JP3687789B2 - 物質濃度計測装置 - Google Patents
物質濃度計測装置 Download PDFInfo
- Publication number
- JP3687789B2 JP3687789B2 JP2003002995A JP2003002995A JP3687789B2 JP 3687789 B2 JP3687789 B2 JP 3687789B2 JP 2003002995 A JP2003002995 A JP 2003002995A JP 2003002995 A JP2003002995 A JP 2003002995A JP 3687789 B2 JP3687789 B2 JP 3687789B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- liquid
- urine
- enzyme
- polarographic cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Description
【発明の属する技術分野】
本発明は、電気化学的な作動原理のセンサを用いて液体中の物質濃度を計測する装置に関する。特には、センサの飽和出力と物質濃度との関係が物質濃度がある程度以上になるとフラットになる特性(物質濃度が変化しても飽和出力がほとんど変化しない特性、本明細書中で頭打ち特性と言う)を生じる測定環境下において、サンプル液を希釈しなくても有効な測定を行うことのできる物質濃度計測装置に関する。より詳しくは、本発明は、一般家庭における簡便かつ高精度な検尿装置に関する。
【0002】
【従来技術】
化学物質の測定方法として、酵素を用いた電気化学的測定方法すなわちバイオセンサによる測定が知られている。バイオセンサは、固定化生体触媒と電極などの物理化学デバイスから構成される。高分子膜や無機担体膜に酵素を共有結合させること等により酵素を膜に固定化して酵素固定化膜を調製し、この固定化酵素膜を例えば酵素電極のガス透過性テフロン(登録商標)膜上に装着することによって電極型の酵素センサすなわちバイオセンサを製作することができる。
【0003】
このセンサは通常試料液(サンプル液)中に浸漬して測定を行う(バッチ方式)ことが可能であるが、連続的に測定を行ったり、あるいは多数のサンプルを測定するような場合にはフローシステム(FIA)の方が適している。
【0004】
この場合には、この酵素センサを通液型のセル(フローセル)中に挿入する。セルには連続的に緩衝液を移送しておき、途中の注入部(インジェクター)から試料液を注入する。この試料液はフローセルに移送され酵素膜と接触する。ここで、酵素反応によって酸素が消費され、これの濃度変化を電極で測定すれば試料中の化学物質を電流値として測定することができる。
【0005】
これらの測定原理を利用した化学物質測定装置として、フロー型測定装置が開示されている(図17、例えば、特許文献1参照)。開示されたフロー型測定装置は、酵素電極を備えた測定用セル75と、緩衝液を貯蔵する緩衝液リザーバ71、送液ポンプ72、サンプリングループを装着した試料注入装置73、試料を緩衝液を混合・希釈する希釈混合用配管74、廃液リザーバ76を備え、酵素電極の作用電極の電位を規制し、電流の検出を行うポテンショスタットを利用して試料中の物質濃度を測定するようになっている。
【0006】
これらの装置を利用することによって、試料中に含まれる化学物質を精度良く測定することが可能であるが、試料のサンプリング・注入に際してはFIA方式が気泡の混入に弱く、サンプリング量に関しても高精度の再現性を要求されるために装置が複雑・高価なものとなっている。また、試料を緩衝液の流れの中に打ち込むために一般に2ccから10ccほどの緩衝液を1回の測定に必要とし、ある程度の使用頻度に対応するためには緩衝液の貯蔵及び廃棄用のタンクに一定の容量が要求されている。
【0007】
以上のような要因が装置の小型化を阻んでおり、簡便で安価な測定装置の提供ならびに一般家庭への普及を妨げてきた。
【0008】
簡便な測定を実現するために、試料の希釈を必要としない原液測定が考えられる。原液の最もポピュラーな測定方法は試薬を含浸させた試験紙を利用した測定方法である。試験紙を利用した測定方法はその簡便さから検査等に広く普及している。しかしながら試験紙の呈色度合いは人間の目によって判断されるため一般人には判断が難しく、したがって一般家庭に普及させるには分析精度において課題が生じていた。
【0009】
酵素センサを試料原液に直接浸漬させて測定する場合を、人間の尿中の糖分測定を例にとって説明する。選択透過膜を塗布した白金電極上に、GOD(グルコースオキシダーゼ)を固定化した酵素膜を装着することによって酵素センサを構成する。
【0010】
この酵素センサに尿を接触させると、酵素膜において以下の反応が起る。
C6H12O6+O2→C6H10O6+H2O2・・(1)
C6H12O6:グルコース(ブドウ糖)
C6H10O6:グルコン酸
この反応で生じたH2O2(過酸化水素)は選択透過膜を通って電極に至り、以下の反応により分解する。
H2O2→H2O+1/2O2+e-・・・・(2)
この反応により生じた電流を検出することにより尿中のグルコース濃度を計ることができる。
【0011】
ところが、尿中の溶存酸素濃度は限られているため、グルコース濃度が約50mg/dlを越えると、上記(1)の反応が頭打ちとなってしまい、その結果当然(2)の反応及び電流も頭打ちとなる。そのためグルコース濃度を横軸に取り、センサ出力電流(飽和値)を縦軸に取って両者の関係を調べると、図10のグラフの“バッチ法”と示されている線のように、グルコース濃度50mg/dlまでは斜めに立上がるが、それを越えると、グルコース濃度の増加にもかかわらず、センサ出力電流がほぼ一定のいわばフラットな特性になってしまう。
【0012】
【特許文献】
特開平02−122254号公報
【0013】
【発明が解決しようとする課題】
酵素センサを試料原液に直接浸漬させて物質濃度を電気化学的に測定する方法の問題点は、測定濃度範囲が狭いことである。先の例にしたがえば、尿糖の測定では濃度10〜800mg/dlの範囲にわたって計測が可能でなければ、糖尿病等の検査が満足に行えない。
【0014】
本発明は、頭打ち特性のある計測環境下においてサンプル液を希釈しなくとも有効な計測を行うことのできる物質濃度計測装置を提供することを目的とする。また、センサ寿命が長く、簡便・小型の物質濃度計測装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解決するため、 本発明の物質濃度計測装置は、 測定対象物質を含有するサンプル液を採取するサンプル採取部と、 サンプル液中の測定対象物質の成分を反応させる酵素を担持した作用極を備え、反応生成物の発生量に応じた電気信号を出力するポーラログラフ・セルと、 サンプル液を前記ポーラログラフ・セルに搬送するためのキャリア液を収容するキャリア液タンクと、 前記サンプル液とキャリア液を前記ポーラログラフ・セルに搬送するポンプを有する搬送手段と、 前記ポーラログラフ・セルの出力信号に基づいてサンプル液中の前記測定対象物質の含有量を演算するための演算手段を備えてなり; 前記サンプル採取部、前記ポーラログラフ・セル、及び、前記搬送手段は、この順に連通する管路によって接続されており、 計測開始時には、前記管路は前記キャリア液で満たされており、 前記キャリア液を前記搬送手段で移送することにより前記サンプル液を前記管路に吸引して、該サンプル液が前記ポーラログラフ・セルに接触し、
前記ポーラログラフ・セルのセンサ出力が前記サンプル液の飽和出力に達する以前に、前記キャリア液の移送を停止し、その後に前記搬送手段でキャリア液を逆方向に移送して前記管路内の前記サンプル液を押し出す形でサンプル採取部から外に排出することを特徴とする。
【0020】
本発明の物質濃度計測装置においては、 前記サンプル液が人間の尿であり、前記酵素が尿サンプル中のグルコ−スを酸化する酵素であり、 前記ポーラログラフ・セルが、グルコ−スの酸化により生成する過酸化水素の発生量に応じた電気信号を出力することが好ましい。
【0021】
本発明の物質濃度計測装置においては、 前記サンプル液が、食品工業生成液、食品分解液、または食品抽出液であり、 前記酵素が、サンプル中のL−乳酸を酸化する酵素であり、 前記ポーラログラフ・セルが、L−乳酸の酸化により生成する過酸化水素の発生量に応じた電気信号を出力することが好ましい。
【0022】
本発明の物質濃度計測装置においては、 前記サンプル液が、調理品、調理過程品、またはそれらの抽出液であり、 前記酵素が、サンプル中のL−グルタミン酸を酸化する酵素であり、 前記ポーラログラフ・セルが、L−グルタミン酸の酸化により生成する過酸化水素の発生量に応じた電気信号を出力することが好ましい。
【0023】
本発明の物質濃度計測装置においては、 さらに、前記ポーラログラフ・セルを較正するための較正液を収容する較正液タンクを備えることが好ましい。
【0024】
本発明の物質濃度計測装置においては、 前記キャリア液が、前記ポーラログラフ・セルの安定的な作動を保証する作用及び保存作用を備えた緩衝液であることが好ましい。
【0025】
本発明の物質濃度計測装置においては、 前記サンプル採取部が、表面に開口する採尿孔を有する棒状採尿部として形成されており、 被験者の尿サンプリング開始指令が入力される入力部を有し、該指令入力があった場合に、前記搬送手段を駆動して、採尿孔にキャリア液を供給するよう制御する制御手段を、さらに具備することが好ましい。
【0026】
本発明の物質濃度計測装置においては、 前記採尿孔の開口径が0.5〜10mmであることが好ましい。
【0027】
本発明の物質濃度計測装置においては、 前記採尿孔が外拡がりの円錐形として前記棒状採尿部表面に形成されていることが好ましい。
【0028】
本発明の物質濃度計測装置においては、 前記採尿孔の開口端が面取り又はR処理されていることが好ましい。
【0029】
本発明の物質濃度計測装置においては、 前記棒状採尿部は、先端が球面状に丸められた円柱形であり、前記採尿孔の開口の1部が、該球面状に丸められた部分(先端球面部)にかかるように、前記採尿孔が形成されていることが好ましい。
【0030】
本発明の物質濃度計測装置においては、 前記棒状採尿部の採尿孔周囲が、疎水性の材料で形成されていることが好ましい。
【0031】
【発明の実施の形態】
本発明の上記特徴や効果、ならびに、他の特徴や効果は、以下の実施例の記載に従いより詳しく説明する。
【0032】
図1は、本発明の原理を簡略に示した図である。
図2は、本発明の一実施例に係る物質濃度計測装置の作動の一態様を説明する模式図である。
図3は、図1の物質濃度計測装置を用いて計測を行う場合の手順を示すフローチャートである。
図1の物質濃度計測装置は、サンプル原液と接触して電気化学的な原理によって作動するセンサ1と、センサ1のセンシング面を含むとともにサンプル給排口6を有するサンプル管8と、このサンプル管8のサンプル給排口6とは反対端に設けられた三方弁2と、緩衝液を貯蔵する緩衝液タンク4と、緩衝液タンク4と三方弁2をつなぐ緩衝液管9と、緩衝液を吸引及び吐出するポンプ3と、ポンプ3と三方弁2をつなぐポンプ吸吐管10とを、具備する。
【0033】
センサ1は酵素固定化膜を備えたポーラログラフ・セルによりサンプル液中の物質を定量分析するように構成されている。図4の分解図から良くわかるように、ポーラログラフ・セルは、プラスチックなどからなる基板20と、電極を担持したセラミック基板21と、シリコーンゴムなどからなるスペーサ22と、ABS樹脂などからなる取替部32とを、接着等により互いに一体的に液密に締結することにより構成することができる。セラミック基板21は、例えばアルミナセラミックスからなり、金属ペーストの印刷と焼結により、白金の作用極23と白金の対極24と銀/塩化銀の参照極25とが形成されている。夫々の電極には端子26が形成されており、これらの端子26には、取替部32に設けた端子27が夫々電気接触させてある。端子27は、夫々リード線等によって、制御ユニット5に電気的に接続されている。スペーサ22には電極の領域において開口28が切り欠いてあり、図5に示したように電解室29を形成するようになっている。
【0034】
本発明の計測装置では、サンプルを原液のままセンサに接触させて計測を行うので、電解室29はサンプル採取量の1/2〜1/5程度の容量(本発明では10μl)があればよい。取替部32には、この電解室29に連通するポート41、42が形成してあり、電解室にサンプル原液と緩衝液を通過させるようになっている。また、これらのポート及びサンプル間の径は非常に小さく形成され、さらにサンプル給排口6からセンサに到達するまでの距離及び時間が短いので、サンプル原液をほとんど希釈することなくセンサに接触させることが可能となっている。
【0035】
人間の尿中に含まれる尿糖を測定する場合には、図6に示したように、白金の作用極23は、アルブミンや酢酸セルロースのように過酸化水素を選択的に透過させる物質からなる選択透過膜50と、グルコース・オキシダーゼ(GOD)固定化膜51とで被覆されている。GOD固定化膜51は、GOD(例えば、SIGMA社G7141)とアルブミンを4対1の割合で水に溶解し、溶解液を選択透過膜50上に滴下した後、グルタルアルデヒド雰囲気中に約30分暴露することにより形成することができる。電解室29内の尿サンプル中のグルコースがGOD固定化膜51に接触すると、GODは酸化して次のようにグルコン酸(C6H10O6)と過酸化水素(H2O2)を生成する。
C6H12O6+O2→C6H10O6+H2O2
【0036】
生成したH2O2が選択透過膜50を透過して白金の作用極23に達すると、白金の触媒作用により、H2O2は作用極に電子を与えながら水と酸素に分解される。選択透過膜があるので、H2O2より大きな分子量の妨害物質が作用極23に到達するのが防止される。
【0037】
図7に示したように、尿サンプル中のグルコースの定量分析に際しては、ポテンションスタットにより、参照極に対する作用極の電位が正の一定値(例えば+0.6V)になるように、作用極を対極との間に印加される電圧が可変制御される。作用極と対極との間を流れる電流は過酸化水素の発生量に応じて変化する。したがって、作用極を対極との間を流れる電流を制御回路によって検出することにより、過酸化水素の発生量を検出し、これに基づいて、尿サンプル中のグルコース濃度を演算することができる。
【0038】
このように、本発明のセンサ1は、グルコースの酸化により生成する過酸化水素の発生量を検出するようになっている。過酸化水素の発生量の検出は、上記反応式における酸素の消費量(減少量)を検出するよりもはるかに正確に行うことができる。
【0039】
図1において、流路を切り換えるための三方弁2は電動ロータリーバルブであり、三方弁2の一ポートは緩衝液管9を介して緩衝液タンク4を接続されている。ポンプ3には、電動シリンジポンプを採用できる。三方弁2の他の一ポートは、ポンプ給吐管10を介して、その電動シリンジポンプ3に接続されている。電動シリンジポンプ3は、ステッピングモータによって駆動され正確な計量・搬送が可能となっている。電動ロータリーバルブは電動シリンジポンプ3と別体に形成、配置されているが、1つの一体モジュールとして形成すれば、バルブとポンプ3の間のポンプ給吐管の容積を最小にすることができる。ロータリーバルブのポート数は3つに限られることなく必要に応じてその数を増やすことも可能である。
【0040】
測定結果等を表示する表示部11は、7セグメントのLCDによって構成され31/2桁の表示が可能となっている。
【0041】
図8に制御ユニット5の構成の一例を示す。計測装置の本体に内蔵された制御ユニット5は、プログラムされたマイクロコンピュータ60と、複数の操作スイッチ61と、使用者に対する指示や分析結果を表示する液晶表示パネル11と、分析データを格納するフラッシュメモリ62などで構成することができる。操作スイッチとしては、電源回路のON/OFFスイッチ61aと測定開始スイッチ61bと較正スイッチ61cなどを設けることができる。制御ユニット5に備えられたマイクロコンピュータ60は、計測装置の構成要素を後述のフローチャートのごとく制御するべくプログラムされている。ポーラログラフ・セルの作用極と対極との間を流れる電流は増幅回路により増幅された後、マイクロコンピュータのA/D変換回路に入力される。マイクロコンピュータは、夫々のドライバを介して、ロータリーバルブ駆動用モータ、(シリンジポンプの)プランジャ駆動用モータを駆動する。
【0042】
次に、図2の模式図と図3のフローチャートを合わせて参照しながら、本発明の計測装置の作動の一態様を説明する。図2(A)は、計測開始直後の状態を示す。すなわち、図3の計測フローにおいて、計測開始S1から緩衝液注入S2に進んだ状態を示す。このとき、三方弁2は、緩衝液管9とポンプ給吐管10とが通じる位置にある。電動シリンジポンプ3のプランジャの動き(ポンプ3内の中間位置まで右に動く)によって、一定量の緩衝液が電動シリンジポンプ3内に吸引される。なお、このとき、サンプル管8内及びセンサ1(ポーラログラフ・セル)内は、前回計測最終段階で送り込まれた緩衝液で満たされている。緩衝液はポーラログラフ・セル1の安定な作動に必要な緩衝作用を行うもので、KH2PO4やNa2HPO4のようなpH調節剤やKClのような塩素イオン強度調節剤が添加された水溶液からなる。緩衝液は、更に、サンプル液をポーラログラフ・セル1に搬送するキャリア液として作用すると共に、ポーラログラフ・セル並びに管路を洗浄する役割も持っている。
【0043】
図2(B)は、サンプル液7をサンプル管8内に吸い込み、サンプル液がセンサ1に達した状態を示す。すなわち、図3の測定フローにおいて、サンプル吸引S3、分析開始S4、吸引停止S5と進んだ状態である。このとき、三方弁2は、ポンプ吸吐管10とサンプル管8とを連通する位置にある。この状態で、プランジャ駆動用モータを駆動させてポンプ3のプランジャを図の最右端まで移動させて、サンプル管内にサンプル液を吸引する。吸引されたサンプル液は、サンプル管内を移送されて電解室29内に到達し、センサ1の作用極、参照極、対極に接触する。吸引の停止は、吸引開始から予め設定された時間△t1が経過した時点で行う。△t1は、プランジャ駆動用モータの速度と管路の容積から決定せれ、確実にサンプルとセンサ1とが接触するよう設定される。
【0044】
サンプル吸引と同時に、マイクロコンピュータ60は、センサ1の作用極23と対極24との間の電流検知を開始する(S4)。サンプル液がセンサ1に到達する前の状態における電流検出を行い、この電流値をバックグランド電流として記憶する。
【0045】
再び図6を参照しつつ説明すれば、サンプル液とセンサの作用極23の接触によって、作用極に担持した酵素固定化膜51にてサンプル液に含有される物質濃度に応じて過酸化水素が発生し、前述したように作用極23と対極24との間に過酸化水素発生量に応じた電流が流れる。図7及び図8に示されているように、この電流は増幅回路63により増幅され、マイクロコンピュータ60のA/D変換回路に入力される。ポーラログラフ・セルの電解室においては、一定時間だけ(例えば2秒間)サンプル液と酵素センサの接触が行われる。マイクロコンピュータ60は、入力された電流値を基に濃度の演算を行い(S8)、その結果を表示部11等に表示する。詳細な濃度の演算方法については後述する。
【0046】
図2(C)は、計測が終わってサンプル液がサンプル管8から排出された状態を示す。すなわち、図3の計測フローにおいて、緩衝液排出S6、管路・センサ洗浄S7、測定完了S10と進んだ状態である。このとき、三方弁2は、図2(B)と同様、ポンプ吸吐管10とサンプル管8とが通じる位置にある。マイクロコンピュータ60は、吸引開始から予め設定された時間△t2経過後に、ブランジャ駆動用モータを吸引時と逆位相となるように駆動させて、同図の最左端までプランジャを駆動させる。この動作によって、ポーラログラフ・セル1及びサンプル管中のサンプル液は電動シリンジポンプ3のシリンダ内及びポンプ給吐管内の緩衝液に押し出される形でサンプル給排口6から外部に排出される。サンプル液の排出に続いて、ポーラログラフ・セル1及びサンプル管を洗浄した緩衝液も同様にサンプル給排口6から排出される。
【0047】
次に本発明の物質濃度演算方法をグルコース濃度の演算方法を例にとって説明する。図9(A)、図9(B)は、サンプル液とセンサの接触から計測終了に至るまでの経過時間(横軸)とセンサの出力電流値(縦軸)との関係を示すグラフである。図9(A)におけるバッチ式と表記されているカーブ(軌跡)は、酵素センサをサンプル液(グルコース濃度:25〜800mg/dl)に浸漬し続けたときの出力電流を表すものである。この場合、センサをサンプル液に浸漬してから約60秒後に全ての濃度の出力が飽和している。図9(B)はサンプル液と酵素センサの接触から経過時間が10秒ほどの間の出力を表したものである。2秒接触と表記されているカーブは、同一の環境において酵素センサをグルコース標準液に2秒間だけ浸漬した時の出力電流を表すものである。
【0048】
本発明の計測方法である一定時間の接触(ここでは2秒接触)とは、センサ出力がある濃度のサンプル液の飽和出力に達する以前に、サンプル液とセンサとの接触を断ったものである。注目すべきことは、短い一定時間接触計測を行った場合、出力カーブ及び出力ピーク値の再現性がきわめて良好なことである。グルコース濃度範囲100〜800mg/dlにおいて、出力ピーク値の再現性は5%誤差の範囲内であることが判明した。
【0049】
さらに、出力ピーク値と、グルコース濃度との間にきわめて良好な比例関係があることも判明した。すなわち、出力ピーク値や出力カーブの立上がり角度(時間微分値)がほぼグルコース濃度に比例するのである。よって濃度の計測に当たっては、前記出力ピ−ク値を検出又は出力カ−ブの立ち上がり角度を演算し、予め格納されているデータ若しくは最新の較正データと比較・演算することによって正確な濃度値を得ることができる。また、前述のバックグラウンド電流を出力ピーク値から差し引くことによってバックグラウンドのノイズを除去することもできる。このようにして、上述の頭打ち特性の無い濃度計測を行えることも判明した。
【0050】
図10は、グルコース濃度(横軸)とセンサ出力電流との関係を、従来のバッチ式と本発明一実施例の2秒接触式の2つの場合についてプロットしたグラフである。バッチ式の場合飽和出力(図9(A)において出力カーブが略水平に寝ている部分)をセンサ出力としているので、従来の技術の部分で述べたように、カーブが頭打ち特性となっており、グルコース濃度約150mg/dl以上では、カーブが寝てしまい、定量的な濃度計測は不可能である。しかし、まさしく注目に値するのは、2秒接触計測の場合、グルコース濃度約800mg/dlに至るまで、きわめて良好な検量線として使用しうるほぼリニアなカーブが得られており、糖尿病等の発見に十分な測定範囲を濃度計測可能であることがわかるであろう。
【0051】
次に本発明のセンサの較正について図11の較正フローを参照しながら説明する。新品のセンサの感度のばらつきや、センサが度重なる使用で経時的に劣化した場合などに備えて、センサを新たに装着した場合や使用頻度に応じて定期的にセンサを較正する必要がある。センサの較正に際しては、本体に付設されている不図示の較正ボタンを押し、続いて較正液をサンプル給排口に適量たらしてからスタートボタンを押す(S1)。較正液はサンプル管内に取り込まれ続いてセンサ1に接触する(S2〜S5)。較正液とセンサの接触後の手順並びに分析方法は通常の測定と同様である(S6〜S8)。接触によって発生した電流値(出力)は最新のデータとして記憶され(S9)、今後の計測時において濃度決定のための比較データとして利用される。
【0052】
続いて本発明の他の実施例を説明する。センサの機能膜としてL−乳酸オキシターゼを含有する膜を使用し以下の反応系を使用することにより、本発明を食品工業用製造過程における水溶液中のL−乳酸濃度計測に利用できる。計測結果を図12に記載する。
(L−乳酸オキシターゼを含有する膜での反応)
L−乳酸+O2→ピルビン酸+H2O2
(白金電極での反応)
2H2O2→2H2O+O2+2e-
【0053】
センサの機能膜としてL−グルタメートオキシダーゼを含有する膜を使用し以下の反応系を使用することにより、本発明を調理品または調理過程における水溶液中のL−グルタミン酸濃度計測に利用できる。計測結果を図13に記載する。
(L−グルタメートオキシターゼを含有する膜での反応)
2L−グルタミン酸+O2→2(2−oxoglutarate)+NH4+H2O2
(白金電極での反応)
2H2O2→2H2O+O2+2e-
【0054】
その他、ビール等に含まれるアルコール濃度を測定する場合には、アルブミンや酢酸セルロースのように過酸化水素を選択的に透過させる物質からなる選択透過膜と、アルコール・オキシターゼ固定化膜とをセンサに備えることによってアルコール濃度を検出することができる。また、本発明の測定対象物質は前記実施例に捕われることはなく任意である。
【0055】
再度、本発明のポイントとなる事項をまとめて述べると次のとおりである。
本発明によれば、計測しようとする物質を含んだ溶液とセンサとの接触時間を短く制御してやることによって、分析しようとうするサンプル原液によるセンサ部の汚損が少なく、センサ性能安定化とサンプル溶液の運搬のための緩衝液を節約しながら、より広い計測範囲の検出をより短い時間で行うことができる。ポンプ等を用いて、採取したサンプル原液の送液を制御してやることによって、緩衝液に浸っていたセンサ部とサンプル溶液を短時間接触させた後、センサ部を再び緩衝液に浸してやる。この際サンプル原液は、希釈バッチやFIAのように、毎回一定量のサンプルを正確に分取して希釈する必要はない。
【0056】
また、原液バッチの場合と比較して、センサ部がサンプル原液と接する時間が短いので、電極表面やそれに付随する機能性膜(妨害物の透過を妨げる選択透過性膜、検出目的物を電気化学的な信号を得るための物質に変換するための酵素膜等)が汚損される割合が低い。更に、緩衝液はセンサの保存・洗浄に必要となる最低限の量ですむ。加えて原液バッチと比較して、その出力ピークが低く、ピークに達するまでの時間も短いため、測定目的物質濃度と出力信号強度(ピーク値とベース値の差)との間で直接関係の成り立つ範囲が広くなり、結果として広い濃度範囲にわたってより短い時間で測定をすることが可能になる。
【0057】
続いて、更に正確な計測を可能とする本発明の別実施例を説明する。図14は本発明の測定方法においてセンサの出力電力(縦軸)とセンサとサンプル液の接触時間(横軸)の関係をプロットしたものである。接触時間と出力の間にもきわめて良好な比例関係が存在することがわかる。
【0058】
本発明の計測方法及び装置を用いて計測を行った際に、サンプル液中に含有される物質の濃度が低くセンサの電気出力が弱くなり、図9(A)に見られるような出力ピークが得られないときは、濃度の再測定を行う。この際、サンプル液とセンサの接触時間を1回目の計測時よりも延長(長く)することにより良好な出力ピークが得られるのである。また、逆にサンプル液中に含有される物質の濃度が高くセンサの電気出力が飽和してしまう場合には、サンプル液とセンサの接触時間を1回目の測定時よりも短縮(短く)して再計測を行えば良好な出力ピークが得られるのである。
【0059】
このようにして、再測定を行うことにより本発明を更に正確な計測装置とすることも可能となる。また接触時間を可変としても計測結果に何ら影響のないことは前述の図14に示した事実から明らかである。
【0060】
なお、本発明においては、『出力飽和』とは、サンプルと接触した後のセンサの出力変化量が、そのセンサの3分後の出力変化量の、95%に達することと、一般的に、考えてよい。また、『一定時間』とは、一般的には、繰り返し精度が保証できる時間以上、例えば0.5秒以上2.5分以内である。『出力飽和に要する時間よりも短い』とは、一般的には、出力飽和に達するまでの時間の0.2%以上85%以下である。
【0061】
図15は、本発明の一実施例に係る物質濃度計測装置(ハンディー型尿糖計)の外観例を示す図である。図16は、図15の物質濃度計測装置を使用している状態を示す図である。ハンディー型尿糖計30は、大きく分けて、演算部を内蔵し表示パネル11やボタンスイッチ35等のある本体39と、採尿部31やセンサのある取替部32とに分かれている。
【0062】
取替部32は、電気的、液密に接続部33に差し込まれており、内蔵するセンサの寿命(計測約700回)が来た段階で取替る着脱可能ないわゆるディスポーザブル方式となっている。ボタンスイッチ35・37は、夫々電源ON/OFFスイッチ、測定開始スイッチである。
【0063】
以上の説明から明らかなように、本発明は以下の効果を発揮する。
▲1▼ サンプル原液にセンサを接触させて物質の濃度を測定する場合に発生する頭打ち現象を解決し、広い濃度範囲にわたって精度良く短時間で測定することを可能とした。
▲2▼ サンプル液の希釈を不要としたため希釈溶液が不要となり、計測のランニングコストを下げることが可能となった。
▲3▼ サンプル液の希釈を不要としたため希釈のための機器が不要となり計測装置のコストダウンを可能とした。
▲4▼ 通常のバッチ方式と比べてセンサとサンプル液の接触時間を短くしたのでセンサの長寿命化を実現した。
▲5▼ 上記効果により一般家庭、職場等に安価で高精度な計測装置を提供することが可能となった。
【0064】
次に、図4に示されている尿糖計における採尿方法及び採尿孔の改善実施例について説明する。
すなわち、本体実施例の尿糖計においては、サンプル採取部が、表面に開口する採尿孔を有する棒状採尿部として形成されている。さらに、尿糖計は、被験者の尿サンプリング開始指令が入力される入力部を有し、該指令入力があった場合に、前記搬送手段を駆動して、採尿孔にキャリア液を供給するよう制御する制御手段を具備する。
【0065】
本実施例の尿糖計において尿サンプリングを開始する際には、被験者(使用者)は、まず、ボタンを押す等によって、尿サンプリング開始指令を行う。その指令を受けると、制御手段は搬送手段(キャリア液ポンプ等)を駆動して、採尿孔にキャリア液(尿置換液)を供給し、採尿孔をキャリア液で満たしておく。その状態で、被験者が採尿孔に尿をかけると、採尿孔内のキャリア液が尿に置換される形で尿が採尿孔内に取り込まれる。したがって、採尿孔内に気泡が生じることなく、採尿が無事に行なわれる。
【0066】
図18、19を参照しつつ具体的に説明する。
図18は、図4の尿糖計の採尿孔113の詳細形状を示す断面図である。
棒状採尿部111の表面には、採尿孔113が形成されている。採尿孔113は外拡がりの円錐形をしている。すなわち、採尿孔113の側面は、外拡がりの円錐形面185となっている。採尿孔113の底は、サンプル管路(外)121とつながっている。
【0067】
採尿孔113の開口端(外側の縁の部分)は、滑らかに棒状採尿部111の外周面とつながるように、アール181、183が付けられている。このアールは面取りであってもよい。また、アール181(採尿孔の開口端)は、棒状採尿部111先端の先端球面部115にかかっている。
【0068】
この採尿孔113の開口部の径は、0.5〜10mmであることが好ましい。また、採尿孔113の円錐形面185の傾きαは30°〜75°であることが好ましい。採尿孔113の深さは2〜10mmであることが好ましい。なお棒状採尿部111の径は一般的に6〜16mmである。
【0069】
このように構成すれば、少々尿糖計を傾けても、採尿された尿がほとんどこぼれ落ちるようなことがない。その理由は、尿の表面張力によって、図19(B)に示されているように、尿が採尿孔113内にとどまるためと考えられる。
【0070】
また、採尿孔113内に予め存在するキャリア液との置換作用が円滑に行われ、十分な量の尿が採尿孔113内に採尿される。なお、ここで言う置換作用は、尿の有する運動エネルギーにより、尿が採尿孔113内に流れ込む現象が主なものと考えられる。
さらに、採尿孔にはシャープな角部がないので、尿と混在する細かい気泡が採尿孔内のそのような角部にへばり付くこともなくなり、よりスムーズな採尿が可能になる。
【0071】
棒状採尿部の採尿孔周囲は、疎水性の材料(ABS樹脂やアクリル樹脂等)で形成されていることが好ましい。採尿孔は、採尿時に置換液もしくはキャリア液にて満たされており、採尿孔の材質が疎水性であっても、それらの液は採尿孔中の狭い空間に保持される。その後採尿動作により、キャリア液等は尿により置換されるが、採尿孔周囲が疎水性の材料であれば、液体が狭い空間に溜まる性質により、採尿後においても尿は採尿孔中へ保持される。
【0072】
棒状採尿部111を円柱状にする等の作用について、図19を参照しつつ説明する。
図19は、実施例の尿糖計の採尿孔に尿を採尿している状態を示す概念的な図である。
図19(A)において、棒状採尿部111の採尿孔113は、尿117の流れが来る方向には向いていない。これは、被験者の尿糖計の持ち方が悪いためである。
【0073】
しかしながら、尿117の流れは、棒状採尿部111の外周面を回り込んで、採尿孔113に達している。このような尿の流れの回り込み作用を実現するために、棒状採尿部111を円柱形とすることが好ましいのである。さらに棒状採尿部111の先端を先端球面部115とし、採尿孔113の開口の一部が該先端球面部115にかかるようにすれば、さらに回り込み作用が良好になると考えられる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る物質濃度計測装置の原理を示す図である。
【図2】本発明の一実施例に係る物質濃度計測装置の作動の一態様を説明するための模式図である。
【図3】図1の物質濃度計測装置を用いて計測を行う場合の手順を示すフローチャートである。
【図4】本発明の一実施例に係る物質濃度計測装置(尿糖計)の取替部の分解図である。
【図5】図4の取替部の断面図である。
【図6】本発明の一実施例に係る物質濃度計測装置(尿糖計)のセンサ部の作用極での拡大断面図である。
【図7】図6のセンサの電極にポテンショスタットと増幅回路を接続したところを示す配線図である。
【図8】本発明の一実施例に係る物質濃度計測装置(尿糖計)の制御ユニットのブロック図である。
【図9】計測開始(サンプル液のセンサ到達)から計測終了(サンプル液パージ)に至るまでの経過時間(横軸)とセンサの出力電力(縦軸)との関係を示すグラフである。
【図10】グルコース濃度(横軸)とセンサ出力電力との関係を、従来のバッチ方式と本発明の一実施例の2秒接触式の2つの場合についてプロットしたグラフである。
【図11】本発明に係る較正手順を示すフローチャートである。
【図12】乳酸濃度(横軸)とセンサ出力電力との関係を、本発明の一実施例の2秒接触式についてプロットしたグラフである。
【図13】グルタミン酸濃度(横軸)とセンサ出力電力との関係を、本発明の一実施例の2秒接触式についてプロットしたグラフである。
【図14】センサの出力電力(縦軸)とセンサとサンプル液の接触時間(横軸)の関係をプロットしたグラフである。
【図15】本発明の一実施例に係る物質濃度計測装置(ハンディー型尿糖計)の外観例を示す図である。
【図16】図14の物質濃度計測装置を使用している状態を示す図である。
【図17】従来の物質濃度計測装置を示す図である。
【図18】図4の尿糖計の採尿孔の詳細形状を示す断面図である。
【図19】図18に示されている採尿孔で採尿している状態を示す概念的な図である。
【符号の説明】
1 センサ 2 三方弁
3 ポンプ 4 緩衝液タンク
5 制御ユニット 6 サンプル給排口
8 サンプル管 9 緩衝液管
10 ポンプ吸吐管 11 表示部
20 プラスチック基板 21 セラミック基板
22 スペーサ 23 作用極
24 対極 25 参照極
26、27 端子 28 開口
29 電解室 30 ハンディー型尿糖計
31 採尿部 32 取替部
33 接続部 35、37 ボタンスイッチ
39 本体 41、42 ポート
50 選択透過膜 51 オキシダーゼ(GOD)固定化膜
60 マイクロコンピュータ 61 操作スイッチ
62 フラッシュメモリ 111 棒状採尿部
113 採尿孔 115 先端球面部
117 尿 121 サンプル管路(外)
181、183 アール 185 円錐形面
Claims (8)
- 測定対象物質を含有するサンプル液を採取するサンプル採取部と、
サンプル液中の測定対象物質の成分を反応させる酵素を担持した作用極を備え、反応生成物の発生量に応じた電気信号を出力するポーラログラフ・セルと、
サンプル液を前記ポーラログラフ・セルに搬送するためのキャリア液を収容するキャリア液タンクと、
前記サンプル液とキャリア液を前記ポーラログラフ・セルに搬送するポンプを有する搬送手段と、
前記ポーラログラフ・セルの出力信号に基づいてサンプル液中の前記測定対象物質の含有量を演算するための演算手段を備えてなり;
前記サンプル採取部、前記ポーラログラフ・セル、及び、前記搬送手段は、この順に連通する管路によって接続されており、
計測開始時には、前記管路は前記キャリア液で満たされており、
前記キャリア液を前記搬送手段で移送することにより前記サンプル液を前記管路に吸引して、該サンプル液が前記ポーラログラフ・セルに接触し、
前記ポーラログラフ・セルのセンサ出力が前記サンプル液の飽和出力に達する以前に、前記キャリア液の移送を停止し、
その後に前記搬送手段でキャリア液を逆方向に移送して前記管路内の前記サンプル液を押し出す形でサンプル採取部から外に排出することを特徴とする物質濃度計測装置。 - 前記キャリア液タンクが前記搬送手段と管路でつながっており、該タンクを前記ポーラログラフ・セルからみると、該タンクが前記サンプル採取部の反対側に設置されている請求項1記載の物質濃度計測装置。
- 前記サンプル液が人間の尿であり、
前記酵素が尿サンプル中のグルコ−スを酸化する酵素であり、
前記ポーラログラフ・セルが、グルコ−スの酸化により生成する過酸化水素の発生量に応じた電気信号を出力する請求項1又は2記載の物質濃度計測装置。 - 前記サンプル液が、食品工業生成液、食品分解液、または食品抽出液であり、
前記酵素が、サンプル中のL−乳酸を酸化する酵素であり、
前記ポーラログラフ・セルが、L−乳酸の酸化により生成する過酸化水素の発生量に応じた電気信号を出力する請求項1又は2記載の物質濃度計測装置。 - 前記サンプル液が、調理品、調理過程品、またはそれらの抽出液であり、
前記酵素が、サンプル中のL−グルタミン酸を酸化する酵素であり、
前記ポーラログラフ・セルが、L−グルタミン酸の酸化により生成する過酸化水素の発生量に応じた電気信号を出力する請求項1又は2記載の物質濃度計測装置。 - さらに、前記ポーラログラフ・セルを較正するための較正液を収容する較正液タンクを備えた請求項1又は2記載の物質濃度計測装置。
- 前記キャリア液が、前記ポーラログラフ・セルの安定的な作動を保証する作用及び保存作用を備えた緩衝液である請求項1又は2記載の物質濃度計測装置。
- 前記サンプル採取部が、表面に開口する採尿孔を有する棒状採尿部として形成されており、
被験者の尿サンプリング開始指令が入力される入力部を有し、該指令入力があった場合に、前記搬送手段を駆動して、採尿孔にキャリア液を供給するよう制御する制御手段を、さらに具備する請求項1又は2記載の物質濃度計測装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003002995A JP3687789B2 (ja) | 1994-09-13 | 2003-01-09 | 物質濃度計測装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24346794 | 1994-09-13 | ||
JP6-243467 | 1994-09-13 | ||
JP2003002995A JP3687789B2 (ja) | 1994-09-13 | 2003-01-09 | 物質濃度計測装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1996510055 Division | 1995-08-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003177112A JP2003177112A (ja) | 2003-06-27 |
JP3687789B2 true JP3687789B2 (ja) | 2005-08-24 |
Family
ID=26536271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003002995A Expired - Fee Related JP3687789B2 (ja) | 1994-09-13 | 2003-01-09 | 物質濃度計測装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3687789B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729737B2 (en) * | 2005-11-22 | 2010-06-01 | Isense Corporation | Method and apparatus for background current arrangements for a biosensor |
JP5888885B2 (ja) * | 2010-06-23 | 2016-03-22 | アークレイ株式会社 | 測定装置、測定方法、測定プログラム、および測定システム |
JP6807051B2 (ja) * | 2016-10-27 | 2021-01-06 | 大日本印刷株式会社 | 微生物夾雑物検出装置および微生物夾雑物検出方法 |
-
2003
- 2003-01-09 JP JP2003002995A patent/JP3687789B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003177112A (ja) | 2003-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7491310B2 (en) | Concentration measuring method and concentration measuring apparatus | |
RU2441223C2 (ru) | Система обнаружения состояния недостаточного заполнения для электрохимического биосенсора | |
RU2238548C2 (ru) | Способ измерения концентрации анализируемого вещества (варианты), измерительный прибор для измерения концентрации анализируемого вещества | |
EP0255291B1 (en) | Method and apparatus for electrochemical measurements | |
RU2465812C2 (ru) | Система детектирования аномального выходного сигнала для биосенсора | |
US9234866B2 (en) | Underfill recognition biosensor | |
EP1396717A1 (en) | Biosensor and measuring method using the same | |
WO2008047842A1 (fr) | Procédé de mesure de valeur hématocrite de prélèvement sanguin, procédé de mesure de concentration d'analyte dans un prélèvement sanguin, puce de capteur et unité de détection | |
WO2004074827A1 (ja) | バイオセンサ用測定装置及びこれを用いた測定方法 | |
EP2284526B1 (en) | Biosensor system and method of measuring analyte concentration in blood sample | |
JPS62119451A (ja) | 分析装置 | |
MX2008000836A (es) | Amperimetria regulada. | |
KR100757297B1 (ko) | 빠른 시료주입이 가능한 바이오센서 및 그 센서를 이용한혈당 측정 방법 | |
JP3687789B2 (ja) | 物質濃度計測装置 | |
US20070105232A1 (en) | Voltammetric detection of metabolites in physiological fluids | |
KR200435115Y1 (ko) | 빠른 시료주입이 가능한 바이오센서 | |
EP1444513A2 (en) | Membrane-covered sensor for determining the concentration of oxygen and carbon dioxide | |
WO2009076273A1 (en) | Methods and systems for forming reagent with reduced background current | |
WO1996008714A1 (fr) | Procede et appareil de mesure de concentration de matiere | |
JPH05126792A (ja) | 濃度測定装置とバイオセンサ及び尿中成分測定方法 | |
JP3424399B2 (ja) | 尿中成分濃度測定装置 | |
JP3395452B2 (ja) | ポーラログラフ尿分析装置 | |
JPH08304323A (ja) | 温度補償型ポーラログラフ・センサー | |
JPH08304336A (ja) | ポーラログラフ尿分析方法および装置 | |
JP2009276276A (ja) | 測定デバイス及びそれを用いた測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050601 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090617 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100617 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |