JP3688087B2 - Multi-layered yarn - Google Patents

Multi-layered yarn Download PDF

Info

Publication number
JP3688087B2
JP3688087B2 JP02078397A JP2078397A JP3688087B2 JP 3688087 B2 JP3688087 B2 JP 3688087B2 JP 02078397 A JP02078397 A JP 02078397A JP 2078397 A JP2078397 A JP 2078397A JP 3688087 B2 JP3688087 B2 JP 3688087B2
Authority
JP
Japan
Prior art keywords
yarn
fiber
core
water
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02078397A
Other languages
Japanese (ja)
Other versions
JPH10266031A (en
Inventor
知佐 早川
直樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP02078397A priority Critical patent/JP3688087B2/en
Publication of JPH10266031A publication Critical patent/JPH10266031A/en
Application granted granted Critical
Publication of JP3688087B2 publication Critical patent/JP3688087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多層構造糸、詳しくは水による変色を防止する性能を備えた糸に関する。
【0002】
【従来の技術】
雨にぬれたり、汗をかいたりしたときに、肩、脇や背中など衣服がぬれたところだけ変色してしまい、不快感を覚えることがある。また、水たまりの水はね等によってズボン、ロングパンツの裾が変色したときも外観上著しく不快感を与える。
【0003】
一方、ぬれたときでも透けにくい繊維として、芯部に白色顔料を多く含む芯鞘型複合繊維やかかる繊維を用いた布帛が知られている(特開平5−93343号公報等)。しかしながら、これらは、白色顔料によって繊維の芯部の光反射を大きくして、水による繊維表面の屈折率低下で生じた白色光の割合の減少の寄与を小さくするというものであるため、ぬれても透けにくいという効果があるものの、この繊維でも水にぬれると変色してしまうという欠点がある。
【0004】
従って、水による変色防止性を備えた糸はこれまで知られていない。
【0005】
【発明が解決しようとする課題】
本発明は、水による変色防止性を備えた糸を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の構成について説明する前に、一般に繊維が水にぬれるとなぜ変色するかについて説明する。
人間が物を見るとき、目はその物体の表面で反射した表面反射光と、物体の内部に入り、内部境界面で反射される内部反射光の合わせた光をとらえる。表面反射光は入射光と同じあらゆる波長の光を含んだ白色光であり、内部反射光は染料により、ある特定の波長の光の吸収を受けた着色光である。ここで、この白色光の割合が大きいほど白っぽく、白色光の割合が小さいほど色が深く見えることがわかっている。水は繊維より小さい屈折率(n=1.33)を持つが、繊維が水にぬれると繊維表面が水に覆われて低屈折率化し、表面反射率が小さくなる。よって水にぬれると変色するのである。
【0007】
本発明者らは、鋭意検討した結果、白色顔料を含有した芯部をもつ芯鞘型複合繊維を外層に用い、内層に吸水・拡散性の繊維を用いた多層構造糸は、充分な変色防止効果をもつことを確認し、本発明に到達した。
すなわち、本発明は、二層以上の多層構造を有する糸であって、外層が白色顔料の含有量が3重量%以上15重量%以下の芯部と、白色顔料の含有量が2重量%以下の鞘部を有する芯鞘型複合繊維で構成され、その内層が吸水・拡散性を有する繊維で構成されてなることを特徴とする多層構造糸である。
【0008】
本発明の多層構造糸は、糸の横断面の外周部を占める外層繊維群がその内側の内層の吸水・拡散性の繊維群に絡み若しくは巻きついて形成される異種繊維の複合層構造をいう。ここで、内層というのは、糸の内側に配置された繊維層をいう。内層は1種類の繊維で形成されていても良いし、2種類以上の繊維が層状態や混用されている状態で用いられていても良い。
【0009】
2種類以上の繊維が層状態で用いられている場合は、最内層の繊維層が芯層、芯層と外層の間の層は中間層となる。数種類の繊維が層状態で用いられる場合は、この中間層が複数層存在することになる。本発明の多層構造糸では、これら芯層、中間層(いずれも内層)のいずれかが吸水・拡散性繊維で構成されていれば良い。この場合吸水・拡散性を有し、芯側に向ってより吸水・拡散性の優れる繊維を配置することが変色防止機能を更に高める上で好ましい。
【0010】
内層部を2層以上で構成する複合構造は、水拡散性の大なる繊維を中間層とし、水吸収性の大なる繊維(例えば人造セルロース繊維)を芯層にする構造や逆に水拡散性大なる繊維を芯層に配置する構造を例示することができる。
本発明の多層構造による繊維の複合は、後述するエアー混繊法、複合仮撚法、カバリング法等の加工方法を方法の適用により任意の常用単糸繊度を有する連続フィラメント繊維、短繊維若しくはこれらの混用繊維で形成することができる。
【0011】
本発明の多層構造糸の繊度又は番手は、通常の外衣用編物、織物用の糸として常用される領域で任意に選択される。本発明の多層構造糸の形成において、複合すべき前記芯鞘複合繊維と吸水・拡散性の繊維の複合比は、吸水の拡散性繊維が20〜50重量%、好ましくは30〜40重量%であり、前者の単糸本数は少なくとも10本以上、好ましくは20本以上に設定される。なお単糸数及びその繊度又は番手は、通常の外衣用編物、織物用の糸として常用される領域で任意に選択される。本発明で用いられる糸の太さはマルチフィラメントの場合で30d〜150d、紡績糸の場合で10s〜40s(綿番手)が好ましく用いられる。たゞしこの太さの糸に限定されるものではない。
【0012】
本発明の糸において、最外層に配置される繊維が白色顔料の含有量が3重量%以上15重量%以下の芯部と、白色顔料の含有量が2重量%以下の鞘部を有する芯鞘型複合繊維で構成されていることが水による変色を防止する上で肝要である。
ここで、添加される白色顔料は、特に限定されないが、染色しても発色性を低下させることがなく、原糸製造に障害を及ぼさないことが必要となる。例えば酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸カルシウム等の金属酸化物が望ましい。コストを考慮すると酸化チタンが最も適している。
【0013】
芯部の白色顔料含有量は3重量%以上15重量%以下であることが肝要であるが、5重量%以上10重量%以下が望ましい。芯部の白色顔料が15重量%を越えると、著しい強伸度低下をきたし、原糸製造及び製編織工程通過を困難にするからである。また、3重量%未満では本発明の変色防止効果が得られない。
芯鞘型複合繊維の太さは特に限定されないが、製編織工程上の点から30〜200デニールが好ましい。
【0014】
芯部と鞘部はベースポリマーが同じでなくてもよい。例えば、ポリエステルの芯鞘型複合繊維の場合、鞘部のみカチオン可染ポリマーであってもよい。また、ポリアミドの芯鞘型複合繊維の場合、芯部がナイロン66で鞘部がナイロン6であってもよい。芯部と鞘部は同心円的に複合されていても、偏心的に複合されていてもよい。また、芯鞘重量比率は1/3〜3/1の範囲であることが好ましく、特に1/2〜2/1が望ましい。1/3未満であると変色防止効果が小さくなったり、3/1を超えると、紡糸時に芯成分を鞘成分で覆うことは困難となることがある。
【0015】
本発明の糸において、内層が吸水・拡散性を有する繊維で構成されてことが糸の最外層の水を吸収拡散し、変色防止効果が尚一層大きくなるので肝要である。ここで吸水・拡散性を有する繊維とは、水を吸収する性質及び/又は水を拡散する性質を有する繊維をいう。本発明において吸水とは、再生セルロース繊維、羊毛、麻、木綿、絹等の再生、天然繊維のように繊維基質そのものが水を吸収する性質に基く場合や、疎水性の重合体で形成されている合成繊維の単繊維の捲縮、中空構造、異形断面構造等の繊維形態、細繊度繊維等の表面積効果に基いて繊維表面の保水機能を包含するものである。水を拡散する性質とは、前記した合成繊維の形態及び細繊度繊維の毛細管現象による繊維表面の水の移行性の大きい繊維の性能をいう。
【0016】
本発明で用いられる吸水・拡散性を有する繊維は短繊維であっても長繊維であってもよい。
繊維基質が吸水性を有する繊維としては毛、綿、麻、絹等の天然繊維、人造セルロース繊維等がこの性質を有する。人造セルロース繊維の場合、長繊維原糸だけでなく、その加工糸が用いられる。
【0017】
吸水・拡散性を有する繊維が合成繊維である場合は、断面形状がL、C、W、Z、M、歯車形等の異形断面繊維の長繊維糸及びその加工糸、多孔質繊維(空孔率5%〜40%)の長繊維糸及びその加工糸、又は単糸デニールが1.5d以下のファインデニール長繊維糸及びその加工糸を用いるとよい。複合糸内の水の通り道を多くして水拡散性を高めるには繊維の横断面形状をW又は歯車形の異形断面とするか横断面に空孔を有する中空繊維を用いるかさらに単糸デニールをファインデニール化して繊維の表面積を高めるとよい。
【0018】
本発明における繊維の異形度は1.2以上2.2以下より好ましくは1.4以上2.2以下であるとよい。
1.2以上であると丸形断面繊維よりも格段に水拡散性に優れたものとなり、2.2を越えると紡糸性等の製造安定性に劣るので好ましくない。異形度は、異形繊維の横断面積の周長(周囲の長さ)を算出し、次に同じ断面積を持つ真円の半径を求めてその真円の周長を算出し、次式により求める。
【0019】
異形度=異形繊維の単糸の断面の周長/異形繊維断面と同じ断面積の真円の周長
一方合成繊維の長繊維糸は加工を施して捲縮を与えると、捲縮による水の物理的保持によって水の保持性を高めた合成繊維を得ることができる。この場合、捲縮は低捲縮、すなわち捲縮伸長率で10%以下、好ましくは5〜7%であればさらによい。高捲縮であると物理的に水を保持するスペースは増すが、逆に水拡散性が著しく低下することになり、糸の表面色の変色防止にはマイナスに作用する。
【0020】
このように合成繊維の横断面形状や加工条件を適切に選定することによって、吸水・拡散性が天然繊維や、人造セルロース繊維を上廻る繊維となり、複合糸の断面内層に滲入した水を速かに拡散稀釈して複合糸の表面色の変化を抑制することが可能となる。
本発明の複合糸の内層構成繊維としては、後述する測定法によって求められるが、吸水性値及び水拡散性値がそれぞれ2cm以上及び10cm以上の値を示す繊維を用いることが好ましい。合成繊維の異形断面繊維は、異形度を大きくすることによって、水拡散性値10cm以上を示す繊維が容易に得られる。例えば、単糸デニールが1.7d好ましくは1.5d以下の繊維の場合、異形度が1.4以上を示すW形断面繊維で水拡散性値が15cm以上を示すポリエステル繊維、ナイロン繊維を得ることができる。前記した空孔率を有する多孔繊維、中空繊維は、前記レベルの水拡散性値を有する繊維が容易に得られる。そして、異形断面繊維や多孔繊維等は、その形態効果に因って概ね2.1cm以上の吸水性を示す。
【0021】
異形度が1.1〜1.4の異形断面繊維であっても、単糸繊度1.7d以下で水拡散性値が12cm以上を示すものが得られる。捲縮伸長率が5〜7%の丸形断面繊維によっても水拡散性値10cm以上、吸水性値2cm以上の繊維が得られる。本発明の多層構造糸は、後述の測定法で求めた吸水性、水拡散性の評価値がそれぞれ2cm以上及び/又は10cm以上の優れた吸水性・拡散性を有する繊維で複合内層を構成するので、糸の表面に付着した水は糸構造内を迅速に拡散して特に糸の表面色を変える原因となる繊維表面の水膜が形成されることがなく汗、雨水等によるぬれによって容易に色変わりすることがない。本発明の変色防止糸によって得られる編織物は乾燥時の色と水濡後の色との色差が測色色差で5以下を示す。この測色色差値は、本発明の変色防止糸の水濡れ変色の視覚官能試験の評価をよい相関を示すことも判明した。
【0022】
本発明の変色防止糸の多層構造糸は、複合仮撚加工、インターレース、タスラン加工法等を利用したエアー混繊法、交撚法、シングル又はダブルカバリング法、サイロフィル、サイロスパン等の精紡交撚、精紡等によって容易に調製することができる。
複合される繊維が相互に長繊維糸である場合は、複合仮撚法、エアー混繊法を用いると好都合である。外層形成用原糸として芯鞘型に白色顔料を含んだ非熱収縮性合成長繊維糸を内層形成用の、例えばポリエステル異形断面糸と共にインターレース仮撚加工機、タスラン仮撚加工機に、後者すなわちポリエステル異形断面糸よりも前者をよりオーバーフィードする条件下で混繊仮撚糸とする方法、若しくは外層形成用原糸として芯鞘型に白色顔料を含んだ非熱収縮性合成長繊維糸を内層形成用のポリエステル異形断面糸と共にインターレース機、タスラン加工機に、後者すなわちポリエステル異形断面糸よりも前者をよりオーバーフィードする条件下で加工する方法によって所定の多層構造糸を調製することができる。
【0023】
また、内層形成用原糸に高収縮性のポリエステル長繊維糸を用いてエアー混繊法を適用していわゆる異収縮混繊によって多層構造糸を形成することもできる。この場合、外層形成用原糸と内層形成用原糸の供給にフィード率差をつける必要はない。
長繊維糸又は紡績糸に芯鞘型に白色顔料を含んだ非熱収縮性合成長繊維糸を撚糸機、カバリングマシーンでカバリングすることによって本発明の多層構造糸を調製することもできる。又エアー混繊法で複合した長繊維複合糸に更に外層を覆うためカバリングして3層構造複合糸を調製することもできる。
【0024】
以上例示した本発明の多層構造糸の調製方法のうち、生産性の観点からは外層と内層又は中間層形成糸として連続多フィラメント糸を使用して複合仮撚法、エアー混繊法を適用する方法が最も好ましい方法である。
本発明の多層構造糸は、編織により布帛形態にした後に、合成繊維に一般的に用いられる親水加工、吸水加工を施すと、水への親和性が更に向上するので、糸断面内で水が滞ることなく、より拡散しやすくなることで変色の防止効果を更に大きくすることができる。この加工方法の例としては、高松油脂(株)製のSRシリーズ、センカ(株)製のファインセットF−101等の親水性共重合物を主成分とする親水化剤又は吸水化剤を3〜5%owfつける方法等がある。
【0025】
【発明の実施の形態】
本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1〜7、比較例1〜6で用いた染色の条件、実施例2,7及び比較例6で用いた吸水加工の条件は以下の通りである。また、本発明の効果が得られる好適な糸の加工条件の例も示す。実施例、比較例で用いた糸の製造方法は以下の加工条件の中に含まれている。実施例、比較例で得られた糸を用いて製造した編織地の評価を表1にまとめて示す。
【0026】

Figure 0003688087
【0027】
Figure 0003688087
【0028】
(3)糸加工条件
(1) 加工条件(1):複合仮撚条件(インターレース仮撚)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を1%、外層の糸のフィード率を4%とし、エアー圧2.0kg/cm2 でインターレース加工をした後、村田機械33H仮撚加工機でDR=1.04倍、加工速度400m/分、撚数2400T/M、ヒーター温度180℃で仮撚加工した。
【0029】
(2) 加工条件(2):複合仮撚条件(タスラン仮撚)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を5%、外層の糸のフィード率を15%とし、エアー圧7.0kg/cm2 でタスラン加工をした後、村田機械33H仮撚加工機でDR=1.04倍、加工速度400m/分、撚数2400T/M、ヒーター温度180℃で仮撚加工した。
【0030】
(3) 加工条件(3):エアー混繊条件(インターレース)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を1%、外層の糸のフィード率を4%とし、エアー圧2.0kg/cm2 でインターレース加工をした。
(4) 加工条件(4):エアー混繊条件(タスラン)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を5%、外層の糸のフィード率を15%とし、エアー圧7.0kg/cm2 でタスラン加工をした。
【0031】
(5) 加工条件(5):異収縮混繊条件(インターレース)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を1.5%、外層の糸のフィード率を1.5%とし、エアー圧2.0kg/cm2 でインターレース加工をした。
(6) 加工条件(6):異収縮混繊条件(タスラン)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を10%、外層の糸のフィード率を10%とし、エアー圧7.0kg/cm2 でインターレース加工をした。
【0032】
(7) 加工条件(7):異収縮混繊仮撚条件(インターレース仮撚)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を1.5%、外層の糸のフィード率を1.5%とし、エアー圧2.0kg/cm2 でインターレース加工をした後、村田機械33H仮撚加工機でDR=1.04倍、加工速度400m/分、撚数2400T/M、ヒーター温度180℃で仮撚加工した。
【0033】
(8) 加工条件(8):異収縮混繊仮撚条件(タスラン仮撚)
村田機械33H仮撚加工機を用い、内層の糸のフィード率を10%、外層の糸のフィード率を10%とし、エアー圧7.0kg/cm2 でタスラン加工をした後、村田機械33H仮撚加工機でDR=1.04倍、加工速度400m/分、撚数2400T/M、ヒーター温度180℃で仮撚加工した。
【0034】
(9) 加工条件(9):カバリング
片山機械工業のシングルカバリングマシーン(SSD)で、スピンドル回転数1万5千rpm 、外層の糸の撚数をZ−1500T/Mとしたものを、給糸速度10m/分での内層の糸にカバリングした。
(10) 加工条件(10):仮撚加工条件
三菱LS−2を用い、スピンドル回転数25万rpm 、撚数Z−3200T/M、ファーストヒーター温度190℃、セカンドヒーター温度180℃、リラックス率12%で仮撚加工すると捲縮伸長率18〜20%の加工糸となる。
【0035】
(11) 加工条件(11):仮撚加工条件
三菱LS−2を用い、スピンドル回転数25万rpm 、撚数Z−3200T/M、ファーストヒーター温度190℃、セカンドヒーター温度180℃、リラックス率6%で仮撚加工すると捲縮伸長率7〜8%の加工糸となる。
【0036】
(4)使用繊維の吸水性、水拡散性の測定
▲1▼繊維の吸水性の測定
使用繊維がフィラメント糸(長繊維糸)の場合は実施例、比較例で用いられるフィラメント糸の単糸デニールと同一の単糸デニールの単糸を束ねてトータルデニールが75d±5dになるように試験用の糸を用意し、この糸に300T/mの撚をかけ、100℃×15分間スチームでセットし、乾燥の後、20℃、湿度65%RHで一昼夜放置して試料糸を調整する。
【0037】
使用繊維が短繊維の場合は、下記式で示す撚係数が120になるようなm当り撚数の撚を有する綿糸10sに相当する太さと撚を有する糸を合糸によって調整し試料糸とする。
T=α√N
T:m当り撚数、N:綿番手、α:撚係数
この試料糸から測定サンプルとして50cm採取し、その上端を固定して、下端に0.1g/dの荷重をかけた後、下端を水(室温)に浸し、10分後に水の吸い上げ鉛直距離(cm) を測定する。評価は測定サンプル10本の平均値をもって行う。この吸い上げ距離が2cm以上である場合に吸水性良好であると評価する。
【0038】
▲2▼繊維の水拡散性の測定
繊維の吸水性の測定で調製した試料糸を用いて測定する。試料糸を1m採取して、糸の一端を固定し、他方余端に滑車に固定して、1g/dの荷重をかけて、水平に糸を張る。緊張下の糸の中央付近に0.01ccの水を添下し、10分後の水の水平方向移動距離(cm)を測定する。測定は、20℃、湿度65%RH下で行い、10本の測定値の平均で水拡散性を評価した。移動距離が10cm以上の糸を水拡散性が良好であると評価する。
【0039】
▲3▼編地の水拡散性の測定
複合糸による編地のもつ水拡散性は次の方法で設定した。
複合糸による編地を染色する工程から染色工程のみを除き、精練・乾燥又は精練・吸水加工・乾燥の工程を通して白編地を得た。
この編(織)地を10cm×10cmに切りとり、表層からマイクロピペットを用い、生地から2cm離した高さにチップの先が位置するように0.2ccの常温の着色水を滴下する。この水が1分後にぬれ拡がった拡散面積(cm2 )を算出し、編(織)地の水拡散性値とする。この水拡散性値が15cm2 以上の編(織)物の水拡散性が良好であると評価する。
【0040】
なお、着色水とはDiacid Alizarine Light Blue 4GL (Dyster 社製染料)0.1gを100mlの蒸留水で希釈して調製した。この染料は水に溶易く分子量も小さい。
【0041】
(5)複合糸による編織地の変色性評価
▲1▼乾湿編織地の色差
サカタインクス(株)製の測色計マクベスカラ−アイ3000でC光源を用いて乾いた複合糸を編(織)した編(織)地のサンプル(スタンダード)と湿潤サンプル(トライアル)の表面色の知覚色度指数a* ,b* 及び明度L* 測定し、両サンプル間の色差を下記式により算出した。10cm×10cmの乾いたサンプルを2つ折りにして、直径2.5cmの測色スポット後C光源の光を当て測色した後、このサンプルに1ミリリットルの水を生地表面に与え30秒後水が濡れ拡った面の表面色を同様に測定した。
(△E*)={(△L*)2 +(△a*)2 +(△b*)21/2
【0042】
▲2▼編(織)地の変色性の官能評価
5人のパネルの目視による変色程度の評価を、下記の5段階の評価基準に区分して評価した。本発明で用いられる糸の太さはマルチフィラメントの場合で30d〜150d、紡績糸の場合で10s〜40s(綿番手)が好ましく用いられる。たゞしこの太さの糸に限定されるものではない。
【0043】
変色の小さいものから順に、
◎↑ 乾、湿時の表面色の差が全くない。
◎ 〃 殆どない。
○ 〃 あまりない。
△ 〃 ややある。
× 〃 大いにある。
とした。
【0044】
前記の目視評価で、乾・湿間サンプルの表面色の色差が大きい程、不快と感じる。なお、乾・湿サンプル間の測色色差(ΔE*)が5以下のときは良好な目視評価判定が得られる。
【0045】
(6)複合糸の構成繊維の測定
複合糸の側表面を写真撮影し、写真を画像処理解析し、複合糸表面の構成繊維百分比を求めた。
【0046】
実施例1
酸化チタンを8重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比1/1のポリエステル芯鞘型複合繊維フィラメント糸(75d/36f)を外層繊維とし、酸化チタンを0.1重量%含有したW形異形断面フィラメント糸(50d/30f)を内層繊維として用い、加工条件(1)で前者を外層とする2層構造の複合仮撚糸を作った。この複合糸の表面構成繊維は、ポリエステル芯鞘型複合フィラメント及びW形断面フィラメントがそれぞれ66%及び34%であった。この糸で28GGのシングル編機で目付120g/m2 の天竺編地を作成し、染色した。この布帛は、ぬれたときの変色が大変小さいもので、編立性も良好なものであった。
【0047】
実施例2
酸化チタンを8重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比1/1のポリエステル芯鞘型複合繊維フィラメント糸(75d/36f)を外層、酸化チタンを0.1重量%含有したポリエステルのW形異形断面フィラメント糸(50d/30f)を内層として用い、加工条件(1)で前者を外層構成繊維とする2層構造の複合仮撚糸を作った。この糸で目付120g/m2 の天竺編地を作成し、染色した後、吸水加工を行った。この布帛はぬれたときの変色が大変小さく、ぬれていることを感じさせないうえ、編立性も良好なものであった。なお、この複合仮撚糸の表面構成繊維の百分比は、ポリエステル芯鞘型複合繊維フィラメント及びポリエステルW形異形断面フィラメントについて実施例1と同じくそれぞれ66%及び34%であった。
【0048】
実施例3
酸化チタンを3重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比1/1のポリエステル芯鞘型複合繊維フィラメント糸(75d/36f)を外層、酸化チタンを0.1重量%含有したポリエステルのW型異型断面フィラメント糸(50d/30f)を内層とする2層断面複合仮撚糸を加工条件(2)により作った。この糸で目付128g/m2 の天竺編地を作成し、染色した。この布帛はぬれたときの変色が小さく、編立性も良好なものであった。なお、この複合糸の表面構成繊維の割合は、芯鞘型複合繊維フィラメントについて67%、W形異形断面フィラメントについては33%であった。
【0049】
実施例4
酸化チタンを10重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比率1/1のポリエステルの芯鞘型複合繊維フィラメント糸(75d/36f)を外層、酸化チタンを0.1重量%含有した同心円状に孔をもつ中空率20%のポリエステルの中空フィラメント糸(60d/12f)を内層とするエアー混繊糸を加工条件(4)で作った。この糸で目付113g/m2 の天竺編地を作成し、染色した。この布帛はぬれたときの変色が大変小さく良好なものとなった。なお、この混繊糸表面の構成繊維は、芯鞘型複合フィラメント及び中空フィラメントがそれぞれ63%及び37%であった。
【0050】
実施例5
酸化チタンを8重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり、芯鞘重量比率1/1のポリエステルの芯鞘型複合繊維フィラメント糸(75d/36f)を外層のカバリング繊維糸とし、酸化チタンを0.1重量%含有したポリエステルのファインデニール糸(75d/96f)を内層芯繊維糸として用いて、加工条件(9)でカバリング糸を作った。このカバリング糸で目付131g/m2 の天竺編地を作成し、染色した。この布帛はぬれたときの変色が大変小さいものであった。なお、このカパリング糸の表面構成繊維は、芯鞘複合フィラメント及びファインデニールフィラメントがそれぞれ75%及び25%であった。
【0051】
実施例6
酸化チタンを3重量%含有したポリエステルフィラメント糸(75d/36f)を加工条件(10)で加工した仮撚糸を外層のカバリング糸に、酸化チタンを0.1重量%含有したポリエステルフィラメント糸(75d/36f)を加工条件(11)で加工した仮撚糸を内層繊維糸とし、加工条件(9)で内層繊維糸をカバリングしてカバリング糸を作った。このカバリング糸で28GGのシングル編機で目付140g/m2 の天竺編地を作成し、染色した。この布帛はぬれたときの変色が小さく編立性も良好なものであった。なお、このカパリング糸の表面構成繊維は、酸化チタンを3重量%含有したポリエステルフィラメント及び酸化チタンを0.1重量%含有したポリエステルフィラメントがそれぞれ82%及び18%を占めるものであった。
【0052】
比較例1
酸化チタンを2重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比率1/1のポリエステルの芯鞘型複合繊維フィラメント糸(75d/36f)を外層、酸化チタンを0.1重量%含有したポリエステルのW形異形断面フィラメント糸(50d/30f)を内層とし、加工条件(1)を用いて2層断面複合仮撚糸を作った。なお、この複合糸の表面構成繊維は芯鞘型複合繊維フィラメント及びW形異形断面フィラメントがそれぞれ66%及び34%であった。この糸で28GGのシングル編機で目付120g/m2 の天竺編地を作成し、染色した。この布帛は編立加工性は良好なものの、ぬれたとき変色するものであった。
【0053】
比較例2
酸化チタンを16重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比率1/1のポリエステルの芯鞘型複合繊維フィラメント糸(75d/36f)をカバリング用糸とし、酸化チタンを0.1重量%含有したポリエステルのファインデニールフィラメント糸(75d/96f)を内層として、加工条件(9)でカバリングしカバリング糸を作った。このカバリング糸で目付131g/m2 の天竺編地を作成し、染色した。この布帛はぬれたときの変色は小さいものの編立加工性が著しく劣るものであった。なお、このカパリング糸の表面構成繊維中芯鞘複合フィラメントが75%、ファインデニールフィラメントが25%であった。
【0054】
比較例3
酸化チタンを1重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比率1/1のポリエステルの芯鞘型複合繊維フィラメント(75d/36f)を外層、酸化チタンを0.1重量%含有した中空率20%のポリエステルの中空糸(60d/12f)を内層とするエアー混繊糸を加工条件(3)を用いて作った。この糸で目付115g/m2 の天竺編地を作成し、染色した。この布帛は編立性は良好なものの、ぬれたとき変色するものであった。なお、このエア混繊糸の表面構成繊維は、芯鞘複合フィラメントが61%で残り中空フィラメントが39%であった。
【0055】
比較例4
酸化チタンを2重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比率1/1のポリエステル芯鞘型複合繊維フィラメント糸(75d/36f)を外層、酸化チタンを0.1重量%含有したポリエステルのファインデニールフィラメント糸(50d/96f)を内層とし、加工条件(4)エアー混繊糸を作った。この糸で目付118g/m2 の天竺編地を作成し、染色した。この布帛は編立性は良好なものの、ぬれたとき変色するものであった。なお、このエア混繊維時糸表面の構成繊維は、芯鞘複合フィラメントが68%、ファインデニールフィラメントが32%占めるものであった。
【0056】
比較例5
酸化チタンを3重量%含有した芯部と、酸化チタンを0.05重量%含有した鞘部からなり芯鞘重量比率1/1のポリエステルの芯鞘型複合繊維フィラメント糸(75d/36f)を外層、酸化チタンを0.1重量%含有したポリエステルフィラメント糸(50d/24f)を内層として用いて加工条件(2)で2層断面複合仮撚糸を作った。この糸で目付125g/m2 の天竺編地を作成し、染色した。この布帛は編立加工性は良好なものの、この編地はぬれたとき変色するものであった。なお、複合仮撚糸の表面構成繊維は、芯鞘型複合繊維フィラメントで70%、酸化チタンを0.1%含有したポリエステルで30%が占められていた。
【0057】
実施例7
酸化チタンを8重量%含有する芯部と酸化チタンを0.05重量%含有する鞘部からなり芯鞘重量比率1/1であるポリエステル芯鞘型複合繊維フィラメント糸(50d/36f)と酸化チタンを0.1重量%含有するポリエステルW形異形断面フィラメント糸(50d/30f)とを加工条件(1)で加工しポリエステル芯鞘型複合フィラメント糸を外層に配置した構造の複合仮撚糸を経糸に、前述同様の芯鞘型複合繊維フィラメント糸(75d/36f)の外層と、酸化チタンを0.1重量%含有するポリエステルW形異形断面フィラメント糸(75d/30f)を加工条件(1)で加工して得た2層断面複合仮撚糸を緯糸として用い、経糸密度140本(2.54cm当り)、緯糸密度85本(2.54cm当り)、目付121g/m2 の平織物を織成し、染色、吸水加工を行った。この布帛はぬれたときの変色が大変小さく、製織性は良好なものであった。なお、経糸及び緯糸は、共にその表面を構成する繊維の芯鞘型複合フィラメント成分が60%を占めるものであった。
【0058】
比較例6
酸化チタンを0.3重量%含有するポリエステルフィラメント糸(50d/36f)と酸化チタンを0.1重量%含有する異形度1.1のポリエステルY形断面フィラメント糸(50d/30f)を経糸として一本交互に配し、緯糸として75d/36fで酸化チタンを0.3重量%含有するポリエステルフィラメント糸と75d/36fで酸化チタンを0.1重量%含有する前述のポリエステルY形断面フィラメント糸を一本交互に打込み、経糸密度140本(2.54cm当り)、緯糸密度85本(2.54cm当り)、目付90g/m2 の平織物を作成し、染色、吸水加工を行った。この布帛は、ぬれたとき変色するものであった。
【0059】
【表1】
Figure 0003688087
【0060】
【発明の効果】
本発明の変色防止糸は、芯部に白色顔料を含む芯鞘複合繊維を外層に配置し、内層を吸水・拡散性繊維とした多層構造複合糸であるから、雨や汗等がかかって濡れても、滲み込んだ水によって糸の色が変わることがない。本発明の変色防止糸を用いることによって得られる編物、織物製品は、特別な組織、加工を経ないでも滲み込んだ水により著しく変色することがない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer structured yarn, and more particularly to a yarn having the performance of preventing discoloration due to water.
[0002]
[Prior art]
When wet or sweating, only the clothes, such as the shoulders, sides, and back, will be discolored, which may cause discomfort. Further, when the hem of pants or long pants is discolored due to splashes of puddles, the appearance is remarkably uncomfortable.
[0003]
On the other hand, core-sheath type composite fibers containing many white pigments in the core and fabrics using such fibers are known as fibers that are difficult to see even when wet (Japanese Patent Laid-Open No. 5-93343). However, these are intended to increase the light reflection of the fiber core by the white pigment and reduce the contribution of the reduction in the proportion of white light caused by the decrease in the refractive index of the fiber surface due to water. However, this fiber also has the drawback of discoloring when wet with water.
[0004]
Therefore, a yarn having the ability to prevent discoloration by water has not been known so far.
[0005]
[Problems to be solved by the invention]
An object of this invention is to provide the thread | yarn provided with the discoloration prevention property by water.
[0006]
[Means for Solving the Problems]
Before describing the configuration of the present invention, it is generally explained why the fiber changes color when wet.
When a human sees an object, the eye captures the combined light of the surface reflected light reflected by the surface of the object and the internally reflected light that enters the object and is reflected by the inner boundary surface. The surface reflected light is white light containing light of all the same wavelengths as the incident light, and the internally reflected light is colored light that has been absorbed by a dye with light of a specific wavelength. Here, it is known that the larger the ratio of white light, the more whitish, and the smaller the ratio of white light, the deeper the color. Water has a smaller refractive index (n = 1.33) than the fiber, but when the fiber is wetted with water, the fiber surface is covered with water to lower the refractive index, and the surface reflectance decreases. Therefore, it changes color when wet.
[0007]
As a result of intensive studies, the inventors of the present invention have used a core-sheath type composite fiber having a core part containing a white pigment as an outer layer, and a multilayer structure yarn using water-absorbing / diffusing fibers as an inner layer is sufficient for preventing discoloration. It was confirmed that it had an effect, and the present invention was reached.
That is, the present invention is a yarn having a multilayer structure of two or more layers, the outer layer is a core having a white pigment content of 3% by weight to 15% by weight and a white pigment content of 2% by weight or less. It is a multi-layer structured yarn characterized in that it is composed of a core-sheath type composite fiber having a sheath part, and its inner layer is composed of a fiber having water absorption and diffusibility.
[0008]
The multilayer structured yarn of the present invention refers to a composite layer structure of dissimilar fibers formed by outer layer fiber groups occupying the outer peripheral portion of the cross section of the yarn being entangled or wound around the water absorbing / diffusing fiber group of the inner layer inside. Here, the inner layer refers to a fiber layer disposed inside the yarn. The inner layer may be formed of one type of fiber, or two or more types of fibers may be used in a layered state or a mixed state.
[0009]
When two or more kinds of fibers are used in a layered state, the innermost fiber layer is a core layer, and the layer between the core layer and the outer layer is an intermediate layer. When several kinds of fibers are used in a layer state, there are a plurality of intermediate layers. In the multilayer structured yarn of the present invention, any one of these core layers and intermediate layers (both inner layers) may be composed of water-absorbing / diffusing fibers. In this case, it is preferable to dispose a fiber having water absorption / diffusibility and having excellent water absorption / diffusion toward the core side in order to further enhance the discoloration prevention function.
[0010]
A composite structure consisting of two or more inner layers consists of a structure in which fibers with high water diffusibility are used as an intermediate layer and fibers with high water absorbability (for example, artificial cellulose fibers) are used as a core layer. The structure which arrange | positions the big fiber in a core layer can be illustrated.
The composite of fibers by the multilayer structure of the present invention is a continuous filament fiber, a short fiber or these having an arbitrary regular single yarn fineness by applying a processing method such as an air blending method, a composite false twisting method, and a covering method, which will be described later. It is possible to form with a mixed fiber.
[0011]
The fineness or count of the multilayer structured yarn of the present invention is arbitrarily selected in a region that is commonly used as a normal outer knitted fabric or woven fabric yarn. In the formation of the multilayer structured yarn of the present invention, the composite ratio of the core-sheath composite fiber to be combined with the water-absorbing / diffusing fiber is 20 to 50% by weight, preferably 30 to 40% by weight of the water-diffusing fiber. Yes, the former number of single yarns is set to at least 10 or more, preferably 20 or more. The number of single yarns and the fineness or count thereof are arbitrarily selected in a region that is commonly used as a normal outer knitted fabric or woven yarn. The thickness of the yarn used in the present invention is preferably 30d to 150d in the case of multifilament and 10s to 40s (cotton count) in the case of spun yarn. The thread is not limited to this thickness.
[0012]
In the yarn of the present invention, the core disposed in the outermost layer has a core portion having a white pigment content of 3 wt% or more and 15 wt% or less and a sheath portion having a white pigment content of 2 wt% or less. It is important to prevent the discoloration due to water to be composed of the mold composite fiber.
Here, the white pigment to be added is not particularly limited, but it is necessary that the coloring property is not deteriorated even if dyed, and that the production of the raw yarn is not hindered. For example, metal oxides such as titanium oxide, zinc oxide, magnesium oxide, and calcium carbonate are desirable. In view of cost, titanium oxide is most suitable.
[0013]
It is important that the white pigment content in the core is 3% by weight to 15% by weight, but 5% by weight to 10% by weight is desirable. This is because when the white pigment in the core exceeds 15% by weight, the strength and elongation are markedly lowered, making it difficult to produce the raw yarn and pass through the weaving and weaving process. If it is less than 3% by weight, the effect of preventing discoloration of the present invention cannot be obtained.
Although the thickness of a core-sheath-type composite fiber is not specifically limited, 30-200 denier is preferable from the point on a weaving / weaving process.
[0014]
The core part and the sheath part may not have the same base polymer. For example, in the case of polyester core-sheath type composite fiber, only the sheath part may be a cationic dyeable polymer. Further, in the case of a polyamide core-sheath type composite fiber, the core part may be nylon 66 and the sheath part may be nylon 6. The core portion and the sheath portion may be combined concentrically or may be combined eccentrically. The core-sheath weight ratio is preferably in the range of 1/3 to 3/1, and more preferably 1/2 to 2/1. If it is less than 1/3, the effect of preventing discoloration may be reduced, and if it exceeds 3/1, it may be difficult to cover the core component with a sheath component during spinning.
[0015]
In the yarn of the present invention, the fact that the inner layer is composed of fibers having water absorption and diffusibility absorbs and diffuses water in the outermost layer of the yarn, so that the effect of preventing discoloration becomes even more important. Here, the fiber having water absorption / diffusibility refers to a fiber having a property of absorbing water and / or a property of diffusing water. In the present invention, water absorption refers to regeneration of regenerated cellulose fibers, wool, hemp, cotton, silk, etc., when the fiber substrate itself is based on the property of absorbing water, such as natural fibers, or formed of a hydrophobic polymer. It includes a water retention function on the surface of the fiber based on the surface area effect of the fiber form such as crimping, hollow structure, modified cross-section structure, etc. of the synthetic fiber, fine fiber, etc. The property of diffusing water refers to the performance of a fiber having a high water transferability on the fiber surface due to the form of the synthetic fiber and the capillary phenomenon of the fine fiber.
[0016]
The water-absorbing / diffusing fiber used in the present invention may be a short fiber or a long fiber.
As a fiber in which the fiber substrate has water absorption, natural fibers such as hair, cotton, hemp, silk, and artificial cellulose fibers have this property. In the case of artificial cellulose fibers, not only long fiber yarns but also processed yarns are used.
[0017]
When the water-absorbing / diffusing fiber is a synthetic fiber, the cross-sectional shape is L, C, W, Z, M, a long fiber yarn having a modified cross-sectional fiber such as a gear shape, its processed yarn, a porous fiber (hole A long fiber yarn having a rate of 5% to 40%) and a processed yarn thereof, or a fine denier long fiber yarn having a single yarn denier of 1.5 d or less and a processed yarn thereof may be used. In order to increase the water diffusibility by increasing the number of water passages in the composite yarn, the cross-sectional shape of the fiber is W or a gear-shaped variant, or hollow fibers having pores in the cross-section are used, or a single yarn denier It is better to increase the surface area of the fiber by fine denier.
[0018]
The degree of irregularity of the fiber in the present invention is preferably 1.2 or more and 2.2 or less, more preferably 1.4 or more and 2.2 or less.
If it is 1.2 or more, water diffusibility is remarkably superior to that of a round cross-section fiber, and if it exceeds 2.2, production stability such as spinnability is inferior, which is not preferable. The degree of irregularity is calculated by calculating the perimeter (perimeter length) of the cross-sectional area of the deformed fiber, then calculating the radius of the perfect circle having the same cross-sectional area, and calculating the perimeter of the true circle. .
[0019]
Degree of deformity = Perimeter of single yarn cross section of deformed fiber / Perimeter of perfect circle with the same cross-sectional area as the cross section of deformed fiber
On the other hand, when the long fiber yarn of synthetic fiber is processed and crimped, it is possible to obtain a synthetic fiber having improved water retention by physical retention of water by crimping. In this case, the crimp is low crimp, that is, the crimp elongation rate is 10% or less, preferably 5 to 7%. When the crimp is high, the space for physically holding water increases, but conversely, the water diffusibility is remarkably lowered, which acts negatively to prevent discoloration of the surface color of the yarn.
[0020]
By appropriately selecting the cross-sectional shape and processing conditions of the synthetic fiber in this way, the water absorption and diffusibility becomes a fiber that exceeds that of natural fiber and artificial cellulose fiber, and the water that has penetrated into the cross-section inner layer of the composite yarn can be accelerated. It is possible to suppress the change in the surface color of the composite yarn by diffusion dilution.
The inner layer constituting fiber of the composite yarn of the present invention is obtained by a measurement method described later, and it is preferable to use fibers having water absorption values and water diffusivity values of 2 cm or more and 10 cm or more, respectively. As for the irregular cross-section fiber of the synthetic fiber, a fiber having a water diffusibility value of 10 cm or more can be easily obtained by increasing the degree of irregularity. For example, in the case of a fiber having a single yarn denier of 1.7 d, preferably 1.5 d or less, a polyester fiber or nylon fiber having a W-shaped cross-section fiber having a degree of irregularity of 1.4 or more and a water diffusibility value of 15 cm or more is obtained. be able to. As for the porous fiber and the hollow fiber having the above-described porosity, a fiber having the water diffusibility value of the above level can be easily obtained. And irregular cross-section fiber, porous fiber, etc. show a water absorption of about 2.1 cm or more due to their morphological effects.
[0021]
Even a modified cross-section fiber having an irregularity of 1.1 to 1.4 can be obtained with a single yarn fineness of 1.7 d or less and a water diffusibility value of 12 cm or more. A fiber having a water diffusibility value of 10 cm or more and a water absorption value of 2 cm or more can be obtained even with a round cross-section fiber having a crimp elongation of 5 to 7%. The multilayer structured yarn of the present invention constitutes a composite inner layer with fibers having excellent water absorption and diffusibility, each having an evaluation value of water absorption and water diffusibility of 2 cm or more and / or 10 cm or more determined by the measurement method described later. Therefore, the water adhering to the surface of the yarn diffuses quickly in the yarn structure and does not form a water film on the fiber surface that causes the surface color of the yarn to change in particular. There is no color change. The knitted fabric obtained by the anti-discoloration yarn of the present invention has a color difference of 5 or less in colorimetric color difference between the color when dried and the color after being wet with water. It has also been found that this colorimetric color difference value shows a good correlation with the evaluation of the visual sensory test for water-wetting discoloration of the discoloration preventing yarn of the present invention.
[0022]
The multi-layer structure yarn of the anti-discoloration yarn of the present invention is a composite spinning method such as composite false twisting, interlacing, taslan processing, etc., air blending method, twisting method, single or double covering method, silofil, silo span, etc. It can be easily prepared by twisting, spinning, or the like.
When the fibers to be combined are long fiber yarns, it is convenient to use a composite false twist method or an air mixed fiber method. Non-heat-shrinkable synthetic continuous fiber yarn containing white pigment in the core-sheath type as the outer layer forming raw yarn, for example, interlace false twisting machine with polyester deformed cross-section yarn, Taslan false twisting machine, A method of making a mixed fiber false twisted yarn under the condition of overfeeding the former more than a modified polyester cross-section yarn, or forming an inner layer of a non-heat-shrinkable synthetic continuous fiber yarn containing a white pigment in the core-sheath type as an outer layer forming raw yarn A predetermined multilayer structure yarn can be prepared by a method in which an interlace machine and a taslan processing machine are processed together with a polyester modified cross-section yarn for use under the condition that the former, that is, the former is more over-fed than a polyester modified cross-section yarn.
[0023]
Further, a multi-structured yarn can be formed by so-called different shrinkage blending by applying an air blending method using a highly shrinkable polyester long fiber yarn as the inner layer forming raw yarn. In this case, it is not necessary to provide a feed rate difference between the supply of the outer layer forming raw yarn and the inner layer forming raw yarn.
The multilayer structure yarn of the present invention can also be prepared by covering a non-heat-shrinkable synthetic long fiber yarn containing a white pigment in a core-sheath type with a long fiber yarn or spun yarn by a twisting machine or a covering machine. Further, a three-layer composite yarn can be prepared by covering the long fiber composite yarn combined by the air blending method to cover the outer layer.
[0024]
Among the preparation methods of the multilayer structured yarn of the present invention exemplified above, from the viewpoint of productivity, the composite false twisting method and the air blending method are applied using continuous multifilament yarns as outer layer and inner layer or intermediate layer forming yarns. The method is the most preferred method.
When the multi-layer structured yarn of the present invention is made into a fabric form by knitting and then subjected to hydrophilic processing and water absorption processing generally used for synthetic fibers, the affinity for water is further improved. The effect of preventing discoloration can be further increased by being more easily diffused without delay. Examples of this processing method include a hydrophilizing agent or a water absorbing agent mainly composed of a hydrophilic copolymer such as SR series manufactured by Takamatsu Yushi Co., Ltd., Fine Set F-101 manufactured by Senka Co., Ltd. There is a method of adding -5% owf.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
The conditions for dyeing used in Examples 1 to 7 and Comparative Examples 1 to 6, and the conditions for water absorption processing used in Examples 2 and 7 and Comparative Example 6 are as follows. Moreover, the example of the process conditions of the suitable thread | yarn from which the effect of this invention is acquired is also shown. The yarn manufacturing methods used in the examples and comparative examples are included in the following processing conditions. Table 1 summarizes the evaluation of the knitted fabrics produced using the yarns obtained in the examples and comparative examples.
[0026]
Figure 0003688087
[0027]
Figure 0003688087
[0028]
(3) Yarn processing conditions
(1) Processing condition (1): Compound false twist condition (interlace false twist)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 1%, the feed rate of the outer layer yarn is 4%, and the air pressure is 2.0 kg / cm.2 After the interlace processing, the material was subjected to false twisting with a Murata machine 33H false twisting machine at DR = 1.04 times, a processing speed of 400 m / min, a twist number of 2400 T / M, and a heater temperature of 180 ° C.
[0029]
(2) Processing condition (2): Compound false twist condition (Taslan false twist)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 5%, the feed rate of the outer layer yarn is 15%, and the air pressure is 7.0 kg / cm.2 After performing the taslan processing, a false twisting was performed with a Murata Machine 33H false twisting machine at DR = 1.04 times, a working speed of 400 m / min, a twist number of 2400 T / M, and a heater temperature of 180 ° C.
[0030]
(3) Processing conditions (3): Air mixing condition (interlace)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 1%, the feed rate of the outer layer yarn is 4%, and the air pressure is 2.0 kg / cm.2 And interlaced.
(4) Processing conditions (4): Air mixing conditions (Taslan)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 5%, the feed rate of the outer layer yarn is 15%, and the air pressure is 7.0 kg / cm.2 Taslan processing.
[0031]
(5) Processing conditions (5): Different shrinkage blending conditions (interlace)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 1.5%, the feed rate of the outer layer yarn is 1.5%, and the air pressure is 2.0 kg / cm.2 And interlaced.
(6) Processing conditions (6): Different shrinkage and fiber mixing conditions (Taslan)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 10%, the feed rate of the outer layer yarn is 10%, and the air pressure is 7.0 kg / cm.2 And interlaced.
[0032]
(7) Processing conditions (7): Different shrinkage mixed fiber false twist conditions (interlace false twist)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 1.5%, the feed rate of the outer layer yarn is 1.5%, and the air pressure is 2.0 kg / cm.2 After the interlace processing, the material was subjected to false twisting with a Murata machine 33H false twisting machine at DR = 1.04 times, a processing speed of 400 m / min, a twist number of 2400 T / M, and a heater temperature of 180 ° C.
[0033]
(8) Processing conditions (8): Different shrinkage mixed fiber false twist conditions (Taslan false twist)
Using a Murata 33H false twisting machine, the feed rate of the inner layer yarn is 10%, the feed rate of the outer layer yarn is 10%, and the air pressure is 7.0 kg / cm.2 After performing the taslan processing, a false twisting was performed with a Murata Machine 33H false twisting machine at DR = 1.04 times, a working speed of 400 m / min, a twist number of 2400 T / M, and a heater temperature of 180 ° C.
[0034]
(9) Processing conditions (9): Covering
A single covering machine (SSD) manufactured by Katayama Machinery Co., Ltd. with a spindle speed of 15,000 rpm and an outer layer yarn twist of Z-1500 T / M is used as the inner layer yarn at a yarn feed speed of 10 m / min. Covered.
(10) Processing conditions (10): False twist processing conditions
Using Mitsubishi LS-2, spindle rotation speed 250,000rpm, twist number Z-3200T / M, first heater temperature 190 ° C, second heater temperature 180 ° C, and relaxation rate 12%. % Of processed yarn.
[0035]
(11) Processing conditions (11): False twisting conditions
Using Mitsubishi LS-2, spindle rotation speed 250,000rpm, twist number Z-3200T / M, first heater temperature 190 ° C, second heater temperature 180 ° C, relaxed rate 6%, and false twisting rate 7-8 % Of processed yarn.
[0036]
(4) Measurement of water absorption and water diffusibility of the fiber used
(1) Measurement of fiber water absorption
When the used fiber is a filament yarn (long fiber yarn), the single yarn denier same as the filament yarn used in the examples and comparative examples is bundled, and the total denier is 75d ± 5d. A yarn for use is prepared, a 300 T / m twist is applied to the yarn, set with steam at 100 ° C. for 15 minutes, and after drying, left at 20 ° C. and a humidity of 65% RH for 24 hours to adjust the sample yarn.
[0037]
When the used fiber is a short fiber, a yarn having a thickness and a twist corresponding to the cotton yarn 10s having a twist of a twist number per m so that the twisting coefficient represented by the following formula is 120 is adjusted by using a combined yarn to obtain a sample yarn. .
T = α√N
T: Number of twists per m, N: Cotton count, α: Twist factor
50 cm is taken from this sample yarn as a measurement sample, the upper end is fixed, a load of 0.1 g / d is applied to the lower end, the lower end is immersed in water (room temperature), and after 10 minutes, the vertical distance ( cm). Evaluation is performed with an average value of 10 measurement samples. When this wicking distance is 2 cm or more, it is evaluated that the water absorption is good.
[0038]
(2) Measurement of water diffusibility of fibers
It is measured using the sample yarn prepared by measuring the water absorption of the fiber. Take 1 m of the sample yarn, fix one end of the yarn, fix the other end to the pulley, apply a load of 1 g / d, and stretch the yarn horizontally. Add 0.01 cc of water near the center of the thread under tension, and measure the horizontal movement distance (cm) of water after 10 minutes. The measurement was performed at 20 ° C. and a humidity of 65% RH, and water diffusivity was evaluated by averaging 10 measured values. A yarn having a moving distance of 10 cm or more is evaluated as having good water diffusibility.
[0039]
(3) Measurement of water diffusibility of knitted fabric
The water diffusibility of the knitted fabric with composite yarn was set by the following method.
A white knitted fabric was obtained through the steps of scouring / drying or scouring / water-absorbing / drying except for the dyeing step from the step of dyeing the knitted fabric with the composite yarn.
This knitted (woven) fabric is cut into 10 cm × 10 cm, and 0.2 cc of colored water at room temperature is dropped using a micropipette from the surface layer so that the tip of the tip is located at a height of 2 cm from the fabric. Diffusion area (cm)2) Is calculated as the water diffusibility value of the knitted (woven) fabric. This water diffusivity value is 15cm2 The above knitted (woven) article is evaluated as having good water diffusibility.
[0040]
The colored water was prepared by diluting 0.1 g of Diacid Alizarine Light Blue 4GL (Dyster dye) with 100 ml of distilled water. This dye is soluble in water and has a low molecular weight.
[0041]
(5) Discoloration evaluation of knitted fabric with composite yarn
▲ 1 Color difference of wet and dry knitted fabric
Surface color of sample (standard) and wet sample (trial) of knitted (woven) fabric obtained by knitting (weaving) dry composite yarn using C light source with colorimeter Macbescara Eye 3000 manufactured by Sakata Inx Co., Ltd. Perceptual chromaticity index a*, B*And brightness L*The color difference between both samples was measured and calculated by the following formula. Fold a 10cm x 10cm dry sample, measure the color by applying light from a C light source after a colorimetric spot with a diameter of 2.5cm, and then apply 1 ml of water to the surface of the fabric for 30 seconds. The surface color of the wetted surface was measured in the same manner.
(△ E *) = {(△ L *)2 + (△ a *)2 + (△ b *)2 }1/2
[0042]
(2) Sensory evaluation of discoloration of knitted (woven) fabric
Evaluation of the degree of discoloration by visual observation of the panel of five persons was divided into the following five evaluation criteria and evaluated. The thickness of the yarn used in the present invention is preferably 30d to 150d in the case of multifilament and 10s to 40s (cotton count) in the case of spun yarn. The thread is not limited to this thickness.
[0043]
In order from the smallest discoloration,
◎ ↑ There is no difference in surface color between dry and wet.
◎ 殆 ど Almost no.
○ 〃 Not very much.
△ 〃 Somewhat.
× 大 い に There are many.
It was.
[0044]
In the visual evaluation described above, the larger the color difference between the surface colors of the dry and wet samples, the more uncomfortable. When the colorimetric color difference (ΔE *) between the dry and wet samples is 5 or less, a good visual evaluation judgment is obtained.
[0045]
(6) Measurement of constituent fibers of composite yarn
The side surface of the composite yarn was photographed, the photograph was subjected to image processing analysis, and the constituent fiber percentage of the composite yarn surface was determined.
[0046]
Example 1
Polyester core-sheath type composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 8% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide is used as an outer fiber. And a W-shaped cross-section filament yarn (50d / 30f) containing 0.1% by weight of titanium oxide was used as the inner layer fiber, and a composite false twisted yarn having a two-layer structure with the former as the outer layer was made under the processing conditions (1). . The surface constituent fibers of the composite yarn were 66% and 34% of the polyester core-sheath type composite filament and the W-shaped cross-section filament, respectively. With this yarn, a weight of 120 g / m with a 28 GG single knitting machine2 Tenji knitted fabric was made and dyed. This fabric had very little discoloration when wet and had good knitting properties.
[0047]
Example 2
A polyester core-sheath type composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 8% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide, Using a polyester W-shaped irregular cross-section filament yarn (50d / 30f) containing 0.1% by weight of titanium oxide as the inner layer, a composite false twisted yarn having a two-layer structure with the former as the outer layer constituting fiber under the processing conditions (1) is made. It was. 120 g / m of fabric weight with this thread2 After making and dyeing a tengu knitted fabric, water absorption processing was performed. This fabric had very little discoloration when wet, did not feel wet, and had good knitting properties. The percentages of the surface constituent fibers of the composite false twisted yarn were 66% and 34% for the polyester core-sheath composite fiber filament and the polyester W-shaped irregular cross-section filament, respectively, as in Example 1.
[0048]
Example 3
A polyester core-sheath composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 3% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide, A two-layer cross-sectional composite false-twisted yarn having a polyester W-type modified cross-section filament yarn (50d / 30f) containing 0.1% by weight of titanium oxide as an inner layer was produced under processing conditions (2). With this thread, the basis weight is 128g / m.2 Tenji knitted fabric was made and dyed. This fabric was small in discoloration when wet and had good knitting properties. The ratio of the surface constituent fibers of this composite yarn was 67% for the core-sheath composite fiber filament and 33% for the W-shaped irregular cross-section filament.
[0049]
Example 4
Polyester core-sheath composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 10% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide as an outer layer An air mixed yarn containing 0.1% by weight of titanium oxide and having a hollow filament yarn (60d / 12f) of polyester having a hollow ratio of 20% and having concentric pores as an inner layer was produced under processing conditions (4). With this thread, the basis weight is 113g / m.2 Tenji knitted fabric was made and dyed. This fabric had a very small discoloration when wet and was good. The constituent fibers on the surface of the blended yarn were 63% and 37% of the core-sheath composite filament and the hollow filament, respectively.
[0050]
Example 5
A core-sheath composite fiber filament yarn (75d / 36f) of polyester having a core-sheath weight ratio of 1/1, comprising a core part containing 8% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide. A covering yarn was produced under the processing condition (9) using an outer layer covering fiber yarn and a polyester fine denier yarn (75d / 96f) containing 0.1% by weight of titanium oxide as an inner layer core fiber yarn. With this covering thread, the basis weight is 131 g / m.2 Tenji knitted fabric was made and dyed. This fabric had very little discoloration when wet. The surface-constituting fibers of the coupling yarn were 75% and 25% of the core-sheath composite filament and fine denier filament, respectively.
[0051]
Example 6
A false twisted yarn obtained by processing a polyester filament yarn (75d / 36f) containing 3% by weight of titanium oxide under the processing condition (10) is used as a covering yarn for the outer layer, and a polyester filament yarn (75d / 36%) containing 0.1% by weight of titanium oxide. The false twisted yarn processed in 36f) under the processing condition (11) was used as an inner layer fiber yarn, and the inner layer fiber yarn was covered under the processing condition (9) to produce a covering yarn. With this covering yarn, the basis weight is 140 g / m with a 28 GG single knitting machine.2 Tenji knitted fabric was made and dyed. This fabric had small discoloration when wet and good knitting properties. The surface-constituting fibers of the coupling yarn were composed of 82% and 18% polyester filaments containing 3% by weight of titanium oxide and polyester filaments containing 0.1% by weight of titanium oxide, respectively.
[0052]
Comparative Example 1
Polyester core-sheath composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 2% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide as an outer layer A polyester W-shaped irregular cross-section filament yarn (50d / 30f) containing 0.1% by weight of titanium oxide was used as the inner layer, and a two-layer cross-section composite false twist yarn was produced using the processing conditions (1). The surface-constituting fibers of the composite yarn were 66% and 34% of the core-sheath type composite fiber filament and the W-shaped irregular cross-section filament, respectively. With this yarn, a weight of 120 g / m with a 28 GG single knitting machine2 Tenji knitted fabric was made and dyed. This fabric had good knitting workability but discolored when wet.
[0053]
Comparative Example 2
Covering polyester core-sheath composite fiber filament yarn (75d / 36f) with a core-sheath weight ratio of 1/1 comprising a core containing 16% by weight of titanium oxide and a sheath containing 0.05% by weight of titanium oxide. As a working yarn, a polyester fine denier filament yarn (75d / 96f) containing 0.1% by weight of titanium oxide was used as an inner layer and covered under the processing condition (9) to prepare a covering yarn. With this covering thread, the basis weight is 131 g / m.2 Tenji knitted fabric was made and dyed. Although this fabric had small discoloration when wet, the knitting workability was remarkably inferior. In this coupling yarn, the surface-constituting fiber core-sheath composite filament was 75%, and the fine denier filament was 25%.
[0054]
Comparative Example 3
A core-sheath type composite fiber filament (75d / 36f) of polyester having a core-sheath weight ratio of 1/1 comprising a core part containing 1% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide, An air blended yarn containing 0.1% by weight of titanium oxide and having a hollow ratio of 20% polyester hollow fiber (60d / 12f) as an inner layer was produced using the processing condition (3). 115 g / m per unit weight with this thread2 Tenji knitted fabric was made and dyed. This fabric had good knitting properties but discolored when wet. In addition, as for the surface constituent fiber of this air mixed yarn, the core-sheath composite filament was 61% and the remaining hollow filament was 39%.
[0055]
Comparative Example 4
A polyester core-sheath type composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 2% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide, Polyester fine denier filament yarn (50d / 96f) containing 0.1% by weight of titanium oxide was used as the inner layer, and processing conditions (4) air-mixed yarn was produced. With this thread, the basis weight is 118g / m.2 Tenji knitted fabric was made and dyed. This fabric had good knitting properties but discolored when wet. In addition, the constituent fibers on the surface of the air-mixed fiber yarn were composed of 68% of the core-sheath composite filament and 32% of the fine denier filament.
[0056]
Comparative Example 5
Polyester core-sheath type composite fiber filament yarn (75d / 36f) having a core-sheath weight ratio of 1/1 comprising a core part containing 3% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide as an outer layer Using a polyester filament yarn (50d / 24f) containing 0.1% by weight of titanium oxide as an inner layer, a two-layer cross-sectional composite false twisted yarn was produced under the processing condition (2). With this thread, the basis weight is 125 g / m.2 Tenji knitted fabric was made and dyed. Although this fabric had good knitting workability, this knitted fabric was discolored when wet. The surface constituent fibers of the composite false twisted yarn were 70% core-sheath composite fiber filaments and 30% polyester containing 0.1% titanium oxide.
[0057]
Example 7
Polyester core-sheath type composite fiber filament yarn (50d / 36f) having a core part containing 8% by weight of titanium oxide and a sheath part containing 0.05% by weight of titanium oxide and having a core-sheath weight ratio of 1/1 and titanium oxide Polyester W-shaped cross-section filament yarn (50d / 30f) containing 0.1% by weight is processed under the processing condition (1), and a composite false twisted yarn having a structure in which a polyester core-sheath type composite filament yarn is arranged in the outer layer is used as a warp The outer layer of the core-sheath type composite fiber filament yarn (75d / 36f) as described above and the polyester W-shaped irregular cross-section filament yarn (75d / 30f) containing 0.1% by weight of titanium oxide are processed under the processing conditions (1). Using the two-layer cross-sectional composite false twisted yarn obtained as a weft, the warp density is 140 (per 2.54 cm), the weft density is 85 (per 2.54 cm), and the basis weight is 121 g / m.2 A plain fabric was woven, dyed and water-absorbed. This fabric had very little discoloration when wet and had good weaving properties. In both the warp and the weft, the core-sheath composite filament component of the fibers constituting the surface accounted for 60%.
[0058]
Comparative Example 6
A polyester filament yarn (50d / 36f) containing 0.3% by weight of titanium oxide and a polyester Y-shaped filament yarn (50d / 30f) having a deformity of 1.1 containing 0.1% by weight of titanium oxide are used as warps. One of the polyester Y yarns having a cross section of 75% / 36f and containing 0.3% by weight of titanium oxide and 75d / 36f of the above-mentioned polyester Y-shaped filament yarn containing 0.1% by weight of titanium oxide. Alternately driven, 140 warp density (per 2.54 cm), 85 weft density (per 2.54 cm), 90 g / m2 A plain woven fabric was prepared and dyed and water-absorbed. This fabric was discolored when wet.
[0059]
[Table 1]
Figure 0003688087
[0060]
【The invention's effect】
The discoloration prevention yarn of the present invention is a multilayered composite yarn in which a core-sheath composite fiber containing a white pigment in the core is arranged in the outer layer and the inner layer is a water-absorbing / diffusible fiber. However, the color of the thread does not change due to the soaking water. The knitted or woven product obtained by using the anti-discoloration yarn of the present invention is not significantly discolored by the soaked water even without passing through a special structure or processing.

Claims (1)

二層以上の多層構造を有する糸であって、外層が白色顔料の含有量が3重量%以上15重量%以下の芯部と、白色顔料の含有量が2重量%以下の鞘部を有する芯鞘型複合繊維で構成され、内層が吸水・拡散性の繊維で構成されてなることを特徴とする多層構造糸。A yarn having a multilayer structure of two or more layers, wherein the outer layer has a core portion having a white pigment content of 3 wt% to 15 wt% and a sheath portion having a white pigment content of 2 wt% or less A multilayer structure yarn comprising a sheath-type composite fiber, and an inner layer comprising water-absorbing / diffusing fibers.
JP02078397A 1996-02-09 1997-02-03 Multi-layered yarn Expired - Fee Related JP3688087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02078397A JP3688087B2 (en) 1996-02-09 1997-02-03 Multi-layered yarn

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2358896 1996-02-09
JP1299597 1997-01-27
JP8-23588 1997-01-27
JP9-12995 1997-01-27
JP02078397A JP3688087B2 (en) 1996-02-09 1997-02-03 Multi-layered yarn

Publications (2)

Publication Number Publication Date
JPH10266031A JPH10266031A (en) 1998-10-06
JP3688087B2 true JP3688087B2 (en) 2005-08-24

Family

ID=27280077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02078397A Expired - Fee Related JP3688087B2 (en) 1996-02-09 1997-02-03 Multi-layered yarn

Country Status (1)

Country Link
JP (1) JP3688087B2 (en)

Also Published As

Publication number Publication date
JPH10266031A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
EP2927357A1 (en) Polyamide crimped yarn for clothing and woven or knitted fabric for clothing comprising same
WO1999049111A1 (en) Synthetic fiber capable of absorbing and desorbing moisture, entangled yarn blend using the same, knitted and woven goods using thesame, and nonwoven fabric using the same
TW202206658A (en) Multi-layer section composite fiber and fabric thereof having excellent anti-permeability, anti-ultraviolet, heat shielding performance and excellent resistance to water infiltration and discoloration
JPH09273045A (en) Cloth having multiple layered structure
JPH1025642A (en) Cloth having multi-layered structure
JP3688087B2 (en) Multi-layered yarn
JP2001020159A (en) Refreshing knit fabric
JP4012278B2 (en) Multilayer fabric
JP2808829B2 (en) Composite filament yarn of polyester filament yarn and wool
JP2003082543A (en) Composite false-twist yarn and method for producing the same and fabric with self-controllable breathability
JP3809247B2 (en) Elastic knit
JPH0680217B2 (en) Unevenly distributed water absorbent fabric
JPH10219551A (en) Multilayered structural fabric containing artificial cellulosic fiber
JP3859269B2 (en) Multi-layer structure yarn
JPH09273039A (en) Discoloration-proof textile product
JPH10266030A (en) Yarn for preventing discoloration
JP3981176B2 (en) Discoloration prevention mixed yarn
JP3805052B2 (en) Anti-discoloration mixed fabric
JPH10219537A (en) Yarn for preventing discolor
JP4228112B2 (en) Fabrics and textiles with excellent moisture absorption / release properties
JPH10212639A (en) Conjugate fabric for preventing change in color
JPH10266032A (en) Yarn for preventing discoloration
JP3883283B2 (en) Hygroscopic crimped yarn
JP3532700B2 (en) Multi-layer structure yarn
JP5357859B2 (en) Long / short composite spun yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees