JP3690388B2 - Compression molding method - Google Patents

Compression molding method Download PDF

Info

Publication number
JP3690388B2
JP3690388B2 JP2003008459A JP2003008459A JP3690388B2 JP 3690388 B2 JP3690388 B2 JP 3690388B2 JP 2003008459 A JP2003008459 A JP 2003008459A JP 2003008459 A JP2003008459 A JP 2003008459A JP 3690388 B2 JP3690388 B2 JP 3690388B2
Authority
JP
Japan
Prior art keywords
mold
resin
preform
molding
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003008459A
Other languages
Japanese (ja)
Other versions
JP2003236866A (en
Inventor
誠 江藤
剛 斉藤
吉次 丸橋
清 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003008459A priority Critical patent/JP3690388B2/en
Publication of JP2003236866A publication Critical patent/JP2003236866A/en
Application granted granted Critical
Publication of JP3690388B2 publication Critical patent/JP3690388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/048Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds the material being severed at the dispensing head exit, e.g. as ring, drop or gob, and transported immediately into the mould, e.g. by gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3466Feeding the material to the mould or the compression means using rotating supports, e.g. turntables or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded

Description

【0001】
【発明の属する技術分野】
本発明は、最終成形体である容器の口部に対応する形状及び寸法の口部とブロー成形されるべき有底胴部とを有するブロー成形用予備成形物を圧縮成形する方法に関する。
【0002】
【従来の技術】
延伸ブロー成形プラスチック容器、特にポリエステル容器は今日では一般化しており、その優れた透明性と適度なガスバリヤー性とにより、液体洗剤、シャンプー、化粧品、醤油、ソース等の液体商品の外に、ビール、コーラ、サイダー等の炭酸飲料や、果汁、ミネラルウオータ等の他の飲料容器やデザート類カップ、ミソ用容器、カップ製品等に広く使用されている。
【0003】
ポリエステル容器の成形に際しては、ポリエステルの射出成形により、最終容器より寸法のかなり小さい且つポリエステルが非晶質である予備成形物を予め形成し、この予備成形物をその延伸温度に予備加熱し、ブロー金型中で軸方向に引張延伸すると共に、周方向にブロー延伸する方法が採用されている。
【0004】
この予備成形物の形状としては、容器の口部に相当する口部と延伸ブロー成形されるべき有底胴部とを備え、縦長な容器用としては全体としての形状が試験管状のものが一般的である。口部には、例えば密封用開口端や蓋との係合手段が形成されている。また、この底部には、射出成形の必要性から、底部中心から外方に突出したゲート部が必ず形成されている。
【0005】
予備成形物を樹脂の圧縮成形で製造することも既に知られており、例えば国際公開WO97/32706号には、予備成形物を形成するキャビティとを有する圧縮型を準備し、熱可塑性樹脂を前駆体に成形すると共に前駆体を圧縮型に入れ、ここで、前駆体を、全体的にキャビティ内に固定され密着されるようにすると共に、前駆体を、完全には圧縮型を満たさないが、最終形状に圧縮される前に、圧縮型のキャビティ内に所定の方法で支持されるような形状を有するものとし、前駆体を圧縮型に入れるに先だって前駆体を加熱し、加熱された前駆体を圧縮型内で圧縮成形することが記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、射出成形による予備成形物に形成されるゲート部は、生産性や製造コスト、最終的なブロー成形品の特性の点で、多くの問題となっている。即ち、このゲート部を切断するために、格別の切断工程が必要となり、生産性を下げる一因となっている。また、切断されたゲート部はスクラップ樹脂となり、資源の無駄になっている。更に、このゲート残部は、最終ブロー成形品の結晶化や白化を招きやすく、外観特性低下の原因となっていると共に、成形時の流動配向や切断時の歪み発生等により、延伸ブロー成形に際して配向むらや組織の不均一さを招き、落下衝撃などにより底割れを発生する原因ともなっている。
【0007】
また、射出成形では、成形時に大きな剪断力が作用するので、高温での成形が必要となり、この熱履歴により、樹脂の熱減成(熱劣化)が生じることが問題である。このため、従来のPET(ポリエチレンテレフタレート)容器の製造では、射出成形時に生じる固有粘度の低下を予め見込んで、固相重合法による高い固有粘度のPETを使用しなければならず、コストの増大をもたらしている。更に、金型についても射出された樹脂の冷却のみならず、樹脂の流動も同時に要求されるため、金型温度の設定にも自由度が小さく、射出成形時間がどうしても長くなるという生産性上の問題もある。
【0008】
上記の圧縮成形法による予備成形物の成形では、射出成形に伴う樹脂の熱減成を軽減できるという利点があるが、圧縮型への樹脂供給の過不足を避けるため、樹脂を一旦前駆体に熱成形し、この前駆体をまた加熱して圧縮型に供給し、加熱された前駆体を圧縮型中で圧縮成形しなければならないなど、熱成形の他に圧縮成形のための再度の加熱が必要であるという点で未だ改良すべき点がある。
【0009】
従って、本発明の技術的課題は、樹脂を一旦前駆体に成形する必要なくして、且つ樹脂温の低下による樹脂の体積収縮に起因する形状及び寸法の変動を所定部位、即ちブロー成形部に生成せしめ、口部における形状及び寸法の変動を回避する、ブロー成形用予備成形物を圧縮成形する新規且つ優れた方法を提供することである。
【0010】
【課題を解決するための手段】
上記技術的課題を達成する方法として、本発明によれば、容器の口部に対応する形状及び寸法の口部とブロー成形されるべき有底胴部とを有するブロー成形用予備成形物を圧縮成形する方法にして、熱可塑性樹脂の溶融塊を雌型キャビティに供給し、次いで該雌型に対して雄型を移動せしめて該溶融塊を所要形状に圧縮し、そして更に該雌型に対して該雄型を移動せしめて樹脂温の低下による樹脂の体積収縮を該口部の形状及び寸法を変動せしめることなく該ブロー成形部の形状及び寸法の変動せしめて吸収する、ことを特徴とする方法が提供される。
【0011】
本発明の方法においては、熱可塑性樹脂の溶融塊を所要形状樹脂に圧縮した後に、更に所要形状樹脂を圧縮し樹脂温の低下による樹脂の体積収縮を吸収する。供給される溶融塊の誤差と共に体積収縮に起因する形状乃至寸法の変動は、特定部位即ちブロー成形部に生成せしめ、かくして最終的に形成される容器の口部を規定する口部における体積収縮による形状及び寸法の変動を回避する
【0012】
【発明の実施の態様】
以下、添付図面を参照して、本発明の好適実施形態について更に詳述する。
【0013】
[装置全体の構成]
本発明の圧縮成形方法を遂行するのに好適に使用することができる圧縮成形装置を含む成形装置の全体の配置を示す図1(平面図)及び図2(側面図)において、この装置は、大まかにいって、熱可塑性樹脂の押出装置1、溶融塊の切断及び供給装置2及び予備成形物への圧縮成形装置3からなっている。
【0014】
押出装置1は、樹脂を溶融混練するための押出機本体11を備えており、この本体の入口側には、成形すべき熱可塑性樹脂の粉末乃至ペレットを乾燥状態に保持して押出機本体に供給するための真空ホッパー12が設けられ、本体の出口側には、樹脂中の分解ガス等を吸引除去するための吸引ベント13及び押し出される溶融樹脂を受けるダイヘッド14が設けられている。ダイヘッド14は、配管15を介して押出機ノズル16に接続されるが、ダイヘッド14と押出機ノズル16との間には、溶融樹脂を定量供給するためのギアポンプ17を設けるのがよい。尚、図2においては、複雑になるのを避けるため、ギアポンプ17が省略されている。
【0015】
溶融塊の切断及び供給装置2は、図3(平面図)及び図4(側面図)に示すとおり、回転ターレット21に設けられたカッター22と、溶融塊を把持するための外方把持部材23及び内方把持部材24の組み合わせからなっている。カッター22は、ターレット21の径方向に対して傾斜して設けられ、ターレット21の回転に伴って、押出機ノズル16から押し出される樹脂溶融物18を押出方向とは直角方向に切断できるようになっている。外方把持部材23は、ターレットの径方向に延びる部分と周方向に延びる外方部分とからなり、ターレット21に固定されている。一方、内方把持部材24は、外方把持部材23に対して、ターレットの径方向に移動可能に設けられている。
【0016】
切断及び供給装置2の回転ターレット21は、押出装置1の押出機ノズル16の下方及び圧縮成形装置3の雌型32の上方を通るように設けられており、押出機ノズル16の下方で把持部材23及び24による溶融物18の把持とカッター22による切断が行われ、上記把持部材23、24による把持状態での溶融塊19の雌型上方への移動と、把持部材23、24の解放による溶融塊19の雌型32への投入とが行われる。
【0017】
図2及び図4から、図示の実施形態においては、熱可塑性樹脂溶融物18を、雄型33及び雌型32の軸方向と平行に押し出し、切断された溶融塊19をその平行な状態を実質上維持したまま雌型32内に供給していること、溶融物18をギアポンプ17によりほぼ定量な状態で供給し、樹脂の溶融塊19を円柱乃至円柱に近い形状で供給していること、及び溶融塊19をその重心よりも上の部位で把持部材23、24により把持して、切断位置Cから金型位置Mまで移動し、金型32内に供給していることが明らかである。
【0018】
圧縮成形装置3は、大まかにいって、回転ターレット31とこの回転ターレットの周囲に配置された多数の雌型32及び雄型33との組み合わせからなっている。この回転ターレット31には、既に指摘した溶融塊の切断及び供給機構2が付設されていると共に、成形されたブロー成形用予備成形物の取り出し機構34も付設されている。
【0019】
回転ターレット31は機台35に対して垂直軸36により、水平方向に、且つ回転可能に支持されており、モーター37及び駆動伝達機構38により駆動回転されるようになっている。雌型32及び雄型33の組み合わせ(セット)は、回転ターレット31の外周上面に多数固定して設けられる。即ち、雌型32は架台39上に固定されており、一方、雄型33は、垂直支持部材40及び水平支持部材41を介して、油圧機構等の昇降駆動機構42により、雌型32と同軸に且つ昇降動可能に設けられている。
【0020】
雌型32及び雄型33の詳細な構造と、成形工程を段階的に示す図5及び図6において、雌型32はキャビティ43を有していると共に、その底部には残留空気を排除するためのベント部44及び底部とテーパー部との接続部にもベント部45が設けられている。また、キャビティ43の上部の周囲には、上向きの小突起部46が形成されている。その動作については後述する。更に、雌型32の周囲には、雌型と同軸に摺動可能なリング状の従動部材47が設けられ、この従動部材47は下方に延びる軸48を有しその下方の端部にはストッパー49が形成されており、このストッパー49は、雌型32の下方凹部50の内部に収まっている。かくして、ストッパー49は下方凹部50の上面と下面との間で昇降可能であることが了解されよう。また、ストッパー49はスプリング(図示せず)等の手段で上向きに賦勢されている。更に、従動部材47の上部内周面には、上向きに径の大きくなる係合用テーパー部51が形成されている。
【0021】
一方、雄型33は、昇降動可能な支持部材52に固定されたコア金型53を備えている。このコア金型53は、予備成形物の口部頂面を形成するための部分54と、口部内周面を形成するための部分55と、有底テーパ状胴部の内面を形成させるための部分56とを備えている。
【0022】
コア金型33の周囲には、これと同軸に且つ開閉可能に設けられた従動金型57が位置している。この従動金型57は、従動支持部材58に固定されており、図示していないが、支持部材52と従動支持部材58の間には押しスプリングが設けられていて、従動金型を下方向に賦勢している。従動金型57の下方内周面には、予備成形物の口部外周面を形成する部分59が設けられ、一方下方外周面には、下向きに径の減少する係合用テーパー部60が形成されている。
【0023】
図5及び図6に示す圧縮成形装置において、各部材の押圧力(絶対値)は、各操作を円滑に行うために、次の通り設定されている。
雄型33の押圧力>従動部材47の押圧力>従動金型57の押圧力
【0024】
上記装置による成形動作は次の通り行われる。
(A)溶融押出工程:
熱可塑性ポリエステル等の成形用樹脂は、押出機1の真空ホッパー12に供給され、真空中で外気からの吸湿が遮断された状態で、押出機本体11中でばれるとスクリューとにより溶融混練され、ダイヘッド14及び配管15を経て、ギアポンプ17によりノズル16に定量供給され、ノズル16から円柱状に押し出しされる。
【0025】
(B)切断及び供給工程:
ノズル16から溶融押出された樹脂流18は、カッター22で円柱状或いは円柱に近い形状の溶融塊19に切断されると共に、溶融塊19は、把持部材23、24により把持され、切断位置Cから雌型32への供給位置Mまで、実質上の温度低下を生じることなしに、ターレットの回転に伴い移動し、雌型32内に投入される。
【0026】
(C)圧縮成形工程:
図5のIに示すアプローチ工程において、キャビティ型43とコア金型53とは未だ開いており、溶融塊19はキャビティ43内に直立状態で収納されている。コア金型53は下降始めている。
【0027】
図5のIIに示すキャビティ型締め工程において、コア金型53がキャビティ内に下降し、溶融樹脂19’はほぼキャビティ43とコア53とで規定される空間に充満される。この圧縮成形開始と同時にキャビティ内の残留空気は、ベント部44及び45を介して速やかに外部に放出される。同時に、従動金型57も下降し、従動部材47と当接するが、従動支持部材58の上面と雄型支持部材52の下面との間にはまだ間隔がある。
【0028】
図5のIII に示すコア型締め工程において、コア金型53は更に下降し、従動支持部材58の上面と雄型支持部材52の下面とは接触する。これに伴い、キャビティ内の溶融樹脂19’はコア金型53と従動金型57とで規定される空間内に流入する。
【0029】
図5のIVに示す高温での固化工程において、コア金型53は更に若干下降し、これに伴って従動部材47も下降して、キャビティ43、コア金型53及び従動金型57で規定される空間は樹脂で充満され、樹脂は所定形状に圧縮せしめられることになる。
【0030】
図5のVに示す低温での固化工程において、樹脂温の低下により樹脂の体積収縮(ひけ)が発生するが、この体積収縮に基づく歪みの発生は、雄型(コア53)に圧縮力を加えることにより吸収する。この場合、コア金型53とキャビティ43とが噛み合うように移動することが当然必要となるが、キャビティ43の上向きの小突起部46を従動金型57に噛み合わせて滑動せしめることにより体積収縮を吸収する。図5のIV及びVを比較参照することによって明確に理解される如く、樹脂温の低下による樹脂の体積収縮は、特定部位即ちブロー成形部の形状及び寸法の変動によって吸収される。口部の形状及び寸法が変動せしめられることはない。
【0031】
圧縮成形された予備成形物の取り出し工程は、図6のステップI乃至Vで示される。ステップIは成形が終了した段階を示している。ステップIIではコア金型53が上昇を開始し、型開きが開始される。ステップIII では、コア金型53が従動金型57よりも先に上昇して、成形された予備成形物60からのコア抜きが行われる。ステップIVでは、コア金型53が更に上昇し、予備成形物60がキャビティ43の外部に取り出される。ステップVでは、コア金型の再上昇位置で、従動金型57が径外方の位置(点線で示す位置)に移動し、保持されているブロー成形用予備成形物60を解放する。
【0032】
[樹脂原料]
本発明において、ブロー成形用予備成形物を形成させるための原料樹脂としては、成形可能な熱可塑性樹脂であれば任意のものを用いることができる。このような樹脂として、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等の熱可塑性ポリエステル、これらのエステル単位を主体とする共重合ポリエステル或いはこれらのブレンド物;ポリカーボネート類;アクリル−ブタジエン−スチレン共重合体(ABS樹脂);ポリアセタール樹脂;ナイロン6、ナイロン66、それらの共重合ナイロン等のナイロン類;ポリメチルメタクリレート等のアクリル樹脂;アイソタクチック・ポリプロピレン;ポリスチレン等の他、低−、中−、或いは高−密度ポリエチレン、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、スチレン−ブタジエン熱可塑性エラストマー等を挙げることができる。これらのプラスチックには、製品の品質を損なわない範囲内で種々の添加剤、例えば着色剤、紫外線吸収剤、離型剤、滑剤、核剤等を配合することができる。
【0033】
特に、熱可塑性樹脂としてポリエステルを使用するのが好ましく、この場合、そのポリエステルの固有粘度(η)は0.5dl/g以上、特に1.3乃至0.7dl/gの範囲にあるものが好適である。また、ポリエステルとしては、ジエチレングリコール単位の含有量が1.60重量%以下、特に1.50重量%以下の範囲内にあるものが好適に使用される。
【0034】
[成形条件]
熱可塑性樹脂の溶融押出温度(ダイヘッドの温度)は、樹脂によっても相違するが、一般に熱可塑性樹脂の融点(Tm)を基準として、Tm+100℃乃至Tm+10℃、特にTm+40℃乃至Tm+20℃の範囲にあるのが好ましい。上記範囲よりも低い温度では、剪断速度が大きくなりすぎて一様な溶融押出物を形成することが困難となる場合があり、一方上記範囲よりも高温では、樹脂の熱劣化の程度が大きくなったり、或いはポリエステルの場合にはドローダウンが大きくなりすぎる傾向がある。
【0035】
切断する溶融塊の重量、即ち目付は、当然最終ブロー成形品によって決定されるが、一般的に100乃至2g、特に40乃至10gの範囲から、要求される強度によって適当な値を選定するのがよい。
【0036】
また、溶融塊が円柱状乃至それに近い形状であることが取り扱いの点で有利であるが、溶融塊の径(D)と高さ(H)の比(H/D)は、一般に0.8乃至4の範囲にあるのが、溶融塊の温度低下を可及的に防止し且つ雌型への溶融塊の投入を容易に行う点で有利である。即ち、H/Dが上記範囲外では溶融塊の表面積が大きくなって、温度低下が生じやすくなる傾向がある。
【0037】
溶融樹脂塊の切断には、任意のカッターが使用されるが、樹脂の粘着を防止できるようなものが好適である。例えば、ショットブラスト等の表面処理は特に有効である。
【0038】
溶融樹脂塊を移動させるための把持部材としては、熱伝導性の良い材料からなるものを使用して、樹脂への接触面積を極力少なくしたものが好適に使用される。溶融樹脂塊の切断から型への投入までは、すみやかにしかもすでに指摘した時間内で行うのがよい。
【0039】
圧縮成形金型としては、底部乃至その近傍に微細な間隙或いは多孔質部を形成したものが使用され、微細間隙は、雌型の底部乃至その近傍をいくつかのピースに分割し、これらのピース間に空気を排除するための微細な隙間を形成させるか、或いは金型に空気を排除するための孔を形成させることにより、形成させることができる。また、多孔質部は、例えば焼結金属等を部品加工することによって使用できる。
【0040】
圧縮成形型の表面温度は、溶融樹脂の固化が生じる温度であればよく、例えばポリエステルの場合、65乃至30℃の温度範囲が適当である。金型の表面温度を上記範囲内に維持するために、金型内に冷却水や、調温された水等の媒体を通すのがよい。
【0041】
圧縮成形に必要な成形力はかなり小さくてよいのが特徴の一つである。具体的な成形力は、樹脂の種類やブロー成形用予備成形物の大きさによってもかなり相違するが、一般的にいって、800乃至50kgf、特に600乃至150kgfの成形力が適当である。
【0042】
本発明によれば、一段の圧縮成形により、ゲート部やその他トリミング操作の一切必要のないブロー成形用予備成形物が得られるので、この予備成形物は、そのまま延伸ブロー成形工程に用いることができ、工程の簡略化及び生産性の点で多くの利点を有する。
【0043】
[ブロー成形用予備成形物]
本発明におけるブロー成形用予備成形物を示す図7において、この予備成形物60は、大別して、口部61とテーパ状有底胴部62とからなっている。口部61は最終成形品であるボトルの口部となるものであり、口部61の外周には、蓋との密封に必要な蓋の係止部63やサポートリング64が形成されている。有底胴部62は延伸ブロー成形されるべき部分であり、テーパー状の側壁部65とこれに滑らかに接続された下向きに凸の底部66とからなっている。既に指摘したとおり、底部66には、ゲート残部やしわは一切存在しない。尚、上記口部61と有底胴部62とは接続部67を介して滑らかに接続されている。
【0044】
テーパー状の側壁部65及び底部66には、圧縮成形性や最終的に行う延伸ブローの際の成形性の点で、その寸法及び形状に関して一定の好適範囲がある。一般に、側壁部65の外面は円錐台面であり、底部66の外面は上記円錐台面に滑らかに接続された部分球面であることが成形性の点で好ましいが、ブロー成形品形状に応じた任意の形状であってさしつかえない。一方、側壁部65の内面も接続部内周から厚みの増大する傾斜部66を介して接続された円錐台面である。側壁部外面のテーパ角度(θ)は0.5乃至89.5゜となるようなものであることが成形性の点で好ましい。図9はテーパー角度0.8゜の場合の本発明のブロー成形用予備成形物の断面を示し、図10はテーパー角度45゜の場合の本発明のブロー成形用予備成形物の断面を示している。側壁部65及び底部66の肉厚は、前述した傾斜部67を除いて一様な厚さであってもよく、また厚さに変化があってもよく、例えば側壁部が底部に向けて厚さが増大するような分布を有していてもよい。
【0045】
上記予備成形物は、そのまま延伸ブロー成形に用いることもできるし、また予備成形物の口部に耐熱性、剛性を与えるため、予備成形物の段階で口部を熱処理により結晶化させ、白化させてもよく、また後述の二軸延伸ブロー成形により予備成形物をボトルに成形後、得られたプラスチックボトルの口部を結晶化させ、白化させてもよい。
【0046】
[延伸ブロー成形]
上記予備成形物を延伸温度に加熱し、この予備成形物を軸方向に引っ張り延伸すると共に周方向にブロー延伸し、ボトルを製造する。
【0047】
延伸ブロー成形に先だって、予備成形物を、熱風、赤外線ヒーター、高周波誘導加熱等の手段で延伸適性温度まで予備加熱する。その温度範囲は、ポリエステルの場合、85乃至120℃、特に95乃至110℃の範囲にあるのがよい。
【0048】
この予備成形物を、それ自体公知の延伸ブロー成形機中に供給し、金型内にセットして、延伸棒の押し込みにより軸方向に引張延伸すると共に、流体の吹き込みにより周方向へブロー延伸成形する。
【0049】
最終ボトルにおける延伸倍率は、面積倍率で1.5乃至25倍が適当であり、この内でも、軸方向延伸倍率を1.2乃至6倍とし、周方向延伸倍率を1.2乃至4.5倍とするのがよい。
【0050】
本発明におけるブロー成形用予備成形物から製造されるボトルの一例を示す図8(側面図)において、このボトル70は、口部61、台錐状の肩部71、上胴部72、下胴部73及び底部74から成る。口部61の構造及び寸法は予備成形物のそれと全く同一である。
【0051】
底部74は、接地部75と接地部から上に盛り上がった上底76とから形成されている。ボトルの上胴部72には、減圧変形吸収用のパネル部(ミラー部)77がリブ78を介して形成されている。また、下胴部73及び肩部71と上胴部72との接続部には、補強用の周状凹ビード79が形成されている。
【0052】
本発明におけるブロー成形用予備成形物から製造されるボトルは、形状及び構造の発現性(型出し)に優れていると共に、強度や耐衝撃性等の物性にも顕著に優れているという利点を有している。
【0053】
【実施例】
[実施例1]
本発明を次の例により説明する。カネボウ合繊(株)製のポリエチレンテレフタレート樹脂EFS−7Hを乾燥機にて乾燥し、65mm口径・L/Dが27の押し出し機を使用して口径22mmのノズルより垂直に押し出し、水平に回転するカッターによって溶融状態の樹脂を水平にカットし重量20gの溶融塊をつくり、ただちに搬送して、カッター回転と同期して回転している成形機中の雌型に垂直に落下させ、高速で金型を閉じつつ同時に金型内の残留空気を排出しながら圧縮成形し、約700Kgfの力を加えつつ冷却固化したのち、金型を開き、口径38mm、高さ63mm、平均厚み3mm、重量20gのブロー成形用予備成形物を得た。予備成形物の底部およびその近傍にはしわおよび白化等がなく残留空気排出部のあとは認められるもののゲート残部もなく極めて平滑な表面であった。予備成形物底部を偏光によって観察したところ、ひずみが極めてすくなかったのであった。この予備成形物を試験用の延伸ブロー成形機にて110℃に加熱した後、ブロー金型内で縦方向に延伸してから35気圧の高圧エアーでブロー成形を行い、高さ140mm、胴径67.5mm、内容量380ccのボトルを得た。ボトルの外観はしわ・すじ等がなく美麗なものであった。ボトルに水350ccを入れ、キャップにより密封し1.2m高さから落下させたところ15回のくりかえしにおいてもボトルは割れの発生はなかった。
【0054】
[比較例1]
金型内の残留空気を排出せずに圧縮成形を行った以外は実施例と同じ条件においてブロー成形用予備成形物を得た。予備成形物の底部およびその近傍にはしわおよび若干の結晶化による白化が認められた。この予備成形物を試験用の延伸ブロー成形機にて110℃に加熱した後、ブロー金型内で縦方向に延伸してから35気圧の高圧エアーでブロー成形を行い、高さ140mm、胴径67.5mm、内容量380ccのボトルを得た。ボトルの外観は底部の周辺にしわ・すじ等があり商品価値のないものであった。ボトルに水350ccを入れ、キャップにより密封し1.2m高さから落下させたところ7回くりかえしにおいてボトルの底部周辺から割れの発生があった。
【0055】
[比較例2]
カットした溶融塊をいったん粗型にうけ、その後金型内にうつしてから圧縮成形を行った以外は実施例と同じ条件においてブロー成形用予備成形物を得た。予備成形物の底部およびその近傍には極めて大きなしわが認められた。この予備成形物を試験用の延伸ブロー成形機にて110℃に加熱した後、ブロー金型内で縦方向に延伸してから35気圧の高圧エアーでブロー成形を行い、高さ140mm、胴径67.5mm、内容量380ccのボトルを得た。ボトルの外観は底部の周辺から胴部にかけて大きなしわ・すじ等があり商品価値のないものであった。ボトルに水350ccを入れ、キャップにより密封し1.2m高さから落下させたところ3回のくりかえしにおいてボトルの底部周辺から割れの発生があった。
【0056】
【発明の効果】
本発明によれば、樹脂を一旦前駆体に成形する必要なくして、且つ樹脂温の低下による樹脂の体積収縮に起因して望ましく形状歪を生成せしめることなく、ブロー成形用予備成形物の如き成形物を圧縮成形することができる。
【図面の簡単な説明】
【図1】本発明に従って構成された圧縮成形方法を遂行するのに好適に使用することができる装置を含む装置全体の配置を示す平面図。
【図2】図1の装置の側面図。
【図3】溶融塊の切断及び供給装置の平面図。
【図4】図3の装置の各段階を示す側面図。
【図5】圧縮成形工程の各段階を説明するための側断面図。
【図6】圧縮成形後の予備成形物の取り出し工程の各段階を説明するための側断面図。
【図7】ブロー成形用予備成形物の一例を示す断面図。
【図8】図7の予備成形物から製造されたボトルの一例を示す側面図。
【図9】ブロー成形用予備成形物の他の例を示す断面図。
【図10】ブロー成形用予備成形物の更に他の例を示す断面図。
【符号の説明】
3:圧縮成形装置
32:雌型
33:雄型
43:キャビティ
47:従動部材
53:コア金型
57:従動金型
[0001]
BACKGROUND OF THE INVENTION
  The present inventionThe final molded bodyA preform for blow molding having a mouth portion having a shape and size corresponding to a mouth portion of a container and a bottomed body portion to be blow-molded.Compression molding methodAbout.
[0002]
[Prior art]
Stretch blow molded plastic containers, especially polyester containers, are now commonplace, and because of their excellent transparency and moderate gas barrier properties, beer is used in addition to liquid products such as liquid detergents, shampoos, cosmetics, soy sauce and sauces. It is widely used in carbonated beverages such as cola and cider, other beverage containers such as fruit juice and mineral water, dessert cups, miso containers and cup products.
[0003]
When molding a polyester container, a preform having a size considerably smaller than that of the final container and having an amorphous polyester is formed in advance by injection molding of the polyester, and the preform is preheated to its stretching temperature and blown. A method is employed in which the film is stretched in the axial direction in the mold and blown in the circumferential direction.
[0004]
As the shape of the preform, a mouth portion corresponding to the mouth portion of the container and a bottomed body portion to be stretch blow molded are generally used, and the shape as a whole is generally a test tube for a vertically long container. Is. In the mouth portion, for example, an engagement means with an opening end for sealing or a lid is formed. In addition, a gate portion that protrudes outward from the center of the bottom portion is necessarily formed on the bottom portion because of the necessity of injection molding.
[0005]
It is also known to produce a preform by compression molding of a resin. For example, in WO 97/32706, a compression mold having a cavity for forming a preform is prepared, and a thermoplastic resin is used as a precursor. The body is molded and the precursor is placed in a compression mold, where the precursor is generally fixed and intimately seated in the cavity and the precursor does not completely fill the compression mold, It must have a shape that is supported in a predetermined manner within the cavity of the compression mold before being compressed to the final shape, and the precursor is heated prior to placing the precursor in the compression mold, and the heated precursor Is compression-molded in a compression mold.
[0006]
[Problems to be solved by the invention]
However, the gate portion formed in the preform by injection molding has many problems in terms of productivity, manufacturing cost, and final blow-molded product characteristics. That is, in order to cut the gate portion, a special cutting process is required, which is one factor for reducing productivity. Moreover, the cut | disconnected gate part becomes scrap resin and is a waste of resources. Furthermore, the remaining gate is liable to cause crystallization and whitening of the final blow-molded product, which causes deterioration in appearance characteristics, and orientation during stretch blow molding due to flow orientation during molding and generation of distortion during cutting. It causes unevenness and non-uniformity of the structure, and causes a bottom crack due to a drop impact.
[0007]
In injection molding, since a large shearing force acts during molding, molding at a high temperature is required, and this thermal history causes a problem of heat degradation (thermal degradation) of the resin. For this reason, in the manufacture of conventional PET (polyethylene terephthalate) containers, it is necessary to use a PET with a high intrinsic viscosity by a solid-phase polymerization method in anticipation of a decrease in intrinsic viscosity that occurs during injection molding, which increases costs. Has brought. Furthermore, since not only cooling of the injected resin but also the flow of the resin is required at the same time, the degree of freedom in setting the mold temperature is small and the injection molding time is inevitably long. There is also a problem.
[0008]
Molding of a preform by the above-described compression molding method has the advantage that the thermal degradation of the resin accompanying injection molding can be reduced, but in order to avoid excess or deficiency of resin supply to the compression mold, the resin is temporarily used as a precursor. In addition to thermoforming, reheating for compression molding is required, such as thermoforming, this precursor must also be heated and fed to the compression mold, and the heated precursor must be compression molded in the compression mold. There is still a point to be improved in that it is necessary.
[0009]
  Therefore, the technical problem of the present invention is that the resin does not need to be once molded into a precursor, and is caused by the volume shrinkage of the resin due to a decrease in the resin temperatureVariation of the shape and size to be generated is generated in a predetermined portion, that is, the blow molding portion, and the variation of the shape and size in the mouth portion is avoided., Preforms for blow moldingNew and superior method for compression moldingIs to provide.
[0010]
[Means for Solving the Problems]
  As a method for achieving the above technical problem, according to the present invention, a preform for blow molding having a mouth portion having a shape and a dimension corresponding to the mouth portion of a container and a bottomed body portion to be blow-molded is compressed. In a molding process, a molten mass of thermoplastic resin is fed into the female cavity, then the male mold is moved relative to the female mold to compress the molten mass into the required shape, and further against the female mold. The volume of the resin shrinks due to a decrease in the resin temperature by moving the male moldWithout changing the shape and dimensions of the mouthVariations in the shape and dimensions of the blow molded partAt leastA method of absorbing is provided.
[0011]
  In the method of the present invention, after the molten mass of the thermoplastic resin is compressed into the required shape resin, the required shape resin is further compressed to absorb the volume shrinkage of the resin due to the decrease in the resin temperature. Variations in shape or dimensions due to volume shrinkage as well as errors in the molten mass suppliedIs generated in a specific part, that is, a blow-molded part, thus avoiding shape and dimension variations due to volume shrinkage in the mouth defining the mouth of the container to be finally formed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0013]
[Configuration of the entire device]
In FIG. 1 (plan view) and FIG. 2 (side view) showing the overall arrangement of a molding apparatus including a compression molding apparatus that can be suitably used to perform the compression molding method of the present invention, Roughly speaking, it comprises a thermoplastic resin extrusion device 1, a molten lump cutting and feeding device 2, and a compression molding device 3 into a preform.
[0014]
The extrusion apparatus 1 includes an extruder main body 11 for melting and kneading a resin, and a thermoplastic resin powder or pellet to be molded is held in a dry state on the inlet side of the main body. A vacuum hopper 12 for supplying is provided, and on the outlet side of the main body, there are provided a suction vent 13 for sucking and removing decomposition gas in the resin and a die head 14 for receiving the molten resin to be pushed out. The die head 14 is connected to the extruder nozzle 16 via a pipe 15, and a gear pump 17 for supplying a fixed amount of molten resin may be provided between the die head 14 and the extruder nozzle 16. In FIG. 2, the gear pump 17 is omitted to avoid complication.
[0015]
As shown in FIG. 3 (plan view) and FIG. 4 (side view), the molten lump cutting and feeding device 2 includes a cutter 22 provided on the rotating turret 21 and an outer gripping member 23 for gripping the molten lump. The inner gripping member 24 is combined. The cutter 22 is provided so as to be inclined with respect to the radial direction of the turret 21 and, as the turret 21 rotates, the resin melt 18 extruded from the extruder nozzle 16 can be cut in a direction perpendicular to the extrusion direction. ing. The outer gripping member 23 includes a portion extending in the radial direction of the turret and an outer portion extending in the circumferential direction, and is fixed to the turret 21. On the other hand, the inner gripping member 24 is provided so as to be movable with respect to the outer gripping member 23 in the radial direction of the turret.
[0016]
The rotating turret 21 of the cutting and feeding device 2 is provided so as to pass below the extruder nozzle 16 of the extrusion device 1 and above the female mold 32 of the compression molding device 3. The molten material 18 is gripped by 23 and 24 and cut by the cutter 22, and the molten mass 19 is moved upward in the gripping state by the gripping members 23 and 24 and melted by releasing the gripping members 23 and 24. The lump 19 is put into the female mold 32.
[0017]
2 and 4, in the illustrated embodiment, the thermoplastic resin melt 18 is extruded in parallel with the axial direction of the male mold 33 and the female mold 32, and the cut molten mass 19 is substantially in a parallel state. Being supplied into the female mold 32 while being maintained above, the melt 18 being supplied in a substantially quantitative state by the gear pump 17, and the molten mass 19 of the resin being supplied in a shape close to a cylinder, or It is apparent that the molten mass 19 is gripped by the gripping members 23 and 24 at a position above the center of gravity, moved from the cutting position C to the mold position M, and supplied into the mold 32.
[0018]
The compression molding apparatus 3 is roughly composed of a combination of a rotating turret 31 and a large number of female molds 32 and male molds 33 arranged around the rotating turret. The rotary turret 31 is provided with the previously described melt lump cutting and feeding mechanism 2 and also with a blow-molding preform take-out mechanism 34.
[0019]
The rotating turret 31 is supported by a vertical shaft 36 in a horizontal direction and rotatably with respect to the machine base 35, and is driven and rotated by a motor 37 and a drive transmission mechanism 38. A large number of combinations (sets) of the female mold 32 and the male mold 33 are provided on the outer peripheral upper surface of the rotating turret 31. That is, the female mold 32 is fixed on the gantry 39, while the male mold 33 is coaxial with the female mold 32 by a vertical drive member 42 and a horizontal support member 41 by a lift drive mechanism 42 such as a hydraulic mechanism. And can be moved up and down.
[0020]
In FIG. 5 and FIG. 6 showing the detailed structure of the female mold 32 and the male mold 33 and the molding process step by step, the female mold 32 has a cavity 43, and in order to eliminate residual air at the bottom thereof. The vent portion 45 is also provided at the vent portion 44 and the connecting portion between the bottom portion and the tapered portion. An upward small protrusion 46 is formed around the upper portion of the cavity 43. The operation will be described later. Further, a ring-shaped driven member 47 slidable coaxially with the female die is provided around the female die 32. The driven member 47 has a shaft 48 extending downward, and a stopper is provided at the lower end thereof. 49 is formed, and the stopper 49 is accommodated in the lower recess 50 of the female mold 32. Thus, it will be appreciated that the stopper 49 can be raised and lowered between the upper and lower surfaces of the lower recess 50. The stopper 49 is biased upward by means such as a spring (not shown). Further, an engagement taper portion 51 whose diameter increases upward is formed on the upper inner peripheral surface of the driven member 47.
[0021]
On the other hand, the male mold 33 includes a core mold 53 fixed to a support member 52 that can move up and down. The core mold 53 has a portion 54 for forming the mouth top surface of the preform, a portion 55 for forming the inner peripheral surface of the mouth, and an inner surface of the bottomed tapered body portion. And a portion 56.
[0022]
Around the core mold 33, a driven mold 57 provided coaxially with the core mold 33 so as to be openable and closable is positioned. The driven mold 57 is fixed to a driven support member 58. Although not shown, a push spring is provided between the support member 52 and the driven support member 58 so that the driven mold is moved downward. Energized. The lower inner peripheral surface of the driven mold 57 is provided with a portion 59 that forms the outer peripheral surface of the mouth of the preform, while the lower outer peripheral surface is formed with an engagement taper portion 60 whose diameter decreases downward. ing.
[0023]
In the compression molding apparatus shown in FIGS. 5 and 6, the pressing force (absolute value) of each member is set as follows in order to smoothly perform each operation.
The pressing force of the male mold 33> the pressing force of the driven member 47> the pressing force of the driven mold 57
[0024]
The molding operation by the above apparatus is performed as follows.
(A) Melt extrusion process:
Molding resin such as thermoplastic polyester is supplied to the vacuum hopper 12 of the extruder 1 and melted and kneaded by a screw when it is blown in the extruder body 11 in a state where moisture absorption from the outside air is blocked in vacuum. A fixed amount is supplied to the nozzle 16 by the gear pump 17 through the die head 14 and the pipe 15, and is extruded from the nozzle 16 into a cylindrical shape.
[0025]
(B) Cutting and feeding process:
The resin stream 18 melt-extruded from the nozzle 16 is cut into a molten lump 19 having a cylindrical shape or a shape close to a cylinder by a cutter 22, and the molten lump 19 is held by holding members 23 and 24, and is cut from a cutting position C. It moves along with the rotation of the turret without causing a substantial temperature drop to the supply position M to the female mold 32 and is put into the female mold 32.
[0026]
(C) Compression molding process:
5, the cavity mold 43 and the core mold 53 are still open, and the molten mass 19 is stored in the cavity 43 in an upright state. The core mold 53 is starting to descend.
[0027]
In the cavity mold clamping step shown in II of FIG. 5, the core mold 53 is lowered into the cavity, and the molten resin 19 ′ is almost filled in the space defined by the cavity 43 and the core 53. Simultaneously with the start of compression molding, the residual air in the cavity is quickly released to the outside through the vent portions 44 and 45. At the same time, the driven mold 57 is also lowered and contacts the driven member 47, but there is still a gap between the upper surface of the driven support member 58 and the lower surface of the male support member 52.
[0028]
5, the core mold 53 is further lowered, and the upper surface of the driven support member 58 and the lower surface of the male support member 52 are in contact with each other. Accordingly, the molten resin 19 ′ in the cavity flows into a space defined by the core mold 53 and the driven mold 57.
[0029]
In the solidification process at a high temperature shown in IV of FIG. 5, the core mold 53 is further lowered slightly, and the driven member 47 is also lowered accordingly, and is defined by the cavity 43, the core mold 53 and the driven mold 57. The space to be filled is filled with resin, and the resin is compressed into a predetermined shape.
[0030]
  In the solidification process at a low temperature indicated by V in FIG.RikiFat volume shrinkage (sink) occurs, but the distortion caused by this volume shrinkage is absorbed by applying a compressive force to the male mold (core 53).TheIn this case, it is naturally necessary to move the core mold 53 and the cavity 43 so as to mesh with each other, but the upward small protrusion 46 of the cavity 43 is meshed with the driven mold 57.By sliding the bodyAbsorbs product shrinkage.As clearly understood by comparing IV and V in FIG. 5, the volumetric shrinkage of the resin due to the decrease in the resin temperature is absorbed by the variation in the shape and size of the specific portion, that is, the blow molded part. The shape and dimensions of the mouth are not fluctuated.
[0031]
The process of taking out the compression-molded preform is shown in steps I to V of FIG. Step I shows the stage where molding is completed. In Step II, the core mold 53 starts to rise and mold opening is started. In Step III, the core mold 53 is raised prior to the driven mold 57, and the core is removed from the molded preform 60. In Step IV, the core mold 53 is further raised, and the preform 60 is taken out of the cavity 43. In Step V, the driven mold 57 moves to a radially outward position (position indicated by a dotted line) at the re-raising position of the core mold, and the held blow molding preform 60 is released.
[0032]
[Resin raw materials]
In the present invention, as a raw material resin for forming a preform for blow molding, any resin can be used as long as it is a moldable thermoplastic resin. Examples of such resins include thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), copolymerized polyesters mainly composed of these ester units, or blends thereof; polycarbonates Acrylic-butadiene-styrene copolymer (ABS resin); polyacetal resin; nylon 6, nylon 66, nylons such as those copolymerized nylon; acrylic resin such as polymethyl methacrylate; isotactic polypropylene; polystyrene, etc. Other examples include low-, medium-, or high-density polyethylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, and styrene-butadiene thermoplastic elastomer. These plastics can be blended with various additives such as a colorant, an ultraviolet absorber, a release agent, a lubricant, and a nucleating agent within a range not impairing the quality of the product.
[0033]
In particular, it is preferable to use polyester as the thermoplastic resin. In this case, it is preferable that the intrinsic viscosity (η) of the polyester is 0.5 dl / g or more, particularly 1.3 to 0.7 dl / g. It is. As the polyester, those having a diethylene glycol unit content in the range of 1.60% by weight or less, particularly 1.50% by weight or less are preferably used.
[0034]
[Molding condition]
The melt extrusion temperature of the thermoplastic resin (die head temperature) varies depending on the resin, but is generally in the range of Tm + 100 ° C. to Tm + 10 ° C., particularly Tm + 40 ° C. to Tm + 20 ° C., based on the melting point (Tm) of the thermoplastic resin. Is preferred. If the temperature is lower than the above range, the shear rate may become too high to form a uniform melt extrudate, whereas if the temperature is higher than the above range, the degree of thermal degradation of the resin will increase. Or in the case of polyester, the drawdown tends to be too large.
[0035]
The weight of the molten mass to be cut, that is, the basis weight, is naturally determined by the final blow-molded product. Generally, an appropriate value is selected from the range of 100 to 2 g, particularly 40 to 10 g depending on the required strength. Good.
[0036]
In addition, it is advantageous in terms of handling that the molten mass is cylindrical or a shape close to it, but the ratio (H / D) of the diameter (D) to the height (H) of the molten mass is generally 0.8. The range of 4 to 4 is advantageous in that the temperature reduction of the molten mass is prevented as much as possible and the molten mass can be easily put into the female mold. That is, when the H / D is outside the above range, the surface area of the molten mass tends to increase, and the temperature tends to decrease.
[0037]
An arbitrary cutter is used for cutting the molten resin lump, but one that can prevent the resin from sticking is suitable. For example, surface treatment such as shot blasting is particularly effective.
[0038]
As the gripping member for moving the molten resin lump, a member made of a material having good thermal conductivity and having a contact area with the resin as small as possible is preferably used. The process from cutting the molten resin mass to putting it into the mold should be performed promptly and within the time already pointed out.
[0039]
As the compression mold, one having a fine gap or porous part formed at the bottom or in the vicinity thereof is used, and the fine gap divides the bottom of the female mold or the vicinity into several pieces, and these pieces are used. It can be formed by forming a fine gap for excluding air between them or by forming a hole for excluding air in the mold. The porous portion can be used by, for example, processing a sintered metal or the like.
[0040]
The surface temperature of the compression mold may be a temperature at which the molten resin is solidified. For example, in the case of polyester, a temperature range of 65 to 30 ° C. is appropriate. In order to maintain the surface temperature of the mold within the above range, a medium such as cooling water or conditioned water may be passed through the mold.
[0041]
One of the features is that the molding force required for compression molding may be quite small. The specific molding force varies considerably depending on the type of resin and the size of the preform for blow molding, but generally a molding force of 800 to 50 kgf, particularly 600 to 150 kgf is appropriate.
[0042]
According to the present invention, a one-stage compression molding yields a preform for blow molding that does not require any gate part or other trimming operation, so this preform can be used as it is in the stretch blow molding process. It has many advantages in terms of process simplification and productivity.
[0043]
[Preforms for blow molding]
In FIG. 7 showing the preform for blow molding in the present invention, the preform 60 is roughly composed of a mouth portion 61 and a tapered bottomed body portion 62. The mouth portion 61 is a mouth portion of a bottle that is a final molded product, and a lid locking portion 63 and a support ring 64 necessary for sealing with the lid are formed on the outer periphery of the mouth portion 61. The bottomed body portion 62 is a portion to be stretch blow molded, and includes a tapered side wall portion 65 and a downward convex bottom portion 66 smoothly connected thereto. As already pointed out, the bottom 66 has no gate residue or wrinkles. The mouth part 61 and the bottomed body part 62 are smoothly connected via a connection part 67.
[0044]
The tapered side wall portion 65 and the bottom portion 66 have a certain preferable range with respect to their dimensions and shape in terms of compression moldability and formability at the time of final stretch blow. In general, the outer surface of the side wall portion 65 is a truncated cone surface, and the outer surface of the bottom portion 66 is preferably a partial spherical surface that is smoothly connected to the truncated cone surface in terms of moldability. The shape is acceptable. On the other hand, the inner surface of the side wall portion 65 is also a truncated cone surface connected via an inclined portion 66 whose thickness increases from the inner periphery of the connection portion. The taper angle (θ) of the outer surface of the side wall is preferably 0.5 to 89.5 ° from the viewpoint of moldability. FIG. 9 shows a cross section of the blow molding preform of the present invention when the taper angle is 0.8 °, and FIG. 10 shows a cross section of the blow molding preform of the present invention when the taper angle is 45 °. Yes. The wall thickness of the side wall portion 65 and the bottom portion 66 may be uniform except for the inclined portion 67 described above, and may vary in thickness. For example, the side wall portion is thicker toward the bottom portion. It may have a distribution that increases.
[0045]
The preform can be used for stretch blow molding as it is, and in order to give heat resistance and rigidity to the mouth of the preform, the mouth is crystallized by heat treatment and whitened at the stage of the preform. Alternatively, after the preform is formed into a bottle by biaxial stretch blow molding described later, the mouth portion of the obtained plastic bottle may be crystallized and whitened.
[0046]
[Stretch blow molding]
The preform is heated to a stretching temperature, and the preform is pulled and stretched in the axial direction and blown and stretched in the circumferential direction to produce a bottle.
[0047]
Prior to stretch blow molding, the preform is preheated to a stretchable temperature by means of hot air, an infrared heater, high frequency induction heating or the like. In the case of polyester, the temperature range is 85 to 120 ° C., particularly 95 to 110 ° C.
[0048]
This preform is supplied into a stretch blow molding machine known per se, set in a mold, stretched in the axial direction by pushing a stretching rod, and blow stretched in the circumferential direction by blowing fluid. To do.
[0049]
The draw ratio in the final bottle is suitably 1.5 to 25 times in terms of area magnification, and among these, the draw ratio in the axial direction is 1.2 to 6 times, and the draw ratio in the circumferential direction is 1.2 to 4.5. It is better to double.
[0050]
In FIG. 8 (side view) showing an example of a bottle manufactured from a preform for blow molding according to the present invention, this bottle 70 has a mouth 61, a trapezoidal shoulder 71, an upper body 72, and a lower body. It consists of a part 73 and a bottom part 74. The structure and dimensions of the mouth 61 are exactly the same as those of the preform.
[0051]
The bottom portion 74 is formed by a grounding portion 75 and an upper bottom 76 that rises upward from the grounding portion. A panel part (mirror part) 77 for absorbing deformation under reduced pressure is formed on the upper body part 72 of the bottle via a rib 78. Further, a circumferential concave bead 79 for reinforcement is formed at a connection portion between the lower body portion 73 and the shoulder portion 71 and the upper body portion 72.
[0052]
The bottle manufactured from the preform for blow molding according to the present invention has the advantage that it is excellent in physical properties such as strength and impact resistance as well as excellent shape and structure expression (molding). Have.
[0053]
【Example】
[Example 1]
The invention is illustrated by the following examples. Crane which rotates polyethylene terephthalate resin EFS-7H manufactured by Kanebo Synthetic Co., Ltd. with a dryer and extrudes vertically from a nozzle with a diameter of 22 mm using an extruder with a diameter of 65 mm and L / D of 27 and rotates horizontally. The molten resin is cut horizontally to form a molten mass with a weight of 20 g, immediately transported, and dropped vertically onto the female mold in the molding machine rotating in synchronization with the cutter rotation, and the mold is moved at high speed. At the same time, it is compressed while discharging residual air in the mold while it is closed. After cooling and solidifying while applying a force of about 700 kgf, the mold is opened, blow molding with a diameter of 38 mm, a height of 63 mm, an average thickness of 3 mm, and a weight of 20 g. A preform was obtained. There was no wrinkle or whitening at the bottom of the preform and in the vicinity thereof, and a very smooth surface was observed after the residual air discharge part, but no gate residue. When the bottom of the preform was observed with polarized light, the distortion was extremely low. The preform is heated to 110 ° C. in a test stretch blow molding machine, and then stretched in the longitudinal direction in a blow mold, and then blow molded with high-pressure air of 35 atm. A bottle of 67.5 mm and an internal capacity of 380 cc was obtained. The appearance of the bottle was beautiful with no wrinkles or lines. When 350 cc of water was placed in the bottle, sealed with a cap and dropped from a height of 1.2 m, the bottle did not crack even after 15 repetitions.
[0054]
[Comparative Example 1]
A preform for blow molding was obtained under the same conditions as in the Examples except that the compression molding was performed without discharging the residual air in the mold. Wrinkles and whitening due to slight crystallization were observed at and near the bottom of the preform. The preform is heated to 110 ° C. in a test stretch blow molding machine, then stretched in the longitudinal direction in a blow mold, and blow molded with high-pressure air at 35 atm. A bottle of 67.5 mm and an internal capacity of 380 cc was obtained. The appearance of the bottle was wrinkled and streaked around the bottom and had no commercial value. When 350 cc of water was put into the bottle, sealed with a cap and dropped from a height of 1.2 m, cracking occurred from around the bottom of the bottle in 7 repetitions.
[0055]
[Comparative Example 2]
A blow-molded preform was obtained under the same conditions as in the Examples except that the cut molten mass was once subjected to a rough mold and then transferred into a mold and then subjected to compression molding. Extremely large wrinkles were observed at and near the bottom of the preform. The preform is heated to 110 ° C. in a test stretch blow molding machine, then stretched in the longitudinal direction in a blow mold, and blow molded with high-pressure air at 35 atm. A bottle of 67.5 mm and an internal capacity of 380 cc was obtained. The appearance of the bottle was not worthy because there were large wrinkles and streaks from the bottom to the body. When 350 cc of water was put into the bottle, sealed with a cap and dropped from a height of 1.2 m, cracks occurred from the bottom of the bottle in three repetitions.
[0056]
【The invention's effect】
According to the present invention, there is no need to mold the resin into a precursor once, and molding such as a preform for blow molding without generating desirable geometric distortion due to resin volume shrinkage due to a decrease in resin temperature. The object can be compression molded.
[Brief description of the drawings]
FIG. 1 is a plan view showing the arrangement of an entire apparatus including an apparatus that can be suitably used to perform a compression molding method constructed according to the present invention.
FIG. 2 is a side view of the apparatus of FIG.
FIG. 3 is a plan view of a molten lump cutting and feeding apparatus.
4 is a side view showing each stage of the apparatus of FIG. 3;
FIG. 5 is a side sectional view for explaining each stage of the compression molding process.
FIG. 6 is a side sectional view for explaining each stage of a pre-molded product take-out process after compression molding.
FIG. 7 is a sectional view showing an example of a preform for blow molding.
8 is a side view showing an example of a bottle manufactured from the preform of FIG. 7. FIG.
FIG. 9 is a sectional view showing another example of a preform for blow molding.
FIG. 10 is a cross-sectional view showing still another example of a preform for blow molding.
[Explanation of symbols]
3: Compression molding equipment
32: Female type
33: Male
43: Cavity
47: Follower member
53: Core mold
57: Driven mold

Claims (1)

容器の口部に対応する形状及び寸法の口部とブロー成形されるべき有底胴部とを有するブロー成形用予備成形物を圧縮成形する方法にして、熱可塑性樹脂の溶融塊を雌型キャビティに供給し、次いで該雌型に対して雄型を移動せしめて該溶融塊を所要形状に圧縮し、そして更に該雌型に対して該雄型を移動せしめて樹脂温の低下による樹脂の体積収縮を該口部の形状及び寸法を変動せしめることなく該ブロー成形部の形状及び寸法の変動せしめて吸収する、ことを特徴とする方法。A method of compression molding a blow molding preform having a mouth shape and size corresponding to a mouth portion of a container and a bottomed body portion to be blow molded, wherein a molten mass of thermoplastic resin is formed into a female cavity And then moving the male mold relative to the female mold to compress the molten mass into the required shape, and further moving the male mold relative to the female mold to reduce the resin volume due to a decrease in resin temperature. contraction absorb allowed variation in the shape and size of the blow molding unit without allowed to change the shape and dimensions of the mouth portion, wherein the.
JP2003008459A 2003-01-16 2003-01-16 Compression molding method Expired - Fee Related JP3690388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008459A JP3690388B2 (en) 2003-01-16 2003-01-16 Compression molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008459A JP3690388B2 (en) 2003-01-16 2003-01-16 Compression molding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002344533A Division JP3578157B2 (en) 2002-11-27 2002-11-27 Compression molding equipment for compression molding of preforms for blow molding

Publications (2)

Publication Number Publication Date
JP2003236866A JP2003236866A (en) 2003-08-26
JP3690388B2 true JP3690388B2 (en) 2005-08-31

Family

ID=27785711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008459A Expired - Fee Related JP3690388B2 (en) 2003-01-16 2003-01-16 Compression molding method

Country Status (1)

Country Link
JP (1) JP3690388B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573175B2 (en) * 2003-07-14 2010-11-04 東洋製罐株式会社 Method and apparatus for forcibly inserting a drop into a compression molding machine, and molding die follow-up type drop supply method and apparatus
JP4952206B2 (en) * 2006-11-15 2012-06-13 東洋製罐株式会社 Extrusion die head

Also Published As

Publication number Publication date
JP2003236866A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
KR100615910B1 (en) Plastic bottle and method of producing the same
JP3405209B2 (en) Method of manufacturing preform for blow molding
US5645183A (en) Multi-layer containers
JP3823641B2 (en) Bottle
US6555033B2 (en) Method and apparatus for making a plastic container and closure combination
EP3375592B1 (en) Container
KR101781772B1 (en) Foamed and stretched plastic containers and method of producing the same
JP2002103428A (en) Multilayered preform and multilayered bottle manufactured using the same
CN114174036B (en) Preform, resin container, and method for producing same
JP4265122B2 (en) Multilayer bottle
JP4239436B2 (en) Multilayer preform and multilayer bottle using the same
JP2003127211A (en) Method and apparatus for molding preform
JP3578157B2 (en) Compression molding equipment for compression molding of preforms for blow molding
CN112088081A (en) Blow molding method, blow mold, and blow molding apparatus
JP4186587B2 (en) Preform and biaxially stretched container manufactured using the same
JP3690388B2 (en) Compression molding method
WO2004039559A1 (en) Preform, process for producing the same, and biaxially stretched container obtained from the preform
JP2002104362A (en) Laminated resin bottle and manufacturing method for laminated resin molded product
JP2002137282A (en) Hollow molded object and method for manufacturing the same
CN204936174U (en) A kind of circular pail pack blow mold
CN111421790A (en) Extrusion blow molding die and method for processing blow molding product by using same
CN205033559U (en) Foldable pail pack blowing mould
CN217144732U (en) Bottle embryo injection moulding mould
JPH07257534A (en) Bottlelike container and its production method
JP4710120B2 (en) Blow molding method and apparatus for internally reinforced hollow container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees