JP3684634B2 - Antibacterial composition and method for producing the same - Google Patents

Antibacterial composition and method for producing the same Download PDF

Info

Publication number
JP3684634B2
JP3684634B2 JP27079995A JP27079995A JP3684634B2 JP 3684634 B2 JP3684634 B2 JP 3684634B2 JP 27079995 A JP27079995 A JP 27079995A JP 27079995 A JP27079995 A JP 27079995A JP 3684634 B2 JP3684634 B2 JP 3684634B2
Authority
JP
Japan
Prior art keywords
antibacterial
quaternary ammonium
water
ion
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27079995A
Other languages
Japanese (ja)
Other versions
JPH09110607A (en
Inventor
正樹 葉山
顕子 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rasa Industries Ltd
Original Assignee
Rasa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rasa Industries Ltd filed Critical Rasa Industries Ltd
Priority to JP27079995A priority Critical patent/JP3684634B2/en
Publication of JPH09110607A publication Critical patent/JPH09110607A/en
Application granted granted Critical
Publication of JP3684634B2 publication Critical patent/JP3684634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種々の細菌およびカビに対して抗菌作用を有する新規な抗菌性組成物およびその製造方法に関し、更に詳しくは、熱や各種溶剤に対して安定であることから、各種結合剤と混合した抗菌性結合剤として、あるいは繊維、紙、フィルム、プラスチック、インキ等に担持させて抗菌性加工物として使用することが可能な抗菌性組成物とその製造方法に関するものである。
【0002】
【従来の技術】
従来、抗菌性化合物としては、塩化ベンザルコニウムや塩化セチルピリジニウム等の第4級アンモニウム塩系、エタノールやイソプロパノール等のアルコール系、ホルマリンやグリオキザール等のアルデヒド系、石炭酸、クレゾールあるいはキシレノール等のフェノール系、ソルビン酸や安息香酸等のカルボン酸系、クロルヘキシジンやn−ドデシルグアニジンアセテート等のグアニジン系、その他多くが知られている。
【0003】
【発明の解決しようとする課題】
しかしながら、上述した抗菌性化合物は、耐熱性に乏しく、蒸気圧も比較的高く、また、水やその他の溶剤への溶解度が高い。これらの理由で、樹脂や繊維などへの練り込みの様な加熱を必要とする場合や、開放空間や流水中に於いて長時間にわたって抗菌効果を持続させようとする場合に使用するには不適当であった。
【0004】
本発明は、このような従来の問題点に着目してなされたもので、従来の抗菌性化合物の耐熱性を高めるとともに蒸気圧ならびに溶解度を低くすることにより、樹脂や繊維等への練り込みが可能で、抗菌効果の持続性が高い抗菌性組成物とその製造方法を提供することを目的としてなされたものである。
【0005】
【課題を解決するための手段】
上記目的達成のため、本発明者らは鋭意研究の結果、抗菌作用を有する第4級アンモニウムイオンを二酸化ケイ素および酸化亜鉛とともに無定形複合物とした組成物が、抗菌作用を保持し、しかも熱安定性や溶剤に対する安定性が向上することを見いだし、本発明に至ったものである。
【0006】
すなわち本発明の抗菌性組成物は、抗菌作用を有する第4級アンモニウムイオンを二酸化ケイ素および酸化亜鉛とともに複合化した無定形複合物からなることを特徴とするものである。
【0007】
上記した本発明の抗菌性組成物は、抗菌作用を有する第4級アンモニウムイオンを含む水溶液系においてケイ酸ナトリウムと水溶性亜鉛塩とを反応させることによって生じるゲル状物を、分離、水洗し、乾燥させることにより、容易に製造することができる。
【0008】
【発明の実施の形態】
本発明における抗菌作用を有する第4級アンモニウムイオンは、窒素原子に4個の炭素結合が直結してなる1価の陽イオンであり、例えば、アルキルトリメチルアンモニウムイオン、ジアルキルジメチルエチルアンモニウムイオン、アルキルジメチルエチルアンモニウムイオン、アルキルジメチルベンジルアンモニウムイオン、アルキルピリジニウムイオン、アルキルキノリウムイオン、アルキルアミドプロピルジメチルベンジルアンモニウムイオン、ベンジルジメチルp−(1,1,3,3−テトラメチルブチルフェノキシ)エチルアンモニウムイオンなどが挙げられる。これらは通常、塩化物、臭化物、ヨウ化物等の第4級アンモニウム塩により供給される。これらの第4級アンモニウムイオンは1種だけでなく数種を二酸化ケイ素および酸化亜鉛とともに無定形複合物としてもよい。
【0009】
無定型複合物の製造に際して使用されるケイ酸ナトリウムとしては、工業的に大量に生産されている水ガラスが挙げられる。一方、水溶性亜鉛塩としては、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛などが使用できる。
【0010】
本発明において、第4級アンモニウムイオンが二酸化ケイ素および酸化亜鉛とともに複合化して無定形複合物となる反応は次の様に考えられる。すなわち、ケイ酸ナトリウムと水溶性亜鉛塩との反応は複分解反応と考えられ、この反応により二酸化ケイ素と酸化亜鉛のゲル状物が生成する。この時、反応系内に存在する第4級アンモニウムイオンがゲル骨格内にイオンあるいはケイ酸塩の状態で取り込まれて複合化される。
【0011】
本発明の抗菌性組成物の製造に当たっては、第4級アンモニウム塩を、ケイ酸ナトリウム水溶液、もしくは硫酸亜鉛、硝酸亜鉛などの亜鉛塩の水溶液のいづれかに共存させ、これら2つの水溶液を混合して反応させる。あるいはまた、第4級アンモニウム塩水溶液へケイ酸ナトリウム水溶液と硫酸亜鉛、硝酸亜鉛などの亜鉛塩の水溶液を同時に別々に加えて反応させてもよい。こうして得られるゲル状物を分離、水洗し反応副生物であるナトリウム塩を除去した後、乾燥させることにより、第4級アンモニウムイオンが二酸化ケイ素および酸化亜鉛とともに複合化した無定形複合物すなわち本発明の抗菌性組成物が得られる。
【0012】
なお、上記の製造方法において、第4級アンモニウムイオンをケイ酸ナトリウム水溶液に共存させる場合は、供給源となる第4級アンモニウム塩を陰イオン交換樹脂等に通して予めアニオン種を除去するか、水酸化ナトリウムなどを加えて水酸化物状態にすることが必要である。
【0013】
【実施例】
次に実施例により本発明を詳細に説明するが、これらの本実施例は単に例示の為に記すものであり、本発明がこれらによって制限されるものではない。
【0014】
なお、実施例における抗菌試験は、寒天希釈法により、種々の菌に対する最小発育阻止濃度(以下MICと略記する)を測定した。測定は以下の様な方法で行なった。
【0015】
滅菌シャーレに、供試品粉末の含有濃度が異なる寒天培地を作製する。これらの培地各々に一定量の菌液をのせ、30℃で培養する。そして、菌の状態の変化(増殖や減少)がなくなれば、完全に発育が阻止された培地の中から供試品含有濃度の最小の濃度(MIC)を求める。
【0016】
試験菌種として、Staphylococcus aureus FDA 209P(黄色ブドウ球菌)、Escherichia coli IFO 3044 (大腸菌)、Klebsiella pneumoniae IFO 13277 (クレブシエラ)、Pseudomonas aeruginosa IFO 3452 (緑膿菌)、Aspergillus niger IFO 6341(黒麹菌)、Penicillium citrinum IFO 6347 (青カビ)、Trichophyton mentagrophytes IFO 5466(白癬菌)を使用した。
【0017】
また、得られた複合物が無定形であることを確認するため粉末X線回折、さらに熱安定性向上の確認のため示差熱/熱天秤(以下DTA−TGと略記する)測定を行った。
【0018】
第4級アンモニウム含有量は、元素分析により得られた総窒素含有量から換算して求めた。
【0019】
実施例1
抗菌作用を有する第4級アンモニウムイオンとしてアルキルベンジルジメチルアンモニウムイオン(アルキル基:C8 17〜C1837)を、ケイ酸ナトリウムは水ガラス3号を、水溶性亜鉛塩は硫酸亜鉛ZnSO4 ・7H2 Oをそれぞれ使用した。
【0020】
アルキルベンジルジメチルアンモニウムクロリド(塩化ベンザルコニウム)9.0gと硫酸亜鉛40gを水300mlに溶解した。一方、水ガラス3号は100gを300mlの水で希釈した。これら2つの水溶液を混合し、生成したゲル状物を濾別、水洗後120℃で乾燥させることにより、本発明の抗菌性組成物を得た。アルキルベンジルジメチルアンモニウムイオンの含有量は14.9%であった。
【0021】
実施例2
抗菌作用を有する第4級アンモニウムイオンとしてセチルトリメチルアンモニウムイオンを、ケイ酸ナトリウムは水ガラス3号を、水溶性亜鉛塩は硫酸亜鉛をそれぞれ使用した。
【0022】
セチルトリメチルアンモニウムブロミド10gと硫酸亜鉛38gを水300mlに溶解した。以下、実施例1と同様に行って、本発明の抗菌性組成物を得た。セチルトリメチルアンモニウムイオンの含有量は16.1%であった。
【0023】
実施例3
抗菌作用を有する第4級アンモニウムイオンとしてセチルピリジウムイオンを、ケイ酸ナトリウムは水ガラス2号を、水溶性亜鉛塩は硝酸亜鉛Zn(NO3 2 ・6H2 Oを使用した。
【0024】
セチルピリジニウムクロリド12gを水200mlに溶解した。この水溶液を撹拌しながら、水ガラス2号100gを200mlの水で希釈した溶液と硝酸亜鉛47gを含む200mlの水溶液を別々に同時に加えた。生成したゲル状物を濾別、水洗後120℃で乾燥させることにより、本発明の抗菌性組成物を得た。セチルピリジウムイオンの含有量は17.8%であった。
【0025】
比較例1(二酸化ケイ素と酸化亜鉛のみの無定形複合物)
水ガラス3号200gを水600mlで希釈し、硫酸亜鉛84gを含む600mlの水溶液と混合し、得られたゲル状物を濾別、水洗後120℃で乾燥させることにより、二酸化ケイ素と酸化亜鉛のみからなる無定形複合物を得た。
【0026】
比較例2(第4級アンモニウムイオンを単に吸着させた二酸化ケイ素と酸化亜鉛の無定形複合物)
比較例1で得られた二酸化ケイ素と酸化亜鉛のみの無定形複合物50gを乳鉢で150μm以下程度に粉砕し、アルキルベンジルジメチルアンモニウムクロリド(塩化ベンザルコニウム)9.0gを溶解した水500gへ加え3時間撹拌後、固相を濾別、水洗後120℃で乾燥させることにより、アルキルベンジルジメチルアンモニウムイオンを単に吸着させただけの二酸化ケイ素と酸化亜鉛の無定形複合物を得た。アルキルベンジルジメチルアンモニウムイオンの含有量は4.1%であった。
【0027】
抗菌試験:上記実施例1、2、3で得られた本発明の抗菌性組成物および比較例1、2で得られた組成物について、抗菌試験を行った結果を表1に示す。MIC値の小さなものほど抗菌力が強いと言えるが、実施例1、2、3で得られた本発明の抗菌性組成物は、比較例1の二酸化ケイ素と酸化亜鉛のみの無定形複合物あるいは比較例2の抗菌作用を有する第4級アンモニウムイオンをただ単に吸着させただけの二酸化ケイ素と酸化亜鉛の無定形複合物と比べて、はるかに優れているのが判る。
【0028】

Figure 0003684634
【0029】
粉末X線回折:上記実施例1、2、3、および比較例1、2で得られた組成物がいづれも無定形であることが粉末X線回折により確認された。一例として、実施例1で得られた本発明の抗菌性組成物の粉末X線回折パタ−ンを図1に示す。
【0030】
DTA−TG測定:図2に示す実施例1で得られたアルキルベンジルジメチルアンモニウムイオンと二酸化ケイ素および酸化亜鉛の無定形複合物のDTA−TG曲線は、120℃付近までに吸着水による重量減少が観られ、さらにアルキルベンジルジメチルアンモニウムイオンによると思われる重量減少を伴う330および350℃付近における発熱ピ−クが観られる。図3のアルキルベンジルジメチルアンモニウムクロリドのDTA−TG曲線と比べると、重量減少が始まる温度が高く、また広い領域で徐々に減少することから、熱安定性が向上していることが確認できる。一方、比較例2の抗菌作用を有する第4級アンモニウムイオンをただ単に吸着させただけの二酸化ケイ素と酸化亜鉛の無定形複合物は、図4に示したように、330℃付近に小さな発熱ピ−クが観られるものの、それに伴う明確な且つ吸着水と区別できる重量減少は観られず、熱安定性向上は確認できない。
【0031】
表2に、実施例1、2、3で得られた本発明の抗菌性組成物および各実施例で使用した第4級アンモニウム塩のDTA−TG測定の結果を、第4級アンモニウムイオンに基づく重量減少を伴う吸熱あるいは発熱ピ−クの温度により示した。実施例1、2、3で得られた本発明の抗菌性組成物の第4級アンモニウムイオンに基づく重量減少を伴う吸熱あるいは発熱ピ−クの温度が、各実施例で使用した第4級アンモニウム塩と比較して高温で認められることにより、熱安定性が向上していることが判る。
【0032】
Figure 0003684634
【0033】
【発明の効果】
以上説明したように、本発明の抗菌性組成物は、従来の有機系抗菌剤と比較して、熱安定性が高く、各種溶剤に難溶であるため、単に粉体や粒状物として用いられるだけでなく、各種プラスチック、紙、繊維などの母材に添加、加工することにより、母材に抗菌性能を付与することができるなど、その応用範囲は非常に広いことが期待できる。
【図面の簡単な説明】
【図1】 実施例1で得られたアルキルベンジルジメチルアンモニウムイオンと二酸化ケイ素および酸化亜鉛の複合物の粉末X線回折パタ−ンである。
【図2】 実施例1で得られたアルキルベンジルジメチルアンモニウムイオンを複合化した二酸化ケイ素と酸化亜鉛の複合物のDTA−TG曲線である。
【図3】 アルキルベンジルジメチルアンモニウムクロリド(塩化ベンザルコニウム)のDTA−TG曲線である。
【図4】 比較例2で得られたアルキルベンジルジメチルアンモニウムイオンを単に吸着させただけの二酸化ケイ素と酸化亜鉛の複合物のDTA−TG曲線である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel antibacterial composition having an antibacterial action against various bacteria and fungi and a method for producing the same, and more specifically, since it is stable against heat and various solvents, it is mixed with various binders. The present invention relates to an antibacterial composition that can be used as an antibacterial binder, or supported on fiber, paper, film, plastic, ink, etc. and used as an antibacterial processed product, and a method for producing the same.
[0002]
[Prior art]
Conventional antibacterial compounds include quaternary ammonium salts such as benzalkonium chloride and cetylpyridinium chloride, alcohols such as ethanol and isopropanol, aldehydes such as formalin and glyoxal, and phenols such as carboxylic acid, cresol and xylenol. Also known are carboxylic acids such as sorbic acid and benzoic acid, guanidines such as chlorhexidine and n-dodecylguanidine acetate, and many others.
[0003]
[Problem to be Solved by the Invention]
However, the above-described antibacterial compound has poor heat resistance, has a relatively high vapor pressure, and has high solubility in water and other solvents. For these reasons, it is not suitable for use when heating such as kneading into resin or fiber is required, or when antibacterial effect is to be maintained for a long time in open space or running water. It was appropriate.
[0004]
The present invention has been made paying attention to such conventional problems, and by increasing the heat resistance of conventional antibacterial compounds and lowering the vapor pressure and solubility, it can be kneaded into resins and fibers. The present invention has been made for the purpose of providing an antibacterial composition capable of having high antibacterial effect and a method for producing the same.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted intensive research. As a result, a composition comprising an quaternary ammonium ion having an antibacterial action together with silicon dioxide and zinc oxide as an amorphous composite retains the antibacterial action, and further, It has been found that stability and stability to solvents are improved, and the present invention has been achieved.
[0006]
That is, the antibacterial composition of the present invention is characterized by comprising an amorphous composite in which a quaternary ammonium ion having an antibacterial action is combined with silicon dioxide and zinc oxide.
[0007]
The antibacterial composition of the present invention described above separates and rinses a gel-like substance produced by reacting sodium silicate with a water-soluble zinc salt in an aqueous solution system containing a quaternary ammonium ion having an antibacterial action, It can be easily manufactured by drying.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The quaternary ammonium ion having an antibacterial action in the present invention is a monovalent cation in which four carbon bonds are directly connected to a nitrogen atom. For example, alkyltrimethylammonium ion, dialkyldimethylethylammonium ion, alkyldimethyl Examples include ethylammonium ion, alkyldimethylbenzylammonium ion, alkylpyridinium ion, alkylquinolium ion, alkylamidopropyldimethylbenzylammonium ion, benzyldimethyl p- (1,1,3,3-tetramethylbutylphenoxy) ethylammonium ion. Can be mentioned. These are usually supplied by quaternary ammonium salts such as chloride, bromide, iodide. These quaternary ammonium ions may be used as amorphous composites together with silicon dioxide and zinc oxide.
[0009]
Examples of the sodium silicate used in the production of the amorphous composite include water glass that is industrially produced in large quantities. On the other hand, zinc sulfate, zinc nitrate, zinc acetate and the like can be used as the water-soluble zinc salt.
[0010]
In the present invention, a reaction in which a quaternary ammonium ion is combined with silicon dioxide and zinc oxide to form an amorphous composite is considered as follows. That is, the reaction between sodium silicate and a water-soluble zinc salt is considered to be a metathesis reaction, and this reaction produces a gel-like product of silicon dioxide and zinc oxide. At this time, quaternary ammonium ions present in the reaction system are incorporated into the gel skeleton in the form of ions or silicates and are combined.
[0011]
In producing the antibacterial composition of the present invention, a quaternary ammonium salt is allowed to coexist with either an aqueous solution of sodium silicate or an aqueous solution of zinc salt such as zinc sulfate or zinc nitrate, and these two aqueous solutions are mixed. React. Alternatively, a sodium silicate aqueous solution and an aqueous solution of a zinc salt such as zinc sulfate or zinc nitrate may be separately added to the quaternary ammonium salt aqueous solution and reacted. The gel-like material thus obtained is separated, washed with water to remove the sodium salt which is a reaction byproduct, and then dried to form an amorphous composite in which quaternary ammonium ions are complexed with silicon dioxide and zinc oxide, ie, the present invention. An antibacterial composition is obtained.
[0012]
In the above production method, when a quaternary ammonium ion is allowed to coexist in a sodium silicate aqueous solution, a quaternary ammonium salt as a supply source is passed through an anion exchange resin or the like to remove anion species in advance, It is necessary to add sodium hydroxide or the like to a hydroxide state.
[0013]
【Example】
EXAMPLES Next, although an Example demonstrates this invention in detail, these these Examples are described only for illustration, This invention is not restrict | limited by these.
[0014]
In the antibacterial test in Examples, the minimum growth inhibitory concentration (hereinafter abbreviated as MIC) for various bacteria was measured by the agar dilution method. The measurement was performed by the following method.
[0015]
Agar media with different concentrations of the sample powder are prepared in a sterile petri dish. A certain amount of the bacterial solution is placed on each of these media and cultured at 30 ° C. Then, if there is no change in the state of the bacteria (growth or decrease), the minimum concentration (MIC) of the concentration of the test sample is determined from the medium in which growth has been completely inhibited.
[0016]
Test species include Staphylococcus aureus FDA 209P (Staphylococcus aureus), Escherichia coli IFO 3044 (E. coli), Klebsiella pneumoniae IFO 13277 (Klebsiella), Pseudomonas aeruginosa IFO 3452 (Pseudomonas aeruginosa), Aspergillus niger IFO 6341 Penicillium citrinum IFO 6347 (blue mold) and Trichophyton mentagrophytes IFO 5466 (ringworm) were used.
[0017]
In addition, powder X-ray diffraction was performed to confirm that the obtained composite was amorphous, and differential heat / thermobalance (hereinafter abbreviated as DTA-TG) measurement was performed to confirm thermal stability.
[0018]
The quaternary ammonium content was calculated from the total nitrogen content obtained by elemental analysis.
[0019]
Example 1
Alkylbenzyldimethylammonium ions (alkyl groups: C 8 H 17 to C 18 H 37 ) as quaternary ammonium ions having antibacterial action, sodium silicate as water glass No. 3, and water-soluble zinc salt as zinc sulfate ZnSO 4 • 7H 2 O was used.
[0020]
9.0 g of alkylbenzyldimethylammonium chloride (benzalkonium chloride) and 40 g of zinc sulfate were dissolved in 300 ml of water. On the other hand, 100 g of water glass No. 3 was diluted with 300 ml of water. These two aqueous solutions were mixed, and the resulting gel-like material was filtered off, washed with water and dried at 120 ° C. to obtain the antibacterial composition of the present invention. The content of alkylbenzyldimethylammonium ions was 14.9%.
[0021]
Example 2
Cetyltrimethylammonium ions were used as quaternary ammonium ions having antibacterial action, water glass 3 was used as sodium silicate, and zinc sulfate was used as the water-soluble zinc salt.
[0022]
10 g of cetyltrimethylammonium bromide and 38 g of zinc sulfate were dissolved in 300 ml of water. Then, it carried out similarly to Example 1 and obtained the antimicrobial composition of this invention. The content of cetyltrimethylammonium ion was 16.1%.
[0023]
Example 3
Cetylpyridium ion was used as a quaternary ammonium ion having antibacterial action, water glass No. 2 was used as sodium silicate, and zinc nitrate Zn (NO 3 ) 2 .6H 2 O was used as a water-soluble zinc salt.
[0024]
12 g of cetylpyridinium chloride was dissolved in 200 ml of water. While stirring this aqueous solution, a solution obtained by diluting 100 g of water glass No. 2 with 200 ml of water and 200 ml of an aqueous solution containing 47 g of zinc nitrate were added simultaneously and separately. The produced gel-like material was separated by filtration, washed with water and dried at 120 ° C. to obtain the antibacterial composition of the present invention. The content of cetyl pyridium ion was 17.8%.
[0025]
Comparative Example 1 (Amorphous composite of only silicon dioxide and zinc oxide)
200 g of water glass No. 3 is diluted with 600 ml of water, mixed with 600 ml of an aqueous solution containing 84 g of zinc sulfate, and the resulting gel is separated by filtration, washed with water and dried at 120 ° C. to obtain only silicon dioxide and zinc oxide. An amorphous composite consisting of
[0026]
Comparative Example 2 (Amorphous composite of silicon dioxide and zinc oxide simply adsorbing quaternary ammonium ions)
50 g of an amorphous composite containing only silicon dioxide and zinc oxide obtained in Comparative Example 1 is pulverized to about 150 μm or less in a mortar and added to 500 g of water in which 9.0 g of alkylbenzyldimethylammonium chloride (benzalkonium chloride) is dissolved. After stirring for 3 hours, the solid phase was separated by filtration, washed with water and dried at 120 ° C. to obtain an amorphous composite of silicon dioxide and zinc oxide in which alkylbenzyldimethylammonium ions were simply adsorbed. The content of alkylbenzyldimethylammonium ions was 4.1%.
[0027]
Antibacterial test: Table 1 shows the results of the antibacterial test of the antibacterial compositions of the present invention obtained in Examples 1, 2, and 3 and the compositions obtained in Comparative Examples 1 and 2. It can be said that the smaller the MIC value, the stronger the antibacterial activity, but the antibacterial composition of the present invention obtained in Examples 1, 2, and 3 is an amorphous composite of only silicon dioxide and zinc oxide of Comparative Example 1 or It can be seen that it is far superior to the amorphous composite of silicon dioxide and zinc oxide which is simply adsorbed with the quaternary ammonium ion having antibacterial action of Comparative Example 2.
[0028]
Figure 0003684634
[0029]
Powder X-ray diffraction: It was confirmed by powder X-ray diffraction that the compositions obtained in Examples 1, 2, 3 and Comparative Examples 1 and 2 were all amorphous. As an example, the powder X-ray diffraction pattern of the antibacterial composition of the present invention obtained in Example 1 is shown in FIG.
[0030]
DTA-TG measurement: The DTA-TG curve of the amorphous complex of alkylbenzyldimethylammonium ion, silicon dioxide and zinc oxide obtained in Example 1 shown in FIG. In addition, an exothermic peak at around 330 and 350 ° C. with a weight loss likely due to alkylbenzyldimethylammonium ions is observed. Compared with the DTA-TG curve of the alkylbenzyldimethylammonium chloride in FIG. 3, the temperature at which weight reduction begins is high, and since it gradually decreases over a wide region, it can be confirmed that the thermal stability is improved. On the other hand, the amorphous composite of silicon dioxide and zinc oxide in which the quaternary ammonium ion having antibacterial action of Comparative Example 2 is simply adsorbed has a small exothermic temperature around 330 ° C. as shown in FIG. -Although a stagnation is observed, there is no clear weight loss that can be distinguished from adsorbed water, and an improvement in thermal stability cannot be confirmed.
[0031]
Table 2 shows the results of DTA-TG measurement of the antibacterial composition of the present invention obtained in Examples 1, 2, and 3 and the quaternary ammonium salt used in each example, based on the quaternary ammonium ions. It is indicated by the temperature of the endothermic or exothermic peak with weight loss. The temperature of the endothermic or exothermic peak with weight reduction based on the quaternary ammonium ion of the antibacterial composition of the present invention obtained in Examples 1, 2, and 3 is the quaternary ammonium used in each Example. It can be seen that the thermal stability is improved by being observed at a higher temperature than the salt.
[0032]
Figure 0003684634
[0033]
【The invention's effect】
As described above, the antibacterial composition of the present invention is higher in thermal stability than conventional organic antibacterial agents and is hardly soluble in various solvents, so that it is simply used as a powder or a granular material. In addition, it can be expected to have a very wide range of applications, such as adding antibacterial performance to the base material by adding and processing the base material such as various plastics, paper, and fibers.
[Brief description of the drawings]
1 is a powder X-ray diffraction pattern of a composite of alkylbenzyldimethylammonium ion, silicon dioxide and zinc oxide obtained in Example 1. FIG.
2 is a DTA-TG curve of a composite of silicon dioxide and zinc oxide obtained by complexing alkylbenzyldimethylammonium ion obtained in Example 1. FIG.
FIG. 3 is a DTA-TG curve of alkylbenzyldimethylammonium chloride (benzalkonium chloride).
4 is a DTA-TG curve of a composite of silicon dioxide and zinc oxide obtained by simply adsorbing the alkylbenzyldimethylammonium ion obtained in Comparative Example 2. FIG.

Claims (2)

抗菌作用を有する第4級アンモニウムイオンを二酸化ケイ素および酸化亜鉛とともに複合化した無定形複合物からなることを特徴とする抗菌性組成物。An antibacterial composition comprising an amorphous composite in which quaternary ammonium ions having antibacterial action are combined with silicon dioxide and zinc oxide. 抗菌作用を有する第4級アンモニウムイオンを含む水溶液系においてケイ酸ナトリウムと水溶性亜鉛塩とを反応させることによって生じるゲル状物を、分離、水洗し、乾燥させることを特徴とする抗菌性組成物の製造方法。An antibacterial composition characterized by separating, washing, and drying a gel-like substance produced by reacting sodium silicate with a water-soluble zinc salt in an aqueous solution system containing a quaternary ammonium ion having an antibacterial action Manufacturing method.
JP27079995A 1995-10-19 1995-10-19 Antibacterial composition and method for producing the same Expired - Fee Related JP3684634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27079995A JP3684634B2 (en) 1995-10-19 1995-10-19 Antibacterial composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27079995A JP3684634B2 (en) 1995-10-19 1995-10-19 Antibacterial composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09110607A JPH09110607A (en) 1997-04-28
JP3684634B2 true JP3684634B2 (en) 2005-08-17

Family

ID=17491182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27079995A Expired - Fee Related JP3684634B2 (en) 1995-10-19 1995-10-19 Antibacterial composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3684634B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239110A (en) * 1999-02-19 2000-09-05 Kansai Research Institute Functional inorganic particle and its production
JP2001026504A (en) * 1999-07-13 2001-01-30 Mizusawa Ind Chem Ltd Sustained release antibacterial agent
WO2005084436A1 (en) * 2004-02-05 2005-09-15 Quick-Med Technologies, Inc. Silicates and other oxides with bonded antimicrobial polymers
JP2009126807A (en) * 2007-11-21 2009-06-11 Sanyo Chem Ind Ltd Powdery antimicrobial and mildewproof agent
CN105062175B (en) * 2015-08-10 2017-06-16 广西经正科技开发有限责任公司 A kind of anti-fouling biological attachment agent and anti-fouling biological attachment coating
JP7378766B2 (en) * 2019-05-21 2023-11-14 富士化学株式会社 Method for producing organic-inorganic composite particles

Also Published As

Publication number Publication date
JPH09110607A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
CN105494429B (en) Antibacterial mildew preventive, preparation method thereof and antibacterial mildew preventive method
CA2628234C (en) Functional nanomaterials with antibacterial and antiviral activity
EP2035398B1 (en) Immobilized 1,2-benzisothiazolin-3-one
CN105061632B (en) The preparation method and bacteriostasis property of a kind of curdlan quaternary ammonium salt
CN101508863B (en) Nano-hydroxyapatite antimicrobial paint and method for producing the same
JP3684634B2 (en) Antibacterial composition and method for producing the same
JPH062570B2 (en) Antibacterial agent
JP3218605B2 (en) Antibacterial phosphate intercalation compound and method for producing the same
JP3525523B2 (en) Antibacterial agent and method for producing the same
JPH1025206A (en) Antibacterial composition and its production
KR20180045421A (en) Antibiotic compound and manufacturing method thereof
JP3243814B2 (en) Method for producing antibacterial phosphate intercalation compound
JP3293153B2 (en) Antimicrobial agent and method for producing the same
JP2559125B2 (en) Method for producing antibacterial zeolite
JP6941871B2 (en) Antibacterial agent and its manufacturing method
JP4052526B2 (en) Antibacterial resin
RU2404988C2 (en) Functional nanomaterials with antibacterial and antiviral activity
JPH06157014A (en) Antimicrobial pigment
JP3205968B2 (en) Antibacterial phosphate intercalation compound
WO2022168746A1 (en) Metal-containing colloidal silica and manufacturing method therefor
JPH0742101B2 (en) Submicron type A zeolite and method for producing the same
JPH02111709A (en) Powdery antibacterial and antimycotic agent and production thereof
JP7421216B2 (en) Composite materials and their manufacturing methods
JP2000247805A (en) Inorganic composition having antibacterial and mildew resistant activity, and resin composition having the same activity
JP3579636B2 (en) Manufacturing method of antibacterial agent for ceramic products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees