JP3685510B2 - In-vivo insertion device having electrical conduction path and method for manufacturing the same - Google Patents

In-vivo insertion device having electrical conduction path and method for manufacturing the same Download PDF

Info

Publication number
JP3685510B2
JP3685510B2 JP27661994A JP27661994A JP3685510B2 JP 3685510 B2 JP3685510 B2 JP 3685510B2 JP 27661994 A JP27661994 A JP 27661994A JP 27661994 A JP27661994 A JP 27661994A JP 3685510 B2 JP3685510 B2 JP 3685510B2
Authority
JP
Japan
Prior art keywords
manufacturing
intracorporeal
coating
conduction path
insertion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27661994A
Other languages
Japanese (ja)
Other versions
JPH08131545A (en
Inventor
均 小笹
哲 中川
裕 三澤
進 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP27661994A priority Critical patent/JP3685510B2/en
Publication of JPH08131545A publication Critical patent/JPH08131545A/en
Application granted granted Critical
Publication of JP3685510B2 publication Critical patent/JP3685510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Micromachines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、生体の管腔内に薬液注入を行ったり、管腔内観察治療用器具を挿入するためのカテーテルや内視鏡等に用いられる医療用チューブ、或いはガイドワイヤ等の医療用ワイヤに代表される管状もしくは線状の、細径な体内挿入具に関する。
【0002】
【従来の技術】
従来、先端部にサーミスタ等の各種センサを実装して生体の管腔内からの信号を得るカテーテル等においては、図1に示すように、体内挿入部先端付近に設けられたセンサ6と体外に置かれた解析装置本体2の間で電気信号を送受信する為の電気伝導路4に細径の同軸線やツイストペア線5等を使用し、それらを該カテーテルのルーメン3内部に実装する手段が用いられていた。
【0003】
また、モータ、静電型アクチュエータ、形状記憶合金等を応用した機械的動作機構を有し、生体治療や観察に使用されるカテーテルや内視鏡等においても、電力の供給の為に、細径の電線(リード線)をルーメン内部に実装する手段が用いられている。
【0004】
更に、先端部に超音波センサを有し血管内での流速の測定等に使用される、ガイドワイヤ型プローブ等の細径な医療用ワイヤにおいても、ワイヤ内部に信号送受用のリード線を実装する、或いは外壁に沿ってリード線を捲回し一体に被覆する等の手段が用いられていた。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの体内挿入具は生体の管腔内に挿入する事を目的としている為、細径な事が好ましいのであるが、従来の如く内部にリード線を実装した場合、チューブにおいては、本来の目的である、生体に薬液を注入したり、観察、治療に使用するルーメン自体の寸法が制約され、また、更に細径なワイヤにおいては実装工程自体も極めて困難となる、という問題がある。
【0006】
また、内部にリード線を実装することにより、チューブ、ワイヤが、柔軟性等の所要物性を損なう結果、管腔内への挿入が困難となることに加え、管腔の内壁に損傷を与えるおそれがある。
【0007】
本発明は、生体の治療や観察等の機能を有するルーメンの寸法が確保され、かつ製造工程が容易で、物性に優れた体内挿入具および該体内挿入具を得る製造方法を提供する事を目的とする。
【0008】
【課題を解決するための手段】
このような目的は、電気的な機能を有する装置に対して電気的に接続される電気伝導路を有する体内挿入具において、前記電気伝導路が該体内挿入具の基材表面の少なくとも一部に被覆された導電体からなる事を特徴とする電気伝導路を有する体内挿入具によって達成される。
【0009】
本発明の好ましい態様において、前記体内挿入具は医療用チューブ、または医療用ワイヤ等の、管状または線状をなす表面が曲面の部材である。
【0010】
また、前記導電体が1種類以上の金属であり、前記被覆が該金属の蒸着であることが望ましい。
【0011】
更に、前記被覆された伝導体が、お互いに絶縁分離された複数の電気伝導路を形成することが望ましい。
【0012】
本発明の目的は、電気的な機能を有する装置に対して電気的に接続される電気伝導路を有する体内挿入具の製造方法において、該体内挿入具の基材表面の少なくとも一部に導電体を被覆する工程と、前記被覆された導電体の一部を除去し、互いに絶縁された2つ以上の電気伝導路の少なくとも一部を形成する工程とからなる事を特徴とする電気伝導路を有する体内挿入具の製造方法によっても達成される。
【0013】
本発明の好ましい態様において、前記体内挿入具は医療用チューブ、または医療用ワイヤである。
【0014】
また、前記導電体が1種類以上の金属であり、前記被覆が該金属の蒸着であることが望ましい。
【0015】
更に、前記被覆の一部を除去する工程は、光或いは電子線等による非接触加工であることが望ましい。
【0016】
また更に、前記非接触加工は、エキシマレーザによる光エネルギ加工である事が望ましい。
【0017】
また、前記被覆の一部を除去する工程は、該体内挿入具の基材外壁にそった、略螺旋状の溝加工である事が望ましい。
【0018】
更に、前記蒸着は、イオンアシスト蒸着であることが望ましい。
【0019】
また、前記被覆の一部を除去する工程の後、被覆が残存している部分の少なくとも一部に、少なくとも一種類の金属を、無電解めっき、及び/または電解めっきする事が望ましい。
【0020】
また、前記被覆の一部を除去する工程の後、或いは、無電解めっき、及び/または電解めっきを行った後に、合成樹脂を被覆する事が望ましい。
【0021】
【作用】
本発明によれば、従来の医療用チューブ、医療用ワイヤの電気伝導路のように、チューブ、ワイヤの内部に電線を実装するのではなく、該チューブ或いはワイヤの基材表面の少なくとも一部に金属等の導電体を被覆されたものを電気伝導路とすることによって、細径のチューブ、ワイヤの内部に電線を実装する様な困難を伴わずに、また、チューブにおいては、その内腔を損なう事も無く電気伝導路を設ける事が可能である。ここで、前記電気伝導路が金属などの被覆であるため、本発明の体内挿入具の如き表面が曲面形状の細径の部材であっても、容易に形成することが可能である。
【0022】
また、本発明によれば、従来の体内挿入具の電気伝導路のように、チューブ、ワイヤの内部に電線を実装するのではなく、該チューブ或いはワイヤの基材表面の少なくとも一部に金属等の導電体を被覆する工程と、更に該被覆された導電体の一部を除去し、2つ以上の電気伝導路として概ね分割する工程とを有する事により、外壁上に、互いにほぼ絶縁された少なくとも2つ以上の電気伝導路の、少なくとも一部を形成する為、細径のチューブ、ワイヤの内部に電線を実装する様な困難を伴わずに、また、チューブにおいては、その内腔を損なう事も無く電気伝導路を設ける事が可能である。尚、ここでいう、概ね分割するとは、導電体被覆を、複数の電気伝導路を形成する目的で分離する工程を示すが、後の製造工程上の便宜の為に、完全に分割するのではなく、導電体被覆の一部を未分割の状態で残しておくという場合も含む。
【0023】
また、上記被覆の一部を取り除く工程を、エキシマレーザ等の光、或いは電子線等による非接触加工で行う事により、曲面形状を有している、チューブやワイヤの外壁に対しても、困難なく加工を施す事ができる。
【0024】
更に、被覆の一部を取り除く工程を、体内挿入具の基材外壁にそった、螺旋状の溝加工とすることによって、電気伝導路が螺旋状の構造となる為、体内挿入具のチューブ部、またはワイヤ部が、柔軟性を保持し、管腔内への挿入が容易となる事に加え、基材の物性値と導電体の物性値の差による導電体部分の剥離や破断を防ぐ事ができる。
【0025】
また、導電体被覆を行う手段を、金属等の導電性材料の蒸着とすることにより、曲面形状を有している、体内挿入具におけるチューブやワイヤの外壁を困難なく被覆する事ができる。この時、蒸着方法としては、蒸着と同時にイオン化したAr等の粒子を加速して照射し、密着性を向上させる、イオンアシスト蒸着法を使用することにより、通常の蒸着では密着強度を得るのが難しい高分子基材に対しても、良好な密着性を得る事ができる。
【0026】
更に、蒸着で形成された導電体層のみでは、電気抵抗が大きいため、被覆の一部を取り除く工程の後、被覆が残存している部分の少なくとも一部に、更にCu、Au、Ag、Pt、Ni、Fe等の金属の内、少なくとも一種類を、無電解めっき、及び/または電解めっきして、導電体層の厚みを増やす事によって、電気抵抗を低くすることが可能となる。
【0027】
上記の手段により電気伝導路の導電体部が形成された後に、ポリウレタン、シリコーン等の合成樹脂を被覆して、保護層を形成することで、チューブ、ワイヤの屈曲等の外力や、摩耗等に対する、電気伝導路の耐久性を向上させる事が可能である。
【0028】
【実施例】
(実施例1)
図2は、本発明の体内挿入具の実施例1における、医療用チューブの構成を示す図である。図2において、実施例1の医療用チューブは、チューブ本体1と、その先端部からの生体信号を増幅、解析するための、体外に設置された装置本体2とからなっている。チューブ内腔3は、薬液および観察、処置器具を挿入するために使用される。チューブ先端付近には、サーミスタ等のセンサ6が設けられ、生体内の温度や血流量などの生体情報の測定を行う。チューブ外壁上には、チューブ表面に蒸着被覆された2つの電気伝導路12、13が設けられ、12は信号伝達用、13はグラウンド用として使用される。電気伝導路12、13の先端側は、それぞれセンサの信号用電極(不図示)、グラウンド用電極(不図示)に、半田付け等の方法で電気的に接続され、基部側は、チューブ1を接続するケーブル5と、半田付け、或いはコネクタ等を介して電気的に接続されることによって装置本体2へ接続される。
【0029】
図3、図4は、上述の本発明の実施例1に係る医療用チューブの製造方法を示す説明図である。
【0030】
図3は、本実施例1における被覆工程の説明図であり、チューブ本体1の外壁は、導電体の蒸着源8を蒸着することにより導電的に被覆される。チューブ本体1は、外径0.1〜20mm程度、肉厚0.01〜5mm程度で、ポリウレタン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリサルフォンやシリコーンのような柔軟性に優れた高分子材料からなる。導電体蒸着源8としては、Cu、Au、Ti、Al、Ag、Pt等の金属、C等の導電性非金属材料等の内の一種類を、或いは複数の物を同時若しくは積層的に使用して、チューブ外壁上に、0.05〜50μm程度の厚みで蒸着する。厚みはチューブの径を考慮して適宜決めるのが望ましく、厚みが小さいと伝導できる電流が小さくなり、厚みが大きいとチューブの柔軟性が損なわれるため、前記の値が最も好ましい。蒸着方法として、好ましくは、蒸着と同時にイオン化したAr等の粒子を加速して照射し、密着性を向上させる、イオンアシスト蒸着法等が使用される。
【0031】
図4は、本実施例1における、導電体の被覆の一部を除去し、分割する工程を示す説明図である。導電体により外壁を被覆されたチューブ1の表面に、レーザ加工装置9によりレーザ光10を照射することにより被覆の一部が取り除かれる。更にレーザ光10を、チューブ1の長さ方向に走査することで、絶縁溝11が形成される為、走査を繰り返すことにより、導電体被覆から複数の電気伝導路4a、4bを形成することができる。
【0032】
(実施例2)
図5は、本発明の実施例2に係る医療用チューブの製造工程を示す説明図であり、図6は、実施例2に係る医療用チューブを示す説明図である。
【0033】
本実施例2においても、導電体による被覆工程までは、実施例1と同様である。図5は、本実施例2における、導電体の被覆の一部を除去し、分割する工程を示し、実施例1と異なる点は、レーザ光10をチューブ1の長さ方向を軸とした螺旋状に走査することで、電気伝導路4を螺旋状に形成する点である。
【0034】
図6は、本実施例2により製造された医療用チューブの電気伝導路の一部を示すが、この様にレーザ光を螺旋状に繰り返し走査して分割溝部11a,11bを作ることによって電気伝導路12、13を形成する事により、金属等の硬い材料で構成されている被覆部分が螺旋構造になる為、チューブ、ワイヤが柔軟性を保持し、管腔内への挿入が容易となる事に加え、基材の物性値と導電体の物性値の差による湾曲時の導電体部分の剥離や破断を防ぐ事ができる。
【0035】
(実施例3)
図7は、本実施例3に係る医療用チューブの製造工程を示す説明図である。
【0036】
本実施例3において、導電体の被覆の一部を取り除き分割する工程までは実施例2と同様である。図7は、被覆が残存している部分の少なくとも一部に、更に電解めっきを施す工程である。めっき液15中にチューブ1を入れ、導電体被覆が残存している部分に対し、直流電源装置14の負極を電線17を介して接続する。直流電源装置14の正極は、電線18を介して、めっき液中にある導電性カーボン等で作られた正電極16に接続される。めっきに用いられる金属としては、Cu、Au、Ag、Pt、Ni、Fe等の金属の内の一種類を、或いは複数の物を同時若しくは積層的に使用して、0.1〜100μm程度の厚みでめっきする。めっきの厚みが大きすぎるとチューブの柔軟性が損なわれ、逆に小さすぎると電気伝導路の耐久性の保持能が損なわれる。
【0037】
本実施例では、電解めっきを使用する方法を示したが、無電解めっきによっても、同様にCu、Au、Ag、Pt、Ni、Fe等の金属をめっきすることが可能である。
【0038】
(実施例4)
図8は、本発明の実施例4に係る医療用チューブを示す説明図である。本実施例4において、導電体の被覆の一部を取り除き分割する工程までは、実施例2と同様である。図8は、実施例2の医療用チューブと同様に電気伝導路の導電体部が形成された後に、合成樹脂を被覆して保護層19を形成したチューブを示す。合成樹脂としては、ポリウレタン、シリコーン等の柔軟性に優れた高分子を使用して、ディッピング等の方法により被覆するか、これらの樹脂からなる樹脂チューブを被せて熱収縮等により密着させる。
【0039】
この様に合成樹脂による被覆を行うことで、チューブの屈曲や摩耗等に対する電気伝導路の耐久性を向上させる事が可能になる。
【0040】
以上の実施例においては、医療用チューブへの電気伝導路の形成のみについて記述したが、それに限らず、医療用ワイヤ等、その他の体内挿入具への電気伝導路の形成についても全く同様の方法により実現が可能である。
【0041】
【発明の効果】
以上のように、本発明によれば、センサ、アクチュエータ、電極等の、電気的な機能を有する部材と、それらに対して、電力供給、及び/または、信号送受を行う為の電気伝導路を有する体内挿入具における電気伝導路を、体内挿入具の基材表面の少なくとも一部に被覆した金属等の導電体によって形成するため、工程が容易で、生体の治療や観察等の機能を有するルーメンの寸法が確保され、細径化が可能になり、また、柔軟性、耐久性等の物性に優れた体内挿入具を実現できる。
【図面の簡単な説明】
【図1】従来の医療用チューブの構成図である。
【図2】本発明の実施例1に係る医療用チューブの構成図である。
【図3】本発明の実施例1に係る医療用チューブの製造方法の、被覆の工程を示す説明図である。
【図4】本発明の実施例1に係る医療用チューブの製造方法の、被覆の一部を除去する工程を示す説明図である。
【図5】本発明の実施例2に係る医療用チューブの製造方法の、被覆の一部を取り除く工程を示す説明図である。
【図6】本発明の実施例2に係る医療用チューブの電気伝導路の構成を示す説明図である。
【図7】本発明の実施例3に係る医療用チューブの製造方法の、めっきの工程を示す説明図である。
【図8】本発明の実施例4に係る医療用チューブの電気伝導路の構成を示す説明図である。
【符号の説明】
1:チューブ本体
2:解析装置本体
3:ルーメン
4:電気伝導路
5:ケーブル
6:センサ
7:蒸着源蒸気
8:蒸着源
9:レーザ加工装置
10:レーザ光
11、11a、11b:分割溝
12:信号伝達用伝導路
13:グラウンド用伝導路
14:直流電源装置
15:めっき液
16:正電極
17、18:電線
19:保護層
[0001]
[Industrial application fields]
The present invention relates to a medical tube used for a catheter or endoscope for injecting a chemical solution into a lumen of a living body or inserting an intraluminal observation treatment instrument, or a medical wire such as a guide wire. The present invention relates to a tubular or linear, small-diameter internal insertion tool.
[0002]
[Prior art]
Conventionally, in a catheter or the like that mounts various sensors such as a thermistor at the distal end and obtains a signal from the lumen of a living body, as shown in FIG. A thin coaxial line, twisted pair wire 5 or the like is used for the electric conduction path 4 for transmitting and receiving an electric signal between the placed analysis apparatus main bodies 2, and means for mounting them inside the lumen 3 of the catheter is used. It was done.
[0003]
In addition, it has a mechanical operation mechanism that applies motors, electrostatic actuators, shape memory alloys, etc., and even for catheters and endoscopes used for biological treatment and observation, it has a small diameter for power supply. Means for mounting the electric wire (lead wire) in the lumen is used.
[0004]
In addition, a lead wire for signal transmission / reception is mounted on the inside of a thin medical wire such as a guide wire type probe that has an ultrasonic sensor at the tip and is used for measuring the flow velocity in blood vessels. Or means such as winding the lead wire along the outer wall to cover it integrally.
[0005]
[Problems to be solved by the invention]
However, since these in-vivo insertion tools are intended to be inserted into the lumen of a living body, it is preferable that the diameter is small. In other words, there is a problem that the size of the lumen itself used for injecting a chemical solution into a living body, observation and treatment is restricted, and that the mounting process itself is extremely difficult for a finer wire.
[0006]
In addition, by mounting lead wires inside the tube, the wire and the required physical properties such as flexibility may be impaired. As a result, insertion into the lumen becomes difficult, and the inner wall of the lumen may be damaged. There is.
[0007]
An object of the present invention is to provide an in-vivo inserter having a lumen having functions such as treatment and observation of a living body, having an easy manufacturing process and excellent physical properties, and a manufacturing method for obtaining the in-vivo inserter. And
[0008]
[Means for Solving the Problems]
Such an object is to provide an intracorporeal insertion device having an electric conduction path electrically connected to a device having an electrical function, wherein the electric conduction path is formed on at least a part of the base material surface of the intracorporeal insertion instrument. This is achieved by an in-vivo insert having an electrical conduction path characterized by comprising a coated conductor.
[0009]
In a preferred aspect of the present invention, the in-vivo insertion tool is a member having a curved surface, such as a medical tube or a medical wire, having a tubular or linear shape.
[0010]
Further, it is desirable that the conductor is one or more kinds of metals and the coating is vapor deposition of the metals.
[0011]
Furthermore, it is desirable that the coated conductor forms a plurality of electrical conduction paths that are insulated from each other.
[0012]
An object of the present invention is to provide a method for manufacturing an intracorporeal insertion device having an electrical conduction path electrically connected to a device having an electrical function, wherein a conductor is provided on at least a part of the surface of the substrate of the intracorporeal insertion device. And a step of removing a part of the coated conductor and forming at least a part of two or more electrically conductive paths insulated from each other. This can also be achieved by a method for manufacturing an in-vivo insertion tool.
[0013]
In a preferred embodiment of the present invention, the in-vivo insertion tool is a medical tube or a medical wire.
[0014]
Further, it is desirable that the conductor is one or more kinds of metals and the coating is vapor deposition of the metals.
[0015]
Furthermore, it is desirable that the step of removing a part of the coating is non-contact processing using light or an electron beam.
[0016]
Furthermore, the non-contact processing is preferably optical energy processing using an excimer laser.
[0017]
Further, it is desirable that the step of removing a part of the coating is a substantially spiral groove process along the outer wall of the base material of the body insertion tool.
[0018]
Further, the vapor deposition is preferably ion-assisted vapor deposition.
[0019]
In addition, after the step of removing a part of the coating, it is desirable to electrolessly and / or electrolytically plate at least one kind of metal on at least a part of the portion where the coating remains.
[0020]
Further, it is desirable to coat the synthetic resin after the step of removing a part of the coating or after performing electroless plating and / or electrolytic plating.
[0021]
[Action]
According to the present invention, an electric wire is not mounted inside a tube or a wire as in a conventional medical tube or an electric conduction path of a medical wire, but at least a part of the surface of the base material of the tube or wire. By using an electric conduction path that is covered with a conductor such as metal, it is possible to avoid the difficulty of mounting an electric wire inside a thin tube or wire. It is possible to provide an electric conduction path without damaging it. Here, since the electrical conduction path is a coating made of metal or the like, even if the surface of the body insertion tool of the present invention is a curved member with a small diameter, it can be easily formed.
[0022]
Further, according to the present invention, an electric wire is not mounted inside the tube or wire as in the electric conduction path of the conventional in-vivo insertion tool, but a metal or the like is formed on at least a part of the surface of the tube or wire base And a step of removing a part of the coated conductor and roughly dividing the conductor into two or more electric conduction paths, thereby being substantially insulated from each other on the outer wall. To form at least a part of at least two or more electric conduction paths, there is no difficulty in mounting an electric wire inside a small-diameter tube or wire, and the lumen of the tube is damaged. It is possible to provide an electric conduction path without any problem. In this case, roughly dividing means a step of separating the conductor coating for the purpose of forming a plurality of electric conduction paths, but for the convenience of the subsequent manufacturing process, it is not completely divided. There is also a case where a part of the conductor coating is left undivided.
[0023]
Moreover, it is difficult for the outer wall of a tube or wire having a curved surface shape by performing the process of removing a part of the coating by non-contact processing using light such as excimer laser or electron beam. Can be processed without any problems.
[0024]
Furthermore, since the process of removing a part of the coating is a spiral groove processing along the outer wall of the base material of the body insertion tool, the electrical conduction path has a spiral structure. In addition to maintaining flexibility and facilitating insertion into the lumen, the wire portion can prevent peeling and breakage of the conductor due to the difference between the physical property value of the base material and the physical property value of the conductor. Can do.
[0025]
Moreover, the outer wall of the tube and the wire in the insertion tool having a curved surface can be covered without difficulty by vapor deposition of a conductive material such as metal as a means for covering the conductor. At this time, as a vapor deposition method, the adhesion strength is obtained in normal vapor deposition by using an ion-assisted vapor deposition method that accelerates and irradiates particles such as Ar ionized at the same time as vapor deposition and improves adhesion. Good adhesion can be obtained even for difficult polymer substrates.
[0026]
Furthermore, since only the conductor layer formed by vapor deposition has a large electric resistance, Cu, Au, Ag, Pt is further added to at least a part of the portion where the coating remains after the step of removing a part of the coating. By increasing the thickness of the conductor layer by electroless plating and / or electrolytic plating at least one of the metals such as Ni and Fe, it is possible to reduce the electrical resistance.
[0027]
After the conductor portion of the electric conduction path is formed by the above-mentioned means, it is coated with a synthetic resin such as polyurethane and silicone, and a protective layer is formed, thereby preventing external forces such as bending of the tube and wire, wear, etc. It is possible to improve the durability of the electric conduction path.
[0028]
【Example】
(Example 1)
FIG. 2 is a diagram showing a configuration of a medical tube in Example 1 of the in-vivo insertion tool of the present invention. In FIG. 2, the medical tube of Example 1 includes a tube main body 1 and an apparatus main body 2 installed outside the body for amplifying and analyzing a biological signal from the distal end portion thereof. The tube lumen 3 is used for inserting a drug solution and an observation / treatment instrument. A sensor 6 such as a thermistor is provided in the vicinity of the distal end of the tube to measure biological information such as the temperature and blood flow in the living body. On the outer wall of the tube, there are provided two electric conduction paths 12 and 13 deposited on the surface of the tube, 12 for signal transmission and 13 for ground. The leading ends of the electrical conduction paths 12 and 13 are electrically connected to a signal electrode (not shown) and a ground electrode (not shown) of the sensor by a method such as soldering, and the base side is connected to the tube 1. It is connected to the apparatus main body 2 by being electrically connected to the connecting cable 5 through soldering or a connector.
[0029]
3 and 4 are explanatory views showing a method for manufacturing the medical tube according to the first embodiment of the present invention.
[0030]
FIG. 3 is an explanatory diagram of the coating process in the first embodiment, and the outer wall of the tube body 1 is conductively coated by depositing a vapor deposition source 8 of a conductor. The tube body 1 has an outer diameter of about 0.1 to 20 mm and a wall thickness of about 0.01 to 5 mm, and is made of a polymer material having excellent flexibility such as polyurethane, polyolefin, polyester, polycarbonate, polysulfone or silicone. As the conductor vapor deposition source 8, one kind of metals such as Cu, Au, Ti, Al, Ag, Pt, etc., conductive non-metallic materials such as C, or a plurality of things are used simultaneously or in layers. And it vapor-deposits with the thickness of about 0.05-50 micrometers on a tube outer wall. The thickness is preferably determined appropriately in consideration of the diameter of the tube. The smaller the thickness, the smaller the current that can be conducted, and the larger the thickness, the less flexible the tube. As an evaporation method, an ion-assisted evaporation method or the like is preferably used in which particles such as Ar ionized at the same time as the evaporation are accelerated and irradiated to improve adhesion.
[0031]
FIG. 4 is an explanatory diagram illustrating a process of removing a part of the conductor coating and dividing the same in the first embodiment. A part of the coating is removed by irradiating the surface of the tube 1 whose outer wall is coated with a conductor with a laser beam 10 by a laser processing device 9. Further, since the insulating groove 11 is formed by scanning the laser beam 10 in the length direction of the tube 1, a plurality of electric conduction paths 4a and 4b can be formed from the conductor coating by repeating the scanning. it can.
[0032]
(Example 2)
FIG. 5 is an explanatory view showing a manufacturing process of the medical tube according to the second embodiment of the present invention, and FIG. 6 is an explanatory view showing the medical tube according to the second embodiment.
[0033]
Also in the second embodiment, the process up to the covering step with the conductor is the same as the first embodiment. FIG. 5 shows a process of removing and dividing a part of the conductor coating in the second embodiment. The difference from the first embodiment is that the laser beam 10 is spiral with the length direction of the tube 1 as an axis. It is a point that the electric conduction path 4 is formed in a spiral shape by scanning in a shape.
[0034]
FIG. 6 shows a part of the electric conduction path of the medical tube manufactured according to the second embodiment. In this way, the laser beam is repeatedly scanned in a spiral shape to form the divided grooves 11a and 11b. By forming the channels 12 and 13, the covered portion made of a hard material such as a metal has a spiral structure, so that the tube and the wire are kept flexible and can be easily inserted into the lumen. In addition, it is possible to prevent peeling and breakage of the conductor portion during bending due to the difference between the physical property value of the substrate and the physical property value of the conductor.
[0035]
(Example 3)
FIG. 7 is an explanatory diagram illustrating a manufacturing process of the medical tube according to the third embodiment.
[0036]
In the third embodiment, the process is the same as that of the second embodiment until a part of the conductor covering is removed and divided. FIG. 7 shows a step of further performing electrolytic plating on at least a part of the portion where the coating remains. The tube 1 is put in the plating solution 15, and the negative electrode of the DC power supply device 14 is connected to the portion where the conductor coating remains through the electric wire 17. The positive electrode of the DC power supply device 14 is connected via a wire 18 to a positive electrode 16 made of conductive carbon or the like in the plating solution. As a metal used for plating, one kind of metal such as Cu, Au, Ag, Pt, Ni, Fe or the like, or a plurality of objects are used simultaneously or in a stacked manner, about 0.1 to 100 μm. Plating with thickness. If the thickness of the plating is too large, the flexibility of the tube is impaired. Conversely, if the thickness is too small, the ability to retain the durability of the electric conduction path is impaired.
[0037]
In the present embodiment, a method using electrolytic plating has been described. However, it is possible to similarly deposit metals such as Cu, Au, Ag, Pt, Ni, and Fe by electroless plating.
[0038]
(Example 4)
FIG. 8 is an explanatory view showing a medical tube according to Embodiment 4 of the present invention. In the fourth embodiment, the process up to the step of removing a part of the conductor coating and dividing the same is the same as that of the second embodiment. FIG. 8 shows a tube in which the protective layer 19 is formed by covering with a synthetic resin after the conductor portion of the electric conduction path is formed in the same manner as the medical tube of the second embodiment. As the synthetic resin, a polymer having excellent flexibility such as polyurethane and silicone is used and coated by a method such as dipping, or a resin tube made of these resins is covered and adhered by heat shrinkage or the like.
[0039]
Thus, by covering with a synthetic resin, it becomes possible to improve the durability of the electric conduction path with respect to bending or abrasion of the tube.
[0040]
In the above embodiments, only the formation of the electrical conduction path to the medical tube has been described. However, the present invention is not limited to this, and the same method is also used for the formation of the electrical conduction path to other body insertion tools such as medical wires. Can be realized.
[0041]
【The invention's effect】
As described above, according to the present invention, a member having an electrical function such as a sensor, an actuator, an electrode, and the like, and an electric conduction path for performing power supply and / or signal transmission / reception to these members are provided. Since the electric conduction path in the internal insertion device is formed by a conductor such as metal coated on at least a part of the surface of the base material of the internal insertion device, the lumen is easy to process and has functions such as treatment and observation of the living body Therefore, it is possible to reduce the diameter and to achieve an in-vivo insertion tool having excellent physical properties such as flexibility and durability.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a conventional medical tube.
FIG. 2 is a configuration diagram of a medical tube according to Embodiment 1 of the present invention.
FIG. 3 is an explanatory diagram showing a coating process of the method for manufacturing a medical tube according to the first embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a step of removing a part of the coating in the method for manufacturing a medical tube according to the first embodiment of the present invention.
FIG. 5 is an explanatory diagram showing a step of removing a part of the coating in the method for manufacturing a medical tube according to the second embodiment of the present invention.
FIG. 6 is an explanatory diagram showing a configuration of an electrical conduction path of a medical tube according to Embodiment 2 of the present invention.
FIG. 7 is an explanatory view showing a plating step in the method for manufacturing a medical tube according to Example 3 of the present invention.
FIG. 8 is an explanatory diagram showing a configuration of an electrical conduction path of a medical tube according to Embodiment 4 of the present invention.
[Explanation of symbols]
1: tube main body 2: analysis device main body 3: lumen 4: electric conduction path 5: cable 6: sensor 7: vapor deposition source vapor 8: vapor deposition source 9: laser processing device 10: laser beams 11, 11a, 11b: dividing grooves 12 : Conduction path for signal transmission 13: Conduction path for ground 14: DC power supply device 15: Plating solution 16: Positive electrode 17, 18: Electric wire 19: Protective layer

Claims (14)

電気的な機能を有する装置に対して電気的に接続される電気伝導路を有する体内挿入具において、前記体内挿入具の先端付近に設けられたセンサを更に有し、前記電気伝導路が該体内挿入具の基材表面の少なくとも一部に被覆された導電体とからなり、前記電気伝導路の先端側は前記センサと電気的に接続され、該電気伝導路が螺旋状に形成されていることを特徴とする体内挿入具。An in-vivo insertion tool having an electrical conduction path electrically connected to a device having an electrical function, further comprising a sensor provided near the distal end of the in-vivo insertion tool, wherein the electrical conduction path is in the body It is made of a conductor coated on at least a part of the base material surface of the insertion tool, the tip end side of the electric conduction path is electrically connected to the sensor, and the electric conduction path is formed in a spiral shape. body insertion tool according to claim. 前記センサがサーミスタであることを特徴とする請求項1に記載の体内挿入具。The in-vivo insertion device according to claim 1, wherein the sensor is a thermistor. 前記体内挿入具が合成樹脂を被覆した保護層を更に有することを特徴とする請求項1または2に記載の体内挿入具。  The intracorporeal insert according to claim 1 or 2, wherein the intracorporeal insert further includes a protective layer coated with a synthetic resin. 前記体内挿入具が医療用チューブ、または医療用ワイヤであることを特徴とする請求項1に記載の体内挿入具。  The intracorporeal insert according to claim 1, wherein the intracorporeal insert is a medical tube or a medical wire. 前記導電体が1種類以上の金属であり、前記被覆が該金属の蒸着であることを特徴とする請求項1に記載の体内挿入具。  The in-vivo insertion device according to claim 1, wherein the conductor is one or more kinds of metal, and the coating is vapor deposition of the metal. 先端付近に設けられたセンサに対して電気的に接続される電気伝導路を有する体内挿入具の製造方法であって、該体内挿入具の基材表面の少なくとも一部に導電体を被覆する工程と、前記被覆された導電体の一部を螺旋状に除去し、互いに絶縁された2つ以上の電気伝導路の少なくとも一部を螺旋状に形成する工程とからなる事を特徴とする電気伝導路を有する体内挿入具の製造方法。 A method for manufacturing an intracorporeal insertion device having an electrical conduction path electrically connected to a sensor provided in the vicinity of a tip, the step of covering at least a part of the base material surface of the intracorporeal insertion device with a conductor When the electrical conductivity, characterized in that comprising the step of forming at least a portion of said part of the coated conductor to remove spirally, two or more electrically conductive paths are insulated from each other in a spiral A method for manufacturing an intracorporeal insertion device having a path. 前記体内挿入具が医療用チューブ、または医療用ワイヤであることを特徴とする請求項6に記載の体内挿入具の製造方法。  The method for manufacturing an intracorporeal insert according to claim 6, wherein the intracorporeal insert is a medical tube or a medical wire. 前記導電体が1種類以上の金属であり、前記被覆が該金属の蒸着であることを特徴とする請求項6に記載の体内挿入具の製造方法。  The method for manufacturing an intracorporeal insert according to claim 6, wherein the conductor is one or more kinds of metals and the coating is vapor deposition of the metals. 前記被覆の一部を除去する工程は、光或いは電子線等による非接触加工であることを特徴とする請求項6に記載の体内挿入具の製造方法。  The method for manufacturing an in-vivo insertion device according to claim 6, wherein the step of removing a part of the coating is non-contact processing using light or an electron beam. 前記非接触加工は、エキシマレーザによる光エネルギ加工である事を特徴とする請求項9に記載の体内挿入具の製造方法。  The method of manufacturing an intracorporeal insert according to claim 9, wherein the non-contact processing is optical energy processing using an excimer laser. 前記被覆の一部を除去する工程は、該体内挿入具の基材外壁にそった、螺旋状の溝加工である事を特徴とする請求項6に記載の体内挿入具の製造方法。The method of manufacturing an in-vivo insertion device according to claim 6, wherein the step of removing a part of the coating is a spiral groove process along the outer wall of the base material of the in-vivo insertion device. 前記蒸着は、イオンアシスト蒸着であることを特徴とする請求項8に記載の体内挿入具の製造方法。  The method for manufacturing an intracorporeal insert according to claim 8, wherein the vapor deposition is ion-assisted vapor deposition. 前記被覆の一部を除去する工程の後、被覆が残存している部分の少なくとも一部に、少なくとも一種類の金属を、無電解めっき、及び/または電解めっきする事を特徴とする請求項6に記載の体内挿入具の製造方法。  The electroless plating and / or electrolytic plating of at least one kind of metal is performed on at least a part of a portion where the coating remains after the step of removing a part of the coating. The manufacturing method of the in-body insertion tool as described in any one of. 前記被覆の一部を除去する工程の後、或いは、無電解めっき、及び/または電解めっきを行った後に、合成樹脂を被覆する事を特徴とする請求項6または13に記載の体内挿入具の製造方法。  The in-vivo insertion device according to claim 6 or 13, wherein the synthetic resin is coated after the step of removing a part of the coating, or after performing electroless plating and / or electrolytic plating. Production method.
JP27661994A 1994-11-10 1994-11-10 In-vivo insertion device having electrical conduction path and method for manufacturing the same Expired - Fee Related JP3685510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27661994A JP3685510B2 (en) 1994-11-10 1994-11-10 In-vivo insertion device having electrical conduction path and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27661994A JP3685510B2 (en) 1994-11-10 1994-11-10 In-vivo insertion device having electrical conduction path and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08131545A JPH08131545A (en) 1996-05-28
JP3685510B2 true JP3685510B2 (en) 2005-08-17

Family

ID=17571970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27661994A Expired - Fee Related JP3685510B2 (en) 1994-11-10 1994-11-10 In-vivo insertion device having electrical conduction path and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3685510B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2262286C (en) 1998-02-20 2006-09-19 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Polymeric actuators and process for producing the same
WO2004026758A1 (en) * 2002-09-20 2004-04-01 Eamex Corporation Driver and method of producing the same
EP1585434B1 (en) * 2002-11-18 2015-01-14 Mediguide Ltd. System for mounting an mps sensor on a catheter
US20090318994A1 (en) * 2008-06-19 2009-12-24 Tracee Eidenschink Transvascular balloon catheter with pacing electrodes on shaft
JP2012170631A (en) * 2011-02-22 2012-09-10 Fujifilm Corp Apparatus and method for manufacturing linear member fitted with wiring
JP6880583B2 (en) * 2016-07-11 2021-06-02 ニプロ株式会社 Pressure measuring device

Also Published As

Publication number Publication date
JPH08131545A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
EP2095840B1 (en) Guidewire interconnecting apparatus
US20230371981A1 (en) Methods, Compositions, and Systems for Device Implantation
US7625617B1 (en) Electrical lead
US8224457B2 (en) Medical implantable lead
US5738100A (en) Ultrasonic imaging catheter
EP2581107A1 (en) Detection/stimulation microprobe implantable in venous, arterial or lymphatic networks
US20100016935A1 (en) Medical implantable lead
EP1598024A2 (en) Catheter for delivery of electric energy and a process for manufacturing the same
WO2007053253A1 (en) Implantable electrophysiology lead body
JP3685510B2 (en) In-vivo insertion device having electrical conduction path and method for manufacturing the same
US6485458B1 (en) Surgical insertion instrument body having a distending portion
JP2012192005A (en) Electrode catheter
JP2000116786A (en) Production of in-vivo inserter having electric conduction path
JP5339630B2 (en) Electrode catheter
JP3318158B2 (en) Internal insertion tool
JPH08266633A (en) Manufacture of interior inserting tool having electric conductive passage
JP2002035132A (en) Method for manufacturing flexible tube having electric wiring and flexible tube having electric wiring
CN107920840B (en) Medical device with structured coating
EP4257045A1 (en) Basically wire-shaped electrode for transmittance of electrophysiological neurosignals and method of manufacture thereof
AU2002210259C1 (en) An electrical lead
Kuo et al. ARRAYED 3D PARYLENE SHEATH PROBES FOR NEURAL RECORDINGS
JPH11176256A (en) Manufacture of lead wires and processing jig for it
AU2002210259A1 (en) An electrical lead

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees