JP3686270B2 - Electrolytic cell - Google Patents

Electrolytic cell Download PDF

Info

Publication number
JP3686270B2
JP3686270B2 JP35113698A JP35113698A JP3686270B2 JP 3686270 B2 JP3686270 B2 JP 3686270B2 JP 35113698 A JP35113698 A JP 35113698A JP 35113698 A JP35113698 A JP 35113698A JP 3686270 B2 JP3686270 B2 JP 3686270B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic cell
cathode
elastic mat
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35113698A
Other languages
Japanese (ja)
Other versions
JP2000178781A (en
Inventor
健二 青木
亨 森脇
正明 福谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP35113698A priority Critical patent/JP3686270B2/en
Publication of JP2000178781A publication Critical patent/JP2000178781A/en
Application granted granted Critical
Publication of JP3686270B2 publication Critical patent/JP3686270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電解槽、例えば、アルカリ金属塩水溶液の電解、水の電解或いは燃料電池などに用いられる電解槽、特にイオン交換膜などを隔膜とし、その両面に陽極及び陰極をそれぞれ接触させた形状の電解槽等に係わる。
【0002】
【従来の技術】
固体電解質膜たとえばイオン交換膜を隔膜として用いて陽極室と陰極室とに区画し、それぞれの室に陽極及び陰極を存在させた電解槽を用いて、アルカリ金属塩、たとえば塩化ナトリウム、塩化カリウムなどの水溶液を電解し、水酸化ナトリウムや水酸化カリウムと共に塩素などを回収する方法、或いは次亜塩素酸アルカリ等を得る方法、水を電解して、水素や酸素を得る方法、更には燃料電池として、エネルギーを回収する方法等が知られている。
【0003】
かかる電解槽として、陽・陰両電極間で固体電解質膜、例えばイオン交換膜を挟持する構造の電解槽がある。
【0004】
この種の電解槽では、電極間距離が実質的にゼロとなるため、電解液の電気抵抗による電気のロス分が省略されるため、優れた構造ということができる。
【0005】
しかしながら、一般に有機物で構成されるイオン交換膜などの固体電解質膜が金属である電極間に挟持されるため、電解槽運転時の振動や、電解槽の組立て作業時のミスなどにより、電極により、固体電解質膜を損傷することがある。
【0006】
また、工業的に用いられる大型の電解槽において、陽・陰両電極を平坦で且つ平行に設置することも相当に困難である。
【0007】
そのため、一方の電極を可撓性で柔軟な多孔板とし、該電極を更に伝導性で弾力のあるマット状物で押圧し、固体電解質膜を介して他方の電極面へ柔らかく押し付ける構造などが提案されている。
【0008】
例えば、特公昭63−53272号公報によれば、イオン交換膜の表面に電気触媒粒子からなる物質を結合することにより得られた電極層一膜組立体と、前記組立体の一方の電極層側に設けられた比較的剛性の粗目スクリーンと前記組立体の他方の電極層側に設けられ且つ圧縮時の1.5倍以上の体積を有する弾力的圧縮性マットとを、内側にリブまたは突起を有するカソード端板と内側にリブまたは突起を有するアノード端板との間において圧縮することによって構成され、前記弾性圧縮マットは、金属ワイヤーからなる一連の螺旋状コイルの織物であるアルカリ金属塩化物水溶液の電解槽及びイオン交換膜と前記イオン交換膜の一方の表面に設けられて一方の電極として使用される比較的剛性の粗目スクリーンと前記イオン交換膜の他方の表面に設けられて他方の電極として使用される可撓性あるいは柔軟性の薄いスクリーンと前記薄いスクリーンの外表面に設けられ且つ圧縮時の1.5倍以上の体積を有する弾力的圧縮性マットとを内側にリブまたは突起を有するカソード端板と内側にリブまたは突起を有するアノード端板との間において圧縮することによって構成され、前記弾性圧縮マットは、金属ワイヤーからなる一連の螺旋状コイルの織物であるアルカリ金属塩化物水溶液の電解槽が提案されている。更に実用性を高めた電解槽として、特公平5−34434号公報には、陽イオン交換膜で区分された陽極室と陰極室とよりなり、陽極室には陽極が、陰極室には陰極が各々存在する構造よりなり、該陽極及び陰極のうち、少なくとも一方の電極は、0.3mm以下の厚みであり、1ヶ所の孔の面積が0.05mm2 〜1.0mm2 の多数の孔を有し、且つ開孔率が20%以上の多孔体電極面が直径0.1〜1mmのワイヤーの集合体よりなり空隙率30%以上の集電体によって裏打ちされているイオン交換膜法アルカリ金属塩電解の電解槽が提案されている。
【0009】
【発明が解決しようとする課題】
上記の如く、固体電解質膜を陽・陰両電極間で挟持する構造の電解槽における共通の構造は、少なくとも一方の電極を可撓性で柔軟な多孔板とし、その裏側に弾性のある集電体、一般にマット状物を圧縮状態として配し、その反発弾性により、固体電解質膜を押し付けることにより該電極と弾性マットとの電気伝導性を保つと共に、該固体電解質膜及び(又は)弾性マットの存在位置が変化しないように保持している。
【0010】
大型電解槽にあっては、可成の重量物である電解槽本体を組立てる場合に、イオン交換膜等の固体電解質膜、柔軟な電極及び弾性マットを重ね合わせて電極室間に挟み込むことは、容易ではなく、しばしばずれを生じ、組なおしを行わねばならなくなる。また電解槽運転時においても、固体電解質膜は、電解槽周辺部等で強く挟持され固定されるが、柔軟電極及び弾性マットは、単に弾性マットの弾力による押圧で圧着固定されているだけであるため、電解槽運転時の内圧変動等に基づく振動などで位置がズレることもままあったのである。
【0011】
また、弾性マットや柔軟な電極を、電解槽枠特に背面隔壁や該背面隔壁に固定された集電多孔体に部分的に溶接等で固着させる方法も考えられるが、電極の取り替や弾性マットの補修時に固定部分を着脱するのに多くの手間を要する難点がある。
【0012】
そこで、本発明者らは、柔軟電極及び弾性マットを着脱自在に固定するという新規な発想の基に種々検討を行い、本発明を完成した。
【0013】
【課題を解決するための手段】
そこで本発明は、電極の一方は固定された剛体電極(A)、他方は着脱可能な可撓性の柔軟電極(B)とよりなる固体電解質膜電解槽において、(B)電極は多孔体集電板との間に存在する弾性マットにより、固体電解質膜と共に(A)電極に押し付けられる構造であって、該(B)電極及び弾性マットは(B)電極の固体電解質膜との接触面側から、該(B)電極及び弾性マットを貫通して、多孔体集電板の孔部に係合するピンで固定されていることを特徴とする電解槽である。
【0014】
更に、本発明は、該電解槽に用いられる前記ピンが、頭部が拡大しており、頚部を介して、抜脱防止用の肩部を形成する、ほぼ錘形の先端部よりなる固定用ピンであることを特徴とする電解槽を提案するものである。
【0015】
即ち、本発明の特徴の一つは、柔軟電極及び弾性マットを複数本のピンを用いて、弾性マット裏面の多孔性集電板に着脱自在に固定した電解槽にある。
【0016】
【発明の実施の形態】
以下に本発明を具体的に説明するが、説明の便宜上、ハロゲン化アルカリ金属塩、例えば、塩化ナトリウム等の水溶液の電解を例として、本発明の電解槽を説明する。
【0017】
図1は本発明の電解槽を説明するための概念図である。1は陽極室枠で、2は陽極室背面隔壁である。3は陽極伝導リブで、4は陽極である。ハロゲン化アルカリ金属塩水溶液の電解、例えば塩化ナトリウムの電解にあっては、陽極で塩素を発生するため、通常チタンなど耐塩素性材料で構成するか又は陽極室内がライニングされている。陽極リブや陽極もチタン材である。陽極は比較的剛性の高い多孔板、例えばエキスパンドメタル、パンチドメタル剛性を持つ太い金属線で構成された金網、金属棒を格子状に接続したものなどで、一つの孔の大きさは2〜100mm2、好ましくは2〜30mm2 の孔が多数存在する。開孔率は20%以上の多孔板である。また陽極には、白金属酸化物や白金族金属酸化物と同期律表第4族乃至第8族金属酸化物との混合物等の陽極活物質がコートされている。5は、陽イオン交換膜である。通常ナフィオン(商品名)などパーフルオロアルキルエーテルを骨格とし、スルホン酸基、カルボン酸基、リン酸基又はそれらの混合基などのイオン交換基を有する。6は可撓性で柔軟な陰極であり、通常軟鋼やニッケルの多孔板、即ち、パンチドメタルやメッシュ(金網)であり、場合によっては陰極活物質として、例えば含硫黄ニッケルメッキや、ニッケルと周期律表第6族又は第8族金属(ニッケルを除く)との合金メッキが施されている。7は弾性マットであり、軟鋼又はニッケルのワイヤの集合体、特にコイル状物を相互に絡ませた構造や、織物(又は編物)にクリンプを施したものや更にヘリボーン加工を施し、弾力を付与したマット状物である。通常は電解槽が組み上がった状態で、該弾性マットは30〜70%の体積に圧縮されており、それによりイオン交換膜及び柔軟な陰極を陽極側に押し付ける働きをする。このときの押圧は一般に200g/cm2以下、好ましくは30〜50g/cm2程度である。8は陰極集電板で、一般に剛性のある多孔板、例えばエキスパンドメタル、パンチドメタル、剛性のある金属線の織物又は金属棒を適当な間隔で平行に並べたスダレ状物等である。9は陰極リブであり、陰極室枠10の背面隔壁11に電気的に接続されると共に、陰極集電板を機械的に固定している。
【0018】
以上の説明では陽極を剛体電極とし、陰極を柔軟電極として説明したが、陰極と陽極とを逆にする構造も可能である。
【0019】
以上の如き、本発明の電解槽において、図2に示す如く、陰極室枠10の前面に柔軟陰極6が存在し、該陰極の裏には弾性マットが存在する(図2には示されていない)。これら柔軟陰極及び弾性マットは、前面(固体電解質膜即ちイオン交換膜と接触する側)から貫通して固定用ピン12で固定されている。図3は、固定用ピン12が柔軟陰極6及び弾性マット7を貫通して陰極集電板の孔部に係合され、柔軟陰極及び弾性マットを固定しているところを示す側面概念図である。 固定用ピンは、頭部が拡大して柔軟陰極を押さえる作用を有し、頚部を介して、多孔体陰極集電板の孔に係合することが可能な抜脱防止のための肩部を有するほぼ錐形の先端部よりなるものであれば、その形状は特に限定されないが、一般に図4に示す如き形状が好ましい。図4中(a)は、一般的な固定用ピンの斜視図であり、その側面図が(b)である。また(c)は固定用ピンの別の態様の例を示す側面図である。
【0020】
図4(a)について固定用ピンを更に説明すると、イは拡大された頭部であり、柔軟陰極を構成する金網等を、該拡大部で押さえ込む役割をはたす。ロは頚部であり、図3に示した如く、柔軟陰極及び弾性マットを貫通している部分である。 ハは先端部であり、柔軟陰極及び弾性マットを貫通させて固定用ピンを突き刺すときに貫通し易いように先端を細くした錐形である。図4(a)では円錐形として示してあるが、角錐であっても同様に使用可能である。該先端部は、頚部との接合部付近に抜脱防止用の肩部を有する。この肩部で、多孔体陰極集電板の孔の縁に係止されるのである。従って固定用ピンの肩部の直径(円形の場合)は、陰極集電板の孔に丁度はまる程度のものが好ましい。特に固定用ピンをテフロン等の合成樹脂で構成するときは、該孔径よりやや大き目とすることにより、樹脂の柔軟性により多少変形して、陰極集電板の孔を容易に貫通し、その後形状が回復することによって、肩部が集電板の裏面で、孔の縁に係合しストッパーとなる。しかし人力等のより大きな力で引き抜くことは可能である。
【0021】
なお、図4(c)は先端部に切り込みを入れた構造であり、突き差すときは、先端がすぼみ、肩部の直径が小さくなり陰極集電板の孔を通過した後に復元し肩がストッパーの役を果たす。従ってこの形状の場合には金属製の固定用ピンなどに採用するのが好ましい。
【0022】
また、固定用ピンの材質は、当然使用される電極室内液に耐え得るものでなければならない。一般にテフロンの如き耐薬品性の大きい合成樹脂が好ましいが、電極室内液に応じて、耐久性のある金属であってもよい。
【0023】
固定用ピンは、その目的から、明らかなように柔軟電極及び弾性マットを、その裏面の集電板に固定するためのものであるから、その目的に応じて複数本使用されるが、該ピンで固定する位置や本数は適宜決定すればよい。一般に電極の周辺部に用いるのが好ましい場合が多い。
【0024】
以下に比較例により本発明を具体的に説明する。
【0025】
【比較例及び実施例】
比較例1
電極室が図1に示す構造にある電解槽を用いて、塩化ナトリウム水溶液の電解を行った。通電部となる室枠の中空部は、縦116cm、横238cmの大きさで、電極室の厚みは4.4cmであった。使用する陽極は厚さ1mmのチタン製のパンチドメタルに活性物質を被覆したものを用いた。柔軟陰極については、線径0.15mm、開孔率68%、孔の面積0.49mm2 のニッケルにNi3Sn2の合金メッキしたものを使用した。弾性マットとしては、ニッケル製の線径0.08mm、本数4本のメリヤス編金網を2枚重ねてクリンプしたもので高さ約9mmを用いた。集電板としては、エキスパンドメタルの1t×4.5SW×10LW×1.2STを使用した。柔軟陰極及び弾性マットの集電板への固定方法は、スポット溶接とし、4偶及び上辺は中間に等間隔で11ヶ所、両側中央に各1ヶ所、下辺は等間隔で3ヶ所固定した。イオン交換膜は、ナフィオンN−962(デュポン社製)を用いた。
【0026】
以上の構造の電解槽で約4年間運転後、弾性マット取替のため、電解槽を解体したところ、一部スポット溶接が外れた箇所で、イオン交換膜に削れが発生していた。又、柔軟陰極を取外す際、溶接部が破損し、再使用出来なかった。
【0027】
比較例2
電解槽の構造、比較例1と同じであるが、柔軟陰極及び弾性マットの集電板への固定方法は、線径0.2mmのNi線を用いて縛りつけた。取付けは、比較例1と比較して、Ni線先端部の処理と固定に時間を要し、電解槽を長期間停止しなければならなかった。以上の構造の電解槽で運転を開始したが、Ni線の先端部でイオン交換膜に孔が開き、電解槽を停止した。
【0028】
実施例1
電解槽の構造は、比較例1と同じであるが、柔軟陰極及び弾性マットの集電板への固定方法は、図4(a)の形状のテフロン製のピンで頭部径8mm、厚みが1mm、頚部の径2mm、抜脱防止用の肩部の径は2.4mm、全長8mmを使用した。柔軟陰極及び弾性マットの集電板への固定時間は、比較例1と変わらず又器具を使用しないため作業性が楽であった。以上の構造の電解槽で約4年間運転後、電解槽を解体したが、解体時のピンの外れも無く、柔軟陰極を取外す際も、ピンの取外しが簡単であり、柔軟陰極を傷つける事無く取外せた。
【0029】
【発明の効果】
本発明によると、特に大型の電解槽において組立、解体作業が極めて容易となるばかりでなく、電解槽運転時における電極や、弾性マットのズレや、それにより引き起こされる固体電解質膜、例えばイオン交換膜の破損、劣化を防止することが可能となる。
【図面の簡単な説明】
【図1】 本発明の電解槽の一例を示す概念図
【図2】 本発明の固定用ピンを用いる態様を示す電極室の概念図
【図3】 本発明の固定用ピンを用いる説明図
【図4】 本発明の固定用ピンの例を示す図
【符号の説明】
1は 陽極室枠
2は 背面隔壁
4は 陽極
5は 陽イオン交換膜
6は 柔軟陰極
7は 弾性マット
8は 陰極集電板
10は 背面壁
11は 陰極室枠
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an electrolytic cell, for example, an electrolytic cell used for electrolysis of an aqueous alkali metal salt solution, water electrolysis or a fuel cell, particularly an ion exchange membrane, and a shape in which an anode and a cathode are respectively in contact with both sides. Related to the electrolytic cell.
[0002]
[Prior art]
A solid electrolyte membrane such as an ion exchange membrane is used as a diaphragm to partition into an anode chamber and a cathode chamber, and an electrolytic cell having an anode and a cathode in each chamber is used, and alkali metal salts such as sodium chloride and potassium chloride are used. A method of recovering chlorine with sodium hydroxide or potassium hydroxide, a method of obtaining alkali hypochlorite, etc., a method of electrolyzing water to obtain hydrogen or oxygen, and a fuel cell A method for recovering energy is known.
[0003]
As such an electrolytic cell, there is an electrolytic cell having a structure in which a solid electrolyte membrane, for example, an ion exchange membrane is sandwiched between both positive and negative electrodes.
[0004]
In this type of electrolytic cell, the distance between the electrodes is substantially zero, so that an electric loss due to the electric resistance of the electrolytic solution is omitted, so that it can be said to have an excellent structure.
[0005]
However, since a solid electrolyte membrane such as an ion exchange membrane generally composed of organic matter is sandwiched between electrodes made of metal, due to vibration during operation of the electrolytic cell, errors during assembly work of the electrolytic cell, etc., due to the electrode, The solid electrolyte membrane may be damaged.
[0006]
Further, in a large electrolytic cell used industrially, it is considerably difficult to install both the positive and negative electrodes flat and in parallel.
[0007]
Therefore, a structure is proposed in which one electrode is a flexible and flexible perforated plate, the electrode is further pressed with a conductive and elastic mat, and the other electrode surface is softly pressed through a solid electrolyte membrane. Has been.
[0008]
For example, according to Japanese Examined Patent Publication No. 63-53272, an electrode layer-one membrane assembly obtained by bonding a substance made of electrocatalyst particles to the surface of an ion exchange membrane, and one electrode layer side of the assembly A relatively rigid coarse screen provided on the other electrode layer and a resiliently compressible mat provided on the other electrode layer side of the assembly and having a volume 1.5 times or more that of the compressed state, and ribs or protrusions on the inside. An alkali metal chloride aqueous solution that is formed by compressing between a cathode end plate having an anode end plate having ribs or protrusions on the inside, and the elastic compression mat is a series of spiral coil fabrics made of metal wires A relatively rigid coarse screen used as one electrode provided on one surface of the electrolytic cell and the ion exchange membrane and the ion exchange membrane, and the other of the ion exchange membrane A flexible or flexible thin screen provided on the surface and used as the other electrode, and an elastic compressible mat provided on the outer surface of the thin screen and having a volume of 1.5 times or more of that when compressed; Is formed between a cathode end plate having ribs or protrusions on the inside and an anode end plate having ribs or protrusions on the inside, and the elastic compression mat is a series of spiral coil fabrics made of metal wires. An electrolytic cell of an alkali metal chloride aqueous solution is proposed. Further, as an electrolytic cell with improved practicality, Japanese Patent Publication No. 5-34434 has an anode chamber and a cathode chamber separated by a cation exchange membrane. The anode chamber has an anode, and the cathode chamber has a cathode. consists structures each present, among the anode and cathode, at least one of the electrodes, a thickness of less than 0.3 mm, the area of one location hole a number of holes of 0.05 mm 2 1.0 mm 2 An ion-exchange membrane method alkali metal having a porous electrode surface having a porosity of 20% or more and comprising a wire assembly having a diameter of 0.1 to 1 mm and backed by a current collector having a porosity of 30% or more An electrolytic cell for salt electrolysis has been proposed.
[0009]
[Problems to be solved by the invention]
As described above, the common structure in the electrolytic cell having the structure in which the solid electrolyte membrane is sandwiched between the positive and negative electrodes is that at least one of the electrodes is a flexible and flexible porous plate, and an elastic current collector is provided on the back side. The body, generally a mat-like material, is placed in a compressed state, and the repulsion resilience keeps the electrical conductivity between the electrode and the elastic mat by pressing the solid electrolyte membrane, and the solid electrolyte membrane and / or the elastic mat. The position is kept so as not to change.
[0010]
In the case of a large electrolytic cell, when assembling an electrolytic cell main body that is a heavy weight, it is possible to overlap a solid electrolyte membrane such as an ion exchange membrane, a flexible electrode, and an elastic mat and sandwich them between electrode chambers. It is not easy and often causes misalignment and requires reassembling. In addition, during the operation of the electrolytic cell, the solid electrolyte membrane is strongly sandwiched and fixed at the periphery of the electrolytic cell, etc., but the flexible electrode and the elastic mat are simply crimped and fixed by the pressure of the elastic mat. For this reason, the position may be shifted due to vibrations based on internal pressure fluctuations or the like during operation of the electrolytic cell.
[0011]
In addition, a method in which an elastic mat or a flexible electrode is fixed to an electrolytic cell frame, in particular, a back partition wall or a current collecting porous body fixed to the back partition wall by welding or the like can be considered. There is a difficulty that requires a lot of labor to attach and detach the fixed part during repair.
[0012]
Accordingly, the present inventors have conducted various studies based on the novel idea of securing the flexible electrode及beauty bullet mat detachably, and completed the present invention.
[0013]
[Means for Solving the Problems]
Therefore, the present invention provides a solid electrolyte membrane electrolytic cell in which one of the electrodes is a fixed rigid electrode (A) and the other is a detachable flexible soft electrode (B). (A) The electrode and the elastic mat are pressed against the solid electrolyte membrane together with the solid electrolyte membrane by an elastic mat existing between the electrode plate, and the (B) electrode contacts the solid electrolyte membrane. From (B), the electrolytic cell is characterized in that it is fixed with a pin that penetrates through the electrode and the elastic mat and engages with a hole of the porous collector plate.
[0014]
Further, according to the present invention, the pin used in the electrolytic cell has an enlarged head portion, and forms a shoulder portion for preventing removal through the neck portion . An electrolytic cell characterized by being a pin is proposed.
[0015]
That is, one aspect of the present invention, a flexible electrode及beauty bullets mat with a plurality of pins, in the electrolytic cell was detachably fixed to the porous current collector plate of elastic mat back surface.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. For convenience of explanation, the electrolytic cell of the present invention will be described by taking electrolysis of an aqueous solution of an alkali metal halide salt such as sodium chloride as an example.
[0017]
FIG. 1 is a conceptual diagram for explaining an electrolytic cell of the present invention. 1 is an anode chamber frame, and 2 is an anode chamber back partition. 3 is an anode conductive rib, and 4 is an anode. In the electrolysis of an alkali metal halide aqueous solution, for example, sodium chloride electrolysis, chlorine is generated at the anode, so that it is usually composed of a chlorine-resistant material such as titanium or the anode chamber is lined. The anode rib and anode are also made of titanium. The anode is a perforated plate with relatively high rigidity, such as expanded metal, a metal mesh composed of a thick metal wire having punched metal rigidity, or a metal rod connected in a grid, and the size of one hole is 2 to 2. 100 mm 2, preferably there are many holes of 2 to 30 mm 2. The porosity is a perforated plate having a porosity of 20% or more. The anode is coated with an anode active material such as a mixture of a white metal oxide or a platinum group metal oxide and a Group 4 to Group 8 metal oxide in the synchronization table. 5 is a cation exchange membrane. Usually, it has a perfluoroalkyl ether such as Nafion (trade name) as a skeleton and an ion exchange group such as a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or a mixed group thereof. 6 is a flexible and soft cathode, which is usually a perforated plate of mild steel or nickel, that is, a punched metal or a mesh (wire net). In some cases, as a cathode active material, for example, sulfur-containing nickel plating, nickel and Alloy plating with a Group 6 or Group 8 metal (except nickel) in the periodic table is performed. Reference numeral 7 denotes an elastic mat, which is an aggregate of mild steel or nickel wires, particularly a structure in which coiled materials are entangled with each other, a woven fabric (or knitted fabric) crimped, and further subjected to helibone processing to give elasticity. It is a mat. Usually, with the electrolytic cell assembled, the elastic mat is compressed to a volume of 30 to 70%, thereby pressing the ion exchange membrane and the flexible cathode toward the anode side. Pressing at this time is generally 200 g / cm 2 or less, preferably 30 to 50 g / cm 2 approximately. 8 is a cathode current collector plate, which is generally a rigid porous plate, such as an expanded metal, a punched metal, a fabric of a rigid metal wire, or a saddle-like material in which metal bars are arranged in parallel at appropriate intervals. Reference numeral 9 denotes a cathode rib, which is electrically connected to the rear partition wall 11 of the cathode chamber frame 10 and mechanically fixes the cathode current collector plate.
[0018]
In the above description, the anode is a rigid electrode and the cathode is a flexible electrode. However, a structure in which the cathode and the anode are reversed is also possible.
[0019]
As described above, in the electrolytic cell of the present invention, as shown in FIG. 2, the flexible cathode 6 exists on the front surface of the cathode chamber frame 10, and the elastic mat exists on the back of the cathode (not shown in FIG. 2). Absent). The flexible cathode and the elastic mat penetrate from the front surface (the side in contact with the solid electrolyte membrane, that is, the ion exchange membrane) and are fixed by the fixing pins 12. FIG. 3 is a side view conceptually showing that the fixing pin 12 passes through the flexible cathode 6 and the elastic mat 7 and is engaged with the hole of the cathode current collector plate to fix the flexible cathode and the elastic mat. . The fixing pin has an action of enlarging the head portion and holding the flexible cathode, and has a shoulder portion for preventing pull-out that can be engaged with the hole of the porous cathode current collector plate through the neck portion. The shape is not particularly limited as long as it has a substantially conical tip portion, but the shape as shown in FIG. 4 is generally preferable. 4A is a perspective view of a general fixing pin, and FIG. 4B is a side view thereof. Further, (c) is a side view showing an example of another aspect of the fixing pin.
[0020]
The fixing pin will be further described with reference to FIG. 4 (a). A is an enlarged head, and plays a role of pressing down a metal mesh or the like constituting the flexible cathode by the enlarged portion. B is a neck portion, as shown in FIG. 3, which is a portion penetrating the flexible cathode and the elastic mat. C is a tip portion, and has a conical shape in which the tip is thinned so that the flexible pin and the elastic mat can be penetrated when penetrating the fixing pin. Although it is shown as a conical shape in FIG. 4A, a pyramid can be used similarly. The distal end portion has a shoulder portion for preventing removal near the joint portion with the neck portion. This shoulder is locked to the edge of the hole of the porous cathode current collector plate. Therefore, it is preferable that the diameter of the shoulder portion of the fixing pin (in the case of a circle) is just enough to fit in the hole of the cathode current collector plate. In particular, when the fixing pin is made of a synthetic resin such as Teflon, it is slightly larger than the hole diameter, so that it deforms somewhat due to the flexibility of the resin and easily penetrates the hole of the cathode current collector plate, and then the shape As a result of the recovery, the shoulder portion engages with the edge of the hole on the back surface of the current collector plate and becomes a stopper. However, it is possible to pull out with greater power such as human power.
[0021]
FIG. 4 (c) shows a structure in which the tip is cut, and when it is inserted, the tip is sunk, the diameter of the shoulder is reduced and the shoulder is restored after passing through the hole of the cathode current collector plate. Play a role. Therefore, in the case of this shape, it is preferably employed for a metal fixing pin or the like.
[0022]
Further, the material of the fixing pin must naturally be able to withstand the electrode chamber liquid used. In general, a synthetic resin having high chemical resistance such as Teflon is preferable, but a durable metal may be used depending on the liquid in the electrode chamber.
[0023]
Fixing pin from its purpose, it is apparent compliant electrode及beauty bullets mat, since it is intended for fixing the current collector plate of the back surface, but are a plurality of used depending on the purpose, What is necessary is just to determine suitably the position and number which fix with this pin. In general, it is often preferable to use it in the periphery of the electrode.
[0024]
The present invention will be specifically described below with reference to comparative examples.
[0025]
[Comparative Examples and Examples]
Comparative Example 1
Electrolysis of the sodium chloride aqueous solution was performed using an electrolytic cell having an electrode chamber having the structure shown in FIG. The hollow part of the chamber frame serving as the energization part was 116 cm long and 238 cm wide, and the thickness of the electrode chamber was 4.4 cm. The anode used was a 1 mm thick titanium punched metal coated with an active material. As for the flexible cathode, Ni 3 Sn 2 alloy-plated nickel having a wire diameter of 0.15 mm, a hole area ratio of 68%, and a hole area of 0.49 mm 2 was used. As the elastic mat, a nickel wire having a diameter of 0.08 mm and four knitted metal meshes were crimped and used, and a height of about 9 mm was used. As the current collector plate, expanded metal 1t × 4.5 SW × 10 LW × 1.2 ST was used. The flexible cathode and the elastic mat were fixed to the current collector plate by spot welding, and the 4 even and upper sides were fixed at 11 places in the middle, 1 each at the center of both sides, and the lower sides were fixed at 3 places at equal intervals. As the ion exchange membrane, Nafion N-962 (manufactured by DuPont) was used.
[0026]
After operation for about 4 years in the electrolytic cell having the above structure, the electrolytic cell was disassembled for replacement of the elastic mat. As a result, the ion exchange membrane was scraped at a portion where spot welding was partially removed. Further, when removing the flexible cathode, the welded portion was damaged and could not be reused.
[0027]
Comparative Example 2
The structure of the electrolytic cell was the same as in Comparative Example 1, but the flexible cathode and elastic mat were fixed to the current collector plate using Ni wire having a wire diameter of 0.2 mm. As compared with Comparative Example 1, it took time to process and fix the tip of the Ni wire, and the electrolytic cell had to be stopped for a long time. The operation was started in the electrolytic cell having the above structure, but a hole was opened in the ion exchange membrane at the tip of the Ni wire, and the electrolytic cell was stopped.
[0028]
Example 1
The structure of the electrolytic cell is the same as that of Comparative Example 1, but the flexible cathode and the elastic mat are fixed to the current collector plate with a Teflon pin having the shape of FIG. The diameter of 1 mm, the diameter of the neck 2 mm, the diameter of the shoulder for removal prevention is 2.4 mm, and the total length is 8 mm. The fixing time of the flexible cathode and the elastic mat to the current collector plate was the same as in Comparative Example 1, and the operability was easy because no instrument was used. After operating for 4 years in the electrolytic cell with the above structure, the electrolytic cell was disassembled, but there was no pin removal at the time of disassembly, and when removing the flexible cathode, it was easy to remove the pin without damaging the flexible cathode. I was able to remove it.
[0029]
【The invention's effect】
According to the present invention, not only the assembly and disassembly work is particularly easy in a large electrolytic cell, but also the electrode during operation of the electrolytic cell, the displacement of the elastic mat, and the solid electrolyte membrane caused thereby, such as an ion exchange membrane Can be prevented from being damaged or deteriorated.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an electrolytic cell of the present invention. FIG. 2 is a conceptual diagram of an electrode chamber showing an embodiment using the fixing pin of the present invention. FIG. 3 is an explanatory diagram using the fixing pin of the present invention. FIG. 4 is a diagram showing an example of the fixing pin of the present invention.
1 is an anode chamber frame 2 is a back partition wall 4 is an anode 5 is a cation exchange membrane 6 is a flexible cathode 7 is an elastic mat 8 is a cathode current collector plate
10 is the back wall
11 is the cathode chamber frame

Claims (2)

電極の一方は固定された剛体電極(A)、他方は着脱可能な可撓性の柔軟電極(B)よりなる固体電解質膜電解槽において、(B)電極は多孔体集電板との間に存在する弾性マットにより、固体電解質膜と共に(A)電極に押し付けられる構造であって、該(B)電極及び弾性マットは、(B)電極の固体電解質膜との接触面側から、該(B)電極及び弾性マットを貫通して、多孔体集電板の孔部に係合するピンで固定されていることを特徴とする電解槽。One of the electrodes is a solid electrolyte membrane electrolytic cell comprising a fixed rigid electrode (A) and the other is a detachable flexible soft electrode (B). (B) The electrode is between the porous current collector plate. The (A) electrode is pressed against the (A) electrode together with the solid electrolyte membrane by the existing elastic mat, and the (B) electrode and the elastic mat are (B) from the contact surface side of the electrode with the solid electrolyte membrane. ) An electrolytic cell characterized in that it is fixed with a pin that penetrates the electrode and the elastic mat and engages with the hole of the porous collector plate. 前記ピンが、頭部が拡大しており、頚部を介して、抜脱防止用の肩部を形成するほぼ錐形の先端部よりなる固定用ピンであることを特徴とする請求項1に記載の電解槽。 2. The fixing pin according to claim 1, wherein the pin is a fixing pin having a substantially conical tip portion that forms a shoulder portion for preventing removal through a neck portion with an enlarged head portion. Electrolyzer.
JP35113698A 1998-12-10 1998-12-10 Electrolytic cell Expired - Lifetime JP3686270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35113698A JP3686270B2 (en) 1998-12-10 1998-12-10 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35113698A JP3686270B2 (en) 1998-12-10 1998-12-10 Electrolytic cell

Publications (2)

Publication Number Publication Date
JP2000178781A JP2000178781A (en) 2000-06-27
JP3686270B2 true JP3686270B2 (en) 2005-08-24

Family

ID=18415300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35113698A Expired - Lifetime JP3686270B2 (en) 1998-12-10 1998-12-10 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP3686270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068579A1 (en) * 2013-11-06 2017-03-09 株式会社大阪ソーダ Ion exchange membrane electrolytic cell and elastic body

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292370A (en) * 2001-01-23 2002-10-08 Silver Seiko Ltd Ozone water producer
ITMI20012538A1 (en) * 2001-12-03 2003-06-03 Uhdenora Technologies Srl ELASTIC CURRENT COLLECTOR
CN101220482B (en) 2002-11-27 2011-02-09 旭化成化学株式会社 Bipolar zero-gap electrolytic cell
ITMI20071375A1 (en) * 2007-07-10 2009-01-11 Uhdenora Spa ELASTIC CURRENT MANIFOLD FOR ELECTROCHEMICAL CELLS
JP5493787B2 (en) * 2009-12-04 2014-05-14 東ソー株式会社 Ion exchange membrane electrolytic cell
JP5693215B2 (en) 2010-12-28 2015-04-01 東ソー株式会社 Ion exchange membrane electrolytic cell
JP5653209B2 (en) * 2010-12-28 2015-01-14 東ソー株式会社 Ion exchange membrane electrolytic cell
CN102154660A (en) * 2011-03-10 2011-08-17 江阴安凯特电化学设备有限公司 Elastic electrode in ionic membrane electrolytic bath
JP5854788B2 (en) * 2011-11-24 2016-02-09 東ソー株式会社 Zero-gap electrolytic cell and method for manufacturing the same
JP5970250B2 (en) * 2012-06-13 2016-08-17 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 Elastic cushion material for ion exchange membrane electrolytic cell
ITMI20130563A1 (en) * 2013-04-10 2014-10-11 Uhdenora Spa METHOD OF ADAPTATION OF ELECTROLYTIC CELLS HAVING FINISHED INTERELECTRODUCTS DISTANCES
WO2016067389A1 (en) * 2014-10-29 2016-05-06 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 Ion-exchange membrane electrolytic cell
EP3819401B1 (en) * 2018-07-06 2023-10-25 Asahi Kasei Kabushiki Kaisha Electrode structure, method for producing electrode structure, electrolysis cell, and electrolysis tank
JP7122181B2 (en) * 2018-07-06 2022-08-19 旭化成株式会社 Electrode structure, electrolytic cell and electrolytic bath

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068579A1 (en) * 2013-11-06 2017-03-09 株式会社大阪ソーダ Ion exchange membrane electrolytic cell and elastic body
US10208388B2 (en) 2013-11-06 2019-02-19 Osaka Soda Co., Ltd. Ion exchange membrane electrolyzer and elastic body

Also Published As

Publication number Publication date
JP2000178781A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP3686270B2 (en) Electrolytic cell
JP5860075B2 (en) Electrolytic cell
JP3707985B2 (en) Alkali metal salt electrolytic cell
US10053787B2 (en) Electrolytic cathode structure and electrolyzer using the same
US4417959A (en) Electrolytic cell having a composite electrode-membrane structure
JP5945154B2 (en) Ion exchange membrane electrolytic cell
JP3772055B2 (en) Electrolytic cell
JP2876427B2 (en) Mattress for electrochemical tank
JP5970250B2 (en) Elastic cushion material for ion exchange membrane electrolytic cell
JP2014037586A (en) Electrolytic cell and electrolytic bath
JP3860132B2 (en) Ion exchange membrane electrolyzer using hydrogen generating cathode
JP4246530B2 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell using the same
JPS6152383A (en) Electrochemical device using cation exchange membrane as electrolyte
EP0864004B1 (en) Filter press electrolyzer electrode assembly
JP5493787B2 (en) Ion exchange membrane electrolytic cell
JP3616265B2 (en) Ion exchange membrane electrolytic cell
TW202124779A (en) Elastic mat for alkaline water electrolysis vessel
JP2004002993A (en) Ion exchange membrane electrolytic cell
JP7122181B2 (en) Electrode structure, electrolytic cell and electrolytic bath
JP3850265B2 (en) Ion exchange membrane electrolytic cell
JP3924545B2 (en) Method for discharging gas diffusion electrode
JP2014221930A (en) Ion exchange membrane electrolytic cell
EP3819401B1 (en) Electrode structure, method for producing electrode structure, electrolysis cell, and electrolysis tank
WO2014199440A1 (en) Ion exchange membrane electrolytic cell
JP5653209B2 (en) Ion exchange membrane electrolytic cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

EXPY Cancellation because of completion of term