JP3888444B2 - Waterworks treatment facility - Google Patents

Waterworks treatment facility Download PDF

Info

Publication number
JP3888444B2
JP3888444B2 JP2002071251A JP2002071251A JP3888444B2 JP 3888444 B2 JP3888444 B2 JP 3888444B2 JP 2002071251 A JP2002071251 A JP 2002071251A JP 2002071251 A JP2002071251 A JP 2002071251A JP 3888444 B2 JP3888444 B2 JP 3888444B2
Authority
JP
Japan
Prior art keywords
water
membrane filtration
filtration device
treatment facility
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002071251A
Other languages
Japanese (ja)
Other versions
JP2003266071A (en
Inventor
繁樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002071251A priority Critical patent/JP3888444B2/en
Publication of JP2003266071A publication Critical patent/JP2003266071A/en
Application granted granted Critical
Publication of JP3888444B2 publication Critical patent/JP3888444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、膜ろ過装置を備えた上水道水処理施設に関する。
【0002】
【従来の技術】
近年、上水道の水源の水質悪化に伴い、クリプトスポリジウムや、ジアルディアなどの有害な原虫類の問題が指摘されている。水道法により塩素の殺菌が義務づけられているものの、特に、クリプトスポリジウムは、オーシストという頑丈な殻の中に入っているため、塩素に対して耐性を有し、塩素による除去は、ほとんど期待されない状況にある。
そこで、このような原虫類を除去する他の方法として、膜による分離方法が提案されている。この膜による分離方法は、分留などと比較して相変化を伴わないため消費エネルギーが少なく有効な手段であり、有害な物質が生成することもなく、この膜による分離機能を有する膜ろ過装置を備えた上水道水処理施設が普及してきている。
【0003】
図3(a)に従来の上水道水処理施設40を示す。これは、図3(a)に示されるように、浄水機能を有する装置としては膜ろ過装置10’単独で構成される上水道水処理施設40である。この施設は、上流側から下流側に沿って順に、取水ポンプ21’と、着水井3’と、膜ろ過装置送水ポンプ22’と、膜ろ過装置10’と、処理水槽8’と、浄水池9’と、送水ポンプ20’と、配水池11’とが連通して構成される。なお、膜ろ過装置10’と処理水槽8’との間には並列して流路が設けられ、その一方に膜ろ過装置逆洗ポンプ23’が設けられる。さらに、処理水槽8’と浄水池9’との間に塩素注入手段14’が設けられる。なお、浄水池とは、浄水処理された水量と送り出す水量とのバランスを調整し、さらに事故などに備えて所定の水を確保するための施設である。この施設は最も簡単な構成で水の完全な除菌、除濁機能を有するものである。
【0004】
次に図3(b)に、この膜ろ過装置10’を既設の上水道水処理施設の後段に配置した従来の上水道水処理施設41を示す。
まず、一般的に既設の上水道水処理施設とは、上流側から下流側に沿って順に、取水ポンプ21’と、着水井3’と、凝集剤混和池4’とフロック形成池5’と、沈でん池6’と、ろ過池7’と、処理水槽8’と、浄水池9’と、送水ポンプ20’と、配水池11’とが連通して構成される。なお、ろ過池7’と、処理水槽8’との間には並列して流路が設けられ、その一方に、ろ過池逆洗浄ポンプ24’が設けられる。さらに、凝集剤混和池4’には凝集剤注入手段15’が設けられ、処理水槽8’と浄水池9’との間に塩素注入手段14’が設けられる。
【0005】
この既設の上水道水処理施設の後段部分の処理水槽8’と、浄水池9’との間に、膜ろ過装置10’を設けた施設が、従来の上水道水処理施設41である。膜ろ過装置10’が設けられることにより、前記処理水槽8’から下流方向に沿って、膜ろ過装置送水ポンプ22’と、膜ろ過装置10’と、処理水槽8’’と、前記浄水池9’とが連通して配置される。さらに、膜ろ過装置10’と処理水槽8’’との間には並列して流路を設け、その一方に、膜ろ過装置逆洗ポンプ23’が設置され、処理水槽8’’と処理池9’との間には、塩素注入手段14’が設置される。よって、この上水道水処理施設41では、既存の上水道水処理施設では完全に除去できないクリプトスポリジウムやジアルディアなどの原虫類を完全に除去することができる。
【0006】
【発明が解決しようとする課題】
しかしながら、図3(a)、(b)に示されるように、上水道水処理施設40、41では、膜ろ過装置10’へ被処理水を加圧供給するための膜ろ過装置送水ポンプ22’と、膜ろ過装置10’を逆洗浄するための膜ろ過装置逆洗ポンプ23’とを別途設ける必要がある。よって、上水道水処理施設40、41では膜ろ過装置送水ポンプ22’と膜ろ過装置逆洗ポンプ23’とを駆動させるため、運転コストが高くなるという問題点を有していた。
【0007】
そこで、本発明は、前記問題を解決するためになされたものであり、運転コストの少ない上水道水処理施設を提供することを課題としている。
【0008】
【課題を解決するための手段】
請求項1に係る本発明は、少なくとも膜ろ過装置と配水池と送水ポンプとを備えた上水道水処理施設であって、前記膜ろ過装置に被処理水を加圧供給するための前記送水ポンプによって前記膜ろ過装置からのろ過水を前記配水池に送水するために、前記膜ろ過装置を前記配水池の前段に連通して設け、且つ、前記送水ポンプを前記膜ろ過装置の前段に連通して設け、前記配水池の保有水頭を前記膜ろ過装置の逆洗浄に利用可能とするために、前記配水池と前記膜ろ過装置のろ過水側とを連通するとともに、前記配水池の保有水頭が前記膜ろ過装置の逆洗浄時に形成される流路の末端に対して、高くなるように構成されることを特徴とする上水道水処理施設である。
【0009】
なお、配水池への送水は、配水池に水を送水するだけでなく、一般家庭などの端末施設にまで送水する機能も意味する。
したがって、膜ろ過装置への被処理水を加圧供給するための送水ポンプの供給圧を、ろ過水の配水池への送水に利用可能として、膜ろ過を行うことにより、前記送水ポンプの運転エネルギーを、膜ろ過装置への加圧送水エネルギーと兼用することができる。ゆえに、上水道水処理施設の運転では、従来の上水道水処理施設において膜ろ過装置送水ポンプで消費される電力を削減することができる。同時に、従来の上水道水処理施設における、膜ろ過装置送水ポンプを独立して設置する必要はない。
【0010】
更に、前記膜ろ過装置の逆洗浄において、その水頭差を利用することができる。すなわち、従来の上水道水処理施設を構成する膜ろ過装置逆洗ポンプで消費される電力を削減することができる。同時に、従来の上水道水処理施設における、膜ろ過装置逆洗ポンプを別途設置する必要はない。
【0011】
請求項に係る本発明は、前記膜ろ過装置の前段に塩素注入手段を設置することを特徴とする、前記上水道水処理施設である。ここで、塩素注入手段とは、ろ過した水に塩素を注入して消毒、殺菌するための手段である。
したがって、常に消毒用塩素が注入された系にて、膜ろ過装置を運転することができ、膜ろ過装置の膜面を常に衛生的に清潔に保持することができる。
【0012】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。
なお、各実施形態の説明において、同一の構成要素に関しては同一の符号を付し、重複した説明は省略するものとする。
【0013】
(上水道水処理施設の構成)
まず、本発明の実施の形態に係る、上水道水処理施設の構成について、図1と図2を参照して説明する。図1は、上水道水処理施設の全体概略図であり、図2は膜ろ過装置10付近の配管状況説明図である。
【0014】
図1に示すように、上水道水処理施設1は、上流側から下流側に沿って順に、着水井3と、凝集剤混和池4と、フロック形成池5と、沈でん池6と、ろ過池7と、処理水槽8と、浄水池9と、膜ろ過装置10と、配水池11とが連通して構成されている。なお、凝集剤混和池4と、フロック形成池5と、沈でん池6と、ろ過池7と、処理水槽8と、浄水池9とは省略しても良いが、膜ろ過装置10を高流束で運転するためには、これら施設を備えることが好ましい。配水池11の下流側は流路を介して、一般家庭などの端末施設12に接続される。ただし、膜ろ過装置10の下流側には配水池11を経由せずに端末施設12に送水できる流路もある。
【0015】
さらに、水源2から原水を着水井3に送水するために水源2と着水井3との間に介設されている取水ポンプ21と、ろ過池7と処理水槽8との間に流路を並列して設け、その流路の一方に処理水槽8からろ過池7に向かって処理水を送水するためのろ過池逆洗浄ポンプ24と、浄水池9と膜ろ過装置10との間に介設されている送水ポンプ20とが、それぞれ設置されている。
さらにまた、凝集剤混和池4にはPAC(ポリ塩化アルミニウム)などの凝集剤15の投入手段が、処理水槽8と浄水池9との間は塩素注入手段14が、それぞれ設置されている。
【0016】
処理水槽8は、ろ過池7で処理された水を一旦貯溜する水槽である。
また、浄水池9は、浄水処理された水量と送り出す水量とのバランスを調整し、さらには事故などに備えて所定量の水を確保するための施設であるため、浄水池9の規模は処理水槽8と比較して大きい施設として形成されている。また、処理水槽8を設置せず、浄水池9と兼用しても何ら問題はない。
【0017】
処理水槽8と浄水池9との間に設置された塩素注入手段14とは、塩素を注入して、ろ過した水を消毒するための手段である。注入方法には、乾式と湿式がある。乾式とは気化した塩素を直接にろ過水中に注入する方法であり、湿式とは濃厚な塩素水を作製しろ過水に注入する方法である。どちらの方法を使用する場合も、所望の注入位置に適宜配管を設置する必要がある。また、原水が非常に汚濁している場合、細菌の増加を抑制するために、沈でん池6やろ過池7などの前に、塩素注入手段14を設けてもよい。
【0018】
膜ろ過装置10は、クリプトスポリジウムやジアルディアなどの原虫類を完全に除去するためのものである。また、本発明においては、膜ろ過装置を構成する膜モジュールの種類は特に制限しないが、前記原虫類の分離効果が高い膜モジュールが好ましい。
配水池11には処理された浄水が貯溜され、その保有水頭は、後記する膜ろ過装置10の逆洗浄時に形成される流路の末端に対して、高くなるように構成されている。その後、前記浄水は一般家庭などの端末施設12に送水される。
【0019】
次に図2を参照して、膜ろ過装置10付近の配管状況について説明する。
まず、膜ろ過装置10がクロスフローろ過型で構成されている場合について説明する。
送水ポンプ20と膜ろ過装置10との間の流路L1には、第1弁31が設けられている。さらに、第1弁31と膜ろ過装置10との間の流路は分岐しており、分岐した流路は、第2弁32を介して排水施設(図示せず)に連通している。また、その分岐した流路は浄水施設の上流部分に接続されてもよい。
さらに、膜ろ過装置10の下流側には流路L3が設けられ、第3弁33を介して浄水池9に連通している。また、流路L3は浄水池9と送水ポンプ20との間の流路L4に接続されてもよい。
さらにまた、膜ろ過装置10の下流側には、配水池11との間に第4弁34を介して流路L2が設けられている。なお、その流路L2は配水池11の底部付近で連通している。
なお各弁は、それぞれ適宜開閉可能となっている。
【0020】
また、膜ろ過装置10はデッドエンドろ過型(全量ろ過型)で構成されてもよい。この場合は、第2弁32の先の流路と、第3弁33の先の流路とは、排水施設(図示せず)または浄水施設の上流側にそれぞれ接続されることになる。
【0021】
また、配水池11には、貯溜される水の水位と測るための水位計を設けて、水の貯溜状況を把握できるようにするのが好ましい。さらに、第4弁34の下流側の配水池11に連通する流路を分岐し、その先に配水池11に貯溜された水を洗浄水として使用できない場合に備え水を貯溜してもよい。
【0022】
(上水道水処理施設による作用と効果)
次に、本発明の実施の形態に係る膜ろ過処理施設1による作用と効果について、図1を参照して説明する。
まず、膜ろ過浄水処置施設1の通常運転時について、原水が浄化される過程を全体的に説明する。
最初に湖沼、河川などの水源2から原水が、取水ポンプ21により着水井3に送水される。着水井3で、取り込まれた水の水位や水量が調節され、凝集剤混和池4に導かれる。ここで、ポリ塩化アルミニウムなどの凝集剤15が添加され、ミキサーなどにより原水と凝集剤15とが混合される。その後、フロック形成池5に導かれ、緩やかに攪拌され凝集フロックの成長が促される。さらにその後、沈でん池6に導かれ、水中に形成したフロックを沈でんさせる。その後、ろ過池7に導かれろ過された後、処理水槽8で一旦貯溜される。そして、塩素注入手段14により、水中に塩素が注入され殺菌された後、浄水池9に導かれ、浄水処理された水量と下流側の施設に送り出す水量とのバランスが調整される。この後、送水ポンプ20により膜ろ過装置10に加圧送水され、クリプトスポリジウムなどの原虫類を完全に除去後、配水池11に貯溜される。そして、端末施設12に送水される。なお、端末施設において水の使用量が多い場合などは、配水池11を経由せずに、直接、端末施設12に送水される場合もある。
【0023】
さらに、通常運転時において、膜ろ過装置10付近の各弁の開閉状況と、配水池11の保有水頭について、図2(a)を参照して説明する。
まず、膜ろ過装置10がクロスフローろ過型で構成される場合について説明する。通常運転時は、第1弁31と、第3弁33と、第4弁34とを開放し、第2弁32を閉鎖する。よって、浄水池9に貯溜された水は、送水ポンプ20の運転により、第1弁31を経由して、膜ろ過装置10に送り込まれる。膜ろ過装置10に加圧送水された水の一部は、膜ろ過装置10を構成する膜モジュール(図示せず)を通過し、第3弁33を経由後、流路L3を通過して浄水池9に戻り循環する。また、その他の水が膜ろ過装置10を通過するときろ過される。ろ過された水は第4弁34を経由して流路2を通過後、配水池11に送り込まれる。
さらに、配水池11の保有水頭は、後記する膜ろ過装置10の逆洗浄時に形成される流路の末端位置に対して高くなるように(Δh)、構成される。
【0024】
さらに、送水ポンプ20が、浄水池9と膜ろ過装置10との間に設置されているため、膜ろ過装置10へ送水するときの加圧手段として、送水ポンプ20を用いることができる。したがって、配水池11に送水するときに送水ポンプ20を運転するエネルギーを、膜ろ過装置10への送水エネルギーと兼用できる。すなわち、膜ろ過装置10への加圧手段として、別途に送水ポンプを設置し運転する必要はない。よって、別途ポンプを運転した場合に消費される電力と、別途ポンプを設置するコストとを節減することができる。
【0025】
次に、膜ろ過装置10の逆洗浄時について、図2(b)を参照して説明する。膜ろ過装置10の逆洗浄時には、第2弁32と第4弁34とを開放し、第1弁31と第3弁33とを閉鎖する。よって、膜ろ過装置10の逆洗浄時には、配水池11から、第4弁34と膜ろ過装置10と第2弁32とを介して排水施設(図示せず)に連通する流路が形成される。そのとき、その形成した流路末端に対して、配水池11の保有水頭は高く(Δh)なるように貯溜されているので、重力による位置エネルギーを駆動力として流れ出す。流れ出した水は第4弁34を経由後、膜ろ過装置10を構成する膜モジュール(図示せず)の膜面を逆洗浄し、第2弁32を経由して、排水施設(図示せず)に排水される。すなわち、従来の上水道水処理施設41における膜ろ過装置逆洗ポンプ23’を必要としないため、従来の膜ろ過装置逆洗ポンプ23’で消費する電力を削減することができる。
【0026】
また、膜ろ過装置10がデッドエンド型(全量ろ過型)で構成される場合、通常運転時は、第1弁31と第4弁34とが開放され、第2弁32と第3弁33は閉鎖される。膜ろ過装置10の逆洗浄時は、第4弁34が開放され、第1弁31は閉鎖され、第2弁32と第3弁33とのうち少なくとも1つは開放される。したがって、配水池11に貯溜された水により膜ろ過装置10は逆洗浄される。
【0027】
また、塩素注入手段14が、処理水槽8と浄水池9との間に設置されているので、膜ろ過装置10は常に消毒用の塩素が注入された系での運転となる。したがって、膜ろ過装置10を構成する膜モジュールの膜面は、常に衛生的に洗浄された状態を保持することができる。
【0028】
以上、本発明の好適な実施形態についての一例を説明したが、本発明は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
【0029】
【発明の効果】
本発明によれば、運転コストの少ない上水道水処理施設を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る上水道水処理施設の全体概略図である。
【図2】本発明の一実施の形態に係る上水道水処理施設において、膜ろ過装置付近の配管状況説明図であり、(a)は通常運転時、(b)は膜ろ過装置の逆洗浄時である。
【図3】(a)、(b)ともに従来の上水道水処理施設の全体概略図である。
【符号の説明】
1 上水道水処理施設
2 水源
3 着水井
4 凝集剤混和池
5 フロック形成池
6 沈でん池
7 ろ過池
8 処理水槽
9 浄水池
10 膜ろ過装置
11 配水池
12 端末施設
14 塩素注入手段
15 凝集剤注入手段
20 送水ポンプ
21 取水ポンプ
22 膜ろ過装置送水ポンプ
23 膜ろ過装置逆洗ポンプ
24 ろ過池逆洗浄ポンプ
31、32、33、34 弁
40 膜ろ過装置を単独で使用した従来の上水道水処理施設
41 膜ろ過装置を既設の浄水施設の後段に配置した従来の上水道水処理施設
L1、L2、L3、L4 流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tap water treatment facility equipped with a membrane filtration device.
[0002]
[Prior art]
In recent years, problems of harmful protozoa such as Cryptosporidium and Giardia have been pointed out with the deterioration of water quality of water supply sources. Although sterilization of chlorine is required by the Waterworks Law, especially Cryptosporidium is resistant to chlorine because it is contained in a strong shell called oocysts, and removal by chlorine is hardly expected It is in.
Therefore, a membrane separation method has been proposed as another method for removing such protozoa. This membrane separation method is an effective means with less energy consumption because it does not involve a phase change compared to fractional distillation, etc., and does not produce harmful substances, and has a membrane filtration device with this membrane separation function Water treatment facilities with water supply are becoming popular.
[0003]
FIG. 3A shows a conventional tap water treatment facility 40. As shown in FIG. 3 (a), this is a tap water treatment facility 40 composed of a membrane filtration device 10 ′ alone as a device having a water purification function. In this facility, the intake pump 21 ′, the landing well 3 ′, the membrane filtration device water pump 22 ′, the membrane filtration device 10 ′, the treated water tank 8 ′, and the water purification pond are sequentially arranged from the upstream side to the downstream side. 9 ', water pump 20', and water reservoir 11 'are connected and constituted. In addition, a flow path is provided in parallel between the membrane filtration device 10 ′ and the treated water tank 8 ′, and a membrane filtration device backwash pump 23 ′ is provided on one side thereof. Furthermore, a chlorine injection means 14 'is provided between the treated water tank 8' and the water purification pond 9 '. In addition, a water purification pond is a facility for adjusting the balance between the amount of water subjected to water purification and the amount of water to be sent out, and further securing predetermined water in preparation for an accident or the like . This facility is one having the simplest structure in water complete sterilization, clarification function.
[0004]
Next, FIG. 3B shows a conventional tap water treatment facility 41 in which the membrane filtration device 10 ′ is arranged at the subsequent stage of the existing tap water treatment facility.
First, in general, the existing tap water treatment facility is, in order from the upstream side to the downstream side, the intake pump 21 ′, the landing well 3 ′, the flocculant mixing basin 4 ′ and the flock formation pond 5 ′, A sedimentation basin 6 ′, a filtration basin 7 ′, a treated water tank 8 ′, a water purification pond 9 ′, a water pump 20 ′, and a water distribution basin 11 ′ are configured to communicate with each other. In addition, a flow path is provided in parallel between the filter basin 7 ′ and the treated water tank 8 ′, and a filter basin reverse cleaning pump 24 ′ is provided on one side thereof. Further, the flocculant mixing basin 4 ′ is provided with a flocculant injection means 15 ′, and a chlorine injection means 14 ′ is provided between the treated water tank 8 ′ and the water purification tank 9 ′.
[0005]
A facility provided with a membrane filtration device 10 ′ between the treated water tank 8 ′ at the rear stage of this existing waterworks water treatment facility and the water purification basin 9 ′ is a conventional waterworks water treatment facility 41. By providing the membrane filtration device 10 ′, the membrane filtration device water pump 22 ′, the membrane filtration device 10 ′, the treatment water tank 8 ″, and the water purification tank 9 are provided along the downstream direction from the treatment water tank 8 ′. 'Is placed in communication. Further, a flow path is provided in parallel between the membrane filtration device 10 ′ and the treatment water tank 8 ″, and a membrane filtration device backwash pump 23 ′ is installed on one of the flow paths, and the treatment water tank 8 ″ and the treatment water tank are installed. Chlorine injection means 14 'is installed between 9'. Therefore, in the tap water treatment facility 41, protozoa such as Cryptosporidium and Giardia that cannot be completely removed by the existing tap water treatment facility can be completely removed.
[0006]
[Problems to be solved by the invention]
However, as shown in FIGS. 3 (a) and 3 (b), in the tap water treatment facilities 40 and 41, the membrane filtration device water pump 22 ′ for supplying the treated water under pressure to the membrane filtration device 10 ′ and It is necessary to separately provide a membrane filtration device backwash pump 23 'for backwashing the membrane filtration device 10'. Therefore, in the tap water treatment facilities 40 and 41, since the membrane filtration device water pump 22 ′ and the membrane filtration device backwash pump 23 ′ are driven, there is a problem that the operation cost becomes high.
[0007]
Then, this invention is made | formed in order to solve the said problem, and makes it a subject to provide the tap water treatment facility with low operating cost.
[0008]
[Means for Solving the Problems]
The present invention according to claim 1 is a waterworks water treatment facility provided with at least a membrane filtration device, a water reservoir, and a water supply pump, wherein the water supply pump is configured to pressurize and supply treated water to the membrane filtration device. In order to send filtered water from the membrane filtration device to the distribution reservoir, the membrane filtration device is provided in communication with the preceding stage of the distribution reservoir, and the water supply pump is communicated with the preceding stage of the membrane filtration device. In order to make it possible to use the reservoir head of the distribution reservoir for back washing of the membrane filtration device, the reservoir reservoir communicates with the filtrate side of the membrane filtration device, and the reservoir head of the distribution reservoir is the A tap water treatment facility characterized by being configured to be higher with respect to the end of a flow path formed during backwashing of a membrane filtration device .
[0009]
In addition, the water supply to the distribution reservoir means not only the water supply to the distribution reservoir but also the function of supplying water to a terminal facility such as a general household.
Therefore, the supply pressure of the water pump for pressurizing and supplying the water to be treated to the membrane filtration device can be used for the water supply to the distribution reservoir of the filtered water, and by performing membrane filtration, the operating energy of the water pump Can also be used as the pressurized water supply energy to the membrane filtration device. Therefore, in the operation of the tap water treatment facility, the electric power consumed by the membrane filtration device water pump in the conventional tap water treatment facility can be reduced. At the same time, it is not necessary to install a membrane filtration device water pump independently in a conventional waterworks water treatment facility.
[0010]
Furthermore , the water head difference can be utilized in the backwashing of the membrane filtration device. That is, it is possible to reduce the power consumed by the membrane filtration device backwash pump constituting the conventional tap water treatment facility. At the same time, there is no need to separately install a membrane filter backwash pump in a conventional tap water treatment facility.
[0011]
The present invention according to claim 2 is the tap water treatment facility, characterized in that a chlorine injection means is installed in the front stage of the membrane filtration device. Here, the chlorine injection means is a means for injecting chlorine into the filtered water to disinfect and sterilize it.
Therefore, the membrane filtration device can be operated in a system in which disinfecting chlorine is always injected, and the membrane surface of the membrane filtration device can always be kept hygienic and clean.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In the description of each embodiment, the same constituent elements are denoted by the same reference numerals, and redundant descriptions are omitted.
[0013]
(Composition of waterworks water treatment facility)
First, the structure of the tap water treatment facility according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is an overall schematic diagram of a waterworks water treatment facility, and FIG. 2 is an explanatory diagram of piping conditions in the vicinity of a membrane filtration device 10.
[0014]
As shown in FIG. 1, the tap water treatment facility 1 includes a landing well 3, a flocculant mixing basin 4, a flock formation basin 5, a sedimentation basin 6, and a filtration basin 7 in order from the upstream side to the downstream side. The treated water tank 8, the water purification tank 9, the membrane filtration device 10, and the distribution reservoir 11 are configured to communicate with each other. Although the flocculant mixing basin 4, the flock formation pond 5, the sedimentation basin 6, the filtration basin 7, the treated water basin 8, and the water purification basin 9 may be omitted, the membrane filtration device 10 has a high flux. It is preferable to provide these facilities in order to operate the vehicle. The downstream side of the distribution reservoir 11 is connected to a terminal facility 12 such as a general household through a flow path. However, on the downstream side of the membrane filtration device 10, there is also a flow path that can supply water to the terminal facility 12 without going through the distribution reservoir 11.
[0015]
Further, in order to feed raw water from the water source 2 to the landing well 3, a flow path is arranged in parallel between the intake pump 21 interposed between the water source 2 and the landing well 3, and the filtration pond 7 and the treated water tank 8. Provided between the treated water tank 8 and the membrane filtration device 10. One of the flow paths is interposed between the treated water tank 9 and the membrane filtration device 10. The water pumps 20 are respectively installed.
Furthermore, a flocculant mixing means 4 such as PAC (polyaluminum chloride) is placed in the flocculant mixing basin 4, and a chlorine injection means 14 is installed between the treated water tank 8 and the water purification pond 9.
[0016]
The treated water tank 8 is a water tank that temporarily stores the water treated in the filtration pond 7.
In addition, since the water purification pond 9 is a facility for adjusting the balance between the amount of water subjected to the water purification and the amount of water to be sent out, and for securing a predetermined amount of water in preparation for an accident, the size of the water purification basin 9 is treated. It is formed as a large facility compared to the water tank 8. Moreover, there is no problem even if the treatment water tank 8 is not installed and the water purification tank 9 is also used.
[0017]
The chlorine injection means 14 installed between the treated water tank 8 and the water purification pond 9 is a means for injecting chlorine and disinfecting the filtered water. There are dry and wet injection methods. The dry method is a method of injecting vaporized chlorine directly into filtered water, and the wet method is a method of producing concentrated chlorine water and injecting it into filtered water. In using either method, it is necessary to appropriately install a pipe at a desired injection position. Moreover, when raw | natural water is very polluted, in order to suppress the increase in bacteria, you may provide the chlorine injection | pouring means 14 before the sedimentation basin 6 or the filtration basin 7 grade | etc.,.
[0018]
The membrane filtration device 10 is for completely removing protozoa such as Cryptosporidium and Giardia. In the present invention, the type of the membrane module constituting the membrane filtration device is not particularly limited, but a membrane module having a high effect of separating the protozoa is preferable.
The treated water is stored in the distributing reservoir 11, and the retained water head is configured to be higher than the end of the flow path formed at the time of back washing of the membrane filtration device 10 described later. Thereafter, the purified water is sent to a terminal facility 12 such as a general household.
[0019]
Next, with reference to FIG. 2, the piping situation near the membrane filtration apparatus 10 will be described.
First, the case where the membrane filtration apparatus 10 is comprised by the crossflow filtration type is demonstrated.
A first valve 31 is provided in the flow path L <b> 1 between the water pump 20 and the membrane filtration device 10. Further, the flow path between the first valve 31 and the membrane filtration device 10 is branched, and the branched flow path communicates with a drainage facility (not shown) via the second valve 32. Moreover, the branched flow path may be connected to the upstream part of the water purification facility.
Furthermore, a flow path L <b> 3 is provided on the downstream side of the membrane filtration device 10, and communicates with the water purification tank 9 through the third valve 33. Moreover, the flow path L3 may be connected to the flow path L4 between the water purification tank 9 and the water pump 20.
Furthermore, on the downstream side of the membrane filtration device 10, a flow path L <b> 2 is provided between the distribution reservoir 11 and the fourth valve 34. The flow path L2 communicates with the vicinity of the bottom of the distribution reservoir 11.
Each valve can be opened and closed as appropriate.
[0020]
Moreover, the membrane filtration apparatus 10 may be comprised with a dead end filtration type (whole quantity filtration type). In this case, the flow path ahead of the second valve 32 and the flow path ahead of the third valve 33 are connected to the upstream side of the drainage facility (not shown) or the water purification facility, respectively.
[0021]
Moreover, it is preferable to provide the water reservoir 11 with a water level meter for measuring the water level of the stored water so that the water storage status can be grasped. Furthermore, the flow path communicating with the distribution reservoir 11 on the downstream side of the fourth valve 34 may be branched, and water may be stored in preparation for the case where water stored in the distribution reservoir 11 ahead cannot be used as cleaning water.
[0022]
(Operation and effects of waterworks treatment facilities)
Next, the operation and effect of the membrane filtration treatment facility 1 according to the embodiment of the present invention will be described with reference to FIG.
First, the process in which raw | natural water is purified is demonstrated as a whole about the normal driving | operation of the membrane filtration water treatment facility 1. FIG.
First, raw water from a water source 2 such as a lake or river is sent to a landing well 3 by a water intake pump 21. In the landing well 3, the water level and amount of the taken-in water are adjusted and guided to the flocculant mixing basin 4. Here, a flocculant 15 such as polyaluminum chloride is added, and the raw water and the flocculant 15 are mixed by a mixer or the like. Thereafter, the flocs are formed in the floc formation pond 5 and gently stirred to promote the growth of aggregated flocs. Furthermore, after that, it is led to the sink pond 6 to sink the floc formed in the water. Then, after being guided to the filtration basin 7 and filtered, it is temporarily stored in the treated water tank 8. And after chlorine is inject | poured and sterilized by the chlorine injection | pouring means 14, it is guide | induced to the water purification basin 9, and the balance of the amount of water purified and the amount of water sent out to a downstream facility is adjusted. Thereafter, the water is pumped to the membrane filtration device 10 by the water pump 20, and protozoa such as Cryptosporidium are completely removed and stored in the distribution reservoir 11. Then, water is sent to the terminal facility 12. In addition, when there is much usage-amount of water in a terminal facility, the water may be directly sent to the terminal facility 12 without going through the reservoir 11.
[0023]
Furthermore, the opening / closing state of each valve in the vicinity of the membrane filtration device 10 and the retained water head of the reservoir 11 will be described with reference to FIG.
First, the case where the membrane filtration apparatus 10 is comprised with a crossflow filtration type | mold is demonstrated. During normal operation, the first valve 31, the third valve 33, and the fourth valve 34 are opened, and the second valve 32 is closed. Therefore, the water stored in the water purification tank 9 is sent to the membrane filtration device 10 via the first valve 31 by the operation of the water supply pump 20. Part of the water pressure-fed to the membrane filtration device 10 passes through a membrane module (not shown) constituting the membrane filtration device 10, passes through the third valve 33, passes through the flow path L <b> 3, and is purified. Return to pond 9 and circulate. Moreover, when other water passes the membrane filtration apparatus 10, it is filtered. The filtered water passes through the flow path 2 via the fourth valve 34 and is then fed into the distribution reservoir 11.
Furthermore, the reservoir head of the distributing reservoir 11 is configured to be higher (Δh) with respect to the end position of the flow path formed during backwashing of the membrane filtration device 10 to be described later.
[0024]
Furthermore, since the water pump 20 is installed between the water purification tank 9 and the membrane filtration apparatus 10, the water pump 20 can be used as a pressurizing means when water is supplied to the membrane filtration apparatus 10. Therefore, the energy for operating the water pump 20 when water is supplied to the distribution reservoir 11 can also be used as the water supply energy to the membrane filtration device 10. That is, it is not necessary to separately install and operate a water pump as a pressurizing means for the membrane filtration device 10. Therefore, it is possible to reduce the power consumed when the pump is operated separately and the cost of installing the pump separately.
[0025]
Next, the reverse cleaning of the membrane filtration device 10 will be described with reference to FIG. At the time of reverse cleaning of the membrane filtration device 10, the second valve 32 and the fourth valve 34 are opened, and the first valve 31 and the third valve 33 are closed. Therefore, when the membrane filtration device 10 is back-washed, a flow path is formed from the reservoir 11 to the drainage facility (not shown) through the fourth valve 34, the membrane filtration device 10, and the second valve 32. . At that time, the reservoir head of the reservoir 11 is stored so as to be high (Δh) with respect to the formed flow path end, so that the potential energy due to gravity flows out as a driving force. The water that flows out passes through the fourth valve 34, then back-washes the membrane surface of the membrane module (not shown) constituting the membrane filtration apparatus 10, and passes through the second valve 32 to drain the facility (not shown). To be drained. That is, since the membrane filtration device backwash pump 23 'in the conventional tap water treatment facility 41 is not required, the power consumed by the conventional membrane filtration device backwash pump 23' can be reduced.
[0026]
Further, when the membrane filtration device 10 is configured as a dead end type (total amount filtration type), during normal operation, the first valve 31 and the fourth valve 34 are opened, and the second valve 32 and the third valve 33 are Closed. When the membrane filtration device 10 is back-washed, the fourth valve 34 is opened, the first valve 31 is closed, and at least one of the second valve 32 and the third valve 33 is opened. Therefore, the membrane filtration device 10 is back-washed with the water stored in the distribution reservoir 11.
[0027]
Moreover, since the chlorine injection means 14 is installed between the treated water tank 8 and the water purification pond 9, the membrane filtration apparatus 10 is always operated in a system in which chlorine for disinfection is injected. Therefore, the membrane surface of the membrane module constituting the membrane filtration device 10 can always maintain a sanitized state.
[0028]
As mentioned above, although an example about the suitable embodiment of the present invention was explained, the present invention is not limited to the above-mentioned embodiment, and design change is possible suitably in the range which does not deviate from the meaning of the present invention.
[0029]
【The invention's effect】
According to the present invention, it is possible to provide a tap water treatment facility with low operation costs.
[Brief description of the drawings]
FIG. 1 is an overall schematic diagram of a tap water treatment facility according to an embodiment of the present invention.
FIGS. 2A and 2B are explanatory diagrams of piping conditions in the vicinity of a membrane filtration device in a waterworks water treatment facility according to an embodiment of the present invention, wherein FIG. 2A is a normal operation, and FIG. 2B is a backwashing of the membrane filtration device. It is.
FIGS. 3A and 3B are general schematic views of a conventional tap water treatment facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waterworks water treatment facility 2 Water source 3 Landing well 4 Coagulant mixing pond 5 Flock formation pond 6 Sedimentation basin 7 Filtration basin 8 Treated water tank 9 Purification pond 10 Membrane filtration device 11 Distribution pond 12 Terminal facility 14 Chlorine injection means 15 Coagulant injection means 20 Water Pump 21 Water Intake Pump 22 Membrane Filtration Device Water Pump 23 Membrane Filtration Device Backwash Pump 24 Filter Pond Backwash Pump 31, 32, 33, 34 Valve 40 Conventional Waterworks Water Treatment Facility 41 Using Membrane Filtration Device Alone Membrane Conventional waterworks water treatment facilities L1, L2, L3, and L4 flow paths in which a filtration device is disposed after the existing water purification facility

Claims (2)

少なくとも膜ろ過装置と配水池と送水ポンプとを備えた上水道水処理施設であって、前記膜ろ過装置に被処理水を加圧供給するための前記送水ポンプによって前記膜ろ過装置からのろ過水を前記配水池に送水するために、前記膜ろ過装置を前記配水池の前段に連通して設け、且つ、前記送水ポンプを前記膜ろ過装置の前段に連通して設け
前記配水池の保有水頭を前記膜ろ過装置の逆洗浄に利用可能とするために、前記配水池と前記膜ろ過装置のろ過水側とを連通するとともに、前記配水池の保有水頭が前記膜ろ過装置の逆洗浄時に形成される流路の末端に対して、高くなるように構成されることを特徴とする上水道水処理施設。
A tap water treatment facility comprising at least a membrane filtration device, a water reservoir, and a water pump, wherein the filtered water from the membrane filtration device is supplied by the water pump for pressurizing and supplying treated water to the membrane filtration device. In order to send water to the distribution reservoir, the membrane filtration device is provided in communication with the front stage of the distribution reservoir, and the water supply pump is provided in communication with the front stage of the membrane filtration device ,
In order to use the retained water head of the distribution reservoir for back washing of the membrane filtration device, the reservoir and the filtered water side of the membrane filtration device communicate with each other, and the retained water head of the distribution reservoir is the membrane filtration A tap water treatment facility characterized by being configured to be higher than a terminal end of a flow path formed at the time of back washing of an apparatus .
前記膜ろ過装置の前段に塩素注入手段を設置することを特徴とする、請求項1に記載する上水道水処理施設。The tap water treatment facility according to claim 1, wherein a chlorine injection means is installed in the front stage of the membrane filtration device.
JP2002071251A 2002-03-15 2002-03-15 Waterworks treatment facility Expired - Fee Related JP3888444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071251A JP3888444B2 (en) 2002-03-15 2002-03-15 Waterworks treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071251A JP3888444B2 (en) 2002-03-15 2002-03-15 Waterworks treatment facility

Publications (2)

Publication Number Publication Date
JP2003266071A JP2003266071A (en) 2003-09-24
JP3888444B2 true JP3888444B2 (en) 2007-03-07

Family

ID=29201579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071251A Expired - Fee Related JP3888444B2 (en) 2002-03-15 2002-03-15 Waterworks treatment facility

Country Status (1)

Country Link
JP (1) JP3888444B2 (en)

Also Published As

Publication number Publication date
JP2003266071A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
AU2006289003B2 (en) Water clarifying apparatus and implementing method
KR101075885B1 (en) Water purification apparatus and method for using pressure filter and pore control fiber filter
CN101921029B (en) Purification and disinfection device of nano-catalytic micro-electrolytic water and method thereof
KR101253054B1 (en) Pre-treatment Device and Method for Desalination
EA026481B1 (en) Desalinization system and desalinization method
JPWO2009119300A1 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
KR101343930B1 (en) Method of reutilizing wastewater
CN107486018A (en) Using the positive osmotic composition system of the nanofiltration of commercial NF membrane, forward osmosis membrane and its application
JP2009273973A (en) Seawater desalination system by membrane treatment
JP3888444B2 (en) Waterworks treatment facility
CN218811117U (en) High-quality drinking water membrane filtration process system
JP2003200007A (en) Water treatment apparatus
KR101637049B1 (en) Apparatus for treating water
CN215559437U (en) Wastewater treatment system
CN201400615Y (en) Treatment system of wastewater from circulating water
CN110078262B (en) Integrated reactor for removing trace antibiotics in composite polluted surface water and removing method thereof
KR20100034087A (en) Package water treatment system having multi supplied line
JP2002346347A (en) Method and apparatus for filtration
CN103058326A (en) Sewage processing method
ZA200205320B (en) Method and device for effluent treatment.
KR101001220B1 (en) System and method for treating drain water
KR20160131802A (en) Filtration device including powerless mixing flocculation tank and desalination plant using the same
CN103979697B (en) Small-sized type drinking water system capable of direct drinking
JP2016043279A (en) Membrane separation device using internal pressure type hollow yarn membrane and operational method
JPH0985258A (en) Emergency water purifying apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees