JP3685552B2 - Solid-liquid separator - Google Patents

Solid-liquid separator Download PDF

Info

Publication number
JP3685552B2
JP3685552B2 JP15056996A JP15056996A JP3685552B2 JP 3685552 B2 JP3685552 B2 JP 3685552B2 JP 15056996 A JP15056996 A JP 15056996A JP 15056996 A JP15056996 A JP 15056996A JP 3685552 B2 JP3685552 B2 JP 3685552B2
Authority
JP
Japan
Prior art keywords
water
gravity
turbidity
sedimentation basin
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15056996A
Other languages
Japanese (ja)
Other versions
JPH09327601A (en
Inventor
真 矢尾
達彦 鈴木
正章 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP15056996A priority Critical patent/JP3685552B2/en
Publication of JPH09327601A publication Critical patent/JPH09327601A/en
Application granted granted Critical
Publication of JP3685552B2 publication Critical patent/JP3685552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固液分離装置に関し、詳しくは、下水処理場等の水処理設備における固液分離を、重力沈殿と加圧浮上との組合わせにより行う固液分離装置に関する。
【0002】
【従来の技術】
従来、下水処理等において二次処理水を得るための固液分離には、懸濁液中の粒子を重力で沈降させる重力沈降分離が広く採用されている。このときの固液分離の対象となる活性汚泥中のフロックの沈降速度は、その密度,形状及び大きさによって大幅に異なり、広範囲にわたっている。したがって、放流水基準値であるSS20mg/lを達成するため、これらの広範囲の沈降速度の中で比較的沈降速度が遅い汚泥でも十分に沈殿分離できるように、最終沈殿池は、十分な水面積を持つように設計している。例えば、高負荷型活性汚泥法による下水処理の場合には、最終沈殿池の水面積負荷を20〜30m3 /m2 ・日にしている。
【0003】
【発明が解決しようとする課題】
しかし、流入水量の変動による影響を受けやすい小規模処理場では、汚水ポンプが稼働する時間帯に、最終沈殿池からSS成分が流出することがあった。また、活性汚泥の沈降性及び圧密性が極度に低下し、活性汚泥と処理水とを十分に分離できない現象(バルキング)が発生することもあった。さらに、流入下水の組成の急激な変化や、有害物質の流入、過剰なエアレーション及び硝化による低pH化等によって活性汚泥が解体し、一部の微細フロックが流出することもあった。特に、重力沈降分離では、沈降しにくい浮遊性の固形物が処理水と共に流出してしまうことがあり、処理水の水質を悪化させる原因となっている。
【0004】
そこで本発明は、流入水の水質、水量等の変動にかかわらず、常に基準値を満足する処理水が得られるとともに、運転コストの上昇も抑えることができる固液分離装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の固液分離装置は、重力沈殿池内に加圧空気溶解水を注入する注入部と、浮上した浮上汚泥を排出する排出手段と、重力沈殿池から流出する処理水の濁度を検出する濁度計と、該濁度計の測定値に応じて前記注入部からの加圧空気溶解水の注入量を制御する制御手段とを備えていることを特徴としている。
【0008】
【発明の実施の形態】
以下、本発明を、図面を参照してさらに詳細に説明する。まず、本発明の参考例として、図1に示す二次処理方式として活性汚泥法を採用した下水処理設備について説明すると、この下水処理設備は、従来の下水処理設備と同様の沈砂池1、最初沈殿池2、エアレーションタンク3、最終沈殿池4及び塩素混和池5を有するとともに、重力沈殿池である最終沈殿池4と塩素混和池5との間に、加圧浮上分離装置6と、該加圧浮上分離装置6を通過するバイパス流路7とを設けたものである。
【0009】
また、最終沈殿池4の処理水流出部には、処理水(重力沈殿分離処理水)の濁度を検出する濁度計8が設けられており、加圧浮上分離装置6の流入部とバイパス流路7とには、前記濁度計8からの信号により自動的に開閉し、最終沈殿池4からの重力沈殿分離処理水の流路を、加圧浮上分離装置6とバイパス流路7とに切換えるための手段としての自動弁9,10がそれぞれ設けられている。
【0010】
前記加圧浮上分離装置6は、該装置への流入水に加圧空気溶解水を注入し、これを大気圧に減圧することで加圧空気溶解水から微細な気泡を発生させ、この微細気泡が流入水中の懸濁成分に付着して懸濁成分の見掛けの比重が小さくなることにより、懸濁成分を浮上させて分離するものであって、重力による通常の沈殿処理に比べて懸濁成分の除去率が高く、沈降速度の遅い微細な活性汚泥フロックも確実に分離除去することができ、重力沈殿処理では分離が困難な髪の毛、油分、スカム等の浮上し易い成分も完全に除去することができる。
【0011】
また、前記濁度計8は、重力沈殿分離処理水のSSと濁度との相関をあらかじめ測定し、該濁度計8の測定値で重力沈殿分離処理水のSSを算出できるように設定してある。
【0012】
このような下水処理設備において、流入下水は、沈砂池1及び最初沈殿池2で従来と同様に処理された後、エアレーションタンク3において返送汚泥流路11からの返送汚泥と混合され、活性汚泥法による水処理が行われる。このエアレーションタンク3で生成する活性汚泥フロックには、その密度、形状及び大きさにより様々な沈降速度を有しているが、これらの汚泥は、通常、次の最終沈殿池4での重力沈殿によって固液分離される。すなわち、最終沈殿池4は、通常の流入下水量、平均的な水質のときには十分な固液分離を行うことができる能力に設定されており、例えば、水面積負荷が20〜30m3 /m2 ・日に設定されている。
【0013】
したがって、流入水量が少ないときや汚水ポンプが稼働していない時間帯等、負荷の小さなときには、最終沈殿池4から流出する重力沈殿分離処理水のSSは、処理水基準値を満足する値となるから、そのまま塩素混和池5で塩素を添加して塩素滅菌を行うことにより河川等に放流することができる。
【0014】
そして、このときの前記濁度計8の測定値は、あらかじめ設定されている基準値以下であり、この濁度計8の信号により開閉する自動弁9,10は、加圧浮上分離装置6の流入部の自動弁9が閉であり、バイパス流路7の自動弁10は開となっている。
【0015】
一方、流入水量が多くなったり、汚水ポンプが稼働したりして最終沈殿池4における重力沈殿による固液分離が十分に行えなくなると、沈降速度の遅い汚泥が最終沈殿池4からの重力沈殿分離処理水中に流出することがある。このように重力沈殿分離処理水中に汚泥等が流出して、重力沈殿分離処理水のSSが増加すると、濁度計8が検出する重力沈殿分離処理水の濁度が上昇し、検出した濁度が基準値を超えたとき、あるいは基準値を超えることが予測されるときは、濁度計8から自動弁9,10に開閉信号が出力され、自動弁9が開いて自動弁10が閉じられる。これにより、濁度が上昇した重力沈殿分離処理水は、自動弁9を経て加圧浮上分離装置6に供給され、加圧浮上分離処理が行われた後、塩素混和池5に送られる。
【0016】
なお、加圧浮上分離装置6は、自動弁9が開くと運転を開始し、自動弁9が閉じると停止するように、その制御回路が設定されている。また、加圧浮上分離装置6の運転中に発生する汚泥は、一部が汚泥処理設備に送られる他、最終沈殿池4からの汚泥と共に、返送汚泥流路11から返送汚泥としてエアレーションタンク3に送られる。
【0017】
すなわち、濁度計8で測定した濁度によって算出される重力沈殿分離処理水のSSが放流水基準値を超えるか、あるいは超えるものと判断される場合には、重力沈殿分離処理水を加圧浮上分離装置6に導入し、加圧浮上分離処理を行うようにしている。
【0018】
さらに、重力沈殿分離処理水の濁度に応じて加圧空気溶解水の添加量(加圧水比)等を変更することにより、例えば、濁度が低い場合には加圧水比を小さくすることにより、加圧空気溶解水を生成するためのポンプやコンプレッサーの動力費を抑えることができる。
【0019】
また、重力沈殿分離処理水の濁度が基準値より低くなったときには、濁度計8からの信号により自動弁9が閉じて自動弁10が閉き、重力沈殿分離処理水は、バイパス流路7を流れて塩素混和池5に導入され、加圧浮上分離装置6は、その運転を停止する。
【0020】
このように、重力沈殿分離処理水の濁度に応じて加圧浮上分離処理を行うことにより、放流水基準値であるSS20mg/lを確実に達成することができるとともに、加圧浮上分離装置6の動力費も抑えることができ、最終沈殿池等の重力沈殿池の小型化も図れるので、水質基準を維持しながら設備比やランニングコストの低減が図れる。さらに、スカム及びバルキング等の原因で重力沈殿処理が十分に行えなくなった場合でも、加圧浮上分離装置6で加圧浮上分離処理することにより、必要十分な固液分離処理を行うことができる。
【0021】
次に、本発明の形態例を図2に示す下水処理設備に基づいて説明する。この下水処理設備は、前記参考例同様に、沈砂池、最初沈殿池、エアレーションタンク3、最終沈殿池4及び塩素混和池を有する設備の最終沈殿池4に、加圧空気溶解水を注入する注入部21と、浮上した浮上汚泥を排出する排出手段22と、重力沈殿池から流出する処理水の濁度を検出する濁度計23と、該濁度計23の測定値に応じて前記注入部21からの加圧空気溶解水の注入量を制御する制御手段24とを設けたものである。
【0022】
前記注入部21は、最終沈殿池4の中間部で、適当な水深位置に設けられており、ポンプやコンプレッサー等を備えた加圧空気溶解水製造装置25から供給される加圧空気溶解水を水中に噴出し、前記加圧浮上分離装置と同じ原理で水中の懸濁成分を浮上させる。
【0023】
前記排出手段22は、最終沈殿池4に通常設けられている汚泥掻寄機26を利用したものであって、汚泥掻寄機26のリターン部を水面部に配置し、汚泥掻寄機26のフライト26aにより浮上汚泥を掻寄せ、下流側に設けたパイプスキマー27を介して池外に排出するようにしている。
【0024】
また、濁度計23は、最終沈殿池4の越流堰28を越えて処理水槽29に流出した処理水の濁度を検出するものであって、前記参考例同様に、検出した濁度が基準値を超えたとき、あるいは基準値を超えることが予測されるときに、制御部24を介して前記加圧空気溶解水製造装置25に運転信号を出力する。この運転信号は、単にON/OFFのみを制御するものであってもよく、濁度に応じて加圧空気溶解水の製造量を変化させる信号であってもよい。さらに、浮上汚泥の排出手段22は、専用の掻寄機等を設置するようにしてもよい。
【0025】
このように、最終沈殿池4の適当な位置に加圧空気溶解水を注入することにより、浮遊性固形物を確実に分離除去することができ、処理水の水質を向上させることができる。このとき、濁度計23を設けずに加圧空気溶解水の注入を連続的に行ってもよく、また、流入水量の変化に応じて加圧空気溶解水製造装置25を運転したり、あらかじめ設定したタイムスケジュールに従って運転するようにしても十分な固液分離を行うことはできるが、上述のように濁度計23により検出した処理水の濁度、即ちSSの程度に応じて加圧空気溶解水の注入運転を制御することにより、運転コストを最低限に抑えることができる。
【0026】
なお、上述の形態例では、二次処理方式として活性汚泥法を採用しているが、本発明は、これに限らず、オキシデーションディッチ法等、他の処理方式を採用した下水処理設備にも適用することができ、他の様々な固液分離処理にも適用可能である。
【0027】
【発明の効果】
以上説明したように、本発明によれば、流入水の水質や水量等の変動にかかわらず常に所定の処理水質を得ることができ、加圧浮上処理に要する電力費も抑えることができるので、下水処理設備等の設備コストの低減及びランニングコストの低減が図れる。また、自動運転も可能であり、スカム及びバルキング等の原因による固液分離障害にも対処することができる。
【図面の簡単な説明】
【図1】 本発明の参考例を示す下水処理設備の系統図である。
【図2】 本発明の形態例を示す下水処理設備の概略図である。
【符号の説明】
1…沈砂池、2…最初沈殿池、3…エアレーションタンク、4…最終沈殿池、5…塩素混和池、6…加圧浮上分離装置、7…バイパス流路、8…濁度計、9,10…自動弁、11…返送汚泥流路、21…注入部、22…排出手段、23…濁度計、24…制御手段、25…加圧空気溶解水製造装置、26…汚泥掻寄機、26a…フライト、27…パイプスキマー、28…越流堰、29…処理水槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-liquid separation HanareSo location, details, a solid-liquid separation in water treatment facilities of wastewater treatment plants, etc., relating to solid-liquid separation HanareSo location performed by a combination of the on gravity sedimentation and floatation.
[0002]
[Prior art]
Conventionally, for solid-liquid separation for obtaining secondary treated water in sewage treatment or the like, gravity sedimentation separation in which particles in a suspension are settled by gravity has been widely adopted. At this time, the sedimentation speed of flocs in the activated sludge to be subjected to solid-liquid separation varies greatly depending on its density, shape and size, and is in a wide range. Therefore, the final sedimentation basin has a sufficient water area so that the sludge having a relatively slow sedimentation speed can be sufficiently settled and separated in order to achieve the SS 20 mg / l which is the reference value of the discharged water. Designed to have For example, in the case of sewage treatment by the high-load activated sludge method, the water area load of the final sedimentation basin is 20 to 30 m 3 / m 2 · day.
[0003]
[Problems to be solved by the invention]
However, in small-scale treatment plants that are easily affected by fluctuations in the amount of inflow water, SS components sometimes flowed out from the final sedimentation basin during the time when the sewage pump is operating. Moreover, the sedimentation property and compaction property of activated sludge are extremely lowered, and a phenomenon (bulking) in which activated sludge and treated water cannot be sufficiently separated may occur. Furthermore, the activated sludge may be dismantled due to abrupt changes in the composition of the inflowing sewage, inflow of harmful substances, excessive aeration and low pH due to nitrification, and some fine flocs may flow out. In particular, in gravity sedimentation separation, floating solids that are difficult to settle may flow out together with the treated water, which causes the quality of the treated water to deteriorate.
[0004]
The present invention provides water quality of the inflow water, regardless of the variation of the amount of water or the like, always together with treated water satisfying the reference value is obtained, to provide a solid-liquid separation HanareSo location which can be suppressed increase in operating costs It is an object.
[0007]
[Means for Solving the Problems]
Solid-liquid separator of the present invention, an injection section for injecting pressurized air dissolved water in gravity sedimentation pond, a discharge means for discharging the floating levitation sludge, detecting the turbidity of the treated water flowing out from the gravity settling tank And a control means for controlling the injection amount of the pressurized air-dissolved water from the injection portion in accordance with the measured value of the turbidimeter.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. First, as a reference example of the present invention, a sewage treatment facility adopting an activated sludge method as a secondary treatment method shown in FIG. 1 will be described. This sewage treatment facility includes a sand basin 1 similar to a conventional sewage treatment facility, A sedimentation basin 2, an aeration tank 3, a final sedimentation basin 4, and a chlorine mixing basin 5, and between the final sedimentation basin 4, which is a gravity sedimentation basin, and the chlorine mixing basin 5, A bypass flow path 7 that passes through the pressure levitation separation device 6 is provided.
[0009]
Further, a turbidity meter 8 for detecting the turbidity of the treated water (gravity precipitation separation treated water) is provided at the treated water outflow portion of the final sedimentation basin 4, and the inflow portion of the pressurized flotation separation device 6 is bypassed. The flow path 7 is automatically opened and closed by a signal from the turbidimeter 8, and the gravity precipitation separation treated water flow path from the final sedimentation basin 4 is connected to the pressurized flotation separation device 6 and the bypass flow path 7. Automatic valves 9 and 10 are provided as means for switching to the above.
[0010]
The pressurized levitation separator 6 injects pressurized air-dissolved water into the inflow water to the apparatus, and reduces the pressure to atmospheric pressure to generate fine bubbles from the pressurized air-dissolved water. Is attached to the suspended components in the inflowing water and the apparent specific gravity of the suspended components is reduced, so that the suspended components are floated and separated. Compared with normal precipitation treatment by gravity, suspended components It is possible to reliably remove fine activated sludge flocs with a high removal rate and a slow sedimentation rate, and to completely remove easily floating components such as hair, oil and scum that are difficult to separate by gravity precipitation. Can do.
[0011]
In addition, the turbidimeter 8 is set so that the correlation between the SS and the turbidity of the gravity sediment separation treated water is measured in advance, and the SS of the gravity sediment separation treated water can be calculated from the measured value of the turbidimeter 8. It is.
[0012]
In such a sewage treatment facility, the inflow sewage is treated in the sand basin 1 and the first sedimentation basin 2 in the same manner as before, and then mixed with the return sludge from the return sludge flow path 11 in the aeration tank 3 to activate the activated sludge method. Water treatment is performed. The activated sludge flocs produced in this aeration tank 3 have various sedimentation speeds depending on their density, shape and size, but these sludges are usually produced by gravity sedimentation in the next final sedimentation basin 4. Solid-liquid separation. In other words, the final sedimentation basin 4 is set to have a capability of performing sufficient solid-liquid separation when the amount of normal inflow sewage and the average water quality, for example, the water area load is 20 to 30 m 3 / m 2.・ The date is set.
[0013]
Therefore, when the load is small, such as when the amount of inflow water is small or when the sewage pump is not operating, the SS of the gravity sediment separation treated water flowing out from the final sedimentation basin 4 becomes a value that satisfies the treated water reference value. Therefore, it can be discharged into a river or the like by adding chlorine in the chlorine-mixing basin 5 and performing sterilization with chlorine.
[0014]
The measured value of the turbidimeter 8 at this time is below a preset reference value, and the automatic valves 9 and 10 that are opened and closed by the signal of the turbidimeter 8 are The automatic valve 9 in the inflow portion is closed, and the automatic valve 10 in the bypass flow path 7 is open.
[0015]
On the other hand, if the amount of inflow water increases or the sewage pump is operated and solid-liquid separation by gravity sedimentation in the final sedimentation basin 4 cannot be performed sufficiently, sludge having a slow sedimentation rate is separated from the final sedimentation basin 4 by gravity sedimentation. May flow into treated water. In this way, when sludge or the like flows into the gravity precipitation separation treated water and the SS of the gravity precipitation separation treated water increases, the turbidity of the gravity precipitation separated treatment water detected by the turbidimeter 8 increases, and the detected turbidity. When the reference value exceeds or is predicted to exceed the reference value, an open / close signal is output from the turbidimeter 8 to the automatic valves 9 and 10, the automatic valve 9 is opened and the automatic valve 10 is closed. . Thereby, the gravity precipitation separation treated water having increased turbidity is supplied to the pressurized flotation separation device 6 via the automatic valve 9 and is sent to the chlorine mixing basin 5 after the pressurized flotation separation process is performed.
[0016]
Note that the control circuit is set so that the pressurized levitation separator 6 starts operation when the automatic valve 9 is opened and stops when the automatic valve 9 is closed. In addition, some of the sludge generated during the operation of the pressurized flotation separation device 6 is sent to the sludge treatment facility, and is also returned to the aeration tank 3 as return sludge from the return sludge channel 11 together with sludge from the final sedimentation basin 4. Sent.
[0017]
That is, when it is judged that the SS of the gravity precipitation separated water calculated by the turbidity measured by the turbidimeter 8 exceeds or exceeds the effluent water reference value, the gravity precipitation separated water is pressurized. It is introduced into the levitation separator 6 so as to perform a pressure levitation separation process.
[0018]
Furthermore, by changing the amount of pressurized air-dissolved water added (pressurized water ratio) according to the turbidity of gravity precipitation separation treated water, for example, by reducing the pressurized water ratio when the turbidity is low, The power cost of a pump or a compressor for generating compressed air dissolved water can be reduced.
[0019]
Further, when the turbidity of the gravity precipitation separation treated water becomes lower than the reference value, the automatic valve 9 is closed by the signal from the turbidimeter 8 and the automatic valve 10 is closed. 7 flows into the chlorine-mixing basin 5 and the pressurized flotation separator 6 stops its operation.
[0020]
Thus, by performing the pressurized flotation separation process according to the turbidity of the gravity precipitation separation treated water, SS20 mg / l which is the discharge water reference value can be reliably achieved, and the pressurized flotation separation apparatus 6 The power cost can be reduced, and the size of the gravity sedimentation basin such as the final sedimentation basin can be reduced, so that the equipment ratio and running cost can be reduced while maintaining the water quality standard. Furthermore, even when the gravity sedimentation process cannot be sufficiently performed due to scum, bulking, or the like, the necessary levitation separation process can be performed by the pressurized levitation separation device 6 to perform a necessary and sufficient solid-liquid separation process.
[0021]
Next, an embodiment of the present invention will be described based on the sewage treatment facility shown in FIG . In this sewage treatment facility, injecting pressurized air-dissolved water into a final sedimentation basin 4 of a facility having a sedimentation basin, a first sedimentation basin, an aeration tank 3, a final sedimentation basin 4 and a chlorine mixing basin, as in the above-described reference example. Unit 21, discharge means 22 for discharging the levitated sludge, turbidity meter 23 for detecting the turbidity of the treated water flowing out from the gravity sedimentation basin, and the injection unit according to the measured value of the turbidity meter 23 The control means 24 which controls the injection amount of the pressurized air dissolution water from 21 is provided.
[0022]
The injection part 21 is provided at an appropriate depth position in the intermediate part of the final sedimentation basin 4 and is used to supply pressurized air dissolved water supplied from a pressurized air dissolved water production apparatus 25 equipped with a pump, a compressor and the like. It is ejected into water, and suspended components in water are levitated on the same principle as the pressurized flotation separator.
[0023]
The discharge means 22 utilizes a sludge scraper 26 that is usually provided in the final sedimentation basin 4. The return portion of the sludge scraper 26 is disposed on the water surface, and the sludge scraper 26 The flying sludge is scraped by the flight 26a and discharged out of the pond through a pipe skimmer 27 provided on the downstream side.
[0024]
The turbidity meter 23 detects the turbidity of the treated water that has flowed over the overflow weir 28 of the final sedimentation basin 4 into the treated water tank 29, and the detected turbidity is the same as the reference example. When the reference value is exceeded or when it is predicted that the reference value will be exceeded, an operation signal is output to the pressurized air dissolved water production apparatus 25 via the control unit 24. This operation signal may be a signal that simply controls ON / OFF, or a signal that changes the production amount of the pressurized air-dissolved water according to turbidity. Further, the floating sludge discharging means 22 may be provided with a dedicated scraper or the like.
[0025]
In this way, by injecting the pressurized air-dissolved water into an appropriate position in the final sedimentation basin 4, the floating solids can be reliably separated and removed, and the quality of the treated water can be improved. At this time, the pressurized air-dissolved water may be continuously injected without providing the turbidimeter 23, and the pressurized air-dissolved water production apparatus 25 is operated in accordance with the change in the inflow water amount. Even if the operation is performed according to the set time schedule, sufficient solid-liquid separation can be performed. However, as described above, the pressurized air is used depending on the turbidity of the treated water detected by the turbidimeter 23, that is, the degree of SS. By controlling the operation of injecting dissolved water, the operating cost can be minimized.
[0026]
In the above-described embodiment, the activated sludge method is adopted as the secondary treatment method, but the present invention is not limited to this, but also in sewage treatment facilities employing other treatment methods such as the oxidation ditch method. The present invention can be applied to various other solid-liquid separation processes.
[0027]
【The invention's effect】
As described above, according to the present invention, it is possible to always obtain a predetermined treated water quality regardless of fluctuations in the quality of the influent water, the amount of water, etc. It is possible to reduce equipment costs such as sewage treatment equipment and running costs. Moreover, automatic operation is also possible, and it is possible to cope with solid-liquid separation failures due to causes such as scum and bulking.
[Brief description of the drawings]
FIG. 1 is a system diagram of a sewage treatment facility showing a reference example of the present invention.
FIG. 2 is a schematic view of a sewage treatment facility showing one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sand basin, 2 ... First sedimentation basin, 3 ... Aeration tank, 4 ... Final sedimentation basin, 5 ... Chlorine mixing basin, 6 ... Pressurization floating separator, 7 ... Bypass flow path, 8 ... Turbidimeter, 9, DESCRIPTION OF SYMBOLS 10 ... Automatic valve, 11 ... Return sludge flow path, 21 ... Injection | pouring part, 22 ... Discharge means, 23 ... Turbidimeter, 24 ... Control means, 25 ... Pressurized-air dissolved-water production apparatus, 26 ... Sludge scraper, 26a ... Flight, 27 ... Pipe skimmer, 28 ... Overflow weir, 29 ... Treated water tank

Claims (1)

重力沈殿池内に加圧空気溶解水を注入する注入部と、浮上した浮上汚泥を排出する排出手段と、重力沈殿池から流出する処理水の濁度を検出する濁度計と、該濁度計の測定値に応じて前記注入部からの加圧空気溶解水の注入量を制御する制御手段とを備えていることを特徴とする固液分離装置 An injection unit for injecting a pressurized air dissolved water in the gravity settling tank, a discharge means for discharging the floating levitation sludge, a turbidity meter for detecting turbidity of treatment water flowing out from the gravity settling tank,該濁degree A solid-liquid separation device comprising: a control means for controlling an injection amount of the pressurized air-dissolved water from the injection portion in accordance with a measured value of the meter .
JP15056996A 1996-06-12 1996-06-12 Solid-liquid separator Expired - Fee Related JP3685552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15056996A JP3685552B2 (en) 1996-06-12 1996-06-12 Solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15056996A JP3685552B2 (en) 1996-06-12 1996-06-12 Solid-liquid separator

Publications (2)

Publication Number Publication Date
JPH09327601A JPH09327601A (en) 1997-12-22
JP3685552B2 true JP3685552B2 (en) 2005-08-17

Family

ID=15499762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15056996A Expired - Fee Related JP3685552B2 (en) 1996-06-12 1996-06-12 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP3685552B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347049B1 (en) * 2013-04-12 2014-01-03 주식회사 그린기술 Variable solid-liquid seperation and water purification apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144708A (en) * 1980-04-14 1981-11-11 Hitachi Ltd Sewage treatment apparatus
JPS5998710A (en) * 1982-11-29 1984-06-07 Hitachi Ltd Water treatment system of water purification plant
JPS59186689A (en) * 1983-04-08 1984-10-23 Fuso Kensetsu Kogyo Kk Process and device for eliminating turbidity of turbid water by flocculation
JPS60143888A (en) * 1983-12-30 1985-07-30 Hitachi Ltd Circulating type pressure floatation concentration apparatus
JPH06285473A (en) * 1993-03-31 1994-10-11 Mitsui Zosen Eng Kk Method for treating muddy water

Also Published As

Publication number Publication date
JPH09327601A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
Zabel The advantages of dissolved‐air flotation for water treatment
RU2282592C2 (en) Method and apparatus for clarification of liquids, in particular water, saturated with material in the form of suspension
US6966993B2 (en) Method and plant for thickening sludge derived from water treatment by flocculation-decantation with ballasted floc
KR101820864B1 (en) dissolved air flotation type pretreatment device built-in fiber ball and water treatment methods using the same
KR20160029272A (en) a simple structured wastewater treatment system using multi step aerating floation method and the wastewater treatment method
KR20160032067A (en) a simple structured wastewater treatment system using multi step aerating floation method and the wastewater treatment method
JP2020049432A (en) Operating method of organic wastewater treatment device and organic wastewater treatment device
US7244362B2 (en) Water treatment by ballasted flocs and degreasing
KR101758049B1 (en) Hybrid water treatment apparatus removable nitrogen and phosphorus by floatation and consecutive filtration
CA2128729C (en) Dissolved air flotation
JP3685552B2 (en) Solid-liquid separator
JP2006043626A (en) Water treatment apparatus
KR100975144B1 (en) Filtration apparatus for river water using porous media
KR100464716B1 (en) Apparatus for clarifying water and wastewater
CN207227066U (en) The high COD sand washings oiliness sewage treatment equipment of air supporting oil removal oxidative degradation
JPH0215275B2 (en)
JP2854543B2 (en) Dredging wastewater treatment method and device
KR200371017Y1 (en) Dissolved airfloatation system for treatment waste water
JPH10202248A (en) Sewage treating device
KR200252229Y1 (en) Dissolved air flotation basin device
KR100201226B1 (en) Sludge dissolved air floatation method and system composed of parallel in-line type flocculators and dissolved air floatation device with slide sludge contactor
JPH10202281A (en) Waste water treating device
KR101629834B1 (en) Movable suspended solids skimmer and suspended solids removal method using this
JPH09271754A (en) Floating separation device
JPH09276885A (en) Biological membrane filter apparatus using foldable filter material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees