JP2559125B2 - Method for producing antibacterial zeolite - Google Patents

Method for producing antibacterial zeolite

Info

Publication number
JP2559125B2
JP2559125B2 JP62324259A JP32425987A JP2559125B2 JP 2559125 B2 JP2559125 B2 JP 2559125B2 JP 62324259 A JP62324259 A JP 62324259A JP 32425987 A JP32425987 A JP 32425987A JP 2559125 B2 JP2559125 B2 JP 2559125B2
Authority
JP
Japan
Prior art keywords
zeolite
antibacterial
antibacterial zeolite
less
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62324259A
Other languages
Japanese (ja)
Other versions
JPH01164721A (en
Inventor
善次 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAGIWARA GIKEN KK
Kanebo Ltd
Original Assignee
HAGIWARA GIKEN KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAGIWARA GIKEN KK, Kanebo Ltd filed Critical HAGIWARA GIKEN KK
Priority to JP62324259A priority Critical patent/JP2559125B2/en
Publication of JPH01164721A publication Critical patent/JPH01164721A/en
Application granted granted Critical
Publication of JP2559125B2 publication Critical patent/JP2559125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/405Compounds of aluminium containing combined silica, e.g. mica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は抗菌性ゼオライトの製造方法に関するもので
ある。さらに詳しくは本発明は分散性に優れ且つ純度の
高い抗菌性ゼオライトの新規な製造方法を提供するもの
である。併せて本発明は高分子体等の抗菌体目的で添加
される所謂フイラー(Filler)に適した微細粉末より成
る抗菌性ゼオライトの製造方法をも提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an antibacterial zeolite. More specifically, the present invention provides a novel method for producing an antibacterial zeolite having excellent dispersibility and high purity. In addition, the present invention also provides a method for producing an antibacterial zeolite composed of fine powder suitable for a so-called filler, which is added for the purpose of antibacterial body such as polymer.

殺菌ないし抗菌力を有するゼオライト所謂抗菌性ゼオ
ライトの製造に際しては、殺菌作用を有する金属イオン
とゼオライトのイオン交換反応が水溶液中で実施され
て、前者は後者の母体に結合保持されて調整されるのが
通例である。この場合、イオン交換反応の条件によって
は得られた抗菌性ゼオライトの固相に抗菌金属の塩基性
塩や酸化物等が析出し、これら不純物の存在は抗菌性ゼ
オライトの純度を低下させるばかりでなく、それの抗菌
性能を劣化させる現象が見られる。また水溶液相のイオ
ン交換反応で生成する抗菌性ゼオライト粒子は凝集しや
すい欠点がある。本発明者は抗菌性ゼオライトへの転換
に際して見られる上述の好ましくない現象を極力防止す
るため鋭意検討を加えた結果、調節された条件のもと
に、溶媒−水系のイオン交換反応の実施が分散性に富み
且つ純度の高い抗菌性ゼオライトを得るために非常に有
効なことを見出して本発明に到達した。以下に本発明の
細部を述べる。
In the production of a so-called antibacterial zeolite having sterilization or antibacterial activity, an ion exchange reaction between a metal ion having a bactericidal action and zeolite is carried out in an aqueous solution, and the former is bound and retained in the matrix of the latter to be prepared. Is customary. In this case, depending on the conditions of the ion exchange reaction, basic salts or oxides of antibacterial metal are deposited on the solid phase of the antibacterial zeolite obtained, and the presence of these impurities not only reduces the purity of the antibacterial zeolite. , A phenomenon that deteriorates its antibacterial performance is seen. Further, the antibacterial zeolite particles produced by the ion exchange reaction in the aqueous phase have a drawback that they are likely to aggregate. The present inventor has diligently studied to prevent the above-mentioned unfavorable phenomenon seen in the case of conversion to an antibacterial zeolite, and as a result, under the adjusted conditions, the solvent-water system ion exchange reaction is dispersed. The present invention has been completed by finding that it is very effective for obtaining an antibacterial zeolite having high properties and high purity. The details of the present invention will be described below.

銀、銅、亜鉛、錫、鉛、ビスマス、鉄、およびクロム
から成る抗菌金属群より選ばれた1種または2種以上の
金属イオンとゼオライトとをpH6以下のアルコール−水
混合液中で反応せしめて該ゼオライトのイオン交換容量
の理論値の90%以下が抗菌金属で置換されて成る抗菌性
ゼオライトの製造方法を本発明は提供するものである。
Reacting one or more metal ions selected from the group of antibacterial metals consisting of silver, copper, zinc, tin, lead, bismuth, iron, and chromium with zeolite in an alcohol-water mixture having a pH of 6 or less. The present invention provides a method for producing an antibacterial zeolite in which 90% or less of the theoretical value of the ion exchange capacity of the zeolite is replaced with an antibacterial metal.

本発明で素材として使用されるゼオライトは天然また
は合成品の何れでもよい。上記のゼオライトは一般式 で表わされる三次元構造を有する結晶質のアルミノ珪酸
塩である。本発明に於ては、イオン交換可能な金属Mを
上述の抗菌金属群より選ばれた1種または2種以上の金
属イオンと部分置換することになり抗菌性ゼオライトは
調製される。この場合前記ゼオライトの有するイオン交
換容量の理論値の90%以下に抗菌金属の置換率を抑える
ことが抗菌性ゼオライトの固相に塩基性塩等の不純物の
析出を防止するために重要である。前述の一般式中のx
およびyはそれぞれ金属酸化物および二酸化珪素の係数
を、さらにzはゼオライト中の結晶水の分子数を表わし
ている。
The zeolite used as a raw material in the present invention may be either natural or synthetic. The above zeolite has the general formula It is a crystalline aluminosilicate having a three-dimensional structure represented by. In the present invention, the ion-exchangeable metal M is partially replaced with one or more metal ions selected from the above-mentioned antibacterial metal group to prepare an antibacterial zeolite. In this case, it is important to suppress the substitution rate of the antibacterial metal to 90% or less of the theoretical value of the ion exchange capacity of the zeolite in order to prevent the precipitation of impurities such as basic salts on the solid phase of the antibacterial zeolite. X in the above general formula
And y represent the coefficients of metal oxide and silicon dioxide, respectively, and z represents the number of molecules of water of crystallization in the zeolite.

本発明に使用好適な天然ゼオライトとしてはチヤバサ
イト(EC5meq/g)、モルデナイト(EC2.6meq/g)、
エリオナイト(EC3.8meq/g)、クリノプチロライト
(EC2.6meq/g)等が例示される。但しECはゼオライト
の理論的な交換容量値を示す。一方合成ゼオライトとし
ては、例えばA型ゼオライト(EC7meq/g)、X型ゼオ
ライト(EC6.4meq/g)、Y型ゼオライト(EC5meq/
g)等が好ましいものとして挙げられる。例示した天然
ならびに合成ゼオライトは多孔質で比表面積も大で且つ
EC値も好ましい値を有している。本発明の抗菌性ゼオラ
イトを調製するに際しては、抗菌金属の保持量を既述し
たような理由で、ECの90%以下に抑える必要がある。
Suitable natural zeolites used in the present invention include chiabasite (EC5meq / g), mordenite (EC2.6meq / g),
Examples include erionite (EC3.8meq / g) and clinoptilolite (EC2.6meq / g). However, EC indicates the theoretical exchange capacity value of zeolite. On the other hand, as the synthetic zeolite, for example, A-type zeolite (EC7meq / g), X-type zeolite (EC6.4meq / g), Y-type zeolite (EC5meq / g)
g) and the like are preferred. The natural and synthetic zeolites exemplified are porous and have a large specific surface area and
The EC value also has a favorable value. When preparing the antibacterial zeolite of the present invention, it is necessary to suppress the antibacterial metal holding amount to 90% or less of EC for the reason described above.

さて前述の天然または合成ゼオライトは、微粉末の状
態で、既述の抗菌金属群より選ばれた1種または2種以
上の抗菌金属イオンと、pH6以下のアルコール−水混合
液中で反応せしめて該ゼオライトのECの90%以下が抗菌
金属で置換されて成る抗菌性ゼオライトが調製される。
例えばAg+とゼオライト(ナトリウム型のA型ゼオライ
トNaZ)をpH6以下のアルコール(エチルアルコールまた
はメチルアルコール)−水混合液中でイオン交換(常温
〜高温)せしめてNaの一部をAg+で部分置換することに
より抗菌性ゼオライトNaAgZ(但しAg含量はECの90%以
下)は調製される。また抗菌金属イオンを複合させたNa
AgCuZ(但しAgとCuの含量はECの90%以下)も前例に準
じてAg+−Cu2+とNaZをpH6以下に保持したアルコール−
水混合液中で反応せしめて調製することも勿論可能であ
る。イオン交換時の液相のpHは、既述のように、pH6以
下に抑えることが望ましく液相の酸性度は抗菌金属イオ
ンや使用するゼオライトの種類により好ましい状態に調
節される。また前記のイオン交換を実施する際のアルコ
ールの使用量は抗菌金属イオンの種類により支配される
が、例えば錫系の抗菌性ゼオライト〔例:NaSn(II)
Z〕調製時は、少くとも20%以上のアルコール含有液に
保持し、且つpHを4以下に調節することが望ましい。さ
らに本発明の抗菌性ゼオライトの製造に際しては、使用
する抗菌金属のゼオライト母体への保持量はECの90%以
下に抑えることが重要である。かゝる反応液相のpH、ア
ルコール含有量ならびに抗菌金属のゼオライト母体への
保持量を、既述のように、調節することにより最終的に
得られる抗菌ゼオライトの純度を高め、それの内部が表
面が副反応により生成する塩基性塩等の不純成分により
汚染されるのを最少限に防止することが可能になること
が確認された。不純成分による抗菌ゼオライトの汚染
は、それの本来の抗菌力を低下させる原因になる(表−
1の実施例−2と比較例−2または実施例−3と比較例
−2を参照)。
Now, the above-mentioned natural or synthetic zeolite is reacted in the form of fine powder with one or more antibacterial metal ions selected from the aforementioned antibacterial metal group in an alcohol-water mixed solution having a pH of 6 or less. An antibacterial zeolite is prepared by replacing 90% or less of EC of the zeolite with an antibacterial metal.
For example, Ag + and zeolite (sodium-type A-type zeolite NaZ) are ion-exchanged (at room temperature to high temperature) in an alcohol (ethyl alcohol or methyl alcohol) -water mixture having a pH of 6 or less, and part of Na is partially converted to Ag + . By substitution, antibacterial zeolite NaAgZ (however, Ag content is 90% or less of EC) is prepared. In addition, Na combined with antibacterial metal ions
AgCuZ (however, the content of Ag and Cu is 90% or less of EC) is also the same as the previous example, and the alcohol that holds Ag + -Cu 2+ and NaZ at pH 6 or less-
It is of course possible to prepare by reacting in a water mixture. As described above, the pH of the liquid phase at the time of ion exchange is desirably suppressed to pH 6 or less, and the acidity of the liquid phase is adjusted to a preferable state by the antibacterial metal ion and the type of zeolite used. The amount of alcohol used in carrying out the above-mentioned ion exchange is governed by the type of antibacterial metal ion, but for example, tin-based antibacterial zeolite [Example: NaSn (II)
Z] At the time of preparation, it is desirable to maintain the solution in an alcohol-containing liquid of at least 20% or more and adjust the pH to 4 or less. Further, in the production of the antibacterial zeolite of the present invention, it is important to keep the amount of the antibacterial metal used in the zeolite matrix to be 90% or less of EC. By adjusting the pH of the reaction liquid phase, the alcohol content, and the amount of the antibacterial metal retained in the zeolite matrix, as described above, the purity of the finally obtained antibacterial zeolite is increased, and It has been confirmed that it is possible to prevent the surface from being contaminated with an impure component such as a basic salt generated by a side reaction to a minimum. Contamination of the antibacterial zeolite by impure components causes a decrease in its original antibacterial activity (Table-
1 of Example-2 and Comparative Example-2 or Example-3 and Comparative Example-2).

本発明と異なる方法により、例えば抗菌性の金属イオ
ン(B)とNaZ粉末を用い水溶液相のイオン交換を利用
してNaBZ型の抗菌性ゼオライトを調製する際に、NaBZ中
のB含量やpHの増大につれて、抗菌性ゼオライト固相中
のBの一部が加水分解して、不溶性の塩基性塩の生成
〔例:銅(II)やSn(II)の塩基性塩〕や酸化物の形成
(例:AgO,CuO,SnO,SnO2)等が増加する傾向が見られ
る。これらの析出物は調製されたNaBZの表面に析出して
くるために、NaBZ本来の抗菌力や殺菌力を低下させる傾
向がある。従って上記の不溶性の不純物の析出を最少限
に抑えることが抗菌性ゼオライト本来の抗菌機能を最大
限に発揮させるためにも重要である。イオン交換に際し
て、使用するNaZのECの飽和値までにBで置換させた場
合、即ちBZ型に転換した場合は、上記の不溶性化合物の
生成率はより増大する傾向にある。かゝる不溶性化合物
の抗菌性ゼオライト表面への析出を最少限に防止するた
めにも、本願のように、NaZ素材の有するECの90%以下
にMの保持量を抑え、またイオン交換反応をアルコール
−水系の酸性域で実施することが肝要である。
When a NaBZ-type antibacterial zeolite is prepared by a method different from the present invention, for example, using an antibacterial metal ion (B) and NaZ powder and utilizing ion exchange in an aqueous phase, the B content and pH in NaBZ As the amount increases, part of B in the solid phase of antibacterial zeolite is hydrolyzed to form an insoluble basic salt [eg, basic salt of copper (II) or Sn (II)] and oxide ( Example: AgO, CuO, SnO, SnO 2 ) etc. tend to increase. Since these precipitates are deposited on the surface of the prepared NaBZ, they tend to reduce the original antibacterial activity and bactericidal activity of NaBZ. Therefore, it is important to suppress the precipitation of the insoluble impurities to the minimum in order to maximize the original antibacterial function of the antibacterial zeolite. In the ion exchange, when the NaZ to be used is replaced with B up to the saturation value of EC, that is, when it is converted into the BZ type, the production rate of the insoluble compound tends to increase. In order to minimize the precipitation of such insoluble compounds on the surface of antibacterial zeolite, as in the present application, the amount of M retained is kept below 90% of the EC of NaZ material, and the ion exchange reaction is prevented. It is important to carry out the treatment in an acidic region of alcohol-water system.

本発明の抗菌性ゼオライトの製造法で使用される出発
原料のゼオライトの粒子径は10μm以下がアルコール−
水混合溶液中に於けるイオン交換反応の速度を増大させ
るため好ましい。ゼオライトの粒子径が過大になると抗
菌性ゼオライトへの転換時間がより長くなり得策でな
い。本発明の抗菌性ゼオライトの製造に際しては、既述
のように、pHが6以下のアルコール−水系中で抗菌ゼオ
ライトへの転換が行われるが、アルコールのような極性
溶媒が存在するために生成する抗菌性ゼオライト粒子相
互間の凝集が極端に最少限に抑えられる利点がある。従
って本発明の方法によれば分散性に富む抗菌性ゼオライ
ト微粒子を得ることが可能であり、これは抗菌性ゼオラ
イト微粒子を高分子体のフイラーに使用する際に、それ
の粉砕工程等を簡略化でき省エネルギーにつながる。
The starting material of the zeolite used in the method for producing an antibacterial zeolite of the present invention has a particle size of 10 μm or less for alcohol-
It is preferable because it increases the rate of ion exchange reaction in the water mixed solution. If the particle size of the zeolite is too large, the conversion time to the antibacterial zeolite becomes longer, which is not a good idea. In the production of the antibacterial zeolite of the present invention, as described above, the conversion to the antibacterial zeolite is carried out in an alcohol-water system having a pH of 6 or less, but it is produced due to the presence of a polar solvent such as alcohol. There is an advantage that the aggregation between the antibacterial zeolite particles can be extremely minimized. Therefore, according to the method of the present invention, it is possible to obtain antibacterial zeolite fine particles having a high dispersibility, which simplifies the pulverization process and the like when the antibacterial zeolite fine particles are used in a polymer filler. It leads to energy saving.

前述の方法により、ゼオライトのイオン交換容量(E
C)の理論値の90%以下が既述の抗菌金属で置換されて
成る抗菌性ゼオライトを得た後、これを濾過して、次い
でアルコール−水混合液もしくはアルコール、または両
液を併用して洗浄し、引続き乾燥して分散性に富む微細
粉末より成る抗菌性ゼオライトの製造方法を本発明はさ
らに提供するものである。即ち、上記の方法を実施して
抗菌性ゼオライトを洗浄し過剰の抗菌金属イオンを除去
してから乾燥することにより、処理工程で惹起される抗
菌性ゼオライト自身の加水分解やそれの凝集が抑えられ
て分散性に富んだ本発面の最終目的物の純度の高い抗菌
性ゼオライト粉末が得られる。
The ion exchange capacity (E
90% or less of the theoretical value of C) is obtained by obtaining an antibacterial zeolite in which 90% or less of the theoretical value is substituted with the above-mentioned antibacterial metal, and this is filtered, and then an alcohol-water mixed solution or alcohol, or both solutions are used together The present invention further provides a method for producing an antibacterial zeolite, which comprises washed, and subsequently dried, fine powder having a high dispersibility. That is, by performing the above-mentioned method to wash the antibacterial zeolite to remove excess antibacterial metal ions and then to dry it, hydrolysis of the antibacterial zeolite itself caused in the treatment step and aggregation thereof can be suppressed. As a result, a highly pure antibacterial zeolite powder, which is the final target product of the original surface and is highly dispersed, can be obtained.

本発明で得られる抗菌性ゼオライトは、必要あれば、
さらに微粉砕されて粒度調整される(多くの場合10μm
以下に調整)。抗菌性ゼオライトの粒子径は、それの使
用目的により異なる。例えば本発明で得られる抗菌性ゼ
オライトを抗菌または殺菌、ならびに防臭目的でナイロ
ン、ポリエステル等の繊維へ錬り込んで使用する場合
は、それの粒子径は1.5μm以下が好ましく、0.1〜1μ
mの範囲は最も好ましい範囲である。またポリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニル
デン、エポキシ樹脂等の高分子体へ抗菌性ゼオライトを
含有させて抗菌化する場合は、それの望ましい粒子径は
最大5μmで、0.1〜3μmの範囲内は最も好ましい範
囲である。さらに顔料、ペイント等の分野へ抗菌フイラ
ーとして使用する場合は、本発明で得られる抗菌ゼオラ
イトの粒子径は10μm以下で分散性に優れたものが望ま
れる。
The antibacterial zeolite obtained in the present invention, if necessary,
Further pulverized to adjust particle size (often 10 μm
Adjusted below). The particle size of the antibacterial zeolite depends on the purpose for which it is used. For example, when the antibacterial zeolite obtained in the present invention is used by kneading into fibers such as nylon and polyester for the purpose of antibacterial or sterilization and deodorization, its particle size is preferably 1.5 μm or less, and 0.1 to 1 μm.
The range of m is the most preferable range. Further, when antibacterial zeolite is added to a polymer such as polyethylene, polypropylene, polyvinyl chloride, polyvinyldene chloride, epoxy resin, etc., the desirable particle size is 5 μm at maximum and within the range of 0.1 to 3 μm. Is the most preferred range. Further, when used as an antibacterial filler in the field of pigments, paints, etc., it is desired that the antibacterial zeolite obtained in the present invention has a particle size of 10 μm or less and is excellent in dispersibility.

本発明で得られる抗菌ゼオライトの粉末を上述のよう
な高分体へ抗菌フイラーとして添加する場合は、それの
乾燥粉末(100℃〜110℃)をさらに130゜〜350℃の温度
領域で加熱して、その中の水分を通常6%以下になるよ
うに調整される。上記の加熱操作を減圧下で実施すれ
ば、容易に結晶水の離脱が行われて、それを3%以下に
することは容易である。例えば本発明の方法で得られる
抗菌性ゼオライト微粉末(乾燥品)を210℃〜220℃付近
で減圧下に処理すれば、その中の水分を0.3%以下に保
持することは容易である。
When the powder of the antibacterial zeolite obtained in the present invention is added as an antibacterial filler to the above-mentioned high molecular weight product, its dry powder (100 ° C to 110 ° C) is further heated in a temperature range of 130 ° C to 350 ° C. Then, the water content therein is usually adjusted to 6% or less. If the above heating operation is carried out under reduced pressure, the water of crystallization is easily removed, and it is easy to reduce it to 3% or less. For example, if the antibacterial zeolite fine powder (dry product) obtained by the method of the present invention is treated under reduced pressure at around 210 ° C to 220 ° C, it is easy to keep the water content therein at 0.3% or less.

実施例1 本例は、本発明の抗菌性ゼオライトの製造方法にもと
づいてNaAgZ型の抗菌性ゼオライトの製造を実施した例
を述べたものである。A型合成ゼオライトの乾燥粉末
〔1.09Na2O・Al2O3・1.85SiO2・xH2O:Dav=3.8μm;EC=
7.76meq/g(無水基準)〕約250gに対して0.11MAgNO3
液〔C2H5OH(40v/o)−H2O(60v/o)〕約500mlが添加さ
れた。上記混合物を撹拌下に保ちながら希硝酸が徐々に
加えられ、最終的に混合液のpHは2.7に保持された。次
に混合スラリー液は40℃に3時間撹拌下に保たれイオン
交換反応が実施された。得られた反応生成物は濾過さ
れ、次いでC2H5OH含有液〔C2H5OH(50v/o)−H2O(50v/
o)〕で洗浄された。洗浄された固相は最終的に100℃〜
110℃で乾燥され、次いで解砕されてNaAgZの微細粉末24
1g〔Ag=2.7%(無水基準);Dav=3.9μm〕が得られ
た。
Example 1 This example describes an example in which a NaAgZ type antibacterial zeolite was produced based on the method for producing an antibacterial zeolite of the present invention. Dry powder of A-type synthetic zeolite [1.09Na 2 O ・ Al 2 O 3・ 1.85SiO 2・ xH 2 O: Dav = 3.8 μm; EC =
7.76 meq / g (anhydrous basis)] to about 250 g, about 500 ml of 0.11 MAgNO 3 solution [C 2 H 5 OH (40 v / o) -H 2 O (60 v / o)] was added. Dilute nitric acid was gradually added while keeping the above mixture under stirring, and finally the pH of the mixed solution was maintained at 2.7. Next, the mixed slurry liquid was kept under stirring at 40 ° C. for 3 hours to carry out an ion exchange reaction. The obtained reaction product was filtered, and then a C 2 H 5 OH-containing liquid [C 2 H 5 OH (50 v / o) -H 2 O (50 v /
o)]. The washed solid phase is finally 100 ℃ ~
Fine powder of NaAgZ dried at 110 ℃, then crushed 24
1 g [Ag = 2.7% (anhydrous basis); Dav = 3.9 μm] was obtained.

本例で得られたNaAgZ粉末中の銀含量は使用したNaZの
理論交換容量の90%以下に相当する。本品の純度は極め
て高く銀の塩基性塩や酸化物等の析出は全く確認されな
かった。またNaAgZの微細粉末の平均粒子径Dav=3.9μ
mであり、抗菌性ゼオライトの製造工程では殆んど粒子
間の凝集は見られない。(NaZ素材のDav=3.8μm)。
The silver content in the NaAgZ powder obtained in this example corresponds to 90% or less of the theoretical exchange capacity of NaZ used. The purity of this product was extremely high, and no precipitation of basic silver salts or oxides was confirmed. Also, the average particle size of the fine powder of NaAgZ Dav = 3.9μ
m, and almost no agglomeration between particles is observed in the manufacturing process of the antibacterial zeolite. (Dav of NaZ material = 3.8 μm).

比較例1 本例は水溶液中でイオン交換を行ってNaAgZ型の抗菌
性ゼオライトを製造した場合を述べたものである。実施
例−1と同一のA型合成ゼオライトの乾燥粉末約250gに
対して0.11MAgNO3(水溶液)約500mlが添加され、得ら
れた混合物に希硝酸が徐々に加えられ液のpHは7に調節
された。次に混合スラリー液は40℃に3時間撹拌下に保
たれイオン交換反応が実施された。得られた生成物は濾
過され、次いで水洗された。水洗終了品は100℃〜110℃
で乾燥後、解砕されたNaAgZの微細粉末238g〔Ag=2.9%
(無水基準);Dav=4.5μm〕が得られた。
Comparative Example 1 This example describes a case where NaAgZ type antibacterial zeolite was produced by performing ion exchange in an aqueous solution. About 500 g of dry powder of the same type A synthetic zeolite as in Example-1 was added with about 500 ml of 0.11 MAgNO 3 (aqueous solution), and diluted nitric acid was gradually added to the resulting mixture to adjust the pH of the solution to 7. Was done. Next, the mixed slurry liquid was kept under stirring at 40 ° C. for 3 hours to carry out an ion exchange reaction. The product obtained was filtered and then washed with water. 100 ° C to 110 ° C for products that have been washed with water
238g [Ag = 2.9%]
(Anhydrous standard); Dav = 4.5 μm] was obtained.

本比較例で得られたNaAgZ粉末中には銀の塩基性塩や
酸化物(Fig.1A及びBのX線回折結果参照)が共存して
いる。
In the NaAgZ powder obtained in this comparative example, a basic salt or oxide of silver (see X-ray diffraction results in FIGS. 1A and B) coexist.

実施例1と比較例1の両者の比較よりも、本発明にも
とづく抗菌性ゼオライトの製造法によれば得られる製品
の純度は高く、塩基性塩や酸化物の生成を防止する効果
があることは明かである。また両者の方法により得られ
たNaAgZ微粉末のDav値の比較より、本発明の方法によれ
ば抗菌性ゼオライト粒子間の凝集をより軽減する方向に
ある。
Compared to both Example 1 and Comparative Example 1, the product obtained by the method for producing an antibacterial zeolite according to the present invention has a higher purity and is effective in preventing the formation of basic salts and oxides. Is clear. Further, comparing the Dav values of the NaAgZ fine powders obtained by both methods shows that the method of the present invention tends to further reduce the aggregation between the antibacterial zeolite particles.

実施例2 本例は、本発明の抗菌性ゼオライトの製造方法にもと
づいてNaCuZ型の抗菌性ゼオライトの製造例を示したも
のである。実施例−1と同一のA型合成ゼオライトの乾
燥粉末約250gに対して0.49MCuSO4溶液〔CH3OH(25v/o)
−H2O(75v/o)〕約500mlが添加された。上記混合物を
撹拌下に保って希硫酸が徐々に加えられ、混合液のpHは
最終的に3.5に保持された。次に混合スラリー液は25℃
付近で3時間撹拌されてイオン交換反応が実施された。
得られた反応生成物は濾過され、次いでCH3OH含有液〔C
H3OH(50v/o〕−H2O(50v/o)〕で洗浄された。洗浄さ
れた固相は最終的に100℃〜110℃で乾燥され、次いで解
砕されてNaCuZの微細粉末236g〔Cu=6.7%(無水基
準);Dav=3.9μm〕が得られた。
Example 2 This example shows an example of producing a NaCuZ type antibacterial zeolite based on the method for producing an antibacterial zeolite of the present invention. A dry powder of the same type A synthetic zeolite as in Example 1 (about 250 g) was used with 0.49 M CuSO 4 solution [CH 3 OH (25 v / o)].
-H 2 O (75v / o)] of about 500ml was added. Dilute sulfuric acid was gradually added while the above mixture was kept under stirring, and the pH of the mixed solution was finally kept at 3.5. Next, the mixed slurry liquid is 25 ℃
The ion exchange reaction was carried out by stirring for 3 hours in the vicinity.
The reaction product obtained was filtered, and then a CH 3 OH-containing liquid [C
H 3 OH (50 v / o) -H 2 O (50 v / o)] The washed solid phase was finally dried at 100 ° C-110 ° C and then crushed to obtain a fine powder of NaCuZ. 236 g [Cu = 6.7% (anhydrous basis); Dav = 3.9 μm] were obtained.

本例で得られたNaCuZ粉末中の銅含量は使用したNaZの
理論交換容量90%以下に相当し、これの純度は極めて高
く、銅の塩基性塩や酸化物等の析出は全く確認されなか
った。またNaCuZの微粉末のDav=3.9μmであり、抗菌
ゼオライトの製造工程では殆んど粒子間の凝集は見られ
なかった(NaZ素材のDav=3.8μm)。
The copper content in the NaCuZ powder obtained in this example corresponds to a theoretical exchange capacity of 90% or less of NaZ used, its purity is extremely high, and precipitation of basic salts or oxides of copper is not confirmed at all. It was Further, the fine powder of NaCuZ had Dav = 3.9 μm, and almost no aggregation between particles was observed in the manufacturing process of the antibacterial zeolite (Dav = 3.8 μm of NaZ material).

比較例2 本例は水溶液中でイオン交換を行ってNaCuZ型の抗菌
性ゼオライトを製造した場合を述べたものである。実施
例−2と同一のA型合成ゼオライトの乾燥粉末約250gに
対して0.5M CuSO4溶液(水溶液)約500mlが添加され
た。上記混合物を撹拌下に保って希硫酸が添加され、混
合液のpHは最終的に4.5に保持された。次に混合スラリ
ー液は25℃付近で3時間撹拌されてイオン交換反応が実
施された。得られた反応生成物は濾過され、次いで水洗
された。洗浄された固相は最終的に100℃〜110℃で乾燥
され、次いで解砕されてNaCuZの微細粉末243g〔Cu=6.9
%(無水基準);Dav=4.7μm〕が得られた。
Comparative Example 2 This example describes the case of producing NaCuZ type antibacterial zeolite by performing ion exchange in an aqueous solution. About 500 g of a 0.5 M CuSO 4 solution (aqueous solution) was added to about 250 g of the same dry powder of the same type A synthetic zeolite as in Example-2. Dilute sulfuric acid was added keeping the mixture under stirring and the pH of the mixture was finally kept at 4.5. Next, the mixed slurry liquid was stirred at around 25 ° C. for 3 hours to carry out an ion exchange reaction. The reaction product obtained was filtered and then washed with water. The washed solid phase is finally dried at 100 ° C-110 ° C and then crushed to obtain 243 g of fine powder of NaCuZ [Cu = 6.9
% (Anhydrous basis); Dav = 4.7 μm] was obtained.

本比較例で得られたNaCuZ粉末中には銅の塩基性塩や
酸化物(Fig.2A及びBのX線回折結果参照)が共存して
いることが確認された。
It was confirmed that basic salts and oxides of copper (see X-ray diffraction results in FIGS. 2A and 2B) coexist in the NaCuZ powder obtained in this comparative example.

実施例2と比較例2の両者の比較よりも、本発明にも
とづく抗菌性ゼオライトの製造法によれば、NaCuZの純
度は高く、銅塩基性塩や酸化物の不純物の共存は防止さ
れることが判明した。またNaCuZ製造時の粒子間の凝集
現象も、最少限に本発法では抑制されることも判明し
た。
According to the method for producing an antibacterial zeolite according to the present invention, the purity of NaCuZ is higher and the coexistence of impurities such as a copper basic salt and an oxide is prevented, as compared with the case of comparing both Example 2 and Comparative Example 2. There was found. It was also found that the agglomeration phenomenon between particles during the production of NaCuZ was suppressed to a minimum by this method.

実施例3 本例は、本発明の抗菌性ゼオライトの製造方法にもと
づいて、NaSnZ型の抗菌性ゼオライトの製造例を示した
ものである。A型ゼオライトの乾燥粉末〔1.04Na2O・Al
2O3・1.9SiO2・xH2O;Dav=1.5μm;EC=7.42meq/g(無水
基準)〕約0.46kgに対して0.24MSnSO4溶液〔C2H5OH(25
v/o)−H2O(75v/o)〕約1.7が添加され、得られた混
合物に対して希硫酸が加えられ溶液のpHが最終的に2.3
に調節された。次に混合スラリー液は25℃付近で撹拌下
に4時間保持された。上記のイオン交換終了後、生成物
は濾過され、次いでC2H5OH含有液〔C2H5OH(50v/o)−H
2O(50v/o)〕で洗浄された。洗浄済みの固相は最終的
に100℃〜110℃で乾燥され、次いで解砕されてNaSnZの
微細粉末0.42kg〔Sn=9.6%(無水基準);Dav=1.7μ
m〕が得られた。
Example 3 This example shows an example of producing a NaSnZ type antibacterial zeolite based on the method for producing an antibacterial zeolite of the present invention. A-type zeolite dry powder [1.04 Na 2 O ・ Al
2 O 3 · 1.9 SiO 2 · xH 2 O; Dav = 1.5 μm; EC = 7.42 meq / g (anhydrous basis)] 0.24 MSnSO 4 solution [C 2 H 5 OH (25
v / o) -H 2 O (75 v / o)] about 1.7 and diluted sulfuric acid was added to the resulting mixture to bring the pH of the solution to a final value of 2.3.
Adjusted to. Next, the mixed slurry liquid was kept at around 25 ° C. for 4 hours with stirring. After completion of the above ion exchange, the product was filtered, and then a C 2 H 5 OH-containing liquid [C 2 H 5 OH (50 v / o) -H
2 O (50 v / o)]. The washed solid phase is finally dried at 100 ℃ ~ 110 ℃, then crushed to 0.42 kg fine powder of NaSnZ [Sn = 9.6% (anhydrous basis); Dav = 1.7μ
m] was obtained.

本例で得られたNaSnZ粉末中の錫含量は使用したNaZの
理論交換容量の90%以下であった。本例で得られた白色
のNaSnZ中には不純成分であるSnOやSnO2等の存在は確認
されなかった。
The tin content in the NaSnZ powder obtained in this example was 90% or less of the theoretical exchange capacity of NaZ used. In the white NaSnZ obtained in this example, the presence of impurities such as SnO and SnO 2 was not confirmed.

比較例3 本例は水溶液中でイオン交換を行ってNaSnZ型の抗菌
性ゼオライト粉末を製造した場合を述べたものである。
実施例3と同一のA型ゼオライトの乾燥粉末約0.47kgに
対して0.25MSnSO4溶液(水溶液)約1.7が加えられ、
得られた混合液のpHは、希硫酸を用いて、最終的に2.4
に調節された。次に混合スラリー液は25℃付近で撹拌下
に4時間保持されてイオン交換反応が行われた。反応生
成物は濾過後水洗され、次いで100℃〜110℃で乾燥され
てから解砕された。
Comparative Example 3 This example describes the case where NaSnZ type antibacterial zeolite powder was produced by performing ion exchange in an aqueous solution.
To about 0.47 kg of the same dry powder of A-type zeolite as in Example 3, about 1.7 of a 0.25 MSnSO 4 solution (aqueous solution) was added,
The pH of the obtained mixed solution was finally adjusted to 2.4 with dilute sulfuric acid.
Adjusted to. Next, the mixed slurry liquid was kept at around 25 ° C. under stirring for 4 hours to carry out an ion exchange reaction. The reaction product was filtered, washed with water, dried at 100 ° C to 110 ° C, and then crushed.

本比較例ではNaSnZの微細粉末0.44kg〔Sn=9.9%(無
水基準);Dav=2.3μm〕が得られた。本例で得られたN
aSnZ粉末は、明かに、淡黄色を呈しており、SnO,SnO2
の不純成分の共存が認められた。
In this comparative example, 0.44 kg of fine powder of NaSnZ [Sn = 9.9% (anhydrous basis); Dav = 2.3 μm] was obtained. N obtained in this example
The aSnZ powder had a light yellow color, and the presence of impurities such as SnO and SnO 2 was confirmed.

実施例3と比較例3の比較よりも、本発明の抗菌性ゼ
オライト製造方法の効果は明白である。
The effect of the method for producing an antibacterial zeolite of the present invention is more obvious than the comparison between Example 3 and Comparative Example 3.

実施例4 本例は本発明の抗菌性ゼオライトの製造方法にもとづ
いて複合型NaAgZnZ抗菌ゼオライトの製造例を述べたも
のである。A型合成ゼオライトの乾燥粉末〔1.08Na2O・
Al2O3・1.98SiO2・xH2O;Dav=2.5μm;EC=7.51meq/g
(無水基準)〕約1kgに対して0.11MAgNO3−0.72MZn(NO
3混合液2と少量の水を加えて得られたスラリー
含有液にさらに水とエチルアルコールを加えて全含量を
約3.7に保った。前記スラリー含有液のpHは希硝酸を
用いて3.2に、またエチルアルコールの含量は35%(v/
o)に保たれた。次いでイオン交換反応が25℃で4時間
撹拌下で行われた。得られた生成物は濾過され、次いで
C2H5OH含有液〔C2H5OH(50v/o)−H2O(50v/o)〕で洗
浄された。洗浄済みの固相は最終的に100℃〜110℃で乾
燥され、引続き解砕されてNaAgZnZの微細粉末980g〔Ag
=2.8%;Zn=12.8%(無水基準;Dav=2.7μm〕が得ら
れた。
Example 4 This example describes an example of producing a composite NaAgZnZ antibacterial zeolite based on the method for producing an antibacterial zeolite of the present invention. Dry powder of A-type synthetic zeolite [1.08Na 2 O ・
Al 2 O 3 · 1.98SiO 2 · xH 2 O; Dav = 2.5μm; EC = 7.51meq / g
(Anhydrous basis)] 0.11MAgNO 3 −0.72MZn (NO
3 ) 2 Mixture 2 and a small amount of water were added to the resulting slurry-containing liquid to further add water and ethyl alcohol to keep the total content at about 3.7. The pH of the slurry-containing solution was 3.2 using dilute nitric acid, and the content of ethyl alcohol was 35% (v /
o). The ion exchange reaction was then carried out at 25 ° C. for 4 hours with stirring. The product obtained is filtered and then
It was washed with a C 2 H 5 OH-containing solution [C 2 H 5 OH (50 v / o) -H 2 O (50 v / o)]. The washed solid phase is finally dried at 100 ° C-110 ° C and then crushed to obtain 980 g of fine powder of NaAgZnZ [Ag
= 2.8%; Zn = 12.8% (anhydrous standard; Dav = 2.7 μm).

本例で得られたNaAgZnZ粉末中のAgとZnの含量は4.2me
q/g(無水基準)であり、これは使用したNaZの理論交換
容量の90%以下に相当し、これの純度は高く、銀や亜鉛
の塩基性塩や酸化物等の析出は確認されなかった。第3
図は実施例4で得られたNaAgZnZ乾燥粉末の電顕写真を
示したものであり、これは典型的なA型ゼオライトの立
方晶であり、これの表面には不純成分である銀や亜鉛の
塩基性塩や酸化物等の析出は殆んど見当らない。また出
発原料に使用したNaZのDav=2.5μmであり、一方得ら
れたNaAgZnZ粉末のそれは2.7μmである。これより見て
も本発明方法によればNaAgZnZの2次凝集は殆んど抑制
されることが判明した。
The content of Ag and Zn in the NaAgZnZ powder obtained in this example was 4.2 me.
q / g (anhydrous basis), which corresponds to 90% or less of the theoretical exchange capacity of NaZ used, its purity is high, and precipitation of basic salts or oxides of silver or zinc is not confirmed. It was Third
The figure shows an electron micrograph of the NaAgZnZ dry powder obtained in Example 4, which is a typical A-type zeolite cubic crystal, on the surface of which impurities such as silver and zinc are contained. Almost no precipitation of basic salts or oxides is found. Also, Dav of NaZ used as a starting material is 2.5 μm, while that of the obtained NaAgZnZ powder is 2.7 μm. From this, it was found that the secondary aggregation of NaAgZnZ was almost suppressed by the method of the present invention.

比較例4 本例は水溶液中でイオン交換を実施してNaAgZnZ型の
抗菌性ゼオライトを製造した場合を述べたものである。
A型合成ゼオライト乾燥粉末〔1.04Na2O・Al2O3・1.9Si
O2・xH2O;Dav=1.5μm,EC=7.42meq/g(無水基準)〕約
1kgに対して0.1MAgNO3−0.71MZn(NO3混合液2が
添加された。得られたスラリー液にさらに水が加えられ
全容量は約3.6にそれのpHは6.7に保たれた。上記のス
ラリー液を25℃付近に4時間撹拌下に保ってイオン交換
が行われた。得られた転換物は濾過され、次いで水洗さ
れた。水洗を終了した抗菌性ゼオライトは100℃〜110℃
で乾燥され、引続き解砕されてNaAgZnZの微細粉末967g
〔Ag=2.5%;Zn=12.3%(無水基準);Dav=2.2μm〕
が得られた。比較例−4で得られたNaAgZnZの電顕写真
を第4図に示した。得られたNaAgZnZ立方晶の表面に塩
基性塩、酸化物等の不純成分の析出が明かに認められ
る。
Comparative Example 4 This example describes the case where NaAgZnZ type antibacterial zeolite was produced by carrying out ion exchange in an aqueous solution.
A-type synthetic zeolite dry powder [1.04Na 2 O ・ Al 2 O 3・ 1.9Si
O 2 · xH 2 O; Dav = 1.5 μm, EC = 7.42 meq / g (anhydrous standard)] Approx.
0.1MAgNO 3 -0.71MZn (NO 3) 2 mixture 2 was added to 1 kg. Additional water was added to the resulting slurry to maintain the total volume at about 3.6 and its pH at 6.7. Ion exchange was carried out by keeping the above slurry liquid at around 25 ° C. under stirring for 4 hours. The transformant obtained was filtered and then washed with water. Antibacterial zeolite after washing with water is 100 ℃ -110 ℃
967g of fine powder of NaAgZnZ after being dried in
[Ag = 2.5%; Zn = 12.3% (anhydrous basis); Dav = 2.2 μm]
was gotten. An electron micrograph of NaAgZnZ obtained in Comparative Example-4 is shown in FIG. Precipitation of impurities such as basic salts and oxides is clearly observed on the surface of the obtained NaAgZnZ cubic crystal.

実施例4と比較例4の比較よりも、本発明の抗菌性ゼ
オライトの製造方法の優れた効果は明かである。
The superior effect of the method for producing an antibacterial zeolite of the present invention is clearer than the comparison between Example 4 and Comparative Example 4.

次に抗菌力の評価試験について述べる。本発明で得ら
れる抗菌性ゼオライト粉末の抗菌力を評価する手段とし
て死滅率の測定が実施された。抗菌(staphylococcus a
ureus)県濁液(104/ml)1mlを被験物質県濁液(100mg/
ml)9mlの中へ注入混釈し、37℃で48時間作用させ、そ
の0.1mlをMueller Hinton培地に分散させ、37℃で24時
間後生存個数を測定して死滅率を求めた。一方真菌(As
pergillus flavus)の死滅率測定は下記の方法によっ
た。Aspergillus flavusの胞子県濁液(104個/ml)の1m
lを被験物質県濁液(500mg/ml)9mlの中へ注入混釈し、
24時間30℃で作用させた。その0.1mlをサブロー寒天培
地に分散させ、30℃で48時間後生存個数を測定して死滅
率を求めた。
Next, the evaluation test of antibacterial activity will be described. The mortality was measured as a means for evaluating the antibacterial activity of the antibacterial zeolite powder obtained in the present invention. Antibacterial (staphylococcus a
ureus) Prefectural suspension (10 4 / ml) 1 ml test substance suspension (100 mg / ml)
The mixture was poured into 9 ml of water and allowed to act at 37 ° C for 48 hours, 0.1 ml of the mixture was dispersed in Mueller Hinton medium, and after 24 hours at 37 ° C, the number of survivors was measured to determine the mortality. On the other hand, fungus (As
pergillus flavus) was measured by the following method. 1m of Aspergillus flavus spore suspension (10 4 / ml)
Inject and pour l into 9 ml of the test substance prefecture suspension (500 mg / ml),
It was allowed to act for 24 hours at 30 ° C. 0.1 ml thereof was dispersed in Sabouraud agar medium, and after 48 hours at 30 ° C., the number of surviving was measured to determine the mortality.

測定結果を第1表に示した。本発明の方法で試作され
たNaAgZ,NaCuZ,NaSnZおよびNaAgZnZ抗菌性ゼオライト粉
末は細菌や真菌に対して優れた抗菌作用を発揮してい
る。
The measurement results are shown in Table 1. The NaAgZ, NaCuZ, NaSnZ and NaAgZnZ antibacterial zeolite powder produced by the method of the present invention exhibits an excellent antibacterial action against bacteria and fungi.

表記の如く、A型ゼオライト粉末NaZ(実施例1〜4
の出発原料および比較例1〜4の出発原料)は抗菌力を
示さない。NaCuZに関する実施例2と比較例2との比較
より、前者は後者より優れた抗菌作用を示している。後
者ではNaCuZの表面に不純物成分の銅塩基性塩や酸化物
が析出したゝめに本来のNaCuZの抗菌力を低下させる。
同様な現象がNaSnZ粉末に見られるNaSnZの純度の高い抗
菌性ゼオライト粉末(実施例3)はNaSnZの表面に錫の
塩基性塩や酸化物の析出したもの(比較例3)より、よ
り高い抗菌作用を示している。
As shown, A-type zeolite powder NaZ (Examples 1 to 4)
The starting materials of and the starting materials of Comparative Examples 1 to 4) do not show antibacterial activity. From the comparison between Example 2 and Comparative Example 2 regarding NaCuZ, the former shows a better antibacterial action than the latter. In the latter case, the original antibacterial activity of NaCuZ is reduced because the copper basic salt or oxide as an impurity component is deposited on the surface of NaCuZ.
A similar phenomenon is found in the NaSnZ powder. The high-purity antibacterial zeolite powder of NaSnZ (Example 3) has higher antibacterial activity than that of the basic salt or oxide of tin deposited on the surface of NaSnZ (Comparative Example 3). Shows the action.

以上要するに本発明は新規な抗菌性ゼオライトの製造
方法を提供するものであって、本発明により得られる各
種の抗菌性ゼオライトの微細粉末は高分子体を抗菌化す
る際に抗菌フイラーとして最適と考えられる。
In summary, the present invention provides a method for producing a novel antibacterial zeolite, and fine powders of various antibacterial zeolites obtained by the present invention are considered to be optimal as an antibacterial filler when antibacterializing a polymer. To be

【図面の簡単な説明】[Brief description of drawings]

第1A図および第1B図は比較例1で得られたNaAgZ粉末の
X線回折図である。 第2A図および第2B図は比較例2で得られたNaAgZ粉末の
X線回折図である。 第3図は実施例4によって得られたNaAgZnZ乾燥粉末の
結晶構造の電子顕微鏡写真である。第4図は比較例4に
よって得られたNaAgZnZ乾燥粉末の結晶構造の電子顕微
鏡写真である。
1A and 1B are X-ray diffraction patterns of the NaAgZ powder obtained in Comparative Example 1. 2A and 2B are X-ray diffraction patterns of the NaAgZ powder obtained in Comparative Example 2. FIG. 3 is an electron micrograph of the crystal structure of the NaAgZnZ dry powder obtained in Example 4. FIG. 4 is an electron micrograph of the crystal structure of NaAgZnZ dry powder obtained in Comparative Example 4.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61K 33/24 A61K 33/24 33/26 33/26 33/30 33/30 33/34 33/34 33/38 33/38 C08K 3/34 KAH C08K 3/34 KAH C09D 5/14 PQM C09D 5/14 PQM ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area A61K 33/24 A61K 33/24 33/26 33/26 33/30 33/30 33/34 33 / 34 33/38 33/38 C08K 3/34 KAH C08K 3/34 KAH C09D 5/14 PQM C09D 5/14 PQM

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銀、銅、亜鉛、錫、鉛、ビスマス、鉄およ
びクロムから成る抗菌金属群より選ばれた1種または2
種以上の金属イオンとゼオライトとをpH6以下のアルコ
ール−水混合液中で反応せしめて該ゼオライトのイオン
交換容量の理論値の90%以下が抗菌金属で置換されて成
る抗菌性ゼオライトの製造方法。
1. One or two selected from the group of antibacterial metals consisting of silver, copper, zinc, tin, lead, bismuth, iron and chromium.
A method for producing an antibacterial zeolite, wherein at least 90% of the theoretical value of the ion exchange capacity of the zeolite is replaced with an antibacterial metal by reacting at least one kind of metal ion with zeolite in an alcohol-water mixture having a pH of 6 or less.
【請求項2】粒子径が10μm以下のゼオライト粉末を用
いて前項の方法を実施して特許請求の範囲第1項記載の
抗菌性ゼオライトの微細粉末を製造する方法。
2. A method for producing a fine powder of antibacterial zeolite according to claim 1, by carrying out the method of the preceding paragraph using a zeolite powder having a particle diameter of 10 μm or less.
【請求項3】第1項の方法によりゼオライトのイオン交
換容量の理論値の90%以下が抗菌金属で置換されて成る
抗菌性ゼオライトを得た後、これを濾過し、次いでアル
コール−水混合液もしくはアルコールