JP3685442B2 - Molding method of green compact - Google Patents

Molding method of green compact Download PDF

Info

Publication number
JP3685442B2
JP3685442B2 JP25613298A JP25613298A JP3685442B2 JP 3685442 B2 JP3685442 B2 JP 3685442B2 JP 25613298 A JP25613298 A JP 25613298A JP 25613298 A JP25613298 A JP 25613298A JP 3685442 B2 JP3685442 B2 JP 3685442B2
Authority
JP
Japan
Prior art keywords
primary
green compact
compression
lubricant
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25613298A
Other languages
Japanese (ja)
Other versions
JP2000084699A (en
Inventor
毅 大場
好美 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP25613298A priority Critical patent/JP3685442B2/en
Publication of JP2000084699A publication Critical patent/JP2000084699A/en
Application granted granted Critical
Publication of JP3685442B2 publication Critical patent/JP3685442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金の分野において、金属粉末を圧縮して焼結品の素材となる圧粉体を成形する方法に関する。
【0002】
【従来の技術】
金属粉末を圧縮成形して圧粉体を得る場合、通常、圧縮時の型壁摩擦や型抜き時の型摩耗、あるいは圧縮時の粉末間の摩擦を抑えるために、原料の粉末中に潤滑剤を混合したり、型壁に潤滑剤を塗布している。潤滑剤としては、Al、Zn、Li、MgあるいはCaを基とするステアリン酸粉末が一般的に用いられているが、この他に、ワックスやセルロース等が用いられる場合もある。ところで、潤滑剤を含む粉末の使用方法や潤滑剤そのものに特徴を持たせ、それに基づく効果を得る技術が従来より提案されている。
【0003】
例えば、特開昭61−19702号公報…(1)には、潤滑剤を含む粉末を型壁に薄く配し、残りのキャビティ部分には潤滑剤を含まない粉末を充填して、これら粉末を圧縮することにより、潤滑剤の使用量低減と焼結工程における潤滑剤の悪影響の抑制が図られるとある。また、特開平9−272901号公報…(2)には、潤滑剤を塗布した成形型を150〜400℃に加熱し、この成形型内に、同温度に加熱した潤滑剤を含まない粉末を充填して圧縮することにより、高密度化を図ることができるとされる方法が開示されている。さらに、日本国特許第2593632号…(3)は、特定された成分からなる高温(温間)成形用潤滑剤を添加した粉末であり、この場合、370℃以下でその粉末を圧縮することにより高密度化を図っている。
【0004】
【発明が解決しようとする課題】
上記公報(1)の方法では、成形型内に対し、潤滑剤を含む粉末を型壁に、また潤滑剤を含まない粉末をその内側に充填するには、両者の間に仕切りを設けて行う旨の記載はあるものの、実際にはその作業は繁雑であることが想定される。また、この圧粉体を焼結した場合、潤滑剤を含んでいた表層部分の気孔率は内側部分よりも低くなり、特に表層部分に高強度が求められる部材の製法としては不向きであった。
【0005】
また、高温下で粉末を圧縮すれば圧粉体の高密度化がなされることは周知であるが、上記公報(2)のように、成形型内に充填する前の段階で予め粉末を加熱するには、設備が複雑化もしくは大型化したり、均一に加熱されにくいなどの理由により、固体を加熱するよりも困難な技術を要する。しかも、粉末を充填するたびに成形型の型壁に潤滑剤を塗布することは繁雑であり、作業効率を低下させる。このような問題は、潤滑剤が混合された粉末を用いることにより回避されるものの、反面、潤滑剤の使用量が増大するとともに、焼結時における潤滑剤の燃焼すなわち脱ろうに要するエネルギーの増大および作業環境の悪化を招く。また、含潤滑剤粉末を温間成形する場合、その加熱温度が概ね150℃以上では、潤滑剤の溶融により粉末の流動性が著しく低下して高密度な圧粉体を得にくくなるので、厳密な温度管理が必要となる。
【0006】
そこで、上記特許(3)のように、潤滑剤が370℃以下で使用可能な温間成形用であれば、粉末の流動性が確保されながら高温圧縮が可能となろうが、この潤滑剤にあっても、150℃以上では粉末の流動性の低下を招くことが確かめられ、厳密な温度管理を要することに変わりはなく実用的な利点は低いものであった。
【0007】
したがって本発明は、常温下で圧縮成形することによる設備費抑制ならびに省エネルギーを達成することができることに加え、潤滑剤の使用量を低減しながら型壁の摩耗が抑えられて高密度の圧粉体を得ることを可能とする圧粉体の成形方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は、粉末を、常温下において一次成形型により、成形すべき圧粉体の所定密度よりも低く、かつハンドリング可能な程度の密度に圧縮する一次圧縮工程と、この一次圧縮工程で得られた一次成形体を、常温下において二次成形型により、前記所定密度に圧縮して圧粉体を得る二次圧縮工程とを備える圧粉体の成形方法において、用いる粉末を実質的に潤滑剤を含まないものとし、一次圧縮工程では、一次成形体を、二次成形型内に遊嵌され得る寸法であって、かつその圧縮方向に直交する横断面形状が円形または多角形の単純形状に成形し、二次圧縮工程では、圧縮時の潤滑手段として一次成形体の表面を潤滑剤で被覆するとともに、二次圧縮時に前記一次成形体を一旦崩壊させて歯車形状圧粉体に成形することを特徴としている。なお、本発明で言う常温下とは、大気温から、連続成形による摩擦熱で成形体および成形型が昇温する温度の90℃程度までを指す。
【0009】
この方法によれば、実質的に潤滑剤を含まない(含んでも0.1重量%以下程度)粉末を、はじめの一次圧縮工程で、常温下において圧縮する。このときの圧力は、最終的に得る圧粉体の所定密度よりも低く、かつ、その成形体(一次成形体)がハンドリングが可能な程度になる圧力とする。ここで言うハンドリングが可能な密度とは、手に持って取り扱うことができ、その際に損壊しない状態を可能とする密度を指す。この一次圧縮工程では、実質的に潤滑剤を含まない粉末を加熱せず常温下で圧縮するので、一次成形型内への粉末充填時、あるいは圧縮時に、加熱による粉末の流動性低下は起こらず、上記の所望密度を有する一次成形体を得ることができる。
【0010】
また、一次成形体を、二次成形型内に遊嵌され得る寸法、すなわち二次成形型の型壁との間に適度な隙間が空く寸法とし、その圧縮方向に直交する横断面形状を円形または多角形の単純形状になるよう成形する。このため、ハンドリングが可能であることと相まって、二次成形型へのセットを簡単かつ速やかに行うことができるとともに、一次成形の速度を速くすることができる。例えば、最終的に得る圧粉体が平歯車であって圧縮方向を軸方向にとる場合、一次成形体を単純な円盤状または多角形状とし、二次圧縮工程で、その周囲に等ピッチの歯が造形されるようにする。
【0011】
次の二次圧縮工程では、まず、一次成形体の表面に、潤滑手段として一次成形体の表面を潤滑剤で被覆する。潤滑剤で被覆する手段としては、ワックス等の液体状の潤滑剤を塗布したり、粉体状の潤滑剤を静電塗膜法で付着させたりする等の手段が用いられる。このような潤滑手段を採用することにより、型壁面に塗布する場合に比べると潤滑剤導入の作業効率が向上する。また、一次成形体には、その表面のみに潤滑剤が付着する状態となるので、潤滑剤の使用量低減とともに、焼結時における潤滑剤の脱ろうに要するエネルギーの低減ならびに作業環境の良化が図られる。さらに、粉末中へ潤滑剤を混合する場合と比べると、焼結品となった場合に気孔率が低減し高密度化が図られる。
【0012】
このように、表面に潤滑剤を被覆した一次成形体を、常温下において二次成形型により圧縮し、所定密度および所望形状の圧粉体を得る。この二次圧縮時には、一次成形体は一旦崩壊し、その後に最終的に圧粉体に成形される。
【0013】
本発明によれば、上記した各種の作用効果に加え、一次圧縮および二次圧縮をともに常温下で行うので、設備費抑制ならびに省エネルギーを達成することができる。また、圧縮比が一次圧縮と二次圧縮とに分割されるから、各成形型の摩耗度が低減して長期使用が可能になるとともに、一次、二次の各成形型の型深さが短くて済み、成形型の製造コストが安価となる。特に、潤滑剤を含む粉末を用いた場合と比べると、一次成形体の強度は高く、この一次成形体を圧縮する二次圧縮時の圧力は比較的低くて済む。したがって、圧粉体を高密度化させることが容易となって密度が大幅に向上し、品質の安定化が図られる。また、予め一次成形体を多量に作ってストックしておき、必要に応じて二次圧縮して圧粉体を得るようにすれば、圧粉体を成形するたびに粉末の調整や充填を行う手間が省け、生産性の向上が図られる。
【0014】
また、本発明では、一次成形体を単体とせず、組み合わせることにより所望形状の一次成形体となる分割体とすることを含む。すなわち、一次成形体を複数に分割してそれぞれ圧縮成形し、二次圧縮工程において、これら複数の一次成形体を二次成形型内に組み合わせた状態でセットし、二次圧縮によって、隣接する分割体を相互に接合させ、最終的な圧粉体を得る。
【0015】
ここで、一次成形体である各分割体の密度は、上記のようにハンドリングが可能であることが前提であるが、これに加えて、圧縮時に、隣接する分割体どうしが接合され得る密度が求められる。分割体どうしの接合は、密度が低ければ低いほど十分になされるものであるが、密度が低すぎると、今度はハンドリングが不可能となってしまう。接合が可能な条件としては、一般に、密度比(同一組成の金属の真密度に対する成形体で得られた密度の比)が76%未満の場合と知られており、76%超の場合には、接合界面にクラックが生じる確率が高くなり好ましくない。したがって、分割体の密度としては、密度比が76%未満で、なおかつハンドリングが可能な範囲内で選択され、その範囲としては、60〜75%の密度比が実現される密度が好適である。例えば、粉末がFe系の場合は4.7〜5.9g/cm、Alの場合は1.6〜2g/cm、Cu系の場合は5.3〜6.6g/cmが好適とされる。
【0016】
また、本発明では、成形すべき圧粉体が、求められる特性が異なる複数の部位を有し、複数の一次成形体は、それら部位ごとに、部位に応じた粉末、形状または密度をもってそれぞれ一次圧縮されることを特徴としている。例えば圧粉体が前述した平歯車である場合、一次成形体を、高い耐摩耗性が要求される外周部と、それほど耐摩耗性を要求されず、かつ制振材の機能が求められる内側の肉部の2つとする。そして、外周部の一次成形体を密度の高いものとし、一方、内側の肉部の一次成形体の密度を比較的低くする。このように複数の一次成形体を部位に応じて成形し、組み合わせて二次圧縮すれば、自動的に各部位の特性が求められるものとなり得る。
【0017】
また、本発明では、前記圧粉体は、圧縮方向の一端側に段部を有し、この段部は、前記一次圧縮工程では下向きの状態で成形され、前記二次圧縮工程では上向きの状態で成形されることを特徴としている。具体的には、段部を、一次圧縮時には下パンチで成形し、二次圧縮時には上パンチで成形することになる。このため、一次、二次いずれの成形型も下パンチの構造が単純となり、二次成形型はボス成形用のパンチを上側にのみ備えればよいので、各成形型の全体構造が単純化する。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態について説明する。
(1)第1の実施形態
図1(a)〜(d)は、第1の実施形態に係る圧粉体の成形方法の工程を順に示しており、図1(e)は、係る方法で得られた軸孔41を有する平歯車の圧粉体P2を示している。以下、使用する成形型とともに成形工程を説明していく。
【0019】
A.一次圧縮工程
図1(a)に示すように、一次圧縮工程で使用する一次成形型1は、ダイ2と、ダイ2の型内に挿入される上下のパンチ3,4と、コアロッド5とから構成される。ダイ2の型内は軸方向が上下方向に延びる円柱状であって、上下のパンチ3,4は型内に摺動自在に挿入される。コアロッド5は圧粉体P2の軸孔41を形成するためのもので、上下のパンチ3,4の軸芯に摺動的に挿入される。
【0020】
一次圧縮は、まず、常温下において、ダイ2、下パンチ4およびコアロッド5で形成されるキャビティ2aに、実質的に潤滑剤を含まない(含んでも0.1重量%以下程度)金属粉末Pを適量充填する。
【0021】
次いで、図1(a)に示すように、上パンチ3をキャビティ2aに挿入し、上下のパンチ3,4により粉末Pを縦方向に圧縮して一次成形体P1を成形する。その際の圧力は、成形後の一次成形体P1の密度比が60〜75%であって、かつハンドリングが可能な密度になるよう制御される。成形される一次成形体P1は、図1(b)に示すように、軸孔41を有する単純な円筒状である。一次成形体Pの高さは、成形すべき圧粉体P2のそれよりも高く、また、外径は後述する二次成形型のダイ内に遊嵌可能なように、軸孔41の径は二次成形型のコアロッドが遊嵌可能なように、それぞれ設定される。一次成形体P1が成形されたら、上パンチ3を上昇させ、さらに下パンチ4を上昇させて一次成形体P1をダイ2内から抜き出す。
【0022】
B.二次圧縮工程
まず、図1(b)に示すように、一次圧縮工程で得た一次成形体P1の表面に、ワックス等の液体状の潤滑剤Lを噴霧して塗布するか、あるいは、粉体状の潤滑剤を静電塗膜法で付着させる。
【0023】
図1(c)、(d)に示すように、二次圧縮工程で使用する二次成形型11は、ダイ12と、ダイ12の型内に摺動自在に挿入される上下のパンチ13,14と、コアロッド15とから構成される。ダイ12の型壁には、成形すべき圧粉体P2である平歯車の歯に応じた内歯12bが形成されており、一方、上下のパンチ13,14の外周面には、型壁の内歯12bに嵌合する外歯13b,14bがそれぞれ形成されている。
【0024】
二次圧縮は、まず、常温下において、図1(c)に示すように、ダイ12、下パンチ13およびコアロッド5で形成されるキャビティ12aに、一次成形体P1を立ててセットする。次いで、図1(d)に示すように、上パンチ13をキャビティ12aに挿入し、上下のパンチ13,14により所定の成形圧力で一次成形体P1を縦方向に圧縮する。一次成形体P1は、一旦崩壊した後にキャビティ12aの形状にならって成形され、圧粉体P2となる。この後、上パンチ13を上昇させ、さらに下パンチ14を上昇させて圧粉体P2をダイ12内から抜き出し、図1(e)に示す圧粉体P2を得る。
【0025】
(2)第2の実施形態
図2(a)〜(d)は、第2の実施形態に係る圧粉体の成形方法の工程を順に示しており、図2(e)は、係る方法で得られた歯車の圧粉体P2を示している。この歯車P2は、片ボス50付きで軸孔51を有している。以下、使用する成形型とともに成形工程を説明していく。
【0026】
A.一次圧縮工程
図2(a)に示すように、一次圧縮工程で使用する一次成形型21は、ダイ22と、円柱状の空所であるダイ22の型内に摺動自在に挿入される上下のパンチ23,24と、コアロッド25とから構成される。この場合の下パンチは、ダイ22の型内に摺動自在に挿入される円筒状の外部パンチ24Aと、この外部パンチ24Aに摺動自在に挿入される内部パンチ24Bとの組み合わせで構成される。コアロッド25は圧粉体P2の軸孔51を形成するためのもので、上パンチ23および内部パンチ24Bの軸芯に摺動的に挿入される。
【0027】
一次圧縮は、まず、常温下において、ダイ22および下パンチ24で形成されるキャビティ22aに、上記第1の実施形態と同様の実質的に潤滑剤を含まない金属粉末Pを適量充填する。この場合のキャビティ22aは、下パンチ24の外部パンチ24Aと内部パンチ24Bとにより、ボス50を成形するための段部が下向きに画成される。次いで、図2(a)に示すように、上パンチ23を下降させてキャビティ22aに挿入し、上下のパンチ23,24により、粉末Pをハンドリングが可能な密度になる圧力で圧縮し、一次成形体P1を成形する。次いで、上パンチ23を上昇させ、さらに下パンチ24を上昇させて、一次成形体P1をダイ22内から抜き出す。得られた一次成形体P1は、図2(b)に示すように、片ボス50付きで軸孔51を有する単純な円筒状で、その高さは、成形すべき圧粉体P2のそれよりも高く、また、外径は後述する二次成形型のダイ内に遊嵌可能なように、軸孔51の径は二次成形型のコアロッドが遊嵌可能なように、それぞれ設定される。
【0028】
B.二次圧縮工程
まず、図2(b)に示すように、一次圧縮工程で得た一次成形体P1の表面に、ワックス等の液体状の潤滑剤Lを噴霧して塗布するか、あるいは、粉体状の潤滑剤を静電塗膜法で付着させる。
【0029】
図2(d)に示すように、二次圧縮工程で使用する二次成形型31は、ダイ32と、上下のパンチ33,34と、コアロッド35とから構成される。ダイ32の型壁には、成形すべき圧粉体P2である歯車の歯に応じた内歯32bが形成されており、一方、下パンチ34の外周面には、型壁の内歯32bに嵌合する外歯34bが形成されている。上パンチ33は、ダイ32の上面に当接可能でボス50を成形するための外部パンチ33Aと、この外部パンチ33Aに摺動自在に挿入され、かつコアロッド36が摺動自在に挿入されてボス50の端面を成形する内部パンチ33Bとから構成される。内部パンチ33Bは上ラム37により直接作動させられ、外部パンチ33Aは上ラム37に取り付けられたプッシャ38により内部パンチ33Bに対し相対的に上下動可能に作動させられる。
【0030】
二次圧縮は、まず、常温下において、図2(c)に示すように、ダイ32、下パンチ34およびコアロッド35で形成されるキャビティ32aに、一次成形体P1を、ボス50側を上にしてコアロッド35に通しセットする。次いで、図2(d)に示すように、上パンチ33を下降させ、上下のパンチ33,34により所定の成形圧力で一次成形体P1を縦方向に圧縮する。一次成形体P1は、一旦崩壊した後にキャビティ32aの形状にならって成形され、圧粉体P2となる。この後、上パンチ33を上昇させ、さらに下パンチ34を上昇させて圧粉体P2をダイ32内から抜き出し、図2(e)に示す圧粉体P2を得る。
【0031】
上記本発明の各実施形態によると、まず、一次圧縮工程では、実質的に潤滑剤を含まない粉末を加熱せず常温下で圧縮するので、キャビティへの粉末充填時、あるいは粉末圧縮時に、加熱による粉末の流動性低下は起こらず、一次成形体はハンドリングが可能な所望密度に成形され得る。また、一次成形体を、二次成形型内に遊嵌され得る寸法であって、圧縮方向に直交する横断面形状を円形の単純形状になるよう成形するので、ハンドリングが可能であることと相まって、二次成形型へのセットを簡単かつ速やかに行うことができるとともに、一次成形の速度を速くすることができる。
【0032】
次の二次圧縮工程では、一次成形体の表面に潤滑剤で被覆するので、型壁面に塗布する場合に比べると潤滑剤導入の作業効率が向上する。また、潤滑剤の使用量低減とともに、焼結時における潤滑剤の脱ろうに要するエネルギーの低減ならびに作業環境の良化が図られる。さらに、粉末中へ潤滑剤を混合する場合と比べると、焼結品となった場合に気孔率が低減し高密度化が図られる。
【0033】
総合的には、一次圧縮および二次圧縮をともに常温下で行うので、設備費抑制ならびに省エネルギーを達成することができる。また、圧縮比が一次圧縮と二次圧縮とに分割されるから、一次、二次の成形型の摩耗度が低減して長期使用が可能になるとともに、これら成形型の型深さが短くて済み、成形型の製造コストが安価となる。特に、潤滑剤を含む粉末を用いた場合と比べると、一次成形体の強度は高く、この一次成形体を圧縮する二次圧縮時の圧力は比較的低くて済む。したがって、圧粉体を高密度化させることが容易となって密度が大幅に向上し、品質の安定化が図られる。さらに、予め一次成形体を多量に作ってストックしておき、必要に応じて二次圧縮して圧粉体を得るようにすれば、圧粉体を成形するたびに粉末の調整や充填を行う手間が省け、生産性の向上が図られる。
【0034】
また、第2の実施形態のように、圧縮方向の片側にボス(段部)を有する圧粉体を成形する際、そのボスを、一次圧縮時には下パンチで成形し、二次圧縮時には上パンチで成形するようにすることにより、一次、二次いずれの成形型も下パンチの構造が単純となり、二次成形型はボス成形用のパンチを上側にのみ備えればよいので、各成形型の全体構造が単純化する。また、プレス機械も単純な構造のものを採用することが可能となる。
【0035】
なお、上記第1、第2の実施形態は本発明を具体化した例であり、本発明により成形される圧粉体はこれら実施形態に限定されるものでは勿論なく、いかなる形態の圧粉体にも適用は可能である。また、圧粉体の形態に限らず、本発明は次のような成形方法を含むものである。
【0036】
▲1▼一次成形体を単体とせず、組み合わせることにより所望形状の一次成形体となる分割体とする。すなわち、一次成形体を複数に分割してそれぞれ圧縮成形し、二次圧縮工程において、これら複数の一次成形体を二次成形型内に組み合わせた状態でセットし、二次圧縮によって、隣接する分割体を相互に接合させ、最終的な圧粉体を得る。
▲2▼上記▲1▼において、成形すべき圧粉体が、求められる特性が異なる複数の部位を有するものであり、これに対応して、複数の一次成形体を、それら部位ごとに、部位に応じた粉末、形状または密度をもってそれぞれ一次圧縮して成形する。このように複数の一次成形体を部位に応じて成形し、組み合わせて二次圧縮すれば、自動的に各部位に応じた特性を有する圧粉体を得ることができる。
【0037】
【発明の効果】
以上説明したように、本発明は、実質的に潤滑剤を含まない粉末を、常温下において一次圧縮と二次圧縮を経て圧粉体を得るにあたり、一次成形体を、二次成形型内に遊嵌され得る寸法に、かつその圧縮方向に直交する横断面形状が円形または多角形の単純形状に成形し、二次圧縮に際して一次成形体の表面を潤滑剤で被覆することを特徴とするから、設備費抑制ならびに省エネルギーを達成することができるとともに、潤滑剤の使用量を低減しながら型壁の摩耗が抑えられて高密度の圧粉体を得ることができるといった効果を奏する。
【図面の簡単な説明】
【図1】 (a)〜(d)は本発明の第1の実施形態に係る圧粉体の成形方法の工程を順に示す断面図、(e)は同方法によって得られた圧粉体の斜視図である。
【図2】 (a)〜(d)は本発明の第2の実施形態に係る圧粉体の成形方法の工程を順に示す断面図、(e)は同方法によって得られた圧粉体の斜視図である。
【符号の説明】
1,21…一次成形型、11,31…二次成形型、50…ボス(段部)、
L…潤滑剤、P…粉末、P1…一次成形体、P2…圧粉体。
[0001]
BACKGROUND OF THE INVENTION
In the field of powder metallurgy, the present invention relates to a method of forming a green compact that becomes a material of a sintered product by compressing metal powder.
[0002]
[Prior art]
When compacting metal powder to obtain a green compact, a lubricant is usually added to the raw material powder to suppress mold wall friction during compression, mold wear during die cutting, or friction between powders during compression. Or a lubricant is applied to the mold wall. As the lubricant, stearic acid powder based on Al, Zn, Li, Mg, or Ca is generally used, but in addition, wax, cellulose, or the like may be used. By the way, the technique of giving the characteristic based on the usage method of the powder containing a lubricant and the lubricant itself, and obtaining the effect based on it has been proposed.
[0003]
For example, in Japanese Patent Laid-Open No. 61-19702 (1), a powder containing a lubricant is thinly arranged on a mold wall, and the remaining cavity portion is filled with a powder not containing a lubricant. By compressing, the amount of lubricant used can be reduced and adverse effects of the lubricant in the sintering process can be suppressed. In JP-A-9-272901 (2), a mold coated with a lubricant is heated to 150 to 400 ° C., and a powder containing no lubricant heated to the same temperature is contained in the mold. A method is disclosed in which the density can be increased by filling and compressing. Furthermore, Japanese Patent No. 2593632 (3) is a powder to which a high temperature (warm) molding lubricant comprising the specified components is added. In this case, the powder is compressed at 370 ° C. or lower. We are trying to increase the density.
[0004]
[Problems to be solved by the invention]
In the method of the above publication (1), in order to fill the mold wall with the powder containing the lubricant and the powder without the lubricant inside the mold, a partition is provided between them. Although there is a statement to that effect, it is actually assumed that the work is complicated. In addition, when this green compact was sintered, the porosity of the surface layer portion containing the lubricant was lower than that of the inner portion, which was not suitable as a method for producing a member that requires particularly high strength in the surface layer portion.
[0005]
In addition, it is well known that if the powder is compressed at a high temperature, the density of the green compact is increased. However, as described in the above publication (2), the powder is heated in advance before filling into the mold. This requires a technique that is more difficult than heating a solid, for example, because the equipment becomes complicated or large, or is not easily heated uniformly. In addition, it is complicated to apply a lubricant to the mold wall of the mold every time the powder is filled, which reduces the work efficiency. Although these problems can be avoided by using powder mixed with a lubricant, on the other hand, the amount of lubricant used increases and the energy required for combustion or dewaxing of the lubricant during sintering increases. In addition, the working environment is deteriorated. In addition, when the lubricant-containing powder is warm-formed, if the heating temperature is approximately 150 ° C. or higher, the fluidity of the powder is significantly reduced due to the melting of the lubricant, making it difficult to obtain a high-density green compact. Temperature control is required.
[0006]
Therefore, as in the above patent (3), if the lubricant is used for warm forming that can be used at 370 ° C. or less, high temperature compression will be possible while ensuring the fluidity of the powder. Even at 150 ° C. or higher, it was confirmed that the fluidity of the powder was lowered, and strict temperature control was still required, and the practical advantage was low.
[0007]
Therefore, the present invention can achieve equipment cost reduction and energy saving by compression molding at room temperature, and also reduce wear of the mold wall while reducing the amount of lubricant used, thereby suppressing high-density green compact. It is an object of the present invention to provide a method for forming a green compact that can be obtained.
[0008]
[Means for Solving the Problems]
The present invention is obtained by a primary compression step of compressing a powder to a density lower than a predetermined density of a green compact to be molded by a primary molding die at room temperature and a density that can be handled. In the green compact forming method, the primary compact is compressed to a predetermined density by a secondary mold at room temperature to obtain a green compact, and the powder used is substantially a lubricant. In the primary compression step, the primary molded body has a dimension that can be loosely fitted in the secondary mold, and the cross-sectional shape orthogonal to the compression direction is a circular or polygonal simple shape. In the secondary compression step, the surface of the primary molded body is coated with a lubricant as a lubricating means during compression, and the primary molded body is once collapsed and molded into a gear-shaped green compact during secondary compression. It is characterized by. The term “normal temperature” as used in the present invention refers to a range from atmospheric temperature to about 90 ° C., which is a temperature at which the molded body and the mold are heated by frictional heat generated by continuous molding.
[0009]
According to this method, powder containing substantially no lubricant (including about 0.1% by weight or less) is compressed at room temperature in the first primary compression step. The pressure at this time is set to a pressure that is lower than a predetermined density of the finally obtained green compact and that allows the molded body (primary molded body) to be handled. The density that can be handled here refers to a density that can be handled by hand and that does not break down. In this primary compression step, the powder containing substantially no lubricant is compressed at room temperature without heating, so there is no decrease in the fluidity of the powder due to heating when filling the powder into the primary mold or during compression. A primary molded body having the above desired density can be obtained.
[0010]
In addition, the primary molded body has a dimension that can be loosely fitted in the secondary mold, that is, a dimension in which an appropriate gap is left between the primary mold and the mold wall of the secondary mold, and the cross-sectional shape orthogonal to the compression direction is circular. Or it shape | molds so that it may become a polygonal simple shape. For this reason, coupled with the fact that handling is possible, the setting to the secondary mold can be performed easily and quickly, and the speed of the primary molding can be increased. For example, when the green compact to be finally obtained is a spur gear and the compression direction is the axial direction, the primary compact is made into a simple disk shape or polygonal shape, and teeth of equal pitch around it in the secondary compression process To be shaped.
[0011]
In the next secondary compression step, first, the surface of the primary molded body is coated with a lubricant as a lubricating means on the surface of the primary molded body. As means for coating with a lubricant, means such as applying a liquid lubricant such as wax or attaching a powdery lubricant by an electrostatic coating method is used. By adopting such a lubricating means, the working efficiency of introducing the lubricant is improved as compared with the case of applying to the mold wall surface. In addition, since the lubricant is attached only to the surface of the primary molded body, the amount of lubricant used is reduced, the energy required to remove the lubricant during sintering and the working environment are improved. Is planned. Furthermore, compared with the case where the lubricant is mixed into the powder, the porosity is reduced and the density is increased when the sintered product is obtained.
[0012]
In this way, the primary molded body whose surface is coated with the lubricant is compressed with a secondary mold at room temperature to obtain a green compact having a predetermined density and a desired shape. At the time of the secondary compression, the primary molded body is once collapsed, and then finally molded into a green compact.
[0013]
According to the present invention, in addition to the various functions and effects described above, both primary compression and secondary compression are performed at room temperature, so that facility cost reduction and energy saving can be achieved. In addition, since the compression ratio is divided into primary compression and secondary compression, the degree of wear of each mold is reduced, enabling long-term use, and the mold depth of each primary and secondary mold is short. This reduces the manufacturing cost of the mold. In particular, the strength of the primary molded body is higher than when a powder containing a lubricant is used, and the pressure during secondary compression for compressing the primary molded body may be relatively low. Therefore, it is easy to increase the density of the green compact, the density is greatly improved, and the quality is stabilized. In addition, if a large amount of primary compacts are made in advance and stocked, and compacted by secondary compression as necessary, the powder is adjusted and filled each time the compact is molded. This saves time and improves productivity.
[0014]
Moreover, in this invention, it does not make a primary molded object single-piece | unit, but makes it the division body which becomes a primary molded object of desired shape by combining. That is, the primary molded body is divided into a plurality of parts and compression molded, and in the secondary compression step, the plurality of primary molded bodies are set in a combined state in the secondary mold, and the adjacent compression is performed by secondary compression. The bodies are joined together to obtain the final green compact.
[0015]
Here, the density of each divided body which is a primary molded body is premised on handling as described above, but in addition to this, there is a density at which adjacent divided bodies can be joined together during compression. Desired. The lower the density, the better the joining between the divided bodies is. However, if the density is too low, handling becomes impossible this time. It is generally known that the density ratio (ratio of the density obtained by the molded body to the true density of the metal having the same composition) is less than 76% as a condition for joining. The probability of cracks occurring at the bonding interface increases, which is not preferable. Therefore, the density of the divided body is selected within a range in which the density ratio is less than 76% and can be handled, and a density at which a density ratio of 60 to 75% is realized is preferable. For example, if the powder is 3, Cu-based 1.6~2g / cm in the case when the Fe-based 4.7~5.9g / cm 3, Al preferably 5.3~6.6g / cm 3 It is said.
[0016]
Further, in the present invention, the green compact to be molded has a plurality of parts having different required characteristics, and the plurality of primary molded bodies are respectively primary with a powder, shape or density corresponding to the part. It is characterized by being compressed. For example, when the green compact is the above-described spur gear, the primary molded body has an outer peripheral portion that requires high wear resistance and an inner portion that does not require so much wear resistance and requires the function of a damping material. Two meat parts. And the primary molded object of an outer peripheral part is made into a high density, On the other hand, the density of the primary molded object of an inner side meat part is made comparatively low. In this way, if a plurality of primary molded bodies are molded according to a part, combined and subjected to secondary compression, the characteristics of each part can be automatically obtained.
[0017]
In the present invention, the green compact has a stepped portion on one end side in the compression direction, and the stepped portion is formed in a downward state in the primary compression step, and is in an upward state in the secondary compression step. It is characterized by being molded with. Specifically, the step portion is formed with the lower punch at the time of the primary compression, and is formed with the upper punch at the time of the secondary compression. For this reason, the structure of the lower punch is simple in both the primary and secondary molds, and the secondary mold only needs to have the boss molding punch on the upper side, so the overall structure of each mold is simplified. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1) First embodiment Figs. 1 (a) to 1 (d) sequentially show the steps of the green compact forming method according to the first embodiment, and Fig. 1 (e) shows the steps. The green compact P2 of the spur gear which has the shaft hole 41 obtained by such a method is shown. Hereinafter, the molding process will be described together with the mold used.
[0019]
A. Primary compression process As shown in FIG. 1A, a primary mold 1 used in the primary compression process includes a die 2, upper and lower punches 3 and 4 inserted into the die 2, and a core rod 5. Composed. The die 2 has a cylindrical shape whose axial direction extends in the vertical direction, and the upper and lower punches 3 and 4 are slidably inserted into the die. The core rod 5 is for forming the shaft hole 41 of the green compact P2, and is slidably inserted into the shaft cores of the upper and lower punches 3 and 4.
[0020]
In the primary compression, first, metal powder P containing substantially no lubricant (including about 0.1% by weight or less) is contained in the cavity 2a formed by the die 2, the lower punch 4 and the core rod 5 at room temperature. Fill the appropriate amount.
[0021]
Next, as shown in FIG. 1 (a), the upper punch 3 is inserted into the cavity 2a, and the powder P is compressed in the vertical direction by the upper and lower punches 3 and 4, thereby forming a primary compact P1. The pressure at that time is controlled so that the density ratio of the primary molded body P1 after molding is 60 to 75% and the density can be handled. The primary molded body P1 to be molded has a simple cylindrical shape having a shaft hole 41 as shown in FIG. The diameter of the shaft hole 41 is such that the height of the primary molded body P is higher than that of the green compact P2 to be molded, and the outer diameter can be loosely fitted in a die of a secondary mold described later. Each is set so that the core rod of the secondary mold can be loosely fitted. When the primary molded body P1 is formed, the upper punch 3 is raised, and the lower punch 4 is further raised to extract the primary molded body P1 from the die 2.
[0022]
B. Secondary compression step First, as shown in FIG. 1 (b), a liquid lubricant L such as wax is sprayed on the surface of the primary molded body P1 obtained in the primary compression step, or a powder is applied. A body-like lubricant is adhered by an electrostatic coating method.
[0023]
As shown in FIGS. 1C and 1D, the secondary forming die 11 used in the secondary compression process includes a die 12 and upper and lower punches 13 slidably inserted into the die 12 die. 14 and a core rod 15. On the mold wall of the die 12, internal teeth 12b corresponding to the teeth of the spur gear which is the green compact P2 to be molded are formed. On the other hand, on the outer peripheral surfaces of the upper and lower punches 13 and 14, External teeth 13b and 14b that are fitted to the internal teeth 12b are formed.
[0024]
In the secondary compression, first, the primary molded body P1 is set up in a cavity 12a formed by the die 12, the lower punch 13 and the core rod 5, as shown in FIG. Next, as shown in FIG. 1D, the upper punch 13 is inserted into the cavity 12a, and the upper and lower punches 13 and 14 compress the primary molded body P1 in the vertical direction with a predetermined molding pressure. The primary molded body P1 is once collapsed and then molded according to the shape of the cavity 12a to become a green compact P2. Thereafter, the upper punch 13 is raised, the lower punch 14 is further raised, and the green compact P2 is extracted from the die 12 to obtain the green compact P2 shown in FIG.
[0025]
(2) Second embodiment Figs. 2 (a) to 2 (d) sequentially show the steps of the green compact forming method according to the second embodiment, and Fig. 2 (e) shows the steps. The green compact P2 of the gear obtained by such a method is shown. This gear P2 has a shaft hole 51 with a single boss 50. Hereinafter, the molding process will be described together with the mold used.
[0026]
A. Primary compression process As shown in FIG. 2 (a), a primary mold 21 used in the primary compression process is a slidably inserted into a die 22 and a die 22 which is a cylindrical space. Punches 23 and 24 and a core rod 25. The lower punch in this case is configured by a combination of a cylindrical external punch 24A slidably inserted into the die 22 and an internal punch 24B slidably inserted into the external punch 24A. . The core rod 25 is for forming the shaft hole 51 of the green compact P2, and is slidably inserted into the shaft cores of the upper punch 23 and the inner punch 24B.
[0027]
In the primary compression, first, an appropriate amount of metal powder P substantially not containing a lubricant as in the first embodiment is filled in the cavity 22a formed by the die 22 and the lower punch 24 at room temperature. In this case, the cavity 22a has a stepped portion for forming the boss 50 downwardly defined by the outer punch 24A and the inner punch 24B of the lower punch 24. Next, as shown in FIG. 2A, the upper punch 23 is lowered and inserted into the cavity 22a, and the upper and lower punches 23 and 24 compress the powder P at a pressure that allows handling, and perform primary molding. The body P1 is molded. Next, the upper punch 23 is raised, and the lower punch 24 is further raised, and the primary compact P1 is extracted from the die 22. As shown in FIG. 2B, the obtained primary molded body P1 has a simple cylindrical shape with a single boss 50 and a shaft hole 51, and the height thereof is higher than that of the green compact P2 to be molded. The diameter of the shaft hole 51 is set so that the core rod of the secondary mold can be loosely fitted, so that the outer diameter can be loosely fitted in a die of a secondary mold described later.
[0028]
B. Secondary compression process First, as shown in FIG. 2 (b), a liquid lubricant L such as wax is sprayed and applied to the surface of the primary molded body P1 obtained in the primary compression process, or a powder A body-like lubricant is adhered by an electrostatic coating method.
[0029]
As shown in FIG. 2 (d), the secondary forming die 31 used in the secondary compression step is composed of a die 32, upper and lower punches 33 and 34, and a core rod 35. On the mold wall of the die 32, internal teeth 32b corresponding to the teeth of the gear that is the green compact P2 to be molded are formed. On the other hand, the inner teeth 32b of the mold wall are formed on the outer peripheral surface of the lower punch 34. The external teeth 34b to be fitted are formed. The upper punch 33 can be brought into contact with the upper surface of the die 32, and an external punch 33A for forming the boss 50 is slidably inserted into the external punch 33A, and the core rod 36 is slidably inserted into the boss. It is comprised from the internal punch 33B which shape | molds 50 end surfaces. The inner punch 33B is directly operated by the upper ram 37, and the outer punch 33A is operated by a pusher 38 attached to the upper ram 37 so as to be movable up and down relative to the inner punch 33B.
[0030]
In the secondary compression, first, at a normal temperature, as shown in FIG. 2C, the primary molded body P1 is placed in the cavity 32a formed by the die 32, the lower punch 34, and the core rod 35 with the boss 50 side facing up. And set it through the core rod 35. Next, as shown in FIG. 2D, the upper punch 33 is lowered, and the upper and lower punches 33 and 34 compress the primary molded body P1 in the vertical direction with a predetermined molding pressure. The primary molded body P1 is once collapsed and then molded according to the shape of the cavity 32a to become a green compact P2. Thereafter, the upper punch 33 is raised, the lower punch 34 is further raised, and the green compact P2 is extracted from the die 32 to obtain the green compact P2 shown in FIG.
[0031]
According to each embodiment of the present invention, first, in the primary compression step, the powder containing substantially no lubricant is compressed at room temperature without being heated. The flowability of the powder does not decrease due to the above, and the primary molded body can be molded to a desired density that can be handled. In addition, the primary molded body is dimensioned to be loosely fitted in the secondary mold, and the cross-sectional shape orthogonal to the compression direction is molded into a simple circular shape, coupled with the fact that handling is possible. The secondary mold can be easily and quickly set, and the primary molding speed can be increased.
[0032]
In the next secondary compression step, since the surface of the primary molded body is coated with a lubricant, the working efficiency of introducing the lubricant is improved as compared with the case where the surface is applied to the mold wall surface. In addition to reducing the amount of lubricant used, the energy required for dewaxing the lubricant during sintering can be reduced, and the working environment can be improved. Furthermore, compared with the case where the lubricant is mixed into the powder, the porosity is reduced and the density is increased when the sintered product is obtained.
[0033]
Overall, since primary compression and secondary compression are both performed at room temperature, facility cost reduction and energy saving can be achieved. In addition, since the compression ratio is divided into primary compression and secondary compression, the degree of wear of the primary and secondary molds is reduced, enabling long-term use, and the mold depth of these molds is short. The manufacturing cost of the mold is reduced. In particular, the strength of the primary molded body is higher than when a powder containing a lubricant is used, and the pressure during secondary compression for compressing the primary molded body may be relatively low. Therefore, it is easy to increase the density of the green compact, the density is greatly improved, and the quality is stabilized. In addition, if a large amount of primary compacts are made and stocked in advance and then compressed as necessary to obtain a compact, the powder is adjusted and filled each time the compact is molded. This saves time and improves productivity.
[0034]
Further, as in the second embodiment, when forming a green compact having a boss (step part) on one side in the compression direction, the boss is formed with a lower punch during primary compression and an upper punch during secondary compression. In this case, the structure of the lower punch becomes simple in both the primary and secondary molds, and the secondary mold only needs to have a boss molding punch on the upper side. The overall structure is simplified. In addition, it is possible to adopt a press machine having a simple structure.
[0035]
The first and second embodiments are examples embodying the present invention, and the green compact formed by the present invention is not limited to these embodiments. It can also be applied to. Further, the present invention includes the following forming method without being limited to the form of the green compact.
[0036]
{Circle around (1)} The primary molded body is not a single body, but is combined to form a divided body that becomes a primary molded body of a desired shape. That is, the primary molded body is divided into a plurality of parts and compression molded, and in the secondary compression step, the plurality of primary molded bodies are set in a combined state in the secondary mold, and the adjacent compression is performed by secondary compression. The bodies are joined together to obtain the final green compact.
(2) In the above (1), the green compact to be molded has a plurality of parts having different required characteristics. Correspondingly, a plurality of primary molded bodies are provided for each part. Are first compressed and molded with powder, shape or density according to the above. Thus, if a some primary molded object is shape | molded according to a site | part and it combines and carries out secondary compression, the compact which has the characteristic according to each site | part automatically can be obtained.
[0037]
【The invention's effect】
As described above, in the present invention, when a green compact is obtained by subjecting powder substantially free of lubricant to primary compression and secondary compression at room temperature, the primary molded body is placed in the secondary molding die. Because the cross-sectional shape perpendicular to the compression direction is formed into a circular or polygonal simple shape that can be loosely fitted, and the surface of the primary molded body is covered with a lubricant during secondary compression. In addition to reducing the cost of equipment and saving energy, it is possible to obtain a high-density green compact by reducing wear of the mold wall while reducing the amount of lubricant used.
[Brief description of the drawings]
FIGS. 1A to 1D are cross-sectional views sequentially showing steps of a green compact forming method according to a first embodiment of the present invention, and FIG. 1E is a view of a green compact obtained by the same method. It is a perspective view.
FIGS. 2A to 2D are cross-sectional views sequentially showing steps of a green compact forming method according to a second embodiment of the present invention, and FIG. 2E is a view of a green compact obtained by the same method. It is a perspective view.
[Explanation of symbols]
1, 21 ... Primary mold, 11, 31 ... Secondary mold, 50 ... Boss (step part),
L: Lubricant, P: Powder, P1: Primary molded body, P2: Green compact.

Claims (4)

粉末を、常温下において一次成形型により、成形すべき圧粉体の所定密度よりも低く、かつハンドリング可能な程度の密度に圧縮する一次圧縮工程と、この一次圧縮工程で得られた一次成形体を、常温下において二次成形型により、前記所定密度に圧縮して圧粉体を得る二次圧縮工程とを備える圧粉体の成形方法において、
前記粉末を、実質的に潤滑剤を含まないものとし、前記一次圧縮工程では、前記一次成形体を、前記二次成形型内に遊嵌され得る寸法であって、かつその圧縮方向に直交する横断面形状が円形または多角形の単純形状に成形し、前記二次圧縮工程では、潤滑手段として前記一次成形体の表面を潤滑剤で被覆するとともに、二次圧縮時に前記一次成形体を一旦崩壊させて歯車形状圧粉体に成形することを特徴とする圧粉体の成形方法。
A primary compression step in which the powder is compressed to a density that is lower than a predetermined density of the green compact to be molded by a primary mold at room temperature and can be handled, and a primary molded body obtained in this primary compression step In a green compact molding method comprising a secondary compression step of obtaining a green compact by compressing to a predetermined density by a secondary molding die at room temperature,
The powder is substantially free of lubricant, and in the primary compression step, the primary molded body has a size that can be loosely fitted in the secondary mold and is orthogonal to the compression direction. In the secondary compression step, the surface of the primary molded body is coated with a lubricant as a lubricating means, and the primary molded body is temporarily collapsed during secondary compression. And forming into a gear-shaped green compact.
前記一次圧縮工程において、前記一次成形体を複数に分割してそれぞれ圧縮し、前記二次圧縮工程において、これら複数の一次成形体を前記二次成形型内に組み合わせた状態でセットし、二次圧縮により相互に接合させることを特徴とする請求項1に記載の圧粉体の成形方法。In the primary compression step, the primary molded body is divided into a plurality of pieces and compressed, and in the secondary compression step, the plurality of primary molded bodies are set in a combined state in the secondary mold, The method for forming a green compact according to claim 1, wherein the green compact is bonded to each other by compression. 成形すべき前記圧粉体は、求められる特性が異なる複数の部位を有し、前記複数の一次成形体は、それら部位ごとに、部位に応じた粉末、形状または密度をもってそれぞれ一次圧縮されることを特徴とする請求項1または2に記載の圧粉体の成形方法。  The green compact to be molded has a plurality of parts having different required characteristics, and the plurality of primary compacts are primarily compressed with powder, shape, or density corresponding to each part. A method for forming a green compact according to claim 1 or 2. 前記圧粉体は、圧縮方向の一端側に段部を有し、この段部は、前記一次圧縮工程では下向きの状態で成形され、前記二次圧縮工程では上向きの状態で成形されることを特徴とする請求項1〜3のいずれかに記載の圧粉体の成形方法。  The green compact has a step portion on one end side in the compression direction, and the step portion is formed in a downward state in the primary compression step, and is formed in an upward state in the secondary compression step. The method for forming a green compact according to any one of claims 1 to 3.
JP25613298A 1998-09-10 1998-09-10 Molding method of green compact Expired - Fee Related JP3685442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25613298A JP3685442B2 (en) 1998-09-10 1998-09-10 Molding method of green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25613298A JP3685442B2 (en) 1998-09-10 1998-09-10 Molding method of green compact

Publications (2)

Publication Number Publication Date
JP2000084699A JP2000084699A (en) 2000-03-28
JP3685442B2 true JP3685442B2 (en) 2005-08-17

Family

ID=17288355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25613298A Expired - Fee Related JP3685442B2 (en) 1998-09-10 1998-09-10 Molding method of green compact

Country Status (1)

Country Link
JP (1) JP3685442B2 (en)

Also Published As

Publication number Publication date
JP2000084699A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US8850494B2 (en) Forming die assembly for microcomponents
US4054449A (en) Process of making a composite heavy-duty powdered machine element
JPS58215299A (en) Production of composite valve seat
US3665585A (en) Composite heavy-duty mechanism element and method of making the same
US8851872B2 (en) Forming die assembly for microcomponents
JP2000087104A (en) Method for forming green compact
CN206622611U (en) A kind of hard alloy powder metallurgical briquet compacting tool set
JP2001252793A (en) Green compact forming method
JP2006342397A (en) Powder molding method, and sintered machine component
JP3347451B2 (en) Molding apparatus for green compaction and molding method
EP0347627B1 (en) Method for producing a piston with cavity
JP3685442B2 (en) Molding method of green compact
JP3957868B2 (en) Molding method of green compact
US6365094B1 (en) Lubricated die
WO2016021362A1 (en) Method for manufacturing composite sintered body
JP3003126B2 (en) Powder molding method
JP2003077769A (en) Method and device for manufacturing pellet for solid electrolytic capacitor
JP3552145B2 (en) Compacting method
JP4560153B2 (en) Method for manufacturing ceramic part having cermet body
JPH11140505A (en) Powder molding method in powder metallurgy
JP2809288B2 (en) Molding method for long cylindrical green compact
JPS6137399A (en) Powder molding device
JP3226947B2 (en) Method and forming apparatus for forming second layer of green compact on cylindrical member
JP2016037616A (en) Method for producing composite sintered body
JP2541198B2 (en) Sintered oil-impregnated bearing manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees