plateau state of the electric potential continues during the 6th to 9th days, and the potential gradually transitions to the base direction from the end of the 9th day, and tends to approach the potential of the boiling seawater. Observing the natural seawater, the seawater has become cloudy since the 9th day. Here, if the microorganisms inhabit the natural seawater and the microorganisms die in the boiling seawater, the rapid noble phenomenon of the potential in the natural seawater is due to the action of the microorganism (the action of the metabolite of the microorganism). It is considered a thing.
[0008]
In addition, the natural seawater became cloudy after the 9th day passed, and it was found that the dead bodies were dead due to the loss of nutrients from the microorganisms, and that the potential was close to boiling seawater because the microorganisms were dead. Therefore, the inventors cannot evaluate the corrosion resistance test using the conventional ASTM artificial seawater in order to develop stainless steel that is resistant to natural seawater corrosion, but based on the corrosion resistance evaluation in natural seawater where microorganisms live. The conclusion was reached that it was necessary.
[0009]
Therefore, the present inventors conducted a long-term exposure test of various stainless steels in natural seawater based on the above findings. As a result, as shown in FIG. 2 as an example of the test results, it was found that the stainless steel added with V or Cu in the steel exhibits much superior corrosion resistance compared to the stainless steel not containing these. Based on this knowledge, the inventors limited the elements that should be contained in the steel material that can be used in natural seawater and the amount thereof, and completed the steel of the present invention.
[0010]
It describes the reasons for limiting the configuration requirements of the present invention will be described below.
C is harmful to the corrosion resistance of stainless steel, but a certain content is necessary from the viewpoint of strength. With an extremely low C content of less than 0.005%, the production cost increases. Moreover, it was 0.05% or less than 0.005% in order to significantly degrade the ultra-Ell and corrosion resistance of 0.05%.
[0011]
Si has a Si content of 1.0% or less as a component range of normal stainless steel that can be hot-rolled within a range that does not affect the corrosion resistance. Further, if the Si amount is less than 0.01%, the manufacturing cost becomes high.
[0012]
Mn is an austenite stabilizing element and can be added as an alternative to expensive Ni. However, since the corrosion resistance in natural seawater targeted by the present invention exceeds 2%, the effect is saturated. The upper limit of the amount was 2.0% or less. Further, if the amount of Mn is less than 0.1%, the manufacturing cost for the reduction increases, so the content was made 0.1% or more.
[0013]
P is desirably small in terms of corrosion resistance and hot workability. If it exceeds 0.04%, the hot workability is extremely deteriorated. Therefore, the P content is set to 0.04% or less. More preferably, the P content is 0.02% or less.
[0014]
S is an element that significantly affects the hot workability rather than the corrosion resistance, and the lower the amount, the better. Therefore, the S content is set to 0.005% (50 ppm) or less.
[0015]
O, like S, is an element that significantly affects hot workability, and the lower the better. O was limited to 0.005% (50 ppm) or less obtained by a normal stainless steel manufacturing method.
[0016]
Ca and Ce are selectively added as a deoxidizer and desulfurizer for molten steel, usually in the range of 0.001% to 0.03%. Even if added over 0.03%, the deoxidation effect and the desulfurization effect are saturated. In addition, for S and O, by combined addition with Ca and Ce,
S + O− (0.8 × Ca (ppm)) − (0.3 × Ce (ppm))
By adding a Ca amount and a Ce amount satisfying a value of 40 or less, O in the low S steel is fixed to prevent the formation of MnS, and the hot workability is greatly improved.
[0017]
Cr is a basic component of the present invention. In order to obtain good corrosion resistance in natural seawater, addition of 17% or more is necessary even if it coexists with Ni, N, V, and Cu. The corrosion resistance improves as the Cr content increases, but if it exceeds 25%, the manufacturability becomes extremely difficult and becomes economically expensive. Therefore, the range of Cr amount is limited to 17% or more and 25% or less.
[0018]
Ni is a basic component of the stainless steel of the present invention together with Cr. In order to facilitate the production of a stainless steel plate, the metal structure must be in an austenite phase, and Ni addition is essential. The minimum amount of Ni for making the steel of the present invention an austenitic phase is 15%. Moreover, when there is too much Ni amount, a price will become high. The upper limit of the amount of Ni that is economically inexpensive and maintains the austenite phase is 20%.
[0019]
As described above, the addition of V and / or Cu is essential to maintain the corrosion resistance in natural seawater.
When V is less than 1.02 %, sufficient corrosion resistance in natural seawater cannot be obtained. The corrosion resistance improves as the amount of V increases, but if added over 4%, the hot workability of the stainless steel is remarkably deteriorated, making the steel production difficult and economically expensive. Therefore, even when Cu has an upper limit of V content limited to 4%, sufficient corrosion resistance in natural seawater cannot be obtained with addition of less than 0.5%. Moreover, when it adds exceeding 4%, the hot workability of stainless steel will deteriorate remarkably and steel manufacture will become difficult. Therefore, the upper limit of the amount of Cu is limited to 4%.
When V and Cu are added in combination, the total amount is preferably 4% or less.
[0020]
N is a strong austenite-forming element and has a function of stabilizing the passive film of stainless steel. To obtain stable corrosion resistance, N must be added in an amount of 0.01% or more. If the upper limit is 0.3% or less, other properties such as toughness are not affected.
[0021]
【Example】
The present invention will be described below based on examples.
Table 1 shows the chemical composition and corrosion resistance evaluation results of the steels of the present invention and comparative steels, which were each melted by an electric furnace vacuum melting method and cast into a mold to prepare ingots. Thereafter, a soaking treatment is performed at 1150 to 1250 ° C. for 0.5 to 1 hour, and after surface preparation, it is heated again to 1250 ° C., hot-rolled to a thickness of 6 mm, heated at 1100 ° C. for 30 minutes, Quenching solution heat treatment was performed, and corrosion test pieces were collected and subjected to actual natural seawater exposure tests.
[0022]
[Table 1]
Figure 0003691283
[0023]
For the corrosion test piece, a steel piece having a size of 25 width × 50 length × 4 mm thickness was cut out from the plate material that had been subjected to the solution heat treatment, the entire surface was wet-polished with No. 400 emery paper, and then ultrasonicated in acetone. Was degreased for about 10 minutes, dried with hot air, and the weight before the test was measured. The corrosion test was conducted by immersing in real natural seawater for 3 months. After a predetermined period of time, organisms such as algae, shellfish, and sponges adhering to the corrosion test piece are carefully washed and removed with a toothbrush, etc., degreased in acetone, dried with hot air, and the weight difference between before and after the test. From this, the corrosion rate was calculated. Moreover, the presence or absence of corrosion generation was observed using a magnifying glass having a magnification of 5 times. From this, the corrosion resistance was judged (evaluated) with a circle mark indicating that the corrosion rate was 0.1 mm / y or less or the occurrence of corrosion was not good, and the material having no corrosion was marked with X. The corrosion rate in Table 1 shows that the steel of the present invention has a corrosion rate lower than that of the comparative steel and is 0.1 mm / y or less, and is a material having extremely excellent corrosion resistance.
[0024]
【The invention's effect】
As described above, the steel according to the present invention can greatly improve the crevice corrosion resistance in natural seawater, and has been able to develop an inexpensive structural material that can be used in actual natural seawater.
[Brief description of the drawings]
FIG. 1 is a comparison of the natural potential of SUS304 stainless steel over time between natural seawater and boiling seawater. The natural potential in natural seawater (microbe inhabitants) reaches a maximum of about +200 mV, whereas it reaches only +50 mV in boiling seawater (microbe killed).
FIG. 2 shows the corrosion rate of stainless steel subjected to an exposure test in natural seawater for 3 months. Stainless steel to which V or Cu is added has a very low corrosion rate compared to stainless steel not containing these.

Claims (3)

質量%で、
C :0.005〜0.05%、
Si:0.01〜1%、
Mn:0.1〜2%、
P :0.04%以下、
S :0.005%以下、
Cr:17〜25%、
Ni:15〜20%、
N :0.01〜0.3%、
O :0.005%以下、
:1.02〜4%
含有し、残部が鉄および不可避的不純物からなることを特徴とする廉価型自然海水用ステンレス鋼。
% By mass
C: 0.005 to 0.05%,
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
P: 0.04% or less,
S: 0.005% or less,
Cr: 17 to 25%,
Ni: 15-20%,
N: 0.01-0.3%
O: 0.005% or less,
V : 1.02 to 4%
Containing, inexpensive type natural seawater stainless steel balance being composed of iron and unavoidable impurities.
さらに質量%で、In addition,
Cu:0.5〜4%Cu: 0.5 to 4%
を含有することを特徴とする請求項1記載の廉価型自然海水用ステンレス鋼。The low-cost stainless steel for natural seawater according to claim 1, comprising:
さらに質量%で、
Ca:0.001〜0.03%、
Ce:0.001〜0.03%
の1種または2種を含有し、下記(1)式を満たすことを特徴とする請求項1または2に記載の廉価型自然海水用ステンレス鋼。
S+O−(0.8×Ca)−(0.3×Ce)≦40・・・・・・(1)
但し、式中S,O,Ca,Ceは各元素の鋼中含有量(ppm)を示す。
Furthermore in mass%,
Ca: 0.001 to 0.03%,
Ce: 0.001 to 0.03%
One or contain two, the following (1) inexpensive die according to claim 1 or 2, characterized by satisfying the equation natural seawater for stainless steel.
S + O− (0.8 × Ca) − (0.3 × Ce) ≦ 40 (1)
However, S, O, Ca, and Ce in the formula indicate the content (ppm) of each element in steel.
JP11420899A 1999-04-21 1999-04-21 Inexpensive stainless steel for natural seawater Expired - Lifetime JP3691283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11420899A JP3691283B2 (en) 1999-04-21 1999-04-21 Inexpensive stainless steel for natural seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11420899A JP3691283B2 (en) 1999-04-21 1999-04-21 Inexpensive stainless steel for natural seawater

Publications (2)

Publication Number Publication Date
JP2000309855A JP2000309855A (en) 2000-11-07
JP3691283B2 true JP3691283B2 (en) 2005-09-07

Family

ID=14631925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11420899A Expired - Lifetime JP3691283B2 (en) 1999-04-21 1999-04-21 Inexpensive stainless steel for natural seawater

Country Status (1)

Country Link
JP (1) JP3691283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109552A1 (en) * 2014-01-25 2015-07-30 吴津宁 Stainless steel seamless pipe
JP7340186B2 (en) * 2019-05-10 2023-09-07 国立大学法人東北大学 austenitic stainless steel

Also Published As

Publication number Publication date
JP2000309855A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4390089B2 (en) Ni-based alloy
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
JPWO2002063056A1 (en) Steel and air preheater with excellent sulfuric acid dew point corrosion resistance
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
CN102168230A (en) 304 substituting nickel-saving austenitic stainless steel and preparation method thereof
JP2005505696A (en) Duplex stainless steel
JP2010159438A (en) High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP3691283B2 (en) Inexpensive stainless steel for natural seawater
JP2018178144A (en) Precipitation-hardened stainless steel having excellent hot workability
JP2009256791A (en) Two-phase series stainless steel excellent in corrosion resistance, and its producing method
JP4260330B2 (en) Stainless steel for fresh water with excellent crevice corrosion resistance
JP2005179699A (en) Method for inhibiting potential of stainless steel from becoming noble
JP2007247013A (en) Ferritic stainless steel excellent in oxidation resistance, workability, and high-temperature strength
JP4757561B2 (en) High manganese stainless steel with excellent stress corrosion cracking resistance
JP6858600B2 (en) Austenitic stainless steel for strongly oxidizing acidic environments
JP2005220429A (en) Ferritic stainless steel sheet having excellent corrosion resistance and workability
JP4080729B2 (en) Stainless steel for food plant
JP2003082445A (en) Nonmagnetic stainless steel having excellent workability
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JP4290260B2 (en) Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes
JP5528459B2 (en) Ni-saving stainless steel with excellent corrosion resistance
JP2014040669A (en) High corrosion-resistant alloy excellent in intergranular corrosion resistance
JP3890223B2 (en) Austenitic stainless steel
TWI752854B (en) Vostian iron series stainless steel and spring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term