JP3687380B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP3687380B2
JP3687380B2 JP36227398A JP36227398A JP3687380B2 JP 3687380 B2 JP3687380 B2 JP 3687380B2 JP 36227398 A JP36227398 A JP 36227398A JP 36227398 A JP36227398 A JP 36227398A JP 3687380 B2 JP3687380 B2 JP 3687380B2
Authority
JP
Japan
Prior art keywords
magnet
braking
peripheral surface
magnet support
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36227398A
Other languages
Japanese (ja)
Other versions
JP2000184690A (en
Inventor
誠 小川
忠治 山田
雅樹 浅野
晋 小林
徹 桑原
礼斗史 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP36227398A priority Critical patent/JP3687380B2/en
Publication of JP2000184690A publication Critical patent/JP2000184690A/en
Application granted granted Critical
Publication of JP3687380B2 publication Critical patent/JP3687380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は主として大型車両の摩擦ブレーキを補助する渦電流減速装置、特に磁石の磁極を磁石支持筒の周方向に向けた渦電流減速装置に関するものである。
【0002】
【従来の技術】
図12,13に示すように、従来の渦電流減速装置は車両用変速機の歯車箱44に軸受45を介して支持した出力回転軸49に、スプライン50により取付フランジ48を嵌合したうえナツト51により締結し、フランジ48に駐車ブレーキ56の制動ドラムの端壁と制動ドラム2のフランジ10とを重ね合せ、ボルト47とナツト53により締結される。フランジ10から放射方向に突出するスポーク9の先端に制動ドラム2の基端部を結合し、制動ドラム2の内部に、断面長方形の内空部57を有する案内筒4を配置される。案内筒4の外筒部4aに多数の強磁性板5が結合される。案内筒4の内空部57に磁性体からなる磁石支持筒17を軸方向摺動可能に収容し、磁石支持筒17の外周面に強磁性板5と同数の磁石7を、周方向等間隔かつ強磁性板5に対向する磁極が周方向に交互に異なるように結合される。
【0003】
案内筒4は磁性体からなる断面コ字形の部分と、強磁性板5を結合する断面逆L字形の筒部分とを、複数のボルト54に結合してなり、案内筒4の左端部は歯車箱44の軸部46に嵌合固定した、補強リブ43を有する支持枠31にボルト42,41を介して結合される。
【0004】
制動時、図示してないアクチユエータによりロツド55を介して磁石支持筒17を図示の位置へ押し込むと、磁石7から磁界が強磁性板5を経て回転する制動ドラム2に及び、制動ドラム2に渦電流に基づく制動トルクが発生する。非制動時、磁石支持筒17を左方へ移動して制動ドラム2の内部から引き出すと、磁石7の磁界は制動ドラム2に及ばなくなり制動トルクが解消する。
【0005】
上述の渦電流減速装置では、隣接する磁石7の間に外周側から押し付けた楔状の押え板28を、ボルト29により磁石支持筒17へ締結される。磁石7は磁石支持筒17に接する内面と、強磁性板5に対向する外面とに極性をもつ。
【0006】
図14に示す渦電流減速装置では、冷却フイン2aを有する制動ドラム2がフランジ10から放射方向に延びるスポーク9の先端に結合され、制動ドラム2の内部に配設した案内筒4の内筒部4bに回動可能の磁石支持筒17と、不動の磁石支持筒16とが支持され、これらに結合された磁石6,7は案内筒4の外筒部4aに埋め込んだ強磁性板5を経て制動ドラム2に磁界を及ぼすようになつている。空気圧アクチユエータ22のシリンダ23の一方の端室へ管34,35の一方から加圧空気を供給すると、ピストンにより可動の磁石支持筒17が磁石7の配列ピツチだけ回動される。この時、軸方向に並ぶ磁石6,7の磁極が同じになり、周方向に隣接する2組の磁石6,7を介して磁石支持筒16,17と制動ドラム2との間に磁気回路が生じ、制動力を発揮する。一方、アクチユエータ22により磁石支持筒17を元の位置へ戻すと、互いに軸方向に並ぶ磁石6,7の磁極が互いに逆になり、磁石支持筒16,17と強磁性板5との間に短絡的磁気回路が生じ、制動ドラム2には磁界を及ぼさない。
【0007】
上述のように、従来の渦電流減速装置では、各磁石の磁極の向きが径方向になつているので磁石の周方向の寸法を比較的大きくし、磁石6,7の径方向の寸法すなわち厚さをかなり厚くする必要がある。
【0008】
【発明が解決しようとする課題】
本発明は上述の問題に鑑み、磁石の体積が小さくて制動力が大きく、非制動時の洩れ磁束を低減できる渦電流減速装置を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を達成するために、本発明の構成は回転軸に結合した制動ドラムの内部に案内筒を配設し、該案内筒に前記回転軸の軸方向移動可能に支持した非磁性体からなる磁石支持筒の外周面に、多数の周方向に延びる磁石を周方向等間隔かつ周方向の端部の極性が相対向する端面で同極となるように支持し、磁石と磁石の間に強磁性体を挟持し、強磁性体の外面を磁石よりも制動ドラムの内周面へ突出し、かつ制動ドラムの内周面へ接近して対向させ、前記磁石支持筒を軸方向に往復移動することにより、制動位置と非制動位置とに切り換えるようにしたことを特徴とする。
また、本発明の構成は回転軸に結合した制動ドラムの内部に案内筒を配設し、該案内筒に非磁性体からなる回動可能の磁石支持筒と不動の磁石支持筒とを回転軸の軸方向に並べて支持し、各磁石支持筒の外周面に、多数の周方向に延びる磁石を周方向等間隔かつ周方向の端部の極性が相対向する端面で同極となるように支持し、磁石と磁石の間に強磁性体を挟持し、強磁性体の外面を磁石よりも制動ドラムの内周面へ突出し、かつ制動ドラムの内周面へ接近して対向させ、回動可能の磁石支持筒を正逆回動することにより、制動位置と非制動位置とに切り換えるようにしたことを特徴とする。
【0010】
【発明の実施の形態】
本発明では磁極を周方向に向け、かつ周方向に隣接する磁石の相対向する磁極を同極に形成し、周方向に並ぶ磁石の間に案内筒の強磁性板に対向する強磁性体を配設する。磁石からの磁界は磁極から径外方へ延びる強磁性体を経て制動ドラムへ達する。従来の渦電流減速装置に比べて磁石から強磁性体が制動ドラムの内周面に直接対向するので効率的な磁気回路が形成される。
【0011】
【実施例】
図1は本発明による渦電流減速装置の側面断面図である。本発明は非磁性体からなる磁石支持筒16の外周面に対して周方向等間隔に多数の磁石6を磁極が周方向を向き、かつ相隣接する磁石6の対向する磁極が同じであるように支持し、各磁石6の間に楔状の強磁性体15を配設する。強磁性体15は磁石6よりも径外方へ突出し、制動ドラム2の内周面2bへ接近される。磁石6の外面側は、空部25のままであつてもよいが、非磁性体からなるカバー板8を強磁性体15の間に掛け渡してもよい。
【0012】
図1に示す実施例では、周方向に並ぶ磁石6の間に磁石6の肉厚よりも十分厚い楔状の強磁性体15を挟持しているが、両者の間には隙間があつても差し支えない。また、磁石6の外面には熱対策用のコーテイングを施すことが好ましい。コーテイングの代りに、磁石6の外面を覆うようカバー板8を周方向に相隣接する強磁性体15の間に架け渡すようにしてもよい。
【0013】
本発明では案内筒は図示しないが、外周側が開放された断面コ字形のものか、または磁石支持筒16,17を外嵌する円筒状のものであればよく、他の構成は図12,13または図14に示すものと同様である。制動時、磁石支持筒16を制動ドラム2の内部へ押し込むと、図1に示す磁気回路yが磁石6と制動ドラム2との間に生じ、制動ドラム2に渦電流に基づく制動力が発生する。非制動時、磁石支持筒16を制動ドラム2の外部へ引き出せば、制動ドラム2には磁界が及ばない。
【0014】
図1に示す磁石支持筒16を2つ用意し、一方を不動の磁石支持筒16、他方を不動の磁石支持筒17とすれば、図14に示す形式の渦電流減速装置が構成される。制動時、軸方向に並ぶ磁石支持筒16,17の各磁石6,7の極性が同じになるようにすれば、図1に示すように、制動ドラム2と磁石6との間に磁気回路yが生じ、制動ドラム2に制動力が発生する。非制動時、可動の磁石支持筒17を磁石7の配列ピッチだけ回動して、軸方向に並ぶ磁石支持筒16,17の磁石6,7の磁性が逆になるようにすれば、図2に示すように、強磁性体15,15aと磁石6,7との間に短絡的磁気回路wが生じ、制動ドラム2には磁界が及ばない。また、可動の磁石支持筒17を制動時と非制動時の中間の任意の位置にすることにより、任意の制動力が得られる。
【0015】
以上説明した実施例では、磁石6,7は板状のものであり、内面72が磁石支持筒16の外面に密接する断面円弧状をなしているが、磁石6,7の形状はこれに限定されるものではなく、図3に示すように、内面72が円筒面、外面が平面でもよく、図4に示すように、外面71と内面72が屋根形に屈曲するものでもよく、図5に示すように、外面71と内面72が円筒状でもよい。さらに、図6に示すように、内面72が平面、外面71が屋根形のものでもよく、図7に示すように、内面72が平面、外面71が円筒状でもよい。また、図8〜10に示すように、磁石6,7は直方体または立方体に構成してもよい。
【0016】
図11に示すように、本発明は永久磁石の代りに電磁石を用いても同様の作用効果が得られる。すなわち、非磁性体からなる磁石支持筒16の外周面に、径外方へ突出しかつ制動ドラム2の内周面2bに対向する強磁性体15を結合するとともに、強磁性体15の相互の間に配設した周方向に延びる鉄心12にコイル13を巻装して電磁石6Aを構成し、電源40からコイル13の両端へ通電すれば、図1に示す実施例と同様に、電磁石6Aと周方向に並ぶ2つの強磁性体15と制動ドラム2との間に磁気回路yが生じ、制動ドラム2に制動力が発生する。
【0017】
【発明の効果】
要するに、本発明は回転軸に結合した制動ドラムの内部に、非磁性体からなる磁石支持筒を配設し、該磁石支持筒の外周面に多数の周方向に延びる磁石を周方向等間隔に、かつ周方向の端部の極性が相対向する端面で同極となるように支持し、磁石と磁石の間に強磁性体を挟持し、強磁性体の外面を磁石よりも制動ドラムの内周面へ突出し、かつ制動ドラムの内周面へ接近して対向させたから、制動時磁石からの磁界が強磁性体を経て制動ドラムへ及び、磁気回路が磁石支持筒を迂回する従来のものに比べて、同体積の磁石で制動トルクを大幅に向上できる。
【0018】
磁石支持筒は単に磁石を支持するだけで、制動時および非制動時の磁気回路の通路をなすものではないから、アルミニウムなどの非磁性体から構成することにより軽量化が可能になる。
【0019】
磁石を保護する案内筒の肉厚を極力薄くするか外筒部を除くことができ、非制動時の制動ドラムへの磁気洩れがなく、引きずりトルクも発生しない。
【0020】
高速回転での制動トルクの低下が抑えられ、小型軽量で制動能力の高い渦電流減速装置が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る渦電流減速装置の側面断面図である。
【図2】本発明の第2実施例に係る渦電流減速装置の展開平面図である。
【図3】同渦電流減速装置における磁石の斜視図である。
【図4】同渦電流減速装置における磁石の斜視図である。
【図5】同渦電流減速装置における磁石の斜視図である。
【図6】同渦電流減速装置における磁石の斜視図である。
【図7】同渦電流減速装置における磁石の斜視図である。
【図8】同渦電流減速装置における磁石の斜視図である。
【図9】同渦電流減速装置における磁石の斜視図である。
【図10】同渦電流減速装置における磁石の斜視図である。
【図11】本発明の第3実施例に係る渦電流減速装置の側面断面図である。
【図12】従来の渦電流減速装置の正面断面図である。
【図13】同渦電流減速装置の要部を示す斜視図である。
【図14】従来の他の形式の渦電流減速装置の斜視図である。
【符号の説明】
2:制動ドラム 2b:内周面 4:案内筒 4a:外筒部 4b:内筒部 5:強磁性板 6:磁石 6A:電磁石 7:磁石 8:カバー板 9:スポーク10:フランジ 15:強磁性体 15a:強磁性体 16:磁石支持筒 17:磁石支持筒 22:アクチユエータ 23:シリンダ 25:空部 28:押え板 29:ボルト 31:支持枠
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to an eddy current reduction device for assisting a friction brake of a large vehicle, and more particularly to an eddy current reduction device in which a magnetic pole of a magnet is directed in a circumferential direction of a magnet support cylinder.
[0002]
[Prior art]
As shown in FIGS. 12 and 13, the conventional eddy current speed reducer includes an output rotating shaft 49 supported by a gear box 44 of a vehicle transmission via a bearing 45 and a mounting flange 48 fitted by a spline 50 and a nut. 51, the end wall of the brake drum of the parking brake 56 and the flange 10 of the brake drum 2 are overlapped with the flange 48 and fastened by the bolt 47 and the nut 53. The base end portion of the brake drum 2 is coupled to the tip end of the spoke 9 that protrudes in the radial direction from the flange 10, and the guide cylinder 4 having an inner space portion 57 having a rectangular cross section is disposed inside the brake drum 2. A large number of ferromagnetic plates 5 are coupled to the outer cylinder portion 4 a of the guide cylinder 4. A magnet support cylinder 17 made of a magnetic material is accommodated in the inner space 57 of the guide cylinder 4 so as to be slidable in the axial direction, and the same number of magnets 7 as the ferromagnetic plates 5 are arranged on the outer peripheral surface of the magnet support cylinder 17 at equal intervals in the circumferential direction. The magnetic poles facing the ferromagnetic plate 5 are coupled so as to be alternately different in the circumferential direction.
[0003]
The guide cylinder 4 is formed by connecting a U-shaped section made of a magnetic material and an inverted L-shaped cylinder section for connecting the ferromagnetic plate 5 to a plurality of bolts 54, and the left end of the guide cylinder 4 is a gear. The support frame 31 having the reinforcing ribs 43 fitted and fixed to the shaft portion 46 of the box 44 is coupled via bolts 42 and 41.
[0004]
At the time of braking, when the magnet support cylinder 17 is pushed into the position shown in the figure by an actuator (not shown) through the rod 55, the magnetic field extends from the magnet 7 to the braking drum 2 rotating through the ferromagnetic plate 5 and to the braking drum 2. A braking torque based on the current is generated. During non-braking, if the magnet support cylinder 17 is moved to the left and pulled out from the inside of the braking drum 2, the magnetic field of the magnet 7 does not reach the braking drum 2 and the braking torque is eliminated.
[0005]
In the eddy current reduction device described above, a wedge-shaped presser plate 28 pressed from the outer peripheral side between adjacent magnets 7 is fastened to the magnet support cylinder 17 by bolts 29. The magnet 7 has polarity on the inner surface that contacts the magnet support cylinder 17 and the outer surface that faces the ferromagnetic plate 5.
[0006]
In the eddy current reduction device shown in FIG. 14, the braking drum 2 having the cooling fin 2 a is coupled to the tip of the spoke 9 extending radially from the flange 10, and the inner cylinder portion of the guide cylinder 4 disposed inside the braking drum 2. A rotatable magnet support cylinder 17 and a stationary magnet support cylinder 16 are supported by 4b, and the magnets 6 and 7 coupled thereto are passed through the ferromagnetic plate 5 embedded in the outer cylinder portion 4a of the guide cylinder 4. A magnetic field is applied to the brake drum 2. When pressurized air is supplied from one of the pipes 34 and 35 to one end chamber of the cylinder 23 of the pneumatic actuator 22, the movable magnet support cylinder 17 is rotated by the arrangement pitch of the magnets 7 by the piston. At this time, the magnetic poles of the magnets 6 and 7 arranged in the axial direction are the same, and a magnetic circuit is provided between the magnet support cylinders 16 and 17 and the brake drum 2 via two sets of magnets 6 and 7 adjacent in the circumferential direction. Occurs and exerts braking power. On the other hand, when the magnet support cylinder 17 is returned to the original position by the actuator 22, the magnetic poles of the magnets 6 and 7 aligned in the axial direction are opposite to each other, and a short circuit occurs between the magnet support cylinders 16 and 17 and the ferromagnetic plate 5. A magnetic circuit is generated, and no magnetic field is applied to the brake drum 2.
[0007]
As described above, in the conventional eddy current reduction device, the direction of the magnetic pole of each magnet is in the radial direction, so that the circumferential dimension of the magnet is relatively large, and the radial dimension or thickness of the magnets 6 and 7 is increased. It is necessary to increase the thickness considerably.
[0008]
[Problems to be solved by the invention]
In view of the above-described problems, the present invention is to provide an eddy current reduction device that can reduce the leakage magnetic flux during non-braking because the volume of the magnet is small and the braking force is large.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the structure of the present invention comprises a non-magnetic material in which a guide cylinder is disposed inside a brake drum coupled to a rotating shaft, and the guide cylinder is supported so as to be movable in the axial direction of the rotating shaft. A large number of circumferentially extending magnets are supported on the outer peripheral surface of the magnet support cylinder so that the polarities of the circumferential end portions of the magnets are the same polarity at the opposite end surfaces. Holding the magnetic body, projecting the outer surface of the ferromagnetic body to the inner peripheral surface of the brake drum rather than the magnet and approaching the inner peripheral surface of the brake drum so as to face each other, and reciprocally move the magnet support cylinder in the axial direction Thus, switching between a braking position and a non-braking position is performed .
Further, according to the configuration of the present invention, a guide cylinder is disposed inside a brake drum coupled to a rotation shaft, and a rotatable magnet support cylinder made of a nonmagnetic material and an immobile magnet support cylinder are arranged on the guide cylinder. A number of circumferentially extending magnets are supported on the outer peripheral surface of each magnet support cylinder so that the polarities of the circumferentially spaced ends are opposite to each other. A ferromagnetic material is sandwiched between magnets, the outer surface of the ferromagnetic material protrudes from the magnet to the inner peripheral surface of the brake drum, and closes and opposes the inner peripheral surface of the brake drum. The magnet support cylinder is switched between a braking position and a non-braking position by rotating forward and backward .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the magnetic poles are oriented in the circumferential direction and the opposing magnetic poles of the magnets adjacent in the circumferential direction are formed in the same polarity, and the ferromagnetic material facing the ferromagnetic plate of the guide cylinder is disposed between the magnets arranged in the circumferential direction. Arrange. The magnetic field from the magnet reaches the braking drum via a ferromagnetic material extending radially outward from the magnetic pole. Compared to the conventional eddy current reduction device, the ferromagnetic material from the magnet directly faces the inner peripheral surface of the brake drum, so that an efficient magnetic circuit is formed.
[0011]
【Example】
FIG. 1 is a side sectional view of an eddy current reduction device according to the present invention. In the present invention, a large number of magnets 6 are arranged at equal intervals in the circumferential direction with respect to the outer peripheral surface of the magnet support cylinder 16 made of a non-magnetic material, and the magnetic poles face the circumferential direction and the opposing magnetic poles of the adjacent magnets 6 are the same. The wedge-shaped ferromagnetic material 15 is disposed between the magnets 6. The ferromagnetic body 15 protrudes outward in diameter from the magnet 6 and approaches the inner peripheral surface 2 b of the braking drum 2. The outer surface side of the magnet 6 may be left as it is, but the cover plate 8 made of a non-magnetic material may be spanned between the ferromagnetic materials 15.
[0012]
In the embodiment shown in FIG. 1, a wedge-shaped ferromagnetic material 15 that is sufficiently thicker than the thickness of the magnet 6 is sandwiched between the magnets 6 arranged in the circumferential direction, but there may be a gap between the two. Absent. Moreover, it is preferable to apply a coating for heat countermeasures on the outer surface of the magnet 6. Instead of coating, the cover plate 8 may be bridged between the ferromagnetic bodies 15 adjacent to each other in the circumferential direction so as to cover the outer surface of the magnet 6.
[0013]
In the present invention, the guide cylinder is not shown in the figure, but it may be of a U-shaped cross-section with the outer peripheral side open or a cylindrical one that externally fits the magnet support cylinders 16 and 17, and other configurations are shown in FIGS. Or it is the same as that shown in FIG. When the magnet support cylinder 16 is pushed into the brake drum 2 during braking, a magnetic circuit y shown in FIG. 1 is generated between the magnet 6 and the brake drum 2, and a braking force based on eddy current is generated in the brake drum 2. . When the magnet support cylinder 16 is pulled out of the brake drum 2 during non-braking, the magnetic field does not reach the brake drum 2.
[0014]
If two magnet support cylinders 16 shown in FIG. 1 are prepared, one is a stationary magnet support cylinder 16 and the other is a stationary magnet support cylinder 17, an eddy current reduction device of the type shown in FIG. 14 is configured. If the polarities of the magnets 6 and 7 of the magnet support cylinders 16 and 17 arranged in the axial direction are the same during braking, the magnetic circuit y is provided between the braking drum 2 and the magnet 6 as shown in FIG. Occurs, and a braking force is generated in the braking drum 2. If the movable magnet support cylinder 17 is rotated by the arrangement pitch of the magnets 7 during non-braking so that the magnetism of the magnets 6 and 7 of the magnet support cylinders 16 and 17 aligned in the axial direction is reversed, FIG. As shown in FIG. 2, a short-circuit magnetic circuit w is generated between the ferromagnetic bodies 15 and 15a and the magnets 6 and 7, and no magnetic field is applied to the braking drum 2. Also, an arbitrary braking force can be obtained by setting the movable magnet support cylinder 17 to an arbitrary position between braking and non-braking.
[0015]
In the embodiment described above, the magnets 6 and 7 are plate-like, and the inner surface 72 has an arcuate cross section in close contact with the outer surface of the magnet support cylinder 16, but the shape of the magnets 6 and 7 is limited to this. 3, the inner surface 72 may be a cylindrical surface and the outer surface may be flat as shown in FIG. 3, and the outer surface 71 and the inner surface 72 may be bent into a roof shape as shown in FIG. As shown, the outer surface 71 and the inner surface 72 may be cylindrical. Further, as shown in FIG. 6, the inner surface 72 may be a flat surface and the outer surface 71 may be a roof shape, and as shown in FIG. 7, the inner surface 72 may be a flat surface and the outer surface 71 may be a cylindrical shape. Further, as shown in FIGS. 8 to 10, the magnets 6 and 7 may be formed in a rectangular parallelepiped or a cube.
[0016]
As shown in FIG. 11, in the present invention, the same effect can be obtained even if an electromagnet is used instead of the permanent magnet. That is, the outer peripheral surface of the magnet support cylinder 16 made of a non-magnetic material is coupled with the ferromagnetic material 15 projecting radially outward and facing the inner peripheral surface 2b of the brake drum 2, and between the ferromagnetic materials 15. If the coil 13 is wound around the circumferentially disposed iron core 12 disposed on the electromagnet 6A to form the electromagnet 6A and current is supplied to both ends of the coil 13 from the power source 40, the electromagnet 6A and the circumference are similar to the embodiment shown in FIG. A magnetic circuit y is generated between the two ferromagnetic bodies 15 arranged in the direction and the braking drum 2, and a braking force is generated in the braking drum 2.
[0017]
【The invention's effect】
In short, in the present invention, a magnet support cylinder made of a non-magnetic material is disposed inside a brake drum coupled to a rotating shaft, and a large number of circumferentially extending magnets are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the magnet support cylinder. In addition, the ends of the circumferential direction are supported so that the polarities of the opposite end faces are the same, and the ferromagnetic body is sandwiched between the magnets, and the outer surface of the ferromagnetic body is placed inside the brake drum more than the magnet. Because it protrudes to the peripheral surface and faces the inner peripheral surface of the brake drum close to and facing , the magnetic field from the magnet at the time of braking passes through the ferromagnetic material to the brake drum, and the magnetic circuit bypasses the magnet support cylinder Compared to the above, the braking torque can be greatly improved with the magnet of the same volume.
[0018]
Since the magnet support cylinder simply supports the magnet and does not form a path of the magnetic circuit at the time of braking and non-braking, it can be reduced in weight by being made of a nonmagnetic material such as aluminum.
[0019]
The thickness of the guide cylinder that protects the magnet can be made as thin as possible or the outer cylinder portion can be removed, there is no magnetic leakage to the brake drum during non-braking, and no drag torque is generated.
[0020]
A reduction in braking torque during high-speed rotation is suppressed, and a small and lightweight eddy current reduction device with high braking capability is obtained.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an eddy current reduction device according to a first embodiment of the present invention.
FIG. 2 is a developed plan view of an eddy current reduction device according to a second embodiment of the present invention.
FIG. 3 is a perspective view of a magnet in the eddy current reduction device.
FIG. 4 is a perspective view of a magnet in the eddy current reduction device.
FIG. 5 is a perspective view of a magnet in the eddy current reduction device.
FIG. 6 is a perspective view of a magnet in the eddy current reduction device.
FIG. 7 is a perspective view of a magnet in the eddy current reduction device.
FIG. 8 is a perspective view of a magnet in the eddy current reduction device.
FIG. 9 is a perspective view of a magnet in the eddy current reduction device.
FIG. 10 is a perspective view of a magnet in the eddy current reduction device.
FIG. 11 is a side sectional view of an eddy current reduction device according to a third embodiment of the present invention.
FIG. 12 is a front sectional view of a conventional eddy current reduction device.
FIG. 13 is a perspective view showing a main part of the eddy current reduction device.
FIG. 14 is a perspective view of another conventional eddy current reduction device.
[Explanation of symbols]
2: Braking drum 2b: Inner peripheral surface 4: Guide tube 4a: Outer tube portion 4b: Inner tube portion 5: Ferromagnetic plate 6: Magnet 6A: Electromagnet 7: Magnet 8: Cover plate 9: Spoke 10: Flange 15: Strong Magnetic body 15a: Ferromagnetic body 16: Magnet support cylinder 17: Magnet support cylinder 22: Actuator 23: Cylinder 25: Empty part 28: Presser plate 29: Bolt 31: Support frame

Claims (2)

回転軸に結合した制動ドラムの内部に案内筒を配設し、該案内筒に前記回転軸の軸方向移動可能に支持した非磁性体からなる磁石支持筒の外周面に、多数の周方向に延びる磁石を周方向等間隔かつ周方向の端部の極性が相対向する端面で同極となるように支持し、磁石と磁石の間に強磁性体を挟持し、強磁性体の外面を磁石よりも制動ドラムの内周面へ突出し、かつ制動ドラムの内周面へ接近して対向させ、前記磁石支持筒を軸方向に往復移動することにより、制動位置と非制動位置とに切り換えるようにしたことを特徴とする渦電流減速装置。A guide cylinder is disposed inside a brake drum coupled to a rotating shaft, and is arranged on the outer peripheral surface of a magnet support cylinder made of a non-magnetic material supported on the guide cylinder so as to be movable in the axial direction of the rotating shaft. The extending magnet is supported at equal intervals in the circumferential direction and the polarities of the end portions in the circumferential direction are opposite to each other, the ferromagnetic material is sandwiched between the magnets, and the outer surface of the ferromagnetic material is magnetized. Moreover projecting to the inner peripheral surface of the brake drum, approaching and facing the inner peripheral surface of the brake drum, and reciprocating the magnet support tube in the axial direction to switch between the braking position and the non-braking position. An eddy current reduction device characterized by that. 回転軸に結合した制動ドラムの内部に案内筒を配設し、該案内筒に非磁性体からなる回動可能の磁石支持筒と不動の磁石支持筒とを回転軸の軸方向に並べて支持し、各磁石支持筒の外周面に、多数の周方向に延びる磁石を周方向等間隔かつ周方向の端部の極性が相対向する端面で同極となるように支持し、磁石と磁石の間に強磁性体を挟持し、強磁性体の外面を磁石よりも制動ドラムの内周面へ突出し、かつ制動ドラムの内周面へ接近して対向させ、回動可能の磁石支持筒を正逆回動することにより、制動位置と非制動位置とに切り換えるようにしたことを特徴とする渦電流減速装置。A guide cylinder is disposed inside a brake drum coupled to the rotation shaft, and a rotatable magnet support cylinder made of a non-magnetic material and a stationary magnet support cylinder are arranged side by side in the guide cylinder and supported in the axial direction of the rotation shaft. A large number of circumferentially extending magnets are supported on the outer peripheral surface of each magnet support cylinder so that the polarities of the circumferential end portions of the magnets are the same polarity at the opposite end surfaces. The outer surface of the ferromagnetic material protrudes to the inner peripheral surface of the braking drum from the magnet, and approaches the inner peripheral surface of the braking drum so as to face the outer surface of the braking drum. An eddy current reduction device characterized by switching between a braking position and a non-braking position by rotating .
JP36227398A 1998-12-21 1998-12-21 Eddy current reducer Expired - Fee Related JP3687380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36227398A JP3687380B2 (en) 1998-12-21 1998-12-21 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36227398A JP3687380B2 (en) 1998-12-21 1998-12-21 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2000184690A JP2000184690A (en) 2000-06-30
JP3687380B2 true JP3687380B2 (en) 2005-08-24

Family

ID=18476434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36227398A Expired - Fee Related JP3687380B2 (en) 1998-12-21 1998-12-21 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP3687380B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60329888D1 (en) * 2002-05-28 2009-12-17 Isuzu Motors Ltd Eddy-current deceleration device
JP4696708B2 (en) * 2005-06-13 2011-06-08 いすゞ自動車株式会社 Eddy current reducer

Also Published As

Publication number Publication date
JP2000184690A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
EP0566745B1 (en) Eddy current type retarder
EP0948118A2 (en) Eddy current reduction apparatus
JP3651255B2 (en) Eddy current reducer
JPH1084664A (en) Permanent magnet eddy-current speed reduction device
JPH11289747A (en) Eddy-current flow reduction gear
JP3687380B2 (en) Eddy current reducer
JP3690471B2 (en) Eddy current reducer
JP3671621B2 (en) Magnetization method of permanent magnet type eddy current reduction device
JP3882398B2 (en) Eddy current reducer
JP3285043B2 (en) Eddy current type reduction gear
JP3882399B2 (en) Eddy current reducer
JP3882488B2 (en) Eddy current reducer
JP2002095235A (en) Eddy current decelerator
JP2002354781A (en) Eddy current speed reducing apparatus
JP2573695Y2 (en) Eddy current type reduction gear
JP3651256B2 (en) Eddy current reducer
JP3216665B2 (en) Eddy current type reduction gear
JPH0747989Y2 (en) Magnetic shield casing for eddy current type speed reducer
JP2566803Y2 (en) Eddy current type reduction gear
JPH0686534A (en) Eddy current speed reducer
JP2557740Y2 (en) Structure of fixed frame of eddy current type reduction gear
JP2594754Y2 (en) Eddy current type reduction gear
JP3800310B2 (en) Eddy current reducer
JPH04289761A (en) Eddy current type deceleration gear
JP3738557B2 (en) Permanent magnet type eddy current reducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees