JP3689998B2 - Near-infrared shielding filter for plasma display - Google Patents
Near-infrared shielding filter for plasma display Download PDFInfo
- Publication number
- JP3689998B2 JP3689998B2 JP25488196A JP25488196A JP3689998B2 JP 3689998 B2 JP3689998 B2 JP 3689998B2 JP 25488196 A JP25488196 A JP 25488196A JP 25488196 A JP25488196 A JP 25488196A JP 3689998 B2 JP3689998 B2 JP 3689998B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared shielding
- plasma display
- filter
- infrared
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Filters (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、プラズマ表示装置用近赤外線遮蔽フィルターに関する。
【0002】
【従来の技術】
近年、プラズマ表示装置(PDP)などの電子ディスプレイの研究が盛んに行われている。これらのディスプレイには発光体から発生する近赤外線による周辺機器の誤作動が問題として挙げられている。近赤外線カットフィルターとしてはいくつか提案されているが、それらは冷暖房効率改善の熱線カット材やセキュリティーインクとして利用されてきた。しかし、周辺機器の誤作動に着目した近赤外線遮蔽の利用はこれまで試みられてこなかった。前記の近赤外線カットフィルターとしては、例えば次の(1)〜(4)が挙げられる。
(1)特開昭60−43605号公報,(2)特開平6−194517号公報,
(3)特開平5−42622号公報,(4)特開平7−70482号公報。
特開昭60−43605号公報ではアントラキノン化合物やナフタロシアニン化合物を使用したものが提案されているが、遮蔽波長域が700〜900nmであり充分ではない。近赤外線吸収色素を含んだ熱線遮断シートもいくつか提案されている。例えば、特開平6−194517号では1000nm近辺の遮蔽が充分ではない。特開平5−42622号では1100nmの透過率が40%以下になる光線選択透過性フィルムが提案されているが、800〜1000nmの透過率についての記載がない。特開平7−70482号では赤外線カットオフ膜とその形成材が提案されているが、波長800nmにおける透過率が20%以上と高くさらにその用途も金券等の偽造に対する防止手段や冷暖房効率の改善である。一方、近赤外線遮蔽材が周辺機器の誤作動に有用であることが近年知られている。
【0003】
【発明が解決しようとする課題】
本発明の目的は、プラズマ表示装置による周辺機器の誤作動等の防止に有効なプラズマ表示装置用近赤外線遮蔽フィルターを提供することにある。
【0004】
【発明を解決するための手段】
すなわち本発明によれば、金属酸化物、フッ化アンチモン系有機化合物、有機色素及び有機金属錯体からなる群より選択される2種以上の近赤外線遮蔽剤を含み、前記2種以上の近赤外線遮蔽剤の少なくとも一方がフッ化アンチモン系有機化合物又は有機色素であり、波長800nm、900nm及び1000nmにおける透過率が各々20%以下であり、かつ可視光線透過率が60%以上である近赤外線遮蔽基材と、反射防止層とを備え、可視光線透過率が66%以上であることを特徴とするプラズマ表示装置用近赤外線遮蔽フィルターが提供される。
また本発明によれば、近赤外線遮蔽基材が、近赤外線遮蔽剤を含有する少なくとも2層を備え、各層に含まれる近赤外線遮蔽剤が異なることを特徴とする前記プラズマ表示装置用近赤外線遮蔽フィルター。
更に本発明によれば、近赤外線遮蔽基材の最低反射率が9.2%以下であることを特徴とする前記各プラズマ表示用近赤外線遮蔽フィルターが提供される。
更にまた本発明によれば、最低反射率が1.4%以下であることを特徴とする前記各プラズマ表示用近赤外線遮蔽フィルターが提供される。
また本発明によれば、反射防止層の厚さが、可視光波長と同じ厚さもしくはそれ以下の厚さであることを特徴とする前記各プラズマ表示装置用近赤外線遮蔽フィルターが提供される。
更に本発明によれば、反射防止層をフィルターの上面及び下面の両面に備えることを特徴とする前記各プラズマ表示装置用近赤外線遮蔽フィルターが提供される。
【0005】
【発明の実施の形態】
本発明のプラズマ表示装置(PDP)用フィルターは、ディスプレイの画像表示部前面に装着するフィルターを意味し、帯電防止、電磁波遮蔽、反射防止等の機能がすでに付与されているものも含む。「基材」とは、以下に示す(1)〜(3)を単体または組合せたものを意味する。
(1)厚さ1μm〜20mmの基板で、この表面に例えばアンチグレア加工等の特殊加工を施すことは一向に構わない。
(2)前記基板内に近赤外線遮蔽剤を含有したもの。
(3)前記基板の表面に近赤外線遮蔽層を設けたもの。
ここでいう近赤外線遮蔽層とは、近赤外線遮蔽剤を蒸着あるいは有機バインダーに溶解又は混合して塗布したものである。近赤外線遮蔽剤としては、例えば、インジウム−錫酸化物(ITO)、酸化インジウム、酸化錫、酸化ケイ素、酸化アルミニウム、酸化亜鉛、酸化タングステン等の金属酸化物;フッ化アンチモン系有機化合物;フタロシアニン系、アントラキノン系、ナフトキノン系、シアニン系、ナフタロシアニン系、高分子縮合アゾ系、ピロール系、フェニレンジアミニウム系等の有機色素;ジチオール系、メルカプトナフトール系の有機金属錯体などが挙げられる。
【0006】
有機バインダーとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィン、ポリスチレン、ポリ(α-メチルスチレン)等のポリスチレン系化合物;スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体等のスチレン系共重合体;ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル等のポリビニル系化合物;ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル等のポリ(メタ)アクリル酸アルキル;ポリオキシメチレン、ポリエチレンオキシド等のポリエーテル;ポリエチレンサクシネート、ポリブチレンアジペート、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリエチレンテレフタレート等のポリエステル;セルロース、デンプン、ゴム等の天然高分子;6−ナイロン、6,6−ナイロン等のポリアミド;ポリウレタン、エポキシ樹脂、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、フェノール樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、これらのハロゲン変性体などが挙げられ、これらを単独で、あるいは2種以上混合して使用する。
【0007】
基板材料としては、例えば、ガラス、ポリ塩化ビニル、ポリエステル、ポリアクリル、ポリウレタン、ポリオレフィン、ポリカーボネート、トリアセチルセルロース、ジアセテートセルロース、アセテートブチレートセルロース、ポリエーテルスルホン、ポリスルホン、ポリエーテル、トリメチルペンテン、ポリエーテルケトン、ポリアクリロニトリル等が挙げられる。さらにこれら材料で構成ざれる基板に粘着加工、ハードコート加工等の公知の特殊加工を施してもよい。
【0009】
波長800〜900nmに極大遮蔽がある近赤外線遮蔽剤と900〜1000nmに極大遮蔽がある近赤外線遮蔽剤とは同一あるい別々の基材に含有または積層してよい。例えば、波長800〜900nmに極大遮蔽がある近赤外線遮蔽剤が基材内に含有され、波長900〜1000nmに極大遮蔽がある近赤外線遮蔽剤が基材上に積層されていてもよい。
近赤外線遮蔽基材の波長800nm、900nm及び1000nmにおける透過率が各々20%を超えると機械の誤作動を生じるので好ましくない。また、近赤外線遮蔽基材の可視光線透過率は60%以上である。
【0010】
フィルターに付与される反射防止層の材料は従来から知られている反射防止機能を持つ物質であれば何を使用してもよい。反射防止機能を有する物質は、例えば無機物質として、酸化チタン、フッ化マグネシウム、酸化アルミニウム、酸化シラン、酸化タンタル、酸化イットリウム、酸化イッテルビウム、酸化ジルコニウム、フッ化セリウム、酸化セリウム、フッ化ランタン等を用いて、基材上に蒸着することで反射防止層を形成することができる。また反射防止層は、有機物質としてのフッ素系化合物、シラン化合物等を用いて薄膜として塗布後、そのまま用いるかあるいは電子線、紫外線、熱などで硬化しても形成できる。反射防止層は前述の物質を単層で形成しても多層で形成してもよく、膜厚は基材、膜の構成によって異なるが、一層あたり可視光波長と同じ厚さもしくはそれ以下の厚さが好ましい。上記の近赤外線遮蔽基材、反射防止層を組み合わせて本発明の電子ディスプレイ用フィルターを製造するがその組合せ順序は適宜選択されてよい。
例えば、近赤外線遮蔽剤を含有する近赤外線遮蔽層を有する基材を貼り合わせ更にその上面と基材のもう一方の面に反射防止層を有するプラスチック面を貼り合わせた形態のフィルターでもよい。
【0011】
上記の方法により作製したプラズマ表示装置用フィルターは画像表示部分の前面に装着が可能であり、装着方法は接着、はめ込み、ビス止めなどでできる。また、固定せずにつり下げなどで脱着が可能な状態でも使用可能である。画像表示装置との間隔は、完全に密着させてもよく、画像が視認できる範囲内なら無制限に離して配置することができる。また近赤外線遮蔽層や反射防止層を設けている場合については、その層は視覚者の方を向いていても、画像表示部分の方を向いていても構わない。
【0012】
【発明の効果】
本発明のプラズマ表示装置用近赤外線遮蔽フィルターは、単独の近赤外線遮蔽剤では十分な効果が得られないものを適宜組み合わせ用いることにより波長800〜1000nmの広範囲で透過率が低く、また可視光線領域での透過率が優れたものが得られる。また、さらにそれらの機能に反射防止機能を付与して鮮明な映像が得られ見やすくしたものである。したがって、プラズマ表示装置の周辺機器の近赤外線による誤動作の可能性を低減することができる。
【0013】
【実施例】
以下、実施例を用いて本発明を更に詳細に説明する。基材および近赤外線遮蔽剤は市販のものを用い、市販されていない既知のものについては適宜合成して使用した。なお、測定方法は次の機器による方法で行った。
<透過率の測定>日本分光社製の紫外分光光度計(Ubest 35)を使用した。
<可視光線透過率の測定>日本電色工業社製のカラーアンドカラーディファレンスメーター(MODEL1001DP)を使用した。
<反射率の測定>日本分光社製の紫外分光光度計(Ubest 50)を使用した。
【0014】
A;近赤外線遮蔽基材の製造
製造例1
(a)近赤外線遮蔽色素(IRG−022、フッ化アンチモン系有機化合物、日本化薬(株)製)を0.17重量部、(b)溶剤のクロロホルムを40重量部、(c)ポリマーとして、バイロン300(線状飽和ポリエステル樹脂、東洋紡(株)製)を17重量部はかり取り、これらを溶解し近赤外線遮蔽層とし、厚さ100μmのポリエチレンテレフタレート(PET)フィルムにバーコーターを使用して、乾燥膜厚で20μm厚になるように塗布し、近赤外線遮蔽層付PETフィルムを作製した(F−1と記す)。
【0015】
製造例2
(a)近赤外線遮蔽色素(MIR−101、ビスジチオベンジルニッケル、みどり化学(株)製)を0.17重量部、(b)溶剤として、トルエンを50重量部、(c)ポリマーとして、バイロン300(線状飽和ポリエステル樹脂、東洋紡(株)製)を17重量部はかり取り、これらを溶解し近赤外線遮蔽層とし、厚さ80μmのトリアセチルセルロース(TAC)フィルムにバーコーターを使用して、乾燥膜厚で20μm厚になるように塗布し、近赤外線遮蔽層付TACフィルムを作製した(F−2と記す)
【0016】
製造例3
(a)近赤外線遮蔽色素として、N,N,N’,N’−テトラキス(p−ジ−n−ブチルアミノフェニル)−p−フェニレンジアミニウムの過塩素酸塩を1重量部、(b)アルコール可溶性ラッカー(オレスターNL 2294E、三井東圧化学(株)製)を300重量部とし、これらを溶解し近赤外線遮蔽層とし、100μmのPETフィルムにバーコーターを使用して、乾燥膜厚で50μm厚になるように塗布し、近赤外線遮蔽層付PETフィルムを作製した(F−3と記す)。
【0017】
製造例4
(a)近赤外線遮蔽色素として、CY−10(シアニン系化合物、日本化薬(株)製)を0.9重量部、(b)モノマーとして、KAYARAD DPHA(アクリル系樹脂=ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)を30重量部、NKエステル A−400(アクリル系モノマー=PEG400ジアクリレート、新中村化学工業(株)製)を70重量部、(c)滑り剤として、AO−704(日本油脂(株)製)を0.2重量部、(d)添加剤として、BYK−306(ビックケミー・ジャパン製)を0.5重量部はかり取り、これらを混合、溶解し近赤外線遮蔽層とし、厚さ80μmのトリアセチルセルロース(TAC)フィルムにバーコーターを使用して、乾燥膜厚で10μm厚になるように塗布し、125kV,7.5Mradの電子線で硬化を行い、近赤外線遮蔽層付TACフィルムを作製した(F−4と記す)。
【0018】
製造例5
(a)メタクリル樹脂100重量部を加熱溶解し、(b)錫ドープ酸化インジウム(ITO)の微粉末(平均粒径0.05μm)を分散させ、厚さ2mmのアクリル板を押し出し成型した(S−5と記す)。
【0019】
B.近赤外線遮蔽基材の作製
製造例6
ガラス板に製造例1で得たフィルムF−1と製造例4で得たフィルムF−4を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0020】
製造例7
ガラス板に製造例3で得たTACフィルムF−3と製造例4のフィルムF−4を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0021】
製造例8
グリーンラルSP(近赤外線遮蔽機能付ガラス、セントラル硝子(株)製)に製造例1で得たフィルムF−1を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0022】
製造例9
グリーンラルSP(近赤外線遮蔽機能付ガラス、セントラル硝子(株)製)に製造例2で得たフィルムF−2を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0023】
製造例10
グリーンラルSP(近赤外線遮蔽機能付ガラス、セントラル硝子製)に製造例3で得たフィルムF−3を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0024】
製造例11
製造例5で得たアクリル板S−5と製造例1で得たフィルムF−1を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0025】
製造例12
製造例5で得たアクリル板S−5と製造例2で得たフィルムF−2と製造例3で得たフィルムF−3を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0026】
製造例13
製造例5で得たアクリル板S−5と製造例3で得たフィルムF−3と製造例4で得たフィルムF−4を貼り合わせ、近赤外線遮蔽基材を作製した。この基材の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0027】
比較例1
ガラス板のみの波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0028】
比較例2
グリーンラルSPのみの波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0029】
比較例3
製造例5で得たアクリル板の波長800nm、900nm及び1000nmにおける透過率と可視光線透過率の測定を行った。結果を表1に示した。
【0030】
実施例1
製造例10で得た基材の両面にリアルックHP(反射防止フィルム、日本油脂(株)製)を貼り合わせた。このフィルターの波長800nm、900nm及び1000nmにおける透過率と可視光線透過率と表面反射率を測定した。結果を表2に示した。
【0031】
実施例2
製造例10で得た基材の両面にアークトップ(反射防止フィルム、旭硝子(株)製)を貼り合わせた。このフィルターの波長800nm、900nm及び1000nmにおける透過率と可視光線透過率と表面反射率を測定した。結果を表2に示した。
【0032】
実施例3
製造例11で得た基材の両面にリアルックHP(反射防止フィルム、日本油脂(株)製)を貼り合わせた。このフィルターの波長800nm、900nm及び1000nmにおける透過率と可視光線透過率と表面反射率を測定した。結果を表2に示した。
【0033】
参考例1
製造例10の基材の表面反射率を測定した。結果を表2に示した。
参考例2
製造例11の基材の表面反射率を測定した。結果を表2に示した。
【0034】
【表1】
【0035】
【表2】
【0036】
表1の結果から、本発明に用いることができる製造例6〜13の近赤外線遮蔽基材は、比較例1〜3と比べ、各近赤外線波長領域で透過率20%以下であり、かつ可視光線透過率50%以上を示すことがわかる。また、表2より本発明の反射防止機能を付与したフィルターは、反射防止機能を付与していない参考例に比べて可視光線透過率が高く、また最低反射率が低いことがわかる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a near-infrared shielding filter for a plasma display device .
[0002]
[Prior art]
In recent years, research on electronic displays such as plasma display devices (PDP) has been actively conducted. In these displays, malfunction of peripheral devices due to near infrared rays generated from a light emitter is cited as a problem. Several near-infrared cut filters have been proposed, but they have been used as heat ray-cutting materials and security inks for improving cooling and heating efficiency. However, the use of near-infrared shielding that focuses on malfunctions of peripheral devices has not been attempted so far. Examples of the near infrared cut filter include the following (1) to (4).
(1) JP-A-60-43605, (2) JP-A-6-194517,
(3) JP-A-5-42622, (4) JP-A-7-70482.
JP-A-60-43605 proposes using an anthraquinone compound or a naphthalocyanine compound, but the shielding wavelength range is 700 to 900 nm, which is not sufficient. Several heat ray blocking sheets containing near-infrared absorbing dyes have also been proposed. For example, the shielding around 1 000Nm is not sufficient in JP-A-6-194517. Japanese Patent Application Laid-Open No. 5-42622 proposes a light selective transmission film in which the transmittance at 1100 nm is 40% or less, but there is no description about the transmittance at 800 to 1000 nm. In JP-A-7-70482, an infrared cut-off film and a material for forming the infrared cut-off film have been proposed. However, the transmittance at a wavelength of 800 nm is as high as 20% or more, and its use is also improved by measures for preventing counterfeiting of cash vouchers and the like and by improving air conditioning efficiency. Oh Ru. Hand, it is known recently NIR shielding material is useful in malfunction of peripheral devices.
[0003]
[Problems to be solved by the invention]
The purpose of the present invention is to provide an effective near-infrared shielding filter for a plasma display device for preventing malfunction or the like of the peripheral device by the plasma display device.
[0004]
[Means for Solving the Invention]
That is, according to the present invention, two or more near-infrared shielding agents selected from the group consisting of metal oxides, antimony fluoride organic compounds, organic dyes and organometallic complexes are included, and the two or more near- infrared shielding agents are included. A near-infrared shielding base material in which at least one of the agents is an antimony fluoride-based organic compound or an organic dye, the transmittances at wavelengths of 800 nm, 900 nm, and 1000 nm are each 20% or less and the visible light transmittance is 60% or more And a near-infrared shielding filter for a plasma display device , wherein the visible light transmittance is 66% or more .
