JP3957868B2 - Molding method of green compact - Google Patents

Molding method of green compact Download PDF

Info

Publication number
JP3957868B2
JP3957868B2 JP08796998A JP8796998A JP3957868B2 JP 3957868 B2 JP3957868 B2 JP 3957868B2 JP 08796998 A JP08796998 A JP 08796998A JP 8796998 A JP8796998 A JP 8796998A JP 3957868 B2 JP3957868 B2 JP 3957868B2
Authority
JP
Japan
Prior art keywords
green compact
compression molding
primary
compression
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08796998A
Other languages
Japanese (ja)
Other versions
JPH11267893A (en
Inventor
勝彦 上田
好美 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP08796998A priority Critical patent/JP3957868B2/en
Publication of JPH11267893A publication Critical patent/JPH11267893A/en
Application granted granted Critical
Publication of JP3957868B2 publication Critical patent/JP3957868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/34Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses for coating articles, e.g. tablets

Description

【0001】
【発明の属する技術分野】
本発明は、特に、圧縮面に段や溝を有していたり、圧縮方向の肉厚の中間に圧縮方向に交差する方向に延びる孔や切欠きを有していたりといった、圧縮方向の肉厚が一定ではない形状の圧粉体を成形する方法に係り、その圧粉体の密度の均一化を図る技術に関する。
【0002】
【従来の技術】
例えば、図5(a),(b)に示すような、両端部が断面半円弧状の横長の直方体であって、高さ方向(矢印X方向)の中間に幅方向(矢印Z方向)に貫通する断面長方形状の横孔1を有する部材2を、圧粉体から焼結品として得るに際し、その圧粉体を成形するには、次のような方法が試みられている。まず、図6(a)に示すように、ダイ10と下パンチ14とで形成されるキャビティ12に、用いる原料粉末Pの一部を充填し、その原料粉末Pの上に横孔1に応じた中子13をセットする。次いで、図6(b)に示すように、残りの原料粉末Pを充填してから、図6(c)に示すように、上下のパンチ11,14で原料粉末Pを圧縮して圧粉体2Bを成形する。この後、圧粉体2Bをダイ10から抜き出し、中子13を抜き取って圧粉体2Bを得る。
【0003】
【発明が解決しようとする課題】
上記方法の場合、上下のパンチ11,14による圧縮方向は、部材2の高さ方向であり、これよりも長い長手方向(図5(a)で矢印Y方向)を圧縮方向にとるよりも、原料粉末Pの充填深さが浅い。このように圧縮方向を短くとることにより、原料粉末Pの充填性が良好になるととともに、圧粉体2Bをダイ10から抜き出しやすく、さらに、原料粉末Pの圧縮密度がもっとも低くなる上下のパンチ11,14間の中央部分、いわゆるニュートラルゾーンが小さくなって全体の密度が均一になりやすいといった利点がある。
【0004】
しかしながら、圧粉体2Bにおいては、図5(b)に示すように、横孔1の上下の部分3と、横孔1の両側の全体高さを中実に占める部分4(以下、前者を薄肉部3、後者を厚肉部4と便宜上称する)とでは、当然圧縮高さが異なるから、厚肉部4の方が薄肉部3よりも密度が低くなる傾向にある。したがって、上述したように圧縮方向を短くすることにより全体の密度は均一になりやすいものの、その均一性が不十分となって焼結後の品質を充足するに至らない場合があった。この問題の打開策として、薄肉部3と厚肉部4とを異なるパンチで圧縮するようにし、圧縮高さに応じて圧力を制御することにより全体の密度を均一化させる方法が提案されるが、その場合、装置の複雑化を招くとともに、部材の形状によっては成形が困難か、あるいは不可能になることが想定される。
【0005】
したがって本発明は、圧縮方向の肉厚が一定ではない形状の圧粉体を成形するにあたり、全体の密度が十分に均一化されて高い品質を安定して得ることのできる圧粉体の成形方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、圧縮方向に厚さの異なる厚肉部と薄肉部とを有する圧粉体を成形する方法であって、一次成形型による一次圧縮成形工程と、この次の、二次成形型による二次圧縮成形工程との2つの工程を備えており、一次圧縮成形行程では、厚肉部に、反圧縮方向に突出して圧粉体の密度を均一化させる圧粉された余肉部を付与した状態に、原料粉末の全体を圧縮成形し、二次圧縮成形行程では、一次圧縮成形工程で得られた一次圧縮成形体を、余肉部を潰しながら圧縮するとともに所望の形状ならびに寸法の圧粉体を得ることを特徴としている。
【0007】
この方法によれば、まず、一次圧縮成形工程において、一次成形型内に充填した原料粉末を圧縮し、一次圧縮成形体を得る。この一次圧縮成形体は、成形すべき圧粉体に応じたニヤネットシェイプであって、厚肉部に、圧縮方向に突出する余肉部を付与したものとされる。余肉部の大きさは、成形すべき圧粉体の全体の密度を均一化させるべく適宜に制御される。例えば、圧粉体が上記図5(b)に示したようなものである場合、厚肉部4の少なくとも一方の圧縮面、すなわち上面あるいは下面の少なくとも一方の面に、反圧縮方向に突出する一定厚さの余肉部を一体成形する。
次に、一次圧縮成形工程で得られた一次圧縮成形体を、成形すべき圧粉体に応じたキャビティを備える二次成形型にセットして圧縮し、所望の圧粉体を成形する。この二次圧縮成形工程において、圧縮された余肉部は、当該余肉部が成形されなかった場合において密度が他の部分よりも低くなる部分(図5(b)の場合であれば厚肉部4に相当する部分)に塑性流動して入り込み、したがって、その部分の密度は他の部分と同等に上がることとなる。したがって、二次圧縮成形後に得られる圧粉体は、全体の密度が十分に均一化したものとなる。また、圧縮成形工程を一次と二次とに分けて行うことにより、最終的に得る圧粉体の絶対密度が、1回の圧縮成形に比べると高くなり強度が向上する。これらのことから、高い品質の圧粉体を安定して得ることができる。
【0008】
また、本発明は、一次圧縮成形工程において原料粉末を加熱するか、あるいは二次圧縮成形工程において一次圧縮成形体を加熱することを特徴としており、これによって圧縮成形体の密度をさらに高めることができる。この加熱圧縮成形による密度の上昇は、原料粉末の粒子間結合の形成が助長されること等に起因すると想定される。加熱の形態としては、二次圧縮成形工程のみ加熱(一次圧縮成形工程は冷間で行う)するか、一次と二次の圧縮成形工程とも加熱するかのいずれかが好適であるが、後者の形態が密度上昇の観点から言ってより好ましい。なお、加熱温度は、原料粉末に基づく材質に青熱脆性が生じる温度より低温で、かつ常温より高温の範囲で選択されることが品質上肝要であり、例えば、炭素0.25%含有の炭素鋼の場合、100〜220℃の範囲が望ましい加熱温度である。
【0009】
また、本発明は、一次圧縮成形工程において、原料粉末の潤滑手段として、原料粉末を充填する一次成形型の型壁を潤滑剤で被覆することを特徴としている。一般に、原料粉末と型壁との摩擦低減を図るための潤滑手段としては、原料粉末中に潤滑剤を混合させるか、もしくは型壁を潤滑剤で被覆するかのいずれかが採用されるが、本発明の場合は後者の手段を採ることを好ましい潤滑手段としている。型壁を潤滑剤で被覆する手段としては、ワックス等の液体状の潤滑剤を型壁に塗布したり、粉体状の潤滑剤を静電塗膜法で型壁に付着させたりする等の手段が用いられる。このような潤滑手段を採用することにより、原料粉末中への潤滑剤の混合と比べると一次圧縮成形体の密度が高まり、強度の向上が図られる。また、この場合、一次圧縮成形体には、その表面(型壁との摩擦面)のみに潤滑剤が付着する状態となる、このため、上記のように二次圧縮成形工程において一次圧縮成形体を加熱する方法を適用した場合、加熱による潤滑剤の揮発量が少ないことから作業環境が悪化しにくくなり、さらに、混合潤滑剤の揮発による内圧上昇によって一次圧縮成形体が破裂する等の問題が未然に防止される。
【0010】
さらに、二次圧縮成形工程において、余肉部を圧縮して塑性流動させることから、その余肉部の表面と型壁との潤滑が十分であることが要求される。したがって本発明では、二次圧縮成形工程において、一次圧縮成形体の潤滑手段として、当該一次圧縮成形体もしくは二次成形型の型壁のうちの少なくとも一方を潤滑剤で被覆することを特徴としている。
【0011】
【発明の実施の形態】
以下、図面を参照して、図5(a),(b)に示した部材2の素材となる圧粉体を成形する本発明の一実施形態について説明する。
図1(a)〜(e)は一次圧縮成形工程を、また、図2(a)〜(d)は二次圧縮成形工程を示しおり、さらに図3は、本方法の概念を示している。この場合の原料粉末に基づく材質は、例えば、低炭素鋼、高炭素鋼、Cr、Mo、V、W等の炭化物生成元素を含む低合金鋼等の硬質合金用とされる。また、用いる原料粉末は、潤滑剤が混合されていないものとされる。以下、一次圧縮成形工程から二次圧縮成形工程を経て圧粉体を成形する手順を説明していく。
【0012】
(1)一次圧縮成形工程
一次圧縮成形工程に用いる成形装置は、図1(a)〜(e)に示すように、ダイ(一次成形型)20の内部に、上パンチ21と、内部パンチ22aおよび一対の外部パンチ22bの組み合わせで構成される下パンチ22とが、それぞれ縦方向に移動可能に挿入される単軸型である。下パンチ22を構成する内部パンチ22aは、圧粉体の一方の薄肉部3を圧縮成形するためのパンチであり、外部パンチ22bは、内部パンチ22aの両側に配されて圧粉体の各厚肉部4を圧縮成形するためのパンチである。ダイ20と上下のパンチ21,22とにより、一次圧縮成形体の形状に応じたキャビティ23がダイ20の内部に形成されるようになっている。圧粉体の横孔1は前記中子13で形成され、この中子13と内部パンチ22aの平面は、同一の形状および寸法となっている。
【0013】
次に、上記成形装置による一次圧縮成形工程を説明する。
まず、図1(a)に示すように、下パンチ22の内部パンチ22aの上面がダイ20の上面からやや下方に位置し、下パンチ22の外部パンチ22bの上面が内部パンチ22aの上面よりもやや下方に位置する初期状態とする。次に、原料粉末Pの潤滑手段として、少なくともダイ20の内面である型壁を図示せぬ潤滑剤で被覆する。その手段としては、ワックス等の液体状の潤滑剤を型壁に塗布したり、粉体状の潤滑剤を静電塗膜法で型壁に付着させたり等の手段が用いられる。これにより、原料粉末P中への潤滑剤の混合と比べると一次圧縮成形体の密度が高まり強度の向上が図られる。続いて、ダイ20と下パンチ22とで形成されるキャビティ23に、用いる原料粉末Pの一部を充填する。
【0014】
次いで、図1(b)に示すように、ダイ20を所定の粉末充填位置まで上昇させ、充填した原料粉末Pの上であって横孔1を形成すべき個所すなわち内部パンチ22aの上方に、内部パンチ22aと平面投影形状を一致させて中子13をセットする。続いて、図1(c)に示すように、用いる残りの原料粉末Pをキャビティ23に充填する。この状態で、中子13は成形すべき上下の薄肉部3の中間に配される。
【0015】
次に、図1(d)に示すように、上パンチ21を下降させ、原料粉末Pを縦方向に所定圧力で圧縮し、一次圧縮成形体2aを成形する。成形を終えたら、図1(e)に示すように、ダイ20を下降させて一次圧縮成形体2aをダイ20から抜き出し、中子13を内蔵する一次圧縮成形体2aを得る。この一次圧縮成形体2aは、成形すべき圧粉体に応じたニヤネットシェイプにおける厚肉部4の片面に、反圧縮方向(この場合下方)に突出する余肉部4aが一体成形されたものとなる。この余肉部4aは、下パンチ22の相対位置のずれ、すなわち内部パンチ22aに対する外部パンチ22bの下降量に基づき成形され、その厚さは、成形すべき圧粉体の全体の密度を均一化させるべく適宜に制御される。
【0016】
(2)二次圧縮成形工程
一次圧縮成形工程で得た一次圧縮成形体2aを、図2(a)に示すように上下反転させた状態として加熱手段25で加熱する。加熱手段25は、例えば電磁誘導加熱炉等が用いられる。加熱温度は、原料粉末Pに基づく材質に青熱脆性が生じる温度より低温で、かつ常温より高温の範囲で選択され、例えば、炭素0.25%含有の炭素鋼の場合、100〜220℃の範囲とされる。一次圧縮成形体2aを加熱したら、二次圧縮成形に進む。
【0017】
二次圧縮成形工程に用る成形装置は、図2(b)〜(d)に示すように、ダイ(二次成形型)30の内部に、内部パンチ31aおよび一対の外部パンチ31bの組み合わせで構成される上パンチ31と、下パンチ32とが、それぞれ縦方向に移動可能に挿入される単軸型である。上パンチ31を構成する内部パンチ31aは、一次圧縮成形体2aの余肉部4aの間の薄肉部3を圧縮成形するためのパンチであり、外部パンチ31bは、内部パンチ31aの両側に配されて圧粉体の各厚肉部4を圧縮成形するためのパンチである。ダイ30と上下のパンチ31,32とにより、圧粉体の形状に応じたキャビティ33がダイ30の内部に形成されるようになっている。ダイ30には、加熱された一次圧縮成形体を上記温度に保持するヒータ34が内蔵されている。
【0018】
次に、上記成形装置による二次圧縮成形工程を説明する。
ダイ30をヒータ34で上記温度に加熱しておき、さらにダイ30の型壁を、一次圧縮成形工程と同様に図示せぬ潤滑剤で被覆する。次いで、加熱状態の一次圧縮成形体2aを、図2(b)に示すように、余肉部4aが成形された面を上にして、ダイ30と下パンチ32とにより形成されるキャビティ33に装填し、次いで、上パンチ31を下降させる。図2(c)に示すように、上パンチ31の内部パンチ31aおよび外部パンチ31bを同じ圧力で下降させて一次圧縮成形体2aを圧縮し、二次圧縮成形体すなわち圧粉体2Aを成形する。この二次圧縮時に、余肉部4aは塑性流動して厚肉部4に入り込むことにより潰れ、上パンチ31による上側の圧縮面は、下面と同様に平坦になる。この後、図2(d)に示すように、上パンチ31を上昇させ、かつダイ30を下降させて中子13を内蔵する圧粉体2Aをダイ30から抜き出し、さらに中子13を圧粉体2Aから抜き出して、横孔1を有する圧粉体2Aを得る。
【0019】
以上の一次圧縮成形工程、二次圧縮成形工程を経て得られた圧粉体2Aは、所定の焼結温度で焼結され、さらに必要に応じて熱処理されて焼結品とされる。
【0020】
以上の成形方法は、一次圧縮成形工程において、同じ圧縮比(充填厚さ÷圧粉体厚さ)で圧縮されると通常では薄肉部3よりも密度が低くなる厚肉部4の片面に予め余肉部4aを成形しておき、次の二次圧縮成形工程で全体を同じ圧力で圧縮するものであり、二次圧縮時に余肉部4aが塑性流動して厚肉部4に入り込むことにより、厚肉部4が薄肉部3と同等の密度となる。その結果、得られる圧粉体2A全体の密度は十分に均一化したものとなる。また、圧縮成形工程を一次と二次とに分けて行うことにより、成形された圧粉体2Aの絶対密度が、1回の圧縮成形に比べると高くなり、強度が向上する。これに加えて、二次圧縮成形工程では、一次圧縮成形体2aを加熱しながら圧縮するので、圧粉体2Aの密度をさらに高めることができる。しかもその加熱温度は、原料粉末Pに基づく材質に青熱脆性が生じる温度より低温であることから、圧粉体2Aが脆性を有する材質とはなり得ない。これらのことから、高い品質の圧粉体を安定して得ることができる。
【0021】
ところで、一次圧縮成形において高い圧力で原料粉末Pを圧縮すれば密度の高い圧粉体2Aを得ることも可能であるが、充填された原料粉末Pの圧縮比が例えば2.5程度になる場合、ダイ20、上下のパンチ21,22、中子13はそれだけ圧縮方向に長いものが必要となり、高い圧力の付与はこれら成形用金型部品の破損を招きやすい。加えて、上下のパンチ21,22や中子13に大きな歪みが生じて一次圧縮成形体2aに割れを発生させることにもつながる。その点、上記成形方法によれば、一次圧縮成形工程で無理のない圧縮比と成形圧力で圧縮して一次成形しておき、次の二次圧縮成形工程では、一般のサイジングや鍛造の技術と同様に扱うことができるので、成形用金型部品にかかる負担が低下するといった利点がある。
【0022】
具体的には、例えば低合金鉄粉を温間で1000MPaの圧力により圧縮すると、圧縮比が2.5になって密度7.5g/cm3の圧粉体が得られるが、金型の耐久性から圧粉体の形状が制約される。同じ低合金鉄粉を一般的な条件である常温で500MPaの圧力により圧縮すると、圧縮比は2.2となって密度6.5g/cm3の圧粉体が得られる。これを一次圧縮成形体として再び金型に装入し、1000MPaの圧力で圧縮する、すなわち二次圧縮成形を行うと、圧縮比は1.2となって密度7.5g/cm3の圧粉体を得ることができる。このように二次圧縮成形工程では圧縮比を抑えることができるので高い圧力を加えることが可能となり、もって高密度圧粉体を成形することができるわけである。
【0023】
また、一次圧縮成形工程において、原料粉末Pの潤滑手段としてダイ20の型壁を潤滑剤で被覆しているから、その表面(ダイ20との摩擦面)のみに潤滑剤が付着する状態となる。このため、二次圧縮成形工程において一次圧縮成形体2aを加熱した際、加熱による潤滑剤の揮発量が少なくなって作業環境が悪化しにくくなり、さらに、混合潤滑剤の揮発による内圧上昇によって一次圧縮成形体2aが破裂する等の問題が未然に防止される。さらに、二次圧縮成形工程においてもダイ30の型壁を潤滑剤で被覆するので、余肉部4aの表面と型壁との潤滑が十分となって余肉部4aの塑性流動性が向上する。なお、二次圧縮成形工程では、ダイ30の型壁に代えて一次圧縮成形体2aの表面を潤滑剤で被覆しても効果は同様であり、したがって両者のうちの少なくとも一方を潤滑剤で被覆するようにすればよい。
【0024】
前述した一次圧縮成形工程における原料粉末Pの潤滑手段にあっては、充填される全ての原料粉末Pが接触する型壁の全面に潤滑剤を塗布する等の方法が望ましく、例えば次のような方法が用いられる。その1つとして、図1(a)の工程までは上記と同様で、次の図1(b)に示すようにダイ20を上昇させてから残りの原料粉末Pを充填する前に、再び潤滑剤をダイ20の型壁に塗布する。この他には、図1(c)に示すように深いキャビティをはじめに形成しておき、この段階でダイ20の型壁に潤滑剤を塗布し、この後、図1(a)〜(e)の順で圧縮成形を行う。このような方法は、型壁に対する付着力が比較的低い潤滑剤を用いる場合に適している。
【0025】
以上が本発明の一実施形態であるが、本発明はこの一実施形態に限定されるものではなく、例えば次のような変更が可能である。
上記一実施形態では、一次圧縮成形工程を冷間(常温)処理、二次圧縮成形工程を温間処理としているが、両工程とも冷間で行ってもよく、また、両工程とも温間で行ってもよい。両工程を温間で行う場合、一次圧縮成形工程においては、充填する原料粉末Pおよびダイ20を、上記二次圧縮成形工程と同様の加熱温度すなわち原料粉末Pに基づく材質に青熱脆性が生じる温度より低温で、かつ常温より高温の範囲に加熱することが条件となる。また、余肉部4aは、厚肉部4の片面のみならず、必要に応じて両面に成形してもよい。また、原料粉末Pの潤滑手段として、ダイ20の内面を潤滑剤で被覆する型壁潤滑を採用しているが、必要に応じて潤滑剤が混合された原料粉末を用いてもよい。
【0026】
なお、上記一実施形態は、図5(a),(b)に示した部材2の素材となる圧粉体を成形する方法であるが、本発明はもちろんこれに限定されず、圧縮面に段や溝を有していたり、圧縮方向の肉厚の中間に圧縮方向に交差する方向に延びる孔や切欠きを有していたりといった、圧縮方向の肉厚が一定ではない様々な形状の圧粉体に適用可能である。そこで、図4にそのような圧粉体の例を示す。
【0027】
図4(a)は、カムの素材となる圧粉体を示している。この圧粉体は、カムボトムの厚さ方向中央に切欠き40が形成されることにより薄肉部3と他の厚肉部4とを備え、薄肉部3には軸孔41が形成されている。
図4(b)は、バルブを揺動させるための略S字状のロッカーアームの素材となる圧粉体を示している。この圧粉体は、中央に揺動軸孔42が形成され、両端部の厚さ方向中央にベアリングが収納される切欠き40が形成されることにより薄肉部3と他の厚肉部4とを備え、薄肉部3にはベアリングの軸孔41が形成されている。
図4(c)は、図4(b)のロッカーアームの変形であって直線状に形成された圧粉体であり、同様に、中央に揺動軸孔42が形成され、両端部の厚さ方向中央にベアリングが収納される幅方向に貫通する空所43が形成されることにより薄肉部3と他の厚肉部4とを備え、薄肉部3にはベアリングの軸孔41が形成されている。
【0028】
上記図4(a)〜(c)のいずれの圧粉体においても、厚肉部4の少なくとも片面に、上記一実施形態と同様の余肉部を成形する一次圧縮成形を経てから、余肉部を圧縮する二次圧縮成形を行うことにより、全体の密度を十分に均一化させることができる。
【0029】
【発明の効果】
以上説明したように本発明によれば、圧縮方向に厚さの異なる厚肉部と薄肉部とを有する圧粉体を成形するにあたり、厚肉部に、反圧縮方向に突出して圧粉体の密度を均一化させる余肉部を付与した状態に、原料粉末を一次成形型により圧縮成形する一次圧縮成形工程と、この一次圧縮成形工程で得られた一次圧縮成形体を、二次成形型により、前記余肉部を圧縮するとともに所望の形状ならびに寸法に圧縮成形する二次圧縮成形工程とを具備するから、全体の密度が十分に均一化されて高い品質を安定して得ることができるといった効果を奏する。
【図面の簡単な説明】
【図1】 (a)〜(e)は、本発明の一実施形態に係る一次圧縮成形工程を順に示す断面図である。
【図2】 (a)〜(d)は、本発明の一実施形態に係る二次圧縮成形工程を順に示す断面図である。
【図3】 本発明の一実施形態の概念を示す断面図である。
【図4】 本発明により成形され得る圧粉体の例を示す斜視図である。
【図5】 圧粉体の一例を示す(a)斜視図、(b)断面図である。
【図6】 従来の圧粉体の成形方法の一例を工程順に示す断面図である。
【符号の説明】
2A…圧粉体、4a…余肉部、20…ダイ(一次成形型)、
30…ダイ(二次成形型)、P…原料粉末。
[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention has a thickness in the compression direction, such as having a step or a groove on the compression surface, or having a hole or a notch extending in the direction intersecting the compression direction in the middle of the thickness in the compression direction. The present invention relates to a method of forming a green compact having a non-constant shape, and to a technique for making the density of the green compact uniform.
[0002]
[Prior art]
For example, as shown in FIGS. 5 (a) and 5 (b), both end portions are horizontally long rectangular parallelepiped sections, and in the width direction (arrow Z direction) in the middle of the height direction (arrow X direction). In obtaining the member 2 having the penetrating rectangular cross-sectional lateral hole 1 from the green compact as a sintered product, the following method has been tried to form the green compact. First, as shown in FIG. 6A, a part of the raw material powder P to be used is filled in the cavity 12 formed by the die 10 and the lower punch 14, and the horizontal hole 1 is formed on the raw material powder P. The core 13 is set. Next, as shown in FIG. 6B, after filling the remaining raw material powder P, the raw material powder P is compressed by the upper and lower punches 11 and 14 as shown in FIG. 2B is molded. Thereafter, the green compact 2B is extracted from the die 10, and the core 13 is extracted to obtain the green compact 2B.
[0003]
[Problems to be solved by the invention]
In the case of the above method, the compression direction by the upper and lower punches 11 and 14 is the height direction of the member 2, and rather than taking a longer longitudinal direction (the arrow Y direction in FIG. 5A) as the compression direction. The filling depth of the raw material powder P is shallow. By shortening the compression direction in this way, the filling property of the raw material powder P is improved, the green compact 2B can be easily extracted from the die 10, and the compressive density of the raw material powder P is the lowest. , 14, the so-called neutral zone is small, and the overall density tends to be uniform.
[0004]
However, in the green compact 2B, as shown in FIG. 5 (b), the upper and lower portions 3 of the horizontal hole 1 and the portion 4 that occupies the entire height of both sides of the horizontal hole 1 (hereinafter, the former is thin-walled). The portion 3 and the latter are referred to as the thick portion 4 for convenience), of course, because the compression height differs, the thick portion 4 tends to have a lower density than the thin portion 3. Therefore, as described above, although the overall density tends to be uniform by shortening the compression direction, the uniformity is insufficient and the quality after sintering may not be satisfied. As a measure for overcoming this problem, a method is proposed in which the thin portion 3 and the thick portion 4 are compressed with different punches, and the pressure is controlled according to the compression height to make the entire density uniform. In this case, the apparatus is complicated, and it is assumed that molding is difficult or impossible depending on the shape of the member.
[0005]
Accordingly, the present invention provides a method for forming a green compact in which the whole density is sufficiently uniformed and high quality can be stably obtained when forming a green compact whose thickness in the compression direction is not constant. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The present invention is a method of molding a green compact having a thick part and a thin part having different thicknesses in the compression direction, and includes a primary compression molding step using a primary molding die, and a secondary molding die following this. has two steps of the secondary compression molding step, the primary compression molded stroke, the thick portion, imparting excess thickness portion that is green compact make uniform the density of the green compact and projects anti compression direction the state, the whole of the raw material powder was compression-molded in the secondary compression molding process, pressure of a desired shape and dimension with the primary compression molded body obtained in the primary compression molding step, compressing while crushing the excess thickness portion It is characterized by obtaining powder .
[0007]
According to this method, first, in the primary compression molding step, the raw material powder filled in the primary molding die is compressed to obtain a primary compression molded body. This primary compression-molded body has a near net shape corresponding to the green compact to be molded, and is provided with a surplus portion protruding in the compression direction on the thick portion . Atmosphere of the excess thickness portion is controlled appropriately so as to equalize the overall density of the green compact to be molded. For example, when the green compact is as shown in FIG. 5B, it protrudes in the anti-compression direction on at least one compression surface of the thick portion 4, that is, at least one of the upper surface and the lower surface. A surplus part of a certain thickness is integrally formed.
Next, the primary compression molded body obtained in the primary compression molding step is set in a secondary mold having a cavity corresponding to the green compact to be molded and compressed to form a desired green compact. In this secondary compression molding step, the compressed surplus portion is a portion where the density is lower than other portions when the surplus portion is not molded (in the case of FIG. Therefore, the density of the portion increases as much as the other portions. Therefore, the green compact obtained after the secondary compression molding has a sufficiently uniform overall density. Moreover, by carrying out the compression molding process separately for the primary and secondary, the absolute density of the green compact finally obtained becomes higher than that of one compression molding, and the strength is improved. From these things, a high-quality green compact can be obtained stably.
[0008]
Further, the present invention is characterized in that the raw material powder is heated in the primary compression molding step or the primary compression molded body is heated in the secondary compression molding step, thereby further increasing the density of the compression molding body. it can. It is assumed that the increase in density due to this heat compression molding is caused by the promotion of the formation of interparticle bonds in the raw material powder. As the form of heating, either the secondary compression molding process is heated only (the primary compression molding process is performed cold) or both the primary and secondary compression molding processes are heated. The form is more preferable from the viewpoint of increasing density. In addition, it is important in terms of quality that the heating temperature is selected at a temperature lower than the temperature at which blue brittleness occurs in the material based on the raw material powder and higher than normal temperature. For example, carbon containing 0.25% carbon In the case of steel, a preferable heating temperature is in the range of 100 to 220 ° C.
[0009]
Further, the present invention is characterized in that, in the primary compression molding step, as a lubricating means for the raw material powder, the mold wall of the primary molding die filled with the raw material powder is coated with a lubricant. In general, as a lubrication means for reducing friction between the raw material powder and the mold wall, either mixing the lubricant in the raw material powder or coating the mold wall with the lubricant is adopted. In the present invention, the latter means is a preferred lubricating means. As means for coating the mold wall with a lubricant, a liquid lubricant such as wax is applied to the mold wall, or a powdery lubricant is adhered to the mold wall by an electrostatic coating method. Means are used. By adopting such a lubricating means, the density of the primary compression molded body is increased and the strength is improved as compared with the mixing of the lubricant into the raw material powder. Further, in this case, the primary compression molded body is in a state where the lubricant adheres only to the surface (friction surface with the mold wall). For this reason, in the secondary compression molding process as described above, the primary compression molded body is used. When the method of heating is applied, the working environment is difficult to deteriorate because the amount of volatilization of the lubricant due to heating is small, and further, the primary compression molded body bursts due to the increase in internal pressure due to volatilization of the mixed lubricant. Prevented in advance.
[0010]
Furthermore, in the secondary compression molding process, the surplus portion is compressed and plastically flowed, so that it is required that the surface of the surplus portion and the mold wall be sufficiently lubricated. Therefore, the present invention is characterized in that, in the secondary compression molding step, as a means for lubricating the primary compression molded body, at least one of the primary compression molded body or the mold wall of the secondary molding die is covered with a lubricant. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to the drawings, an embodiment of the present invention for forming a green compact as a material of the member 2 shown in FIGS. 5A and 5B will be described.
1A to 1E show the primary compression molding process, FIGS. 2A to 2D show the secondary compression molding process, and FIG. 3 shows the concept of the method. . The material based on the raw material powder in this case is used for hard alloys such as low-carbon steel, high-carbon steel, low-alloy steel containing carbide-generating elements such as Cr, Mo, V, and W, for example. Moreover, the raw material powder to be used is not mixed with a lubricant. Hereinafter, a procedure for forming a green compact through a primary compression molding process and a secondary compression molding process will be described.
[0012]
(1) Primary compression molding process As shown in FIGS. 1A to 1E, a molding apparatus used in the primary compression molding process includes an upper punch 21 and an internal punch 22a inside a die (primary molding die) 20. And the lower punch 22 comprised by the combination of a pair of external punch 22b is a single axis | shaft type inserted so that each can move to a vertical direction. The internal punch 22a constituting the lower punch 22 is a punch for compressing and molding one thin portion 3 of the green compact, and the external punch 22b is arranged on both sides of the internal punch 22a and has each thickness of the green compact. It is a punch for compression-molding the meat part 4. A cavity 23 corresponding to the shape of the primary compression molded body is formed inside the die 20 by the die 20 and the upper and lower punches 21 and 22. The horizontal hole 1 of the green compact is formed by the core 13, and the planes of the core 13 and the internal punch 22a have the same shape and size.
[0013]
Next, the primary compression molding process by the said shaping | molding apparatus is demonstrated.
First, as shown in FIG. 1A, the upper surface of the inner punch 22a of the lower punch 22 is located slightly below the upper surface of the die 20, and the upper surface of the outer punch 22b of the lower punch 22 is higher than the upper surface of the inner punch 22a. The initial state is located slightly below. Next, as a means for lubricating the raw material powder P, at least the mold wall which is the inner surface of the die 20 is coated with a lubricant (not shown). As the means, a liquid lubricant such as wax is applied to the mold wall, or a powdery lubricant is adhered to the mold wall by an electrostatic coating method. Thereby, compared with mixing of the lubricant in the raw material powder P, the density of the primary compression molded body is increased and the strength is improved. Subsequently, a part of the raw material powder P to be used is filled in the cavity 23 formed by the die 20 and the lower punch 22.
[0014]
Next, as shown in FIG. 1 (b), the die 20 is raised to a predetermined powder filling position, above the filled raw material powder P where the lateral hole 1 is to be formed, that is, above the internal punch 22a. The core 13 is set with the internal punch 22a and the planar projection shape matched. Subsequently, as shown in FIG. 1C, the remaining raw material powder P to be used is filled in the cavity 23. In this state, the core 13 is disposed between the upper and lower thin portions 3 to be molded.
[0015]
Next, as shown in FIG.1 (d), the upper punch 21 is lowered | hung, the raw material powder P is compressed by the predetermined pressure in the vertical direction, and the primary compression molding 2a is shape | molded. When the molding is completed, as shown in FIG. 1 (e), the die 20 is lowered and the primary compression molded body 2a is extracted from the die 20 to obtain the primary compression molded body 2a containing the core 13. The primary compression molded body 2a is formed by integrally forming a surplus portion 4a protruding in the anti-compression direction (downward in this case) on one side of a thick portion 4 in a near net shape corresponding to a green compact to be molded. It becomes. This surplus portion 4a is formed on the basis of the displacement of the relative position of the lower punch 22, that is, the descending amount of the external punch 22b with respect to the internal punch 22a, and its thickness makes the entire density of the green compact to be formed uniform. It is appropriately controlled to make it happen.
[0016]
(2) Secondary compression molding process The primary compression molding 2a obtained in the primary compression molding process is heated by the heating means 25 in a state where it is turned upside down as shown in FIG. 2 (a). As the heating means 25, for example, an electromagnetic induction heating furnace or the like is used. The heating temperature is selected in a range lower than the temperature at which blue brittleness occurs in the material based on the raw material powder P and higher than normal temperature. For example, in the case of carbon steel containing 0.25% carbon, the heating temperature is 100 to 220 ° C. Scope. If the primary compression molding 2a is heated, it will progress to secondary compression molding.
[0017]
As shown in FIGS. 2B to 2D, the molding apparatus used for the secondary compression molding process is a combination of an internal punch 31a and a pair of external punches 31b inside a die (secondary molding die) 30. The upper punch 31 and the lower punch 32 that are configured are each a single-axis type that is inserted so as to be movable in the vertical direction. The internal punch 31a constituting the upper punch 31 is a punch for compression-molding the thin portion 3 between the surplus portions 4a of the primary compression molded body 2a, and the external punch 31b is arranged on both sides of the internal punch 31a. This is a punch for compressing and molding each thick part 4 of the green compact. A cavity 33 corresponding to the shape of the green compact is formed in the die 30 by the die 30 and the upper and lower punches 31 and 32. The die 30 incorporates a heater 34 that holds the heated primary compression molded body at the above temperature.
[0018]
Next, the secondary compression molding process by the molding apparatus will be described.
The die 30 is heated to the above temperature by the heater 34, and the mold wall of the die 30 is covered with a lubricant (not shown) as in the primary compression molding process. Next, as shown in FIG. 2B, the primary compression molded body 2a in a heated state is formed into a cavity 33 formed by the die 30 and the lower punch 32 with the surface on which the surplus portion 4a is formed facing up. Then, the upper punch 31 is lowered. As shown in FIG. 2 (c), the inner punch 31a and the outer punch 31b of the upper punch 31 are lowered at the same pressure to compress the primary compression molded body 2a, thereby forming the secondary compression molded body, that is, the green compact 2A. . During this secondary compression, the surplus portion 4a is plastically flowed and crushed by entering the thick portion 4, and the upper compression surface by the upper punch 31 becomes flat like the lower surface. Thereafter, as shown in FIG. 2 (d), the upper punch 31 is raised, the die 30 is lowered, the green compact 2A containing the core 13 is extracted from the die 30, and the core 13 is further compressed. By extracting from the body 2A, a green compact 2A having a lateral hole 1 is obtained.
[0019]
The green compact 2A obtained through the primary compression molding process and the secondary compression molding process described above is sintered at a predetermined sintering temperature, and is further heat-treated as necessary to obtain a sintered product.
[0020]
In the above-described molding method, in the primary compression molding process, when compressed with the same compression ratio (filling thickness / compact thickness), the density of the thick-walled portion 4 is usually lower than that of the thin-walled portion 3 in advance. The surplus portion 4a is molded in advance, and the whole is compressed at the same pressure in the next secondary compression molding process, and the surplus portion 4a is plastically flowed into the thick portion 4 during the secondary compression. The thick part 4 has the same density as the thin part 3. As a result, the density of the entire green compact 2A obtained is sufficiently uniform. In addition, by performing the compression molding process separately for the primary and secondary, the absolute density of the molded green compact 2A becomes higher than that of one compression molding, and the strength is improved. In addition, in the secondary compression molding step, the primary compression molded body 2a is compressed while being heated, so that the density of the green compact 2A can be further increased. Moreover, since the heating temperature is lower than the temperature at which blue brittleness occurs in the material based on the raw material powder P, the green compact 2A cannot be a brittle material. From these things, a high-quality green compact can be obtained stably.
[0021]
By the way, if the raw material powder P is compressed at a high pressure in the primary compression molding, it is possible to obtain a dense green compact 2A. However, when the compression ratio of the filled raw material powder P is about 2.5, for example. The die 20, the upper and lower punches 21, 22 and the core 13 are required to be longer in the compression direction, and application of high pressure tends to cause damage to these molding die parts. In addition, large distortion occurs in the upper and lower punches 21 and 22 and the core 13, leading to cracks in the primary compression molded body 2 a. In that respect, according to the above molding method, the primary compression molding process is compressed with a reasonable compression ratio and molding pressure to perform primary molding, and in the next secondary compression molding process, general sizing and forging techniques and Since it can handle similarly, there exists an advantage that the burden concerning the metal mold | die part for shaping | molding falls.
[0022]
Specifically, for example, when low-alloy iron powder is compressed with a pressure of 1000 MPa warm, the compression ratio becomes 2.5 and a green compact with a density of 7.5 g / cm 3 is obtained. The shape of the green compact is restricted due to its properties. When the same low alloy iron powder is compressed with a pressure of 500 MPa at ordinary temperature, which is a general condition, the compression ratio becomes 2.2 and a green compact with a density of 6.5 g / cm 3 is obtained. When this is again inserted into the mold as a primary compression molded body and compressed at a pressure of 1000 MPa, that is, when secondary compression molding is performed, the compression ratio becomes 1.2 and the green compact has a density of 7.5 g / cm 3 . You can get a body. Thus, in the secondary compression molding process, the compression ratio can be suppressed, so that a high pressure can be applied, and thus a high-density green compact can be molded.
[0023]
Further, in the primary compression molding process, the mold wall of the die 20 is coated with a lubricant as a means for lubricating the raw material powder P, so that the lubricant is attached only to the surface (friction surface with the die 20). . For this reason, when the primary compression molded body 2a is heated in the secondary compression molding process, the amount of volatilization of the lubricant due to heating is reduced and the working environment is hardly deteriorated. Further, the primary pressure is increased by the increase in internal pressure due to volatilization of the mixed lubricant. Problems such as the bursting of the compression molded body 2a are prevented in advance. Furthermore, since the mold wall of the die 30 is covered with the lubricant also in the secondary compression molding process, lubrication between the surface of the surplus part 4a and the mold wall is sufficient, and the plastic fluidity of the surplus part 4a is improved. . In the secondary compression molding step, the effect is the same even if the surface of the primary compression molded body 2a is covered with a lubricant instead of the die wall of the die 30, and therefore at least one of the two is covered with the lubricant. You just have to do it.
[0024]
In the lubricating means for the raw material powder P in the primary compression molding process described above, a method such as applying a lubricant to the entire surface of the mold wall in contact with all the raw material powders P to be filled is desirable. The method is used. As one of them, the process up to the step of FIG. 1 (a) is the same as described above. As shown in the next FIG. 1 (b), the die 20 is raised and then lubricated again before filling the remaining raw material powder P. The agent is applied to the mold wall of the die 20. In addition, a deep cavity is first formed as shown in FIG. 1 (c), and a lubricant is applied to the mold wall of the die 20 at this stage, and thereafter, FIGS. 1 (a) to (e). Perform compression molding in this order. Such a method is suitable when a lubricant having a relatively low adhesion to the mold wall is used.
[0025]
The above is one embodiment of the present invention, but the present invention is not limited to this embodiment, and for example, the following modifications are possible.
In the above embodiment, the primary compression molding process is a cold (room temperature) treatment and the secondary compression molding process is a warm treatment. However, both processes may be performed cold, and both processes are warm. You may go. When both steps are performed warmly, in the primary compression molding step, the raw material powder P and the die 20 to be filled are heated at the same temperature as the secondary compression molding step, that is, the material based on the raw material powder P becomes blue-hot brittle. The condition is that the temperature is lower than the temperature and higher than the normal temperature. Further, the surplus portion 4a may be formed not only on one side of the thick portion 4 but also on both sides as necessary. In addition, as a means for lubricating the raw material powder P, mold wall lubrication in which the inner surface of the die 20 is coated with a lubricant is employed, but a raw material powder mixed with a lubricant may be used as necessary.
[0026]
In addition, although the said one embodiment is a method of shape | molding the green compact used as the raw material of the member 2 shown to Fig.5 (a), (b), of course, this invention is not limited to this, A compression surface is used. Pressures of various shapes with non-constant thickness in the compression direction, such as having steps or grooves, or having holes or notches extending in the direction intersecting the compression direction in the middle of the thickness in the compression direction Applicable to powder. FIG. 4 shows an example of such a green compact.
[0027]
FIG. 4A shows a green compact as a material for the cam. This green compact is provided with a thin portion 3 and another thick portion 4 by forming a notch 40 at the center in the thickness direction of the cam bottom, and a shaft hole 41 is formed in the thin portion 3.
FIG. 4B shows a green compact as a material of a substantially S-shaped rocker arm for swinging the valve. The green compact is formed with a rocking shaft hole 42 in the center and a notch 40 in which bearings are housed in the center in the thickness direction of both ends, thereby forming the thin portion 3 and the other thick portions 4. A shaft hole 41 of a bearing is formed in the thin portion 3.
FIG. 4 (c) is a green compact which is a modification of the rocker arm of FIG. 4 (b) and is formed in a straight line. Similarly, a rocking shaft hole 42 is formed at the center, and the thickness of both ends is shown. By forming a space 43 penetrating in the width direction in which the bearing is accommodated in the center in the vertical direction, the thin portion 3 and the other thick portion 4 are provided. In the thin portion 3, a shaft hole 41 of the bearing is formed. ing.
[0028]
In any of the green compacts of FIGS. 4A to 4C, after the primary compression molding for molding the surplus portion similar to that of the one embodiment on at least one surface of the thick portion 4, the surplus thickness By performing the secondary compression molding for compressing the part, the entire density can be made sufficiently uniform.
[0029]
【The invention's effect】
As described above, according to the present invention, when forming a green compact having a thick part and a thin part having different thicknesses in the compression direction, the green part protrudes in the anti-compression direction from the thick part . The primary compression molding process in which the raw material powder is compression-molded by the primary molding die in a state in which the surplus part for equalizing the density is provided, and the primary compression molding body obtained in the primary compression molding step are obtained by the secondary molding die. since comprises a desired shape and a secondary compression molding step of compression molding the dimensions as well as compressing the excess meat portion can be the density of the whole can be stably a quality higher it is well homogenized There are effects such as.
[Brief description of the drawings]
FIGS. 1A to 1E are cross-sectional views sequentially showing a primary compression molding process according to an embodiment of the present invention.
FIGS. 2A to 2D are cross-sectional views sequentially illustrating a secondary compression molding process according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the concept of one embodiment of the present invention.
FIG. 4 is a perspective view showing an example of a green compact that can be molded according to the present invention.
FIG. 5A is a perspective view showing an example of a green compact, and FIG. 5B is a cross-sectional view.
FIG. 6 is a cross-sectional view showing an example of a conventional green compact forming method in the order of steps.
[Explanation of symbols]
2A ... green compact, 4a ... surplus part, 20 ... die (primary molding die),
30 ... Die (secondary mold), P ... Raw material powder.

Claims (5)

圧縮方向に厚さの異なる厚肉部と薄肉部とを有する圧粉体を成形する方法であって、
一次成形型による一次圧縮成形工程と、この次の、二次成形型による二次圧縮成形工程との2つの工程を備えており、
前記一次圧縮成形行程では、前記厚肉部に、反圧縮方向に突出して圧粉体の密度を均一化させる圧粉された余肉部を付与した状態に、原料粉末の全体を圧縮成形し、
前記二次圧縮成形行程では、前記一次圧縮成形工程で得られた一次圧縮成形体を、前記余肉部を潰しながら圧縮するとともに所望の形状ならびに寸法の圧粉体を得ることを特徴とする圧粉体の成形方法。
A method of forming a green compact having a thick part and a thin part having different thicknesses in the compression direction,
It has two processes, a primary compression molding process with a primary mold and a secondary compression molding process with a secondary mold,
In the primary compression molding step, the whole raw material powder is compression-molded in a state in which the thick-walled portion is provided with a compacted surplus portion that protrudes in the anti-compression direction and uniforms the density of the green compact,
In the secondary compression molding step, the primary compression molded body obtained in the primary compression molding step is compressed while crushing the surplus portion, and a green compact having a desired shape and size is obtained. Powder molding method.
前記一次圧縮成形工程において、前記原料粉末を、当該原料粉末に基づく材質に青熱脆性が生じる温度より低温で、かつ常温よりも高温に加熱することを特徴とする請求項1に記載の圧粉体の成形方法。  2. The green compact according to claim 1, wherein, in the primary compression molding step, the raw material powder is heated to a temperature lower than a temperature at which blue brittleness occurs in a material based on the raw material powder and higher than a normal temperature. Body molding method. 前記二次圧縮成形工程において、前記一次圧縮成形体を、前記原料粉末に基づく材質に青熱脆性が生じる温度より低温で、かつ常温よりも高温に加熱することを特徴とする請求項1に記載の圧粉体の成形方法。  2. The secondary compression molding step, wherein the primary compression molded body is heated at a temperature lower than a temperature at which blue brittleness occurs in a material based on the raw material powder and higher than a room temperature. The green compact molding method. 前記一次圧縮成形工程において、前記原料粉末の潤滑手段として、前記一次成形型の型壁を潤滑剤で被覆することを特徴とする請求項1または2に記載の圧粉体の成形方法。  3. The green compact molding method according to claim 1 or 2, wherein in the primary compression molding step, a mold wall of the primary molding die is covered with a lubricant as a lubricating means for the raw material powder. 前記二次圧縮成形工程において、前記一次圧縮成形体の潤滑手段として、当該一次圧縮成形体もしくは前記二次成形型の型壁のうちの少なくとも一方を潤滑剤で被覆することを特徴とする請求項1または3に記載の圧粉体の成形方法。  The said secondary compression molding process WHEREIN: At least one of the said primary compression molding body or the mold wall of the said secondary molding die is coat | covered with a lubricant as a lubrication means of the said primary compression molding body. 4. A method for forming a green compact according to 1 or 3.
JP08796998A 1998-03-17 1998-03-17 Molding method of green compact Expired - Fee Related JP3957868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08796998A JP3957868B2 (en) 1998-03-17 1998-03-17 Molding method of green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08796998A JP3957868B2 (en) 1998-03-17 1998-03-17 Molding method of green compact

Publications (2)

Publication Number Publication Date
JPH11267893A JPH11267893A (en) 1999-10-05
JP3957868B2 true JP3957868B2 (en) 2007-08-15

Family

ID=13929687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08796998A Expired - Fee Related JP3957868B2 (en) 1998-03-17 1998-03-17 Molding method of green compact

Country Status (1)

Country Link
JP (1) JP3957868B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0102102D0 (en) * 2001-06-13 2001-06-13 Hoeganaes Ab High density stainless steel products and method of preparation thereof
JP4537762B2 (en) * 2004-05-13 2010-09-08 住友電工焼結合金株式会社 Method for manufacturing stepped green compact, manufacturing apparatus, and stepped green compact
JP5539159B2 (en) * 2010-11-04 2014-07-02 アイダエンジニアリング株式会社 High density molding method and high density molding apparatus for mixed powder.
WO2012077750A1 (en) * 2010-12-08 2012-06-14 アイダエンジニアリング株式会社 Method for manufacturing high-strength sinter-molded compact, and device for manufacturing same
CN203253928U (en) * 2012-04-12 2013-10-30 会田工程技术有限公司 Mixed powder high-density forming device
EP2837443A4 (en) * 2012-04-12 2016-01-13 Aida Eng Ltd High-density molding device and high-density molding method for mixed powder
US20150132175A1 (en) * 2012-04-23 2015-05-14 Aida Engineering, Ltd. High-density molding device and high-density molding method for mixed powder
CN103418787A (en) * 2012-04-23 2013-12-04 会田工程技术有限公司 Method for high-density molding of mixed powder, and device for high-density molding
US20150118511A1 (en) * 2012-04-23 2015-04-30 Aida Engineering, Ltd. Mixed powder high-density molding method, mixed powder high-density molding system, and high-density three-layer green compact
WO2013161745A1 (en) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
CN110523974B (en) * 2019-09-04 2021-05-11 马鞍山市安工大智能装备技术研究院有限公司 Secondary pressing production device for primary finished product of powdery material

Also Published As

Publication number Publication date
JPH11267893A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3957868B2 (en) Molding method of green compact
TW201416149A (en) High-density molding device and high-density molding method for mixed powder
US2669491A (en) Self-aligning powdered metal bearing
JP2008527166A (en) Method for producing surface densified powder metal parts
WO2016147925A1 (en) Method for manufacturing sintered bearing, and sintered bearing
TW201417911A (en) High-density molding device and high-density molding method for mixed powder
JP2000087104A (en) Method for forming green compact
CN104583443A (en) Machine component made of ferrous sintered metal
US6365094B1 (en) Lubricated die
US5609128A (en) Tappet in an internal combustion engine and a method of manufacturing it
KR200404467Y1 (en) Sliding bearing with solid-state sintered layer
KR100644198B1 (en) Sliding bearing comprising of segment sintered material
US2700209A (en) Process of making self-aligning powdered metal bearings
JP2000199002A (en) Compacting method of powder for powder metallurgical processing
KR100707694B1 (en) Sliding bearing with solid-state sintered layer
KR20150011852A (en) Device for high-density molding and method for high-density molding of mixed powder
JP6456733B2 (en) Sintered bearing
JP2004018958A (en) Method of producing sintered machine parts
JP3552145B2 (en) Compacting method
JP6595079B2 (en) Sintered bearing and power transmission mechanism provided with the same
JP3763796B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxiality accuracy
JPS5825721B2 (en) Mold for powder molding
JP2016172900A (en) Method for manufacturing sintered bearing, and sintered bearing
JP3763797B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxial accuracy of inner and outer circumference
JP2809288B2 (en) Molding method for long cylindrical green compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050905

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees