JPS5998710A - Water treatment system of water purification plant - Google Patents

Water treatment system of water purification plant

Info

Publication number
JPS5998710A
JPS5998710A JP20760282A JP20760282A JPS5998710A JP S5998710 A JPS5998710 A JP S5998710A JP 20760282 A JP20760282 A JP 20760282A JP 20760282 A JP20760282 A JP 20760282A JP S5998710 A JPS5998710 A JP S5998710A
Authority
JP
Japan
Prior art keywords
water
raw water
flocculant
inflow
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20760282A
Other languages
Japanese (ja)
Inventor
Norihisa Suzuki
鈴木 程久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20760282A priority Critical patent/JPS5998710A/en
Publication of JPS5998710A publication Critical patent/JPS5998710A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To conserve the consumption amount of a flocculant and to efficiently make use of the water treatment of a water purification plant while rapidly corresponding to the fluctuation of a water demand amount, by injecting the flocculant into the inflow raw water of the water purification plant corresponding to the water quality of said raw water. CONSTITUTION:When inflow raw water discharged from a water arrival basin 10 reaches a predetermined turbidity value of more in the water quality thereof, the inflow raw water discharged from the water arrival basin #10 is supplied to a chemical agent mixing basin 12 where a predetermined amount of a flocculant is injected to perform water treatment. On the other hand, when the inflow raw water discharged from the water arrival basin #10 reaches the predetermined turbidity value or less in the water quality thereof, the gate of a change-over gate 30 is changed over by the control signal from a flocculant injection control apparatus 34 and the inflow raw water discharged from the water arrival basin #10 is supplied to a filter basin 26 through a bypass pipe 32.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は浄水場の水処理システムに係り、特に、浄水場
流入原水の水質によって浄水場流入原水に凝集剤を注入
し、ろ過池における水処理を効率的に行なうのに好適な
浄水場の水処理システムに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a water treatment system for a water treatment plant, and in particular, a flocculant is injected into the raw water flowing into the water treatment plant depending on the quality of the raw water flowing into the water treatment plant, and water treatment in a filtration pond is performed. The present invention relates to a water treatment system for a water purification plant that is suitable for efficiently performing water treatment.

〔従来技術〕[Prior art]

従来の浄水場の水処理システムは、第1図に示されるよ
うに、浄水場に流入される原水がまず着水#lOに導か
れ、着水#lOから薬品混和池12に供給される。着水
#10に供給された浄水場流入原水は水質計器14によ
ってその水質が計測され、流量計16によって浄水場流
入原水の流入蓋が計測される。水質計器14、流量計1
6の出力はそれぞれ凝集剤注入制御装置18に供給され
、凝集剤注入制御装置18によって浄水場流入原水の水
質と流入量から凝集剤注入部が演算される。さらに凝集
剤注入制御装置18は凝集剤注入部20を制御し、前記
演算値に応じた凝集剤を薬品混和池12に注入する。
In the conventional water treatment system for a water purification plant, as shown in FIG. 1, raw water flowing into the water purification plant is first guided to the landing water #lO, and then supplied to the chemical mixing pond 12 from the landing water #lO. The water quality of the raw water flowing into the water purification plant supplied to landing water #10 is measured by a water quality meter 14, and the flow rate of the raw water flowing into the water purification plant is measured by a flow meter 16. Water quality meter 14, flow meter 1
The outputs of 6 are each supplied to the flocculant injection control device 18, and the flocculant injection control device 18 calculates the flocculant injection portion from the water quality and inflow amount of raw water flowing into the water purification plant. Furthermore, the flocculant injection control device 18 controls the flocculant injection section 20 to inject a flocculant into the chemical mixing pond 12 according to the calculated value.

凝集剤が注入された浄水場流入原水は薬品混和池12か
らフロック形成池22を介して沈殿池24に供給6れる
。凝集剤が注入された浄水場流入原水に含まれる濁質は
、フロック形成池22において凝集剤の作用によりフロ
ックとなり、沈殿池24で沈降除去される。即ち、浄水
場流入原水をそのまま沈殿池24に供給しても、表面に
−イオンの電荷を帝びた流入原水中に含まれる濁質はブ
ラウン運動をするだけで沈降しない。そこで、十イオン
による凝集剤の注入によって濁質と濁質とが結合するフ
ロックを形成して濁質が沈降しやすくする凝集剤の注入
が行なわれている。
The raw water flowing into the water purification plant into which the coagulant has been injected is supplied from the chemical mixing tank 12 to the settling tank 24 via the flocculation tank 22 . The turbidity contained in the raw water flowing into the water purification plant into which the flocculant has been injected becomes flocs in the flocculant by the action of the flocculant in the flocculant, and is settled and removed in the settling basin . That is, even if the inflow raw water from the water treatment plant is supplied as is to the settling tank 24, the suspended matter contained in the inflow raw water, which has a negative ion charge on its surface, only undergoes Brownian motion and does not settle. Therefore, a flocculant is injected using ten ions to form flocs in which the suspended solids are combined with each other, thereby making it easier for the suspended solids to settle.

沈殿池24で沈降除去されカい濁質はろ通油26でろ過
除去され、低濁度の流入原水が浄水池28に供給される
The suspended solids that are settled and removed in the settling tank 24 are filtered out by the filter oil 26, and the inflow raw water with low turbidity is supplied to the water purification tank 28.

このように第1図に示されるシステムの場合は、浄水場
流入原水に含まれる濁質の多くが沈殿池24で沈降除去
されるので、ろ通油26における水質処理の負担が軽減
され、ろ通油26における洗浄処理を効率良く行なうこ
とができる。
In the case of the system shown in FIG. 1, most of the turbidity contained in the raw water flowing into the water treatment plant is settled and removed in the sedimentation tank 24, so the burden of water quality treatment in the filtered oil 26 is reduced, and the filter The cleaning process in the oil passage 26 can be performed efficiently.

ところで、前記システKにおいては、流入原水の濁度に
応じた注入量で凝集剤を狂人することが行なわれている
が、流入原水の濁度が1氏いときには、フロックの形成
に必要な濁質が少なくなり、濁質が沈降しにくくなる。
By the way, in System K, the flocculant is injected at an amount that corresponds to the turbidity of the inflowing raw water, but when the turbidity of the inflowing raw water is 1°C, the turbidity necessary for the formation of flocs is The quality decreases, making it difficult for suspended solids to settle.

そのため、従来のシステムにおいては、流入原水の濁度
が低いときでも、濁質を沈降しやすい状態とするため、
凝集剤の注入量を増加させる制御が行なわれていた。し
かし、流入原水の濁度が低いときに凝集剤の注入量を増
加させることは、凝集剤が無駄に消費されることになる
Therefore, in conventional systems, even when the turbidity of the inflow raw water is low, in order to make the suspended solids easy to settle,
Control was performed to increase the amount of coagulant injected. However, increasing the amount of coagulant to be injected when the turbidity of the inflow raw water is low will result in the coagulant being wasted.

一方、凝集剤の増量によって流入原水の濁度が低いとき
の濁質もフロックとなって沈殿池24で沈降除去される
が、増量分のうちの一部は沈殿池24で沈降されずにろ
通油26に供給される。このことは、ろ通油26の側か
らみればろ通油26の目詰まりの原因となる物質の流入
量が増加することになる。
On the other hand, when the turbidity of the inflowing raw water is low due to the increase in the amount of coagulant, the turbidity becomes flocs and is settled and removed in the settling tank 24, but a part of the increased amount is not settled in the settling tank 24 and is filtered out. The oil is supplied to the oil passage 26. This means that, from the side of the filtered oil 26, the amount of inflow of substances that cause clogging of the filtered oil 26 increases.

そこで、流入原水の濁度が低いときには、ろ通油26に
貯留した汚泥を薬品混和池12へ返送するようにしたフ
ロックリサイクル法によるシステムが提案されている。
Therefore, a system using a floc recycling method has been proposed in which the sludge stored in the filtered oil 26 is returned to the chemical mixing pond 12 when the turbidity of the inflowing raw water is low.

このシステムの場合は流入原水の濁度が低いときにはろ
通油26に貯留した汚泥が返送されるので、流入原水の
濁度が低いときに凝集剤の注入量を増加させなくとも濁
質が沈降しやすくなり、凝集剤が浪費されることはない
In this system, when the turbidity of the inflowing raw water is low, the sludge stored in the filter oil 26 is returned, so when the turbidity of the inflowing raw water is low, the turbidity settles without increasing the amount of flocculant injection. The flocculant is not wasted.

しかし、フロックリサイクル法によるシステムの場合で
も、浄水場流入原水が沈殿池24を介してろ通油26に
供給されるように構成されているので、浄水場の需要水
量が変動した場合、この需要水量の変動に迅速に対処す
ることができず、浄水場の水処理を効率良く運用するこ
とが困難であった。即ち、着水”=#10、薬品混和池
12、フロック形成池22、ろ通油26における流入原
水の処理時間は数分間であるが、沈殿池24における流
入原水の処理時間は数時間、例えば8時間程度要する。
However, even in the case of a system based on the floc recycling method, the raw water flowing into the water purification plant is configured to be supplied to the filtration oil 26 via the settling tank 24, so if the water demand of the water purification plant fluctuates, the water demand Therefore, it was difficult to efficiently operate water treatment at water treatment plants. That is, the treatment time of the inflow raw water in the chemical mixing pond 12, the flocculation pond 22, and the filtered oil 26 is several minutes, but the treatment time of the inflow raw water in the settling tank 24 is several hours, e.g. It takes about 8 hours.

そのため、従来のシステムのように、流入原水の濁度が
低いときでも流入原水を沈殿池24に供給するようにし
たものでは、流入原水の処理時間に長時間装やし、需要
水量の変動に対して迅速な処理を行なうことができない
For this reason, in conventional systems that supply inflow raw water to the sedimentation tank 24 even when the turbidity of the inflow raw water is low, the treatment time for the inflow raw water is long, and the system does not respond to fluctuations in the amount of water demanded. cannot be processed quickly.

又、流入原水の濁度が低いときには、凝集剤の注入を停
止する方法も考えられるが、このような方法でも需要水
量が変動した場合には、フロックリサイクル法のシステ
ムと同様浄水場の水処理を効率的に運用することが困難
である。
Another option is to stop the injection of flocculant when the turbidity of the inflowing raw water is low, but even with this method, if the water demand changes, water treatment at the water treatment plant may be necessary, similar to the system of the floc recycling method. It is difficult to operate the system efficiently.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の課題に鑑みて為されたものであり
、その目的は、凝集剤の消費量を節約し、かつ浄水場の
水処理を効率的に運用することができる浄水場の水処理
システムを提供することにある。・ 〔発明の概要〕 前記目的を達成するために、本発明は、沈殿池をバイパ
スし浄水場流入原水をろ通油へ供給する流入原水バイパ
ス路を設け、かつ、浄水場流入原水の流入量に対する流
入原水の水質が所定の濁度以下のとき凝集剤の注入を停
止するとともに、浄水場流入原水の沈殿池への供給を前
記流入原水バイパス供給路への供給に切り換えるように
したことを特徴とする特 〔発明の実施例〕 以下、図面に基づいて本発明の好適な実施例を説明する
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to reduce the amount of coagulant consumed and to efficiently operate water treatment at a water treatment plant. The purpose is to provide a processing system.・ [Summary of the Invention] In order to achieve the above object, the present invention provides an inflow raw water bypass passage that bypasses the sedimentation tank and supplies the raw water that flows into the water treatment plant to the filtered oil, and also reduces the amount of raw water that flows into the water treatment plant. When the quality of the raw water flowing into the water treatment plant is below a predetermined turbidity, the injection of the coagulant is stopped, and the supply of the raw water flowing into the water treatment plant to the settling tank is switched to the supply to the raw water bypass supply path. [Embodiments of the Invention] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第2図には、本発明の好適な実施例の構成が示されてい
る。
FIG. 2 shows the configuration of a preferred embodiment of the invention.

本実施例におけるシステムは、浄水場流入原水の水質と
流入量から凝集剤注入量を演算し、この演算値に応じた
凝集剤を浄水場流入原水に注入すする凝集剤注入部の構
成が第1図に示すシステムと異なるとともに、着水#1
0の流入原水を薬品混和液12に供給する流入原水供給
路中に切換ゲート22を設け、さらに沈殿池24をバイ
パスし浄水場流入原水をろ通油26へ供給する流入原水
バイパス路を構成する流入原水バイパス管32を設けた
点が第1図に示されるシステムと異なり、他の構成は第
1図に示されるシステムと同様であシ、同一のもの又は
相当するものには同一符号を付してそれらの説明は省略
する。
The system in this embodiment has a configuration of a coagulant injection unit that calculates the amount of coagulant to be injected from the water quality and inflow amount of the raw water flowing into the water treatment plant, and injects the flocculant into the raw water flowing into the water treatment plant according to the calculated value. In addition to being different from the system shown in Figure 1, water landing #1
A switching gate 22 is provided in the inflow raw water supply path that supplies the inflow raw water of 0 to the chemical mixture 12, and further constitutes an inflow raw water bypass path that bypasses the settling tank 24 and supplies the water purification plant inflow raw water to the filtered oil 26. The system differs from the system shown in FIG. 1 in that an inflow raw water bypass pipe 32 is provided, but the other configurations are the same as the system shown in FIG. Therefore, their explanation will be omitted.

本実施例におけるシステムは、着水#10から排出され
る流入原水の水質が所定濁度以上のとき着水#10から
排出される流入原水を薬品混和池12に供給し、薬品混
和池12において所定量の凝集剤を注入することによっ
て第1図に示すジ−ステムと同様の処理が行なわれる。
The system in this embodiment supplies the inflow raw water discharged from the landing water #10 to the chemical mixing pond 12 when the water quality of the inflow raw water discharged from the landing water #10 has a predetermined turbidity or higher; By injecting a predetermined amount of flocculant, a treatment similar to that of the G-stem shown in FIG. 1 is performed.

一方、着水#10から排出される流入原水の水質が所定
濁度以下に   −なったとき凝集剤注入制御装置34
からの制御信号によって切換ゲート30のゲートを切換
え、着水#10から排出される流入原水流入原水ノ(イ
ノくス管32を介してろ通油26に供給するように構成
されている。
On the other hand, when the quality of the inflowing raw water discharged from landing water #10 becomes below the predetermined turbidity, the flocculant injection control device 34
The switching gate 30 is configured to switch the gate of the switching gate 30 in response to a control signal from the inflow water #10, and supply the inflow raw water discharged from the landing water #10 to the filtration oil 26 via the inflow pipe 32.

以上の制御を凝集剤注入制御装置34によって行なうよ
うにするとともに、本実施例においては、流入原水の水
質を濁度とアルカリ度によって判定することとしている
ため、水質計器36が濁度計とアルカリ度計から構成さ
れており、凝集剤注入制御装置34が以下のように構成
されている。
The above control is performed by the flocculant injection control device 34, and in this embodiment, the water quality of the inflowing raw water is judged by turbidity and alkalinity, so the water quality meter 36 is equipped with a turbidity meter and an alkalinity meter. The flocculant injection control device 34 is configured as follows.

即ち、凝集剤注入制御装置34は、第3図に示されるよ
うに、凝集剤注入率演算回路40、凝集剤注入量設定回
路42、汚泥発生量演算装置44、ゲート切換回路46
、禁止回路48から構成されている。
That is, as shown in FIG. 3, the flocculant injection control device 34 includes a flocculant injection rate calculation circuit 40, a flocculant injection amount setting circuit 42, a sludge generation amount calculation device 44, and a gate switching circuit 46.
, and an inhibition circuit 48.

水質計器36に宮まれるアルカリ度計50の出力は凝集
剤注入率演算回路40に供給されており、濁度計52の
出力は凝集剤注入率演算回路40、汚泥発生量演算装置
44に供給されている。凝集剤注入率演算回路40Fi
最適な凝集剤注入率を演算するために、アルカリ度計5
0の出力と濁度計52の出力を取り込み、アルカリ度を
パラメータとして濁度に対する最適注入率γを演算し、
最適々る凝集剤注入率信号を凝集剤注入量設定回路42
に供給する。
The output of the alkalinity meter 50 installed in the water quality meter 36 is supplied to the flocculant injection rate calculation circuit 40, and the output of the turbidity meter 52 is supplied to the flocculant injection rate calculation circuit 40 and the sludge generation amount calculation device 44. has been done. Coagulant injection rate calculation circuit 40Fi
To calculate the optimal flocculant injection rate, use an alkalinity meter 5.
0 output and the output of the turbidity meter 52, calculate the optimal injection rate γ for turbidity using alkalinity as a parameter,
The optimum flocculant injection rate signal is sent to the flocculant injection amount setting circuit 42.
supply to.

なお、凝集剤注入率演算回路40においては、流入原水
のアルカリ度が高いときには凝集剤注入率が高くなり、
アルカリ度が低いときには凝集剤注入率が低くなるよう
に演算される。
In addition, in the flocculant injection rate calculation circuit 40, when the alkalinity of the inflow raw water is high, the flocculant injection rate becomes high;
When the alkalinity is low, the flocculant injection rate is calculated to be low.

凝集剤注入量設定回路42は、凝集剤注入率信号と流量
計16の出力とから凝集剤の注入量を演算し、凝集剤注
入量信号を汚泥発生量演算装置44、禁止回路48に供
給する。
The flocculant injection amount setting circuit 42 calculates the flocculant injection amount from the flocculant injection rate signal and the output of the flow meter 16, and supplies the flocculant injection amount signal to the sludge generation amount calculation device 44 and the inhibition circuit 48. .

一方、汚泥発生量演算装置44は、濁度計52、流量計
16の出力及び凝集剤注入量信号を取り込み、浄水場流
入原水の流入量に対する流入原水の水質が所定濁度以下
になったか否かを判定するための汚泥量を演算する。こ
の汚泥量Tは次の第1式に基づいて行なわれる。
On the other hand, the sludge generation amount calculation device 44 takes in the outputs of the turbidity meter 52 and the flowmeter 16 and the flocculant injection amount signal, and determines whether the quality of the inflowing raw water has become below a predetermined turbidity with respect to the inflowing amount of the raw water flowing into the water treatment plant. The amount of sludge is calculated to determine whether This sludge amount T is determined based on the following first equation.

T=aIITuBkQ+β* (1−・−・・−・(1
)ここにα:濁質に対する汚泥発生係数 TUB:濁度 Q:流量 β:凝集剤に対する汚泥発生係数 q:凝集剤注入量 汚泥発生量演算装置44によって演算された汚泥量Tが
所定の濁度以下になったとき汚泥発生量演算装置44か
らゲート切換回路46に出力信号が供給され、ゲート切
換回路46によって切換ゲート30のゲートが切換えら
れ、着水#10から排出する流入原水が流入原水バイパ
ス管32を介してろ通油2・6に供給される。
T=aIITuBkQ+β* (1−・−・・−・(1
) where α: sludge generation coefficient for turbidity TUB: turbidity Q: flow rate β: sludge generation coefficient for flocculant q: flocculant injection amount The sludge amount T calculated by the sludge generation amount calculation device 44 has a predetermined turbidity. When the amount of sludge generation is below, an output signal is supplied from the sludge generation amount calculation device 44 to the gate switching circuit 46, the gate switching circuit 46 switches the gate of the switching gate 30, and the inflowing raw water discharged from landing water #10 bypasses the inflowing raw water. It is supplied to the filtered oil 2 and 6 via a pipe 32.

又、このときゲート切換回路46からの出力信号によっ
て禁止回路48が作動し、凝集剤注入機20による凝集
剤の注入が停止される。
Further, at this time, the inhibition circuit 48 is activated by the output signal from the gate switching circuit 46, and the injection of the flocculant by the flocculant injector 20 is stopped.

このように本実施例においては、流入原水の濁度が低い
とき凝集剤の注入が停止されるので、凝集剤の節約が図
れるとともに、ろ通油の負担を軽減させることができる
。又さらに、流入原水の濁度が低いときには、流入原水
が沈殿池をバイパスしてろ通油に供給されるので、需要
水量が変動した場合でも需要水量の変動に迅速に対応す
ることができる。
As described above, in this embodiment, since the injection of the flocculant is stopped when the turbidity of the inflowing raw water is low, it is possible to save the flocculant and to reduce the burden on the oil to be filtered. Furthermore, when the turbidity of the inflow raw water is low, the inflow raw water bypasses the settling tank and is supplied to the filtered oil, so even if the demand water volume changes, it is possible to quickly respond to the change in the demand water volume.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、浄水場流入原水
の流入水量に対する流入原水の水質が所定の濁度以下の
とき凝集剤の注入が停止され、かつ、浄水場流入原水が
沈殿池をバイパスしてろ過曲に供給されるので、凝集剤
の消費量を節約することができるとともに、需要水量の
変動に対して迅速に対応でき浄水場の水処理を効率的に
運用することができるという優れた効果がある。
As explained above, according to the present invention, injection of the flocculant is stopped when the water quality of the inflowing raw water relative to the amount of inflowing water to the water treatment plant is less than a predetermined turbidity, and the inflowing raw water to the water treatment plant flows through the settling tank. Since the water is bypassed and supplied to the filtration channel, it is possible to save on the amount of coagulant consumed, and it is also possible to quickly respond to fluctuations in water demand, allowing for efficient water treatment at the water treatment plant. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来システムの構成図、第2図は本発明の一実
施例を示すシステムの構成図、第3図は第2図に示す凝
集剤注入部の構成を説明するための構成図でめる。 10・・・着水#、12・・・薬品混和池、14.36
・・・水質計器、16・・・流量計、18.34・・・
凝集剤注入制御装置、24・・・沈殿池、26・・・わ
通油、30・・・切換ゲート、32・・・流入原水バイ
パス管。 岑 l 国 第 2  口
FIG. 1 is a configuration diagram of a conventional system, FIG. 2 is a configuration diagram of a system showing an embodiment of the present invention, and FIG. 3 is a configuration diagram for explaining the configuration of the flocculant injection section shown in FIG. 2. Melt. 10... Water landing #, 12... Chemical mixing pond, 14.36
...Water quality meter, 16...Flow meter, 18.34...
Coagulant injection control device, 24...Sedimentation tank, 26...Water oil passage, 30...Switching gate, 32...Inflow raw water bypass pipe. Country 2nd port

Claims (1)

【特許請求の範囲】[Claims] 1、#本場流入原水の水質と流入量から凝集剤注入i′
ff:fi算し、この演算値に応じた凝集剤を浄水場流
入原水に注入する凝集剤注入部と、凝集剤が注入された
浄水場流入原水が供給され、この流入原水中忙含まれる
濁質をフロックの沈殿により除去する沈殿池と、流入水
中に含まれるIti質を31mにより除去するろ過池と
、を含む浄水場の水処理システムにおいて、前記沈殿池
をバイパスし浄水場流入原水を前記ろ過池へ供給する流
入原水バイパス路を有し、…■記凝集剤注入部は、浄水
場流入原水の流入量に対する流入原水の水質が所定の濁
度以下のとき凝集剤の注入を停止し、かつ、浄水場流入
原水の沈殿池への供給を前記流入原水バイパス供給路へ
の供給に切シ替えることを%徴とする浄水場の水処理シ
ステム。
1. # Injection of flocculant i' based on the quality and amount of inflow raw water
A flocculant injection unit calculates ff:fi and injects a flocculant into raw water flowing into the water treatment plant according to this calculated value, and the raw water flowing into the water treatment plant into which the flocculant has been injected is supplied, and the turbidity contained in this raw water is supplied. In a water treatment system for a water purification plant, the system includes a sedimentation basin that removes Iti substances by floc sedimentation, and a filtration basin that removes Iti substances contained in the inflow water by a 31 m filter. It has an inflow raw water bypass path for supplying to the filtration basin, and the flocculant injection part stops injecting the flocculant when the water quality of the inflow raw water is less than a predetermined turbidity with respect to the inflow amount of the water treatment plant inflow raw water, and a water treatment system for a water purification plant, the feature of which is to switch the supply of inflow raw water from the water purification plant to the sedimentation tank to the supply to the inflow raw water bypass supply path.
JP20760282A 1982-11-29 1982-11-29 Water treatment system of water purification plant Pending JPS5998710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20760282A JPS5998710A (en) 1982-11-29 1982-11-29 Water treatment system of water purification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20760282A JPS5998710A (en) 1982-11-29 1982-11-29 Water treatment system of water purification plant

Publications (1)

Publication Number Publication Date
JPS5998710A true JPS5998710A (en) 1984-06-07

Family

ID=16542490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20760282A Pending JPS5998710A (en) 1982-11-29 1982-11-29 Water treatment system of water purification plant

Country Status (1)

Country Link
JP (1) JPS5998710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327601A (en) * 1996-06-12 1997-12-22 Maezawa Ind Inc Method and apparatus for solid-liquid separation
JP2018134625A (en) * 2017-03-31 2018-08-30 メタウォーター株式会社 Waste water treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071163A (en) * 1973-10-26 1975-06-12
JPS51113351A (en) * 1975-03-31 1976-10-06 Mitsubishi Kakoki Kaisha Ltd Foul water treating method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071163A (en) * 1973-10-26 1975-06-12
JPS51113351A (en) * 1975-03-31 1976-10-06 Mitsubishi Kakoki Kaisha Ltd Foul water treating method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327601A (en) * 1996-06-12 1997-12-22 Maezawa Ind Inc Method and apparatus for solid-liquid separation
JP2018134625A (en) * 2017-03-31 2018-08-30 メタウォーター株式会社 Waste water treatment system

Similar Documents

Publication Publication Date Title
WO2010110065A1 (en) Process for producing regenerated water and system for producing regenerated water
JP4202207B2 (en) Coagulation separation device
KR100786776B1 (en) Apparatus for water treatment using membrane filtration
JPS5998710A (en) Water treatment system of water purification plant
CN112777705B (en) Wastewater pretreatment system and method with self-adjusting density of clarified liquid
CN211339173U (en) Magnetic mixing clarifying device
CN113998810A (en) Drinking water defluorination process
CN205892932U (en) Integrated water purifier
KR100580375B1 (en) ion water purifier
JP3766880B2 (en) Water purification apparatus and operation method
JPH1110165A (en) Wastewater treatment apparatus
JP7269148B2 (en) Filtration treatment method and filtration device
JPS5929281B2 (en) Coagulant injection amount control device for water treatment plants
JPS63137707A (en) Flocculant injection control device
JPS63137708A (en) Treated water turbidity control device in purification facilities
JP6442014B1 (en) Processing apparatus and processing method for liquid to be processed
JPS61171511A (en) Control of water purification plant
JPS60193514A (en) Cleaning apparatus of filter pond in water purifying plant
JPS5861881A (en) Controlling method for water purification plant
JP2768810B2 (en) Water injection plant chemical injection control device
JPS5876196A (en) Apparatus for controlling aeration to remove trihalomethane
JPS5992006A (en) Apparatus for controlling waste sludge of precipitation basin in water purification plant
JPH10131529A (en) Purification method of water for pool and device therefor
JP3888444B2 (en) Waterworks treatment facility
JPS60220114A (en) Treatment of water