According to the present invention, near-infrared shielding base material comprises at least two layers containing a near infrared ray shielding agent, the plasma display device near infrared ray shielding, wherein the near infrared ray shielding agent contained in each layer are different filter.
Furthermore, according to the present invention, there is provided the above-mentioned near-infrared shielding filter for plasma display, wherein the minimum reflectance of the near-infrared shielding substrate is 9.2% or less.
Furthermore, according to the present invention, there is provided the near-infrared shielding filter for plasma display, wherein the minimum reflectance is 1.4% or less.
Further , according to the present invention, there is provided the near-infrared shielding filter for each plasma display device, wherein the thickness of the antireflection layer is equal to or less than the visible light wavelength.
Furthermore, according to the present invention, there is provided the near-infrared shielding filter for each plasma display device, wherein an antireflection layer is provided on both the upper surface and the lower surface of the filter.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Filter for flops plasma display device (PDP) of the present invention means a filter that is mounted on the image display unit front of de Isupurei, including those antistatic, electromagnetic shielding, the functions such as antireflection already been granted. “Substrate” means one or a combination of the following (1) to (3).
(1) A special processing such as anti-glare processing may be applied to the surface of the substrate having a thickness of 1 μm to 20 mm.
(2) A substrate containing a near-infrared shielding agent in the substrate.
(3) A near-infrared shielding layer is provided on the surface of the substrate.
The near-infrared shielding layer here is a coating obtained by applying a near-infrared shielding agent by vapor deposition or by dissolving or mixing in an organic binder. Examples of near-infrared shielding agents include metal oxides such as indium-tin oxide (ITO), indium oxide, tin oxide, silicon oxide, aluminum oxide, zinc oxide, and tungsten oxide; antimony fluoride-based organic compounds; phthalocyanine-based Organic dyes such as anthraquinone, naphthoquinone, cyanine, naphthalocyanine, polymer condensed azo, pyrrole, and phenylenedianium; dithiol and mercaptonaphthol organometallic complexes, and the like.
[0006]
Examples of the organic binder include polyolefins such as polyethylene and polypropylene, polystyrene compounds such as polystyrene and poly (α-methylstyrene); styrene-butadiene copolymers, styrene-isoprene copolymers, styrene-maleic acid copolymers, Styrene copolymers such as styrene-maleic acid ester copolymer; polyvinyl compounds such as polyvinyl chloride, polyvinyl alcohol, and polyvinyl acetate; poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly ( Poly (meth) acrylates such as meth) propyl acrylate and poly (butyl butyl); polyethers such as polyoxymethylene and polyethylene oxide; polyethylene succinate, polybutylene adipate, polylactic acid, polyglycolic acid, polycarbonate Polyesters such as lolactone and polyethylene terephthalate; natural polymers such as cellulose, starch and rubber; polyamides such as 6-nylon and 6,6-nylon; polyurethane, epoxy resin, polyacrylic acid resin, rosin, modified rosin, terpene resin, Examples thereof include phenol resins, aliphatic or alicyclic hydrocarbon resins, aromatic petroleum resins, and halogen-modified products thereof, and these are used alone or in admixture of two or more.
[0007]
Examples of substrate materials include glass, polyvinyl chloride, polyester, polyacryl, polyurethane, polyolefin, polycarbonate, triacetyl cellulose, diacetate cellulose, acetate butyrate cellulose, polyether sulfone, polysulfone, polyether, trimethylpentene, poly Examples include ether ketone and polyacrylonitrile. Further, a known special process such as an adhesive process or a hard coat process may be applied to the substrate made of these materials .
[0009]
The near-infrared shielding agent having a maximum shielding at a wavelength of 800 to 900 nm and the near-infrared shielding agent having a maximum shielding at 900 to 1000 nm may be contained or laminated on the same or different substrates. For example, near-infrared shielding agent is maximum shielding is contained in the base material to the wavelength 800 to 900 nm, near-infrared shielding agent is maximum shielding the wavelength 900~1000nm may be laminated on a substrate.
If the transmittance of the near-infrared shielding substrate at wavelengths of 800 nm, 900 nm, and 1000 nm exceeds 20%, the machine will malfunction, which is not preferable. Moreover, the visible light transmittance of the near-infrared shielding substrate is 60 % or more.
[0010]
As the material of the antireflection layer applied to the filter, any material having a conventionally known antireflection function may be used. Examples of the substance having an antireflection function include titanium oxide, magnesium fluoride, aluminum oxide, silane oxide, tantalum oxide, yttrium oxide, ytterbium oxide, zirconium oxide, cerium fluoride, cerium oxide, and lanthanum fluoride as inorganic substances. The antireflection layer can be formed by vapor deposition on the substrate. The anti-reflection layer is full Tsu-containing compounds as organic material, after application as a thin film using a silane compound or the like, is used as it is or an electron beam, ultraviolet rays, be cured by heat can be formed. The antireflective layer may be formed of a single layer or multiple layers of the aforementioned substances, and the film thickness varies depending on the substrate and the film configuration, but the thickness is equal to or less than the visible light wavelength per layer. Is preferable. Near infrared shielding base material described above, but the production of electronic filters for displays of the present invention in combination an antireflection layer that combination order may be appropriately selected.
For example, it may be in the form of a filter formed by bonding plastic surface having an anti-reflection layer in addition the other side of the upper surface and the substrate bonding a substrate having a near-infrared shielding layer containing a near-infrared shielding agent.
[0011]
The filter for a plasma display device manufactured by the above method can be mounted on the front surface of the image display portion, and the mounting method can be adhesive, fitting, screwing, or the like. It can also be used in a state where it can be detached without being fixed. The space between the image display device and the image display device may be completely in close contact with each other, and the image display device can be arranged without limitation as long as the image is visible. When a near-infrared shielding layer or an antireflection layer is provided, the layer may face the viewer or the image display portion.
[0012]
【The invention's effect】
The near-infrared shielding filter for a plasma display device of the present invention has a low transmittance over a wide range of wavelengths of 800 to 1000 nm and a visible light region by appropriately using a combination of those which cannot obtain a sufficient effect with a single near-infrared shielding agent. The thing which was excellent in the transmittance | permeability in is obtained. In addition, an antireflection function is added to these functions so that a clear image can be obtained for easy viewing. Therefore, it is possible to reduce the possibility of malfunction due to near infrared rays of peripheral devices of the plasma display device .
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. A commercially available base material and a near-infrared shielding agent were used, and known ones not commercially available were appropriately synthesized and used. In addition, the measuring method was performed by the method using the following equipment.
<Measurement of transmittance> An ultraviolet spectrophotometer (Ubest 35) manufactured by JASCO Corporation was used.
<Measurement of Visible Light Transmittance> A color and color difference meter (MODEL1001DP) manufactured by Nippon Denshoku Industries Co., Ltd. was used.
<Measurement of reflectance> An ultraviolet spectrophotometer (Ubest 50) manufactured by JASCO Corporation was used.
[0014]
A: Production and production example 1 of a near-infrared shielding base material
(A) 0.17 parts by weight of a near-infrared shielding dye (IRG-022, antimony fluoride organic compound, manufactured by Nippon Kayaku Co., Ltd.), (b) 40 parts by weight of solvent chloroform, (c) as a polymer , Byron 300 (linear saturated polyester resin, manufactured by Toyobo Co., Ltd.) was weighed out by weight, dissolved into a near-infrared shielding layer, and a bar coater was used on a polyethylene terephthalate (PET) film with a thickness of 100 μm. And it apply | coated so that it might become 20 micrometers in dry film thickness, and produced the PET film with a near-infrared shielding layer (it describes as F-1).
[0015]
Production Example 2
(A) 0.17 parts by weight of a near-infrared shielding dye (MIR-101, bisdithiobenzylnickel, manufactured by Midori Chemical Co., Ltd.), (b) 50 parts by weight of toluene as a solvent, (c) Byron as a polymer Weigh out 17 parts by weight of 300 (linear saturated polyester resin, manufactured by Toyobo Co., Ltd.), dissolve them to form a near-infrared shielding layer, and use a bar coater on a triacetylcellulose (TAC) film having a thickness of 80 μm. A TAC film with a near-infrared shielding layer was prepared by coating so as to have a dry film thickness of 20 μm (denoted as F-2).
[0016]
Production Example 3
(A) 1 part by weight of perchlorate of N, N, N ′, N′-tetrakis (p-di-n-butylaminophenyl) -p-phenylenediaminium as a near-infrared shielding dye, (b) Alcohol-soluble lacquer (Olestar NL 2294E, Mitsui Toatsu Chemical Co., Ltd.) is 300 parts by weight, and these are dissolved to form a near-infrared shielding layer. It apply | coated so that it might become 50 micrometers thickness, and produced the PET film with a near-infrared shielding layer (it describes as F-3).
[0017]
Production Example 4
(A) As a near-infrared shielding dye, CY-10 (cyanine compound, manufactured by Nippon Kayaku Co., Ltd.) is 0.9 parts by weight, and (b) a monomer is KAYARAD DPHA (acrylic resin = dipentaerythritol hexaacrylate). , Nippon Kayaku Co., Ltd.) 30 parts by weight, NK ester A-400 (acrylic monomer = PEG400 diacrylate, Shin-Nakamura Chemical Co., Ltd.) 70 parts by weight, (c) AO as a slip agent -704 (Nippon Yushi Co., Ltd.) 0.2 parts by weight, (d) As an additive, BYK-306 (Bicchemy Japan) 0.5 parts by weight is weighed, mixed, dissolved, and near-infrared. Using a bar coater on a triacetyl cellulose (TAC) film with a thickness of 80 μm as a shielding layer, the coating was applied to a dry film thickness of 10 μm, and 125 kV. Perform curing with an electron beam of 7.5 mrad, (referred to as F-4) was produced TAC film with near infrared ray shielding layer.
[0018]
Production Example 5
(A) 100 parts by weight of methacrylic resin is heated and dissolved, (b) fine powder of tin-doped indium oxide (ITO) (average particle size 0.05 μm) is dispersed, and an acrylic plate having a thickness of 2 mm is extruded (S -5).
[0019]
B. Production of near-infrared shielding substrate
Production Example 6
The film F-1 obtained in Production Example 1 and the film F-4 obtained in Production Example 4 were bonded to a glass plate to produce a near-infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0020]
Production Example 7
The near-infrared shielding base material was produced by bonding the TAC film F-3 obtained in Production Example 3 and the film F-4 of Production Example 4 to a glass plate. The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0021]
Production Example 8
The film F-1 obtained in Production Example 1 was bonded to Green Ral SP (glass with near-infrared shielding function, manufactured by Central Glass Co., Ltd.) to produce a near-infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0022]
Production Example 9
The film F-2 obtained in Production Example 2 was bonded to Green Ral SP (glass with a near-infrared shielding function, manufactured by Central Glass Co., Ltd.) to produce a near-infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0023]
Production Example 10
The film F-3 obtained in Production Example 3 was bonded to Green Ral SP (glass with near-infrared shielding function, manufactured by Central Glass) to produce a near-infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0024]
Production Example 11
The acrylic plate S-5 obtained in Production Example 5 and the film F-1 obtained in Production Example 1 were bonded together to produce a near infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0025]
Production Example 12
Acrylic plate S-5 obtained in Production Example 5, film F-2 obtained in Production Example 2, and film F-3 obtained in Production Example 3 were bonded together to produce a near-infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0026]
Production Example 13
The acrylic plate S-5 obtained in Production Example 5, the film F-3 obtained in Production Example 3, and the film F-4 obtained in Production Example 4 were bonded together to produce a near infrared shielding base material . The transmittance and visible light transmittance of the substrate at wavelengths of 800 nm, 900 nm, and 1000 nm were measured. The results are shown in Table 1.
[0027]
Comparative Example 1
The transmittance and visible light transmittance at wavelengths of 800 nm, 900 nm, and 1000 nm of only the glass plate were measured. The results are shown in Table 1.
[0028]
Comparative Example 2
Measurements of transmittance and visible light transmittance at wavelengths of 800 nm, 900 nm, and 1000 nm of only Green Ral SP were performed. The results are shown in Table 1.
[0029]
Comparative Example 3
The transmittance and visible light transmittance at wavelengths of 800 nm, 900 nm, and 1000 nm of the acrylic plate obtained in Production Example 5 were measured. The results are shown in Table 1.
[0030]
Example 1
Realic HP (antireflection film, manufactured by Nippon Oil & Fats Co., Ltd.) was bonded to both surfaces of the base material obtained in Production Example 10 . The transmittance, visible light transmittance and surface reflectance at wavelengths of 800 nm, 900 nm and 1000 nm of this filter were measured. The results are shown in Table 2.
[0031]
Example 2
An arc top (antireflection film, manufactured by Asahi Glass Co., Ltd.) was bonded to both surfaces of the base material obtained in Production Example 10 . The transmittance, visible light transmittance and surface reflectance at wavelengths of 800 nm, 900 nm and 1000 nm of this filter were measured. The results are shown in Table 2.
[0032]
Example 3
Realic HP (antireflection film, manufactured by Nippon Oil & Fats Co., Ltd.) was bonded to both surfaces of the base material obtained in Production Example 11 . The transmittance, visible light transmittance and surface reflectance at wavelengths of 800 nm, 900 nm and 1000 nm of this filter were measured. The results are shown in Table 2.
[0033]
Reference example 1
The surface reflectance of the base material of Production Example 10 was measured. The results are shown in Table 2.
Reference example 2
The surface reflectance of the base material of Production Example 11 was measured. The results are shown in Table 2.
[0034]
[Table 1]
[0035]
[Table 2]
[0036]
From the result of Table 1, the near-infrared shielding base materials of Production Examples 6 to 13 that can be used in the present invention have a transmittance of 20% or less in each near-infrared wavelength region as compared with Comparative Examples 1 to 3, and are visible. It can be seen that the light transmittance is 50% or more. Moreover, it can be seen from Table 2 that the filter provided with the antireflection function of the present invention has a higher visible light transmittance and a lower minimum reflectance than the reference example not provided with the antireflection function.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25488196A JP3689998B2 (en) | 1996-09-26 | 1996-09-26 | Near-infrared shielding filter for plasma display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25488196A JP3689998B2 (en) | 1996-09-26 | 1996-09-26 | Near-infrared shielding filter for plasma display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10105076A JPH10105076A (en) | 1998-04-24 |
JP3689998B2 true JP3689998B2 (en) | 2005-08-31 |
Family
ID=17271137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25488196A Expired - Fee Related JP3689998B2 (en) | 1996-09-26 | 1996-09-26 | Near-infrared shielding filter for plasma display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3689998B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101249597B1 (en) * | 2006-09-06 | 2013-04-01 | 린텍 가부시키가이샤 | Infrared-ray absorption film |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1087243B1 (en) | 1998-05-15 | 2006-07-26 | Toyo Boseki Kabushiki Kaisha | Infrared absorption filter |
JP2000007871A (en) * | 1998-06-23 | 2000-01-11 | Kureha Chem Ind Co Ltd | Resin composition and its production, optical filter and device equipped with the same, and athermanous filter, optical fiber and glass lens |
KR100444332B1 (en) | 1999-12-20 | 2004-08-16 | 도요 보세키 가부시키가이샤 | Infrared absorption filter |
JP2002006102A (en) * | 2000-06-19 | 2002-01-09 | Nof Corp | Near-infrared ray shielding and reflection reducing material and its use |
KR100732176B1 (en) * | 2000-11-28 | 2007-06-25 | 오리온피디피주식회사 | plasma display panel with a filter function added to black stripes |
JP5242883B2 (en) * | 2005-01-20 | 2013-07-24 | リンテック株式会社 | Antireflection film |
PL2609365T3 (en) | 2010-08-26 | 2015-12-31 | Fraunhofer Ges Forschung | Luminaires, especially luminaires to be operated in lamp holders for fluorescent lamps |
JP6329626B2 (en) | 2014-05-01 | 2018-05-23 | 富士フイルム株式会社 | Infrared sensor, near infrared absorbing composition, photosensitive resin composition, compound, near infrared absorbing filter, and imaging device |
-
1996
- 1996-09-26 JP JP25488196A patent/JP3689998B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101249597B1 (en) * | 2006-09-06 | 2013-04-01 | 린텍 가부시키가이샤 | Infrared-ray absorption film |
Also Published As
Publication number | Publication date |
---|---|
JPH10105076A (en) | 1998-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI359280B (en) | ||
JP5365197B2 (en) | Near-infrared absorbing composition and near-infrared absorbing filter | |
AU2007248454B2 (en) | Infrared radiation blocking laminate | |
JPWO2008001856A1 (en) | Adhesive composition for optical filter, adhesive layer having optical filter function, and composite filter | |
JP4101270B2 (en) | Optical film and panel for image display device using the same | |
JP3689998B2 (en) | Near-infrared shielding filter for plasma display | |
JP2010261986A (en) | Method for forming dye-containing layer for optical filter, optical film having dye-containing layer formed by the method, and optical filter for display | |
TW200523569A (en) | Anti-reflection film for plasma display front panel and process for producing the same | |
WO2003058669A1 (en) | Plasma display panel filter | |
KR100876349B1 (en) | Near-infrared absorptive laminated film for display devices | |
JP2002006102A (en) | Near-infrared ray shielding and reflection reducing material and its use | |
JP2010079145A (en) | Infrared absorbing laminate and optical filter | |
JP2004322380A (en) | Transparent electroconductive material and touch panel | |
WO2004066342A1 (en) | Plasma display panel filter | |
JP5165689B2 (en) | Optical filter for display panel and manufacturing method thereof | |
JP2007233392A (en) | Optical film and image display apparatus panel using same | |
JP2009015289A (en) | Antireflection film and display front plate using the same | |
JP4089004B2 (en) | Near-infrared shielding low reflection material, manufacturing method and application | |
JP5239378B2 (en) | Filter for image display device and image display device using the same | |
KR100642438B1 (en) | Film for Image Display Apparatus comprising Color Compensation layer and Anti-Reflection layer | |
JP2006018104A (en) | Optically functional film and display provided with the same | |
JP2010014819A (en) | Anti-reflection film | |
JPH11223723A (en) | Filter for plasma display panel | |
JP2007094072A (en) | Filter for display and display using the same | |
JP2002268569A (en) | Optical filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050606 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130624 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |