JP3689020B2 - Swivel control gear type automatic continuously variable transmission - Google Patents

Swivel control gear type automatic continuously variable transmission Download PDF

Info

Publication number
JP3689020B2
JP3689020B2 JP2001147228A JP2001147228A JP3689020B2 JP 3689020 B2 JP3689020 B2 JP 3689020B2 JP 2001147228 A JP2001147228 A JP 2001147228A JP 2001147228 A JP2001147228 A JP 2001147228A JP 3689020 B2 JP3689020 B2 JP 3689020B2
Authority
JP
Japan
Prior art keywords
input shaft
gear
meshed
support member
bevel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001147228A
Other languages
Japanese (ja)
Other versions
JP2002257204A (en
Inventor
紀昭 豊島
Original Assignee
紀昭 豊島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紀昭 豊島 filed Critical 紀昭 豊島
Priority to JP2001147228A priority Critical patent/JP3689020B2/en
Publication of JP2002257204A publication Critical patent/JP2002257204A/en
Application granted granted Critical
Publication of JP3689020B2 publication Critical patent/JP3689020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歯車式自動無段変速機に関するものである。
【0002】
【発明の背景】
従来、無段変速機を歯車で構成することは、歯車のかみ合わせの変換が難しいことから、歯車式は無段変速機に向かないものとされてきた。
【0003】
しかしながら、歯車は滑りを起こさずに比較的大容量の力を伝達できるなどの利点があるため、歯車式無段変速機が実現できれば好適である。
【0004】
本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、歯車式の自動無段変速機を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の歯車式自動無段変速機は、遊星歯車機構を組込んで、その旋回運動を干渉しあう台座側で制御して、変速比を変える変速機(旋回制御歯車式自動無段変速機)である。
【0006】
請求項1に記載の発明は、回転駆動力が与えられる入力軸(4)と、この入力軸(4)にその軸方向に離間して設けられ、入力軸(4)と一体回転する第1カサ歯車(41)および平歯車(42)と、入力軸(4)が回転可能に差し込まれる貫通穴(21)を有し、入力軸(4)に設けた第1カサ歯車(41)と平歯車(42)との間に設けられ、入力軸(4)に対し相対回転可能に設けられる支柱部材(2)と、支柱部材(2)に回転可能に保持され、入力軸(4)に設けた平歯車(42)とかみ合わされる中間歯車(10)と、支柱部材(2)に回転可能に保持され、中間歯車(10)にかみ合わされる遊星歯車(1)と、遊星歯車(1)にかみ合わされる内ば歯車(31)を有する出力軸(3)と、入力軸(4)に対し相対回転可能に外嵌される第3カサ歯車(51)を有する被制動部材(5)と、入力軸(4)と垂直方向に配置される軸線まわりに回転可能に支柱部材(2)に保持され、第1カサ歯車(41)と第3カサ歯車(51)にかみ合わされる一対の第2カサ歯車(24,24)と、入力軸(4)に設けられ、入力軸(4)へのトルク負荷を検出するセンサー(6)と、センサー(6)の検出結果に基づいて、被制動部材(5)の制動量を調整することで、支柱部材(2)の回転を制御して、入力軸(4)と出力軸(3)の回転比率を変える制動装置(7)とを備えることを特徴とする歯車式自動無段変速機である。
【0007】
請求項2に記載の発明は、回転駆動力が与えられる入力軸(4)と、この入力軸(4)にその軸方向に離間して設けられ、入力軸(4)と一体回転する第1カサ歯車(41)および平歯車(42)と、入力軸(4)が回転可能に差し込まれる貫通穴(21)を有し、入力軸(4)に設けた第1カサ歯車(41)と平歯車(42)との間に設けられ、入力軸(4)に対し相対回転可能に設けられる支柱部材(2)と、支柱部材(2)に回転可能に保持され、入力軸(4)に設けた平歯車(42)とかみ合わされる遊星歯車(1)と、遊星歯車(1)と同軸上に、且つ遊星歯車(1)と一体回転可能に設けられる出力歯車(11)と、出力歯車(11)にかみ合わされる平歯車(32)を有する出力軸(3)と、入力軸(4)に対し相対回転可能に外嵌される第3カサ歯車(51)を有する被制動部材(5)と、入力軸(4)と垂直方向に配置される軸線まわりに回転可能に支柱部材(2)に保持され、第1カサ歯車(41)と第3カサ歯車(51)にかみ合わされる一対の第2カサ歯車(24,24)と、入力軸(4)に設けられ、入力軸(4)へのトルク負荷を検出するセンサー(6)と、センサー(6)の検出結果に基づいて、被制動部材(5)の制動量を調整することで、支柱部材(2)の回転を制御して、入力軸(4)と出力軸(3)の回転比率を変える制動装置(7)とを備えることを特徴とする歯車式自動無段変速機である。
【0013】
【発明の実施の形態】
以下、本発明の歯車式自動無段変速機について、実施例に基づき更に詳細に説明する。
図1は、本発明の歯車式自動無断変速機の一実施例を示す図である。また、図2は、そのX−X断面図である。
【0014】
本実施例の無段変速機は、入力軸4の回転駆動力を、出力側(例えば車輪側)の従動回転部材3に伝達させるための機構であって、入力軸4に負荷される回転トルクに基づいて、従動回転部材3との変速比を自動的に無段で変化させるものである。特に、大容量の回転力に適した歯車式自動無段変速機である。
【0015】
入力軸4は、回転自在に保持されており、エンジン等によって回転駆動される。図示例では、入力軸4は略水平に保持され、基端側(図1の左側)から回転駆動力が与えられて回転される。
【0016】
入力軸4の先端側(図1の右側)には、第1カサ歯車41と平歯車42が軸方向に離間して設けられている。この第1カサ歯車41と平歯車42は、入力軸4と固定的に設けられており、入力軸4と一体回転する。なお、第1カサ歯車41は、カサの先端を入力軸4の基端側に向けて配置されている。つまり、第1カサ歯車41は、入力軸4の基端側に行くに従って縮径するよう形成されている。
【0017】
入力軸4の第1カサ歯車41と平歯車42との間には、支柱部材2が設けられている。支柱部材2の形状は特に問わないが、本実施例では断面略矩形状の棒材からなり、長手方向中央部に貫通形成された穴21に、入力軸4が回転可能に差し込まれている。これにより、支柱部材2は、入力軸4に対し相対回転可能に、入力軸4の軸方向と直角方向に延びて取り付けられる。
【0018】
支柱部材2には、入力軸4の先端側に向いた先端側面に、中間歯車10と遊星歯車1とが二つずつ回転可能に取り付けられる。中間歯車10は、支柱部材2の長手方向中央部の入力軸4側に設けられ、その外側に遊星歯車1が設けられる。
【0019】
すなわち、支柱部材2の先端側面には、支柱部材2の長手方向中央部の入力軸4から所定距離だけ離間した位置に、第1保持軸22が先端側面と垂直に先端側に突出して設けられると共に、その第1保持軸22よりも外側に第2保持軸23が、先端側面と垂直に先端側に突出して設けられている。
【0020】
そして、支柱部材2の第1保持軸22には、中間歯車10が回転可能に保持される。この中間歯車10は、入力軸4に設けられた前記平歯車42にかみ合わされている。また、支柱部材2の第2保持軸23には、遊星歯車1が回転可能に保持される。この遊星歯車1は、中間歯車10とかみ合わされると共に、従動回転部材3ともかみ合わされる。
【0021】
従動回転部材3は、軸方向基端側への開口部を備えており、その開口部の内周面には、内ば歯車31が形成されている。そして、前述したように、この内ば歯車31に、前記支柱部材2の遊星歯車1がかみ合わされている。本実施例では、棒状の支柱部材2の長手方向両端部に遊星歯車1,1を設けているので、従動回転部材3の内ば歯車31の径方向に対向した位置で、遊星歯車1とかみ合わされることになる。
【0022】
支柱部材2には、入力軸4の基端側に向いた基端側面に、入力軸4の第1カサ歯車41とかみ合わされる一対の第2カサ歯車24,24が、支柱部材2の長手方向に離間して対向して設けられている。具体的には、支柱部材2の基端側面には、基端側に突出してアーム25,25が設けられており、そのアーム25の先端部には、上下方向内側つまり入力軸4側に向けて回転軸26が突出形成されている。この回転軸26は、軸線を入力軸4と垂直方向に配置され、第2カサ歯車24を回転可能に保持する。
【0023】
このようにして設けられる一対の第2カサ歯車24,24は、入力軸4から所定距離だけ離間した位置に配置される。また、各第2カサ歯車24は、カサの先端を入力軸4側(図1では上下方向内側)に向けて配置されている。つまり、第2カサ歯車24は、回転軸26の先端側に行くに従って縮径して形成されている。そして、この第2カサ歯車24は、入力軸4の第1カサ歯車41とかみ合わされて設けられる。図示例では、第2カサ歯車24は、入力軸4の先端側の周側面で、第1カサ歯車41の上下の周側面とかみ合わされている。
【0024】
第2カサ歯車24はさらに、入力軸4の基端側の周側面が、被制動部材5の第3カサ歯車51にかみ合わされている。被制動部材5は、入力軸4に対し相対回転自在に外嵌されており、入力軸4の先端側に第3カサ歯車51が設けられると共に、これと一体的に基端側に平歯車52が設けられている。そして、第3カサ歯車51は、カサの先端を入力軸4の先端側に向けて形成され、その周側面の歯部を前記各第2カサ歯車24にかみ合わされている。
【0025】
被制動部材5の平歯車52は、台座側に設けられた制動装置7の平歯車71とかみ合わされている。そして、制動装置7は、その平歯車71の回転力を制動可能とされている。つまり、被制動部材5の平歯車52の回転速度を調整して、被制動部材5の回転を遅くしたり、速くしたりすることができる。なお、制動装置7のこのような制御は、入力軸4に設けられたセンサー6にて検出したトルクに基づいて行われる。なお、制動装置7の構成は特に問わないが、例えば流体モータを利用することができる。
【0026】
次に、上記実施例の歯車式無段変速機の動作について説明する。
上述した構成説明より明らかなように、本実施例の変速機は、デフ機構によって入力軸4と、台座側の歯車(被制動部材)5と、出力軸側歯車(従動回転部材)3の三方に干渉しあっている。
【0027】
いま、入力軸4が回転している時、台座側の制動装置7の制圧によって歯車(被制動部材)5が静止している場合、出力軸(従動回転部材)3は設定された変速比で回転していることになる。この状態は、いわゆるトップギアの状態である。なお、図1には、各部材の回転方向を矢符で示した(歯車5の矢符は滑り方向である)。
【0028】
そして、この状態で、入力軸4に設けられたセンサー6によって、出力軸側の要求に原動力が耐えられないと感知した時、その旨の信号を制動装置7に送り制動圧力を下げる。
【0029】
このことによって、歯車(被制動部材)5が回転しだし、遊星歯車1の支柱(支柱部材)2の回転角速度が下がる。それに伴い、回転運動(自転)と旋回運動(公転)を集束して作動している遊星歯車1は、自己の回転角速度を変えずに旋回角速度だけを下げることになる。その結果、入力軸4と出力軸3の回転比が大きくなり、原動力に余裕ができる。その分、入力軸4の回転角速度を上げることができる。また、その結果、原動力に適当な余力が生じたときセンサー6が感知し、信号を送って制動を強くする。この反復によって常時、回転比率を適切に保てることになる。
【0030】
この変速機の回転比率の変換の有効範囲は、図3に示すように、支柱2が静止した状態(符号9)から、遊星歯車1の回転方向と同一方向の設定された最大の回転角速度(符号8)までである。この間の比率は、次式で表される。
【0031】
すなわち、入力軸、遊星歯車、360度回転角速度において、
D=(360×A/B)+C−(C×A/B)
で表される。ここで、Dは出力軸回転角速度、Aは遊星歯車半径、Bは出力軸歯車半径、Cは支柱回転角速度である。なお、歯車のピッチを揃えた場合の例である。
【0032】
また、支柱2が逆方向に回転する状態の範囲内の時は、変速機の機能としては無為であるが、クラッチ機能として有能な効果がある。
【0033】
以上述べたように、本実施例の機構の特長は、「入力された回転トルクを、デフ機構によって入力側、台座側、出力側の三方向に干渉させ、遊星歯車の自己回転角速度はそのままで旋回運動の中心に対する旋回角速度だけを支点になる第三者の台座側で制御すること」にある。そして、本実施例の機構を使用することで、次のような利点がある。
(1)歯車式なので、必要な運動に滑りがなく、大容量の回転力に適している。また、耐用期限が長い。
(2)適切な指示と制動があれば、エネルギーの節約になる構造である。
(3)材質及び潤滑オイルは従来通りのものでよいので対応が安易である。
(4)クラッチ機能を利用することができる。
(5)歯車半径又は形状を変える余地があるので、変速比の幅を大きく設定することが容易である。
【0034】
ところで、本発明の歯車式無断変速機は、上記実施例の構成に限らず適宜変更可能である。
例えば、上記実施例では、支柱部材2の本体部を棒状として、入力軸4から二叉になるよう構成したが、三叉にするなどの適宜の変更が可能である。例えば三叉にした場合には、入力軸4が挿通される中央部から120度間隔で本体部が三つに分けられ、そのそれぞれに、遊星歯車1や中間歯車10、第2カサ歯車24が設けられることになる。また、支柱部材2の制動機構も、上記実施例の構成に限らず適宜変更可能である。特に、被制動部材5を制動させるための第3カサ歯車51の制動構造や制動装置7には、適宜の構成が採用される。
【0036】
図4に、図1の支柱式遊星歯車による無段変速機の変形例を示す。また図5は、そのY−Y断面図である。
この実施例の変速機も基本的には前記図1の支柱式遊星歯車の実施例と同様であるので、以下では両者の異なる点を中心に説明する。
まず、本実施例では図5に示すように、支柱部材2の本体部を入力軸4が通される中央部から三叉にし、その各分岐部には入力軸4の先端側に向いた面に遊星歯車1が回転可能に取り付けられている。これら三つの遊星歯車1,1,1は、入力軸4の平歯車42に、直接かみ合わされている。なお、各遊星歯車1の回転軸は、入力軸4の周方向に等間隔で三叉に分岐された支柱部材2に保持されている。また、各遊星歯車1と同軸上に、且つ各遊星歯車1と一体回転可能に出力歯車11がそれぞれ設けられている。図示例では、平歯車状の出力歯車11が遊星歯車1と一体的に形成されている。そして、それら三つの出力歯車11は、従動回転部材3の外周面に設けられた平歯車32に、かみ合わされている。
この実施例の変速機も、図1のものと同様の動きをすることはいうまでもない。
【0037】
なお、本発明の歯車式自動無段変速機は上記実施例の構成に限らず適宜、変更可能である。例えば、隣接する部材の歯車のかみ合わせは、上記実施例の構成に限らず、歯車の個数や配置は適宜、変更可能である。
【0038】
【発明の効果】
以上詳述したように、本発明によれば、歯車式の自動無段変速機を実現することができる。
【図面の簡単な説明】
【図1】 本発明の歯車式無段変速機の一実施例を示す断面図である。
【図2】 図1におけるX−X断面図である。
【図3】 図1の歯車式無段変速機の理論説明図である。
図4】 図1の歯車式無段変速機の変形例を示す断面図である。
図5図4におけるY−Y断面図である。
【符号の説明】
1 遊星歯車
2 支柱部材
3 従動回転部材
4 入力軸
5 被制動部材
6 センサー
7 制動装置
10 中間歯車
11 出力歯車
24 第2カサ歯車
31 内ば歯車
41 第1カサ歯車
42 平歯車
51 第3カサ歯車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear type automatic continuously variable transmission.
[0002]
BACKGROUND OF THE INVENTION
Conventionally, it is difficult to configure a continuously variable transmission with a gear because it is difficult to change the meshing of the gear, so that the gear type is not suitable for a continuously variable transmission.
[0003]
However, since the gear has an advantage that a relatively large capacity force can be transmitted without causing a slip, it is preferable that a gear type continuously variable transmission can be realized.
[0004]
The present invention has been made in view of the above circumstances, and a main object thereof is to provide a gear-type automatic continuously variable transmission.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a gear type automatic continuously variable transmission according to the present invention incorporates a planetary gear mechanism, and controls a pedestal side that interferes with its turning motion to change the gear ratio (turning speed). Control gear type automatic continuously variable transmission).
[0006]
According to the first aspect of the present invention, there is provided an input shaft (4) to which a rotational driving force is applied, and a first shaft which is provided on the input shaft (4) so as to be spaced apart in the axial direction and rotates integrally with the input shaft (4) A bevel gear (41), a spur gear (42), and a through hole (21) into which the input shaft (4) is rotatably inserted, and the first bevel gear (41) provided on the input shaft (4) is provided between the gear (42), an input shaft (4) to relatively rotatable strut provided member (2) is rotatably held to the support member (2), provided on the input shaft (4) An intermediate gear (10) meshed with the spur gear (42) , a planetary gear (1) meshed with the intermediate gear (10) , rotatably held by the support member (2) , and the planetary gear (1) if the to be engaged to the output shaft having a gear wheel (31) and (3), the input shaft (4) with respect to relative rotation possible A braked member (5) having a third gear wheel (51) to be fitted, and a support member (2) rotatably held around an axis line arranged in a direction perpendicular to the input shaft (4), A pair of second bevel gears (24, 24) meshed with the gear (41) and the third bevel gear (51) and an input shaft (4) are provided to detect a torque load on the input shaft (4). Based on the detection result of the sensor (6) and the sensor (6), the rotation amount of the strut member (2) is controlled by adjusting the braking amount of the braked member (5), and the input shaft (4) A gear type automatic continuously variable transmission comprising a braking device (7) for changing a rotation ratio of the output shaft (3) .
[0007]
According to a second aspect of the present invention, there is provided an input shaft (4) to which a rotational driving force is applied, and a first shaft which is provided on the input shaft (4) so as to be spaced apart in the axial direction and rotates integrally with the input shaft (4) A bevel gear (41), a spur gear (42), and a through hole (21) into which the input shaft (4) is rotatably inserted, and the first bevel gear (41) provided on the input shaft (4) is provided between the gear (42), an input shaft (4) to relatively rotatable strut provided member (2) is rotatably held to the support member (2), provided on the input shaft (4) and a spur gear (42) and engaged to the planetary gear (1), and coaxially planetary gear (1), and a planetary gear (1) and integrally rotatably provided is the output gear (11), the output gear ( an output shaft having a spur gear (32) which is engaged in 11) (3) and, rotatable relative to the input shaft (4) A braked member (5) having a third bevel gear (51) to be externally fitted, and a support member (2) rotatably held around an axis line arranged in a direction perpendicular to the input shaft (4), A pair of second bevel gears (24, 24) meshed with the bevel gear (41) and the third bevel gear (51) and the input shaft (4) are provided to detect torque load on the input shaft (4). And the rotation amount of the strut member (2) by adjusting the braking amount of the braked member (5) based on the detection result of the sensor (6), and the input shaft (4) And a braking device (7) that changes the rotation ratio of the output shaft (3) .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the gear type automatic continuously variable transmission of the present invention will be described in more detail based on examples.
FIG. 1 is a view showing an embodiment of a gear type automatic continuous transmission according to the present invention. Moreover, FIG. 2 is the XX sectional drawing.
[0014]
The continuously variable transmission according to this embodiment is a mechanism for transmitting the rotational driving force of the input shaft 4 to the driven rotating member 3 on the output side (for example, the wheel side), and the rotational torque applied to the input shaft 4. Based on the above, the gear ratio with the driven rotation member 3 is automatically changed continuously. In particular, it is a gear type automatic continuously variable transmission suitable for a large-capacity rotational force.
[0015]
The input shaft 4 is rotatably held and is driven to rotate by an engine or the like. In the illustrated example, the input shaft 4 is held substantially horizontally, and is rotated by applying a rotational driving force from the base end side (left side in FIG. 1).
[0016]
A first bevel gear 41 and a spur gear 42 are provided on the distal end side (right side in FIG. 1) of the input shaft 4 so as to be separated from each other in the axial direction. The first bevel gear 41 and the spur gear 42 are fixed to the input shaft 4 and rotate integrally with the input shaft 4. The first bevel gear 41 is disposed with the tip of the bezel facing the base end side of the input shaft 4. That is, the first bevel gear 41 is formed so as to decrease in diameter as it goes to the proximal end side of the input shaft 4.
[0017]
A column member 2 is provided between the first bevel gear 41 and the spur gear 42 of the input shaft 4. The shape of the column member 2 is not particularly limited. In this embodiment, the column member 2 is made of a rod having a substantially rectangular cross section, and the input shaft 4 is rotatably inserted into a hole 21 formed through the central portion in the longitudinal direction. Thereby, the support | pillar member 2 is extended and attached to the axial direction of the input shaft 4 so that relative rotation with respect to the input shaft 4 is possible.
[0018]
The intermediate gear 10 and the planetary gear 1 are rotatably attached to the support member 2 on the front end side face of the input shaft 4 facing the front end side. The intermediate gear 10 is provided on the input shaft 4 side of the center portion in the longitudinal direction of the column member 2, and the planetary gear 1 is provided outside the intermediate gear 10.
[0019]
That is, the first holding shaft 22 is provided on the tip side surface of the column member 2 at a position spaced apart from the input shaft 4 at the center in the longitudinal direction of the column member 2 by a predetermined distance so as to protrude to the tip side perpendicular to the tip side surface. In addition, a second holding shaft 23 is provided on the outer side of the first holding shaft 22 so as to protrude to the tip side perpendicular to the side surface of the tip.
[0020]
The intermediate gear 10 is rotatably held on the first holding shaft 22 of the support member 2. The intermediate gear 10 is meshed with the spur gear 42 provided on the input shaft 4. The planetary gear 1 is rotatably held on the second holding shaft 23 of the support member 2. The planetary gear 1 is meshed with the intermediate gear 10 and also with the driven rotating member 3.
[0021]
The driven rotary member 3 has an opening toward the axial base end, and an inner gear 31 is formed on the inner peripheral surface of the opening. As described above, the planetary gear 1 of the support member 2 is meshed with the inner gear 31. In this embodiment, since the planetary gears 1 and 1 are provided at both longitudinal ends of the rod-shaped support member 2, the planetary gear 1 is engaged with the planetary gear 1 at a position opposed to the radial direction of the inner gear 31 of the driven rotating member 3. Will be.
[0022]
The column member 2 has a pair of second bevel gears 24, 24 meshed with the first bevel gear 41 of the input shaft 4 on the proximal side surface facing the proximal end side of the input shaft 4. They are provided opposite to each other in the direction. Specifically, the base member side surface of the column member 2 is provided with arms 25 and 25 projecting toward the base end side, and the arm 25 has a distal end portion directed inward in the vertical direction, that is, toward the input shaft 4 side. Thus, the rotation shaft 26 is formed to protrude. The rotation shaft 26 is arranged so that its axis is perpendicular to the input shaft 4 and holds the second bevel gear 24 rotatably.
[0023]
The pair of second bevel gears 24, 24 provided in this way are arranged at positions separated from the input shaft 4 by a predetermined distance. Each of the second bevel gears 24 is arranged with the tip of the bezel facing the input shaft 4 side (in the up and down direction in FIG. 1). That is, the second bevel gear 24 is formed with a reduced diameter as it goes to the distal end side of the rotating shaft 26. The second bevel gear 24 is provided in mesh with the first bevel gear 41 of the input shaft 4. In the illustrated example, the second bevel gear 24 is engaged with the upper and lower peripheral side surfaces of the first bevel gear 41 on the peripheral side surface on the tip side of the input shaft 4.
[0024]
The second bevel gear 24 is further meshed with the third bevel gear 51 of the member to be braked 5 at the peripheral side surface of the base end side of the input shaft 4. The braked member 5 is externally fitted so as to be relatively rotatable with respect to the input shaft 4, and a third bevel gear 51 is provided on the distal end side of the input shaft 4, and a spur gear 52 is integrally formed on the proximal end side thereof. Is provided. The third bevel gear 51 is formed such that the tip of the bezel faces the tip end side of the input shaft 4, and the tooth portion on the peripheral side surface is meshed with each of the second bevel gears 24.
[0025]
The spur gear 52 of the member to be braked 5 is meshed with a spur gear 71 of the braking device 7 provided on the pedestal side. The braking device 7 can brake the rotational force of the spur gear 71. That is, the rotation speed of the spur gear 52 of the member to be braked 5 can be adjusted to slow down or speed up the rotation of the member to be braked 5. Such control of the braking device 7 is performed based on the torque detected by the sensor 6 provided on the input shaft 4. The configuration of the braking device 7 is not particularly limited, but for example, a fluid motor can be used.
[0026]
Next, the operation of the gear type continuously variable transmission of the above embodiment will be described.
As is clear from the above description of the configuration, the transmission of the present embodiment has a differential mechanism in which the input shaft 4, the pedestal side gear (braking member) 5, and the output shaft side gear (driven rotation member) 3 are arranged in three directions. Are interfering with each other.
[0027]
Now, when the input shaft 4 is rotating and the gear (braking member) 5 is stationary due to the pressure control of the braking device 7 on the base side, the output shaft (driven rotating member) 3 is at the set gear ratio. It will be spinning. This state is a so-called top gear state. In FIG. 1, the rotation direction of each member is indicated by an arrow (the arrow of the gear 5 is the sliding direction).
[0028]
In this state, when the sensor 6 provided on the input shaft 4 senses that the driving force cannot withstand the demand on the output shaft side, a signal to that effect is sent to the braking device 7 to reduce the braking pressure.
[0029]
As a result, the gear (braking member) 5 starts to rotate, and the rotational angular velocity of the support (support member) 2 of the planetary gear 1 decreases. Accordingly, the planetary gear 1 that operates by focusing the rotational motion (spinning) and the turning motion (revolution) reduces only the turning angular velocity without changing its rotational angular velocity. As a result, the rotation ratio between the input shaft 4 and the output shaft 3 is increased, and a margin is provided for the driving force. Accordingly, the rotational angular velocity of the input shaft 4 can be increased. As a result, when a suitable surplus force is generated in the driving force, the sensor 6 senses and sends a signal to increase braking. By repeating this, the rotation ratio can always be kept appropriate.
[0030]
As shown in FIG. 3, the effective range of conversion of the rotation ratio of the transmission is from the state where the support 2 is stationary (reference numeral 9) to the maximum rotational angular velocity set in the same direction as the rotation direction of the planetary gear 1 ( Up to reference numeral 8). The ratio between these is expressed by the following equation.
[0031]
That is, at the input shaft, planetary gear, 360 degree rotation angular velocity,
D = (360 × A / B) + C− (C × A / B)
It is represented by Here, D is an output shaft rotation angular velocity, A is a planetary gear radius, B is an output shaft gear radius, and C is a support column rotation angular velocity. In addition, it is an example at the time of aligning the pitch of a gearwheel.
[0032]
Further, when the support column 2 is in the range of rotating in the reverse direction, the transmission function is useless, but there is an effective effect as a clutch function.
[0033]
As described above, the feature of the mechanism of this embodiment is that the input rotational torque is caused to interfere with the input side, the pedestal side, and the output side by the differential mechanism, and the planetary gear has the same self-rotating angular velocity. Only the turning angular velocity with respect to the center of the turning motion is controlled on the third party's pedestal side as a fulcrum. The use of the mechanism of this embodiment has the following advantages.
(1) Since it is a gear type, there is no slip in the necessary movement, and it is suitable for a large-capacity rotational force. In addition, the service life is long.
(2) It is a structure that saves energy if there are appropriate instructions and braking.
(3) Since the material and lubricating oil may be the same as conventional ones, it is easy to handle.
(4) The clutch function can be used.
(5) Since there is room for changing the gear radius or shape, it is easy to set a large gear ratio range.
[0034]
Incidentally, the gear-type continuously variable transmission of the present invention is not limited to the configuration of the above-described embodiment, and can be changed as appropriate.
For example, in the above-described embodiment, the main body portion of the column member 2 is formed in a rod shape and is bifurcated from the input shaft 4. For example, in the case of trifurcation, the main body portion is divided into three at intervals of 120 degrees from the central portion through which the input shaft 4 is inserted, and the planetary gear 1, the intermediate gear 10, and the second bevel gear 24 are provided for each of them. Will be. Further, the brake mechanism of the support member 2 is not limited to the configuration of the above embodiment and can be changed as appropriate. In particular, an appropriate configuration is employed for the braking structure of the third bevel gear 51 and the braking device 7 for braking the braked member 5.
[0036]
FIG. 4 shows a modification of the continuously variable transmission using the support type planetary gear of FIG. FIG. 5 is a YY sectional view thereof.
Since the transmission of this embodiment is basically the same as the embodiment of the support type planetary gear of FIG. 1, the following description will focus on the differences between them.
First, in this embodiment, as shown in FIG. 5 , the main body portion of the column member 2 is trifurcated from the central portion through which the input shaft 4 is passed, and each branch portion thereof has a surface facing the tip side of the input shaft 4. A planetary gear 1 is rotatably attached. These three planetary gears 1, 1, 1 are directly meshed with the spur gear 42 of the input shaft 4. Note that the rotation shaft of each planetary gear 1 is held by a support member 2 that is trifurcated at equal intervals in the circumferential direction of the input shaft 4. Further, an output gear 11 is provided coaxially with each planetary gear 1 and capable of rotating integrally with each planetary gear 1. In the illustrated example, a spur gear-like output gear 11 is formed integrally with the planetary gear 1. The three output gears 11 are meshed with a spur gear 32 provided on the outer peripheral surface of the driven rotation member 3.
Needless to say, the transmission of this embodiment also moves in the same manner as in FIG.
[0037]
The gear-type automatic continuously variable transmission of the present invention is not limited to the configuration of the above-described embodiment, and can be changed as appropriate. For example, the meshing of the gears of adjacent members is not limited to the configuration of the above embodiment, and the number and arrangement of the gears can be changed as appropriate.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a gear-type automatic continuously variable transmission can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a gear type continuously variable transmission according to the present invention.
FIG. 2 is a sectional view taken along line XX in FIG.
FIG. 3 is a theoretical explanatory diagram of the gear type continuously variable transmission of FIG. 1;
4 is a cross-sectional view showing a modification of the gear type continuously variable transmission of FIG. 1. FIG.
5 is a Y-Y sectional view in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Planetary gear 2 Support | pillar member 3 Driven rotation member 4 Input shaft 5 Braked member 6 Sensor 7 Braking device 10 Intermediate gear 11 Output gear 24 Second bevel gear 31 Internal gear 41 First bevel gear 42 Spur gear 51 Third bevel gear

Claims (2)

回転駆動力が与えられる入力軸(4)と、
この入力軸(4)にその軸方向に離間して設けられ、入力軸(4)と一体回転する第1カサ歯車(41)および平歯車(42)と、
入力軸(4)が回転可能に差し込まれる貫通穴(21)を有し、入力軸(4)に設けた第1カサ歯車(41)と平歯車(42)との間に設けられ、入力軸(4)に対し相対回転可能に設けられる支柱部材(2)と、
支柱部材(2)に回転可能に保持され、入力軸(4)に設けた平歯車(42)とかみ合わされる中間歯車(10)と、
支柱部材(2)に回転可能に保持され、中間歯車(10)にかみ合わされる遊星歯車(1)と、
遊星歯車(1)にかみ合わされる内ば歯車(31)を有する出力軸(3)と、
入力軸(4)に対し相対回転可能に外嵌される第3カサ歯車(51)を有する被制動部材(5)と、
入力軸(4)と垂直方向に配置される軸線まわりに回転可能に支柱部材(2)に保持され、第1カサ歯車(41)と第3カサ歯車(51)にかみ合わされる一対の第2カサ歯車(24,24)と、
入力軸(4)に設けられ、入力軸(4)へのトルク負荷を検出するセンサー(6)と、
センサー(6)の検出結果に基づいて、被制動部材(5)の制動量を調整することで、支柱部材(2)の回転を制御して、入力軸(4)と出力軸(3)の回転比率を変える制動装置(7)と
を備えることを特徴とする歯車式自動無段変速機。
An input shaft (4) to which a rotational driving force is applied;
A first bevel gear (41) and a spur gear (42) provided on the input shaft (4) so as to be separated from each other in the axial direction and rotating integrally with the input shaft (4);
The input shaft (4) has a through hole (21) into which the input shaft (4) is rotatably inserted, and is provided between the first bevel gear (41) and the spur gear (42) provided on the input shaft (4). A support member (2) provided to be rotatable relative to (4) ;
An intermediate gear (10) rotatably held by the support member (2) and meshed with a spur gear (42) provided on the input shaft (4) ;
A planetary gear (1) that is rotatably held by the support member (2) and meshed with the intermediate gear (10) ;
An output shaft (3) having an internal gear (31) meshed with the planetary gear (1) ;
A braked member (5) having a third bevel gear (51) that is externally fitted so as to be relatively rotatable with respect to the input shaft (4);
A pair of second gears held by the support member (2) so as to be rotatable about an axis line arranged in a direction perpendicular to the input shaft (4) and meshed with the first and third gear gears (41) and (51). Bevel gears (24, 24);
A sensor (6) provided on the input shaft (4) for detecting a torque load on the input shaft (4);
Based on the detection result of the sensor (6), the amount of braking of the member to be braked (5) is adjusted to control the rotation of the column member (2), and the input shaft (4) and the output shaft (3). A braking device (7) for changing the rotation ratio;
Gear type automatic continuously variable transmission, characterized in that it comprises a.
回転駆動力が与えられる入力軸(4)と、
この入力軸(4)にその軸方向に離間して設けられ、入力軸(4)と一体回転する第1カサ歯車(41)および平歯車(42)と、
入力軸(4)が回転可能に差し込まれる貫通穴(21)を有し、入力軸(4)に設けた第1カサ歯車(41)と平歯車(42)との間に設けられ、入力軸(4)に対し相対回転可能に設けられる支柱部材(2)と、
支柱部材(2)に回転可能に保持され、入力軸(4)に設けた平歯車(42)とかみ合わされる遊星歯車(1)と、
遊星歯車(1)と同軸上に、且つ遊星歯車(1)と一体回転可能に設けられる出力歯車(11)と、
出力歯車(11)にかみ合わされる平歯車(32)を有する出力軸(3)と、
入力軸(4)に対し相対回転可能に外嵌される第3カサ歯車(51)を有する被制動部材(5)と、
入力軸(4)と垂直方向に配置される軸線まわりに回転可能に支柱部材(2)に保持され、第1カサ歯車(41)と第3カサ歯車(51)にかみ合わされる一対の第2カサ歯車(24,24)と、
入力軸(4)に設けられ、入力軸(4)へのトルク負荷を検出するセンサー(6)と、
センサー(6)の検出結果に基づいて、被制動部材(5)の制動量を調整することで、支柱部材(2)の回転を制御して、入力軸(4)と出力軸(3)の回転比率を変える制動装置(7)と
を備えることを特徴とする歯車式自動無段変速機。
An input shaft (4) to which a rotational driving force is applied;
A first bevel gear (41) and a spur gear (42) provided on the input shaft (4) so as to be separated from each other in the axial direction and rotating integrally with the input shaft (4);
The input shaft (4) has a through hole (21) into which the input shaft (4) is rotatably inserted, and is provided between the first bevel gear (41) and the spur gear (42) provided on the input shaft (4). A support member (2) provided to be rotatable relative to (4) ;
A planetary gear (1) that is rotatably held by the support member (2) and meshed with a spur gear (42) provided on the input shaft (4) ;
A planetary gear (1) and coaxially, and a planetary gear (1) and integrally rotatably provided is the output gear (11),
An output shaft (3) having a spur gear (32) meshed with the output gear (11) ;
A braked member (5) having a third bevel gear (51) that is externally fitted so as to be relatively rotatable with respect to the input shaft (4);
A pair of second gears held by the support member (2) so as to be rotatable about an axis line arranged in a direction perpendicular to the input shaft (4) and meshed with the first and third gear gears (41) and (51). Bevel gears (24, 24);
A sensor (6) provided on the input shaft (4) for detecting a torque load on the input shaft (4);
Based on the detection result of the sensor (6), the amount of braking of the member to be braked (5) is adjusted to control the rotation of the column member (2), and the input shaft (4) and the output shaft (3). A braking device (7) for changing the rotation ratio;
Gear type automatic continuously variable transmission, characterized in that it comprises a.
JP2001147228A 2000-10-30 2001-05-17 Swivel control gear type automatic continuously variable transmission Expired - Fee Related JP3689020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147228A JP3689020B2 (en) 2000-10-30 2001-05-17 Swivel control gear type automatic continuously variable transmission

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000372162 2000-10-30
JP2000393382 2000-12-25
JP2000-393382 2000-12-25
JP2000-372162 2000-12-25
JP2001147228A JP3689020B2 (en) 2000-10-30 2001-05-17 Swivel control gear type automatic continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2002257204A JP2002257204A (en) 2002-09-11
JP3689020B2 true JP3689020B2 (en) 2005-08-31

Family

ID=27345383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147228A Expired - Fee Related JP3689020B2 (en) 2000-10-30 2001-05-17 Swivel control gear type automatic continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3689020B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098361A (en) * 2003-09-24 2005-04-14 Sumitomo Heavy Ind Ltd Orthogonal power transmission
WO2008105891A2 (en) * 2006-06-08 2008-09-04 Vmt Technologies, Llc Positive displacement variable speed transmission with dual motion drive gears
KR101225105B1 (en) * 2009-05-21 2013-01-22 조춘상 Device for infinitely variable transmission and method thereof
US9188205B2 (en) 2009-09-08 2015-11-17 Gary D. Lee Moon gear assembly
KR102333212B1 (en) * 2020-06-01 2021-11-30 이길석 Vehicle transmission system

Also Published As

Publication number Publication date
JP2002257204A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP4626345B2 (en) Vehicle steering device
US4680985A (en) Continuously variable transmission with epicyclic constant mesh gearing
JP3210020B2 (en) Mechanical transmission
JP3689020B2 (en) Swivel control gear type automatic continuously variable transmission
US4676117A (en) Spur-gear system
JPH10505400A (en) Eccentric gear
US20060089227A1 (en) Differential gear system having a stably-oriented orbiting gear
JP2005207600A (en) Cone ring type transmission
JPH01312250A (en) Differential gear mechanism using planetary gear speed reducer of internal engagement type
US4843899A (en) Gear drive with infinitely variable transmission ratio
JP4872563B2 (en) Vehicle steering system
JP2588386B2 (en) Output shaft support device of planetary gear reducer used for control device
JPH01500684A (en) double planetary gearbox
JPH03181647A (en) Continuously variable transmission
KR100503712B1 (en) Continuously speed variable motor
JP2003515064A (en) Worm / worm gear transmission
JP2798608B2 (en) transmission
RU1805247C (en) Gear box
JPH0129308Y2 (en)
KR820002010Y1 (en) Reduction gear
JPS6116865B2 (en)
KR100671803B1 (en) Worm gear with a rotating ball tooth between the worm and the wheel
JP2006046427A (en) Gear type continuously variable transmission
RU2115846C1 (en) Gear train
SU1392292A1 (en) Toroidal transmission

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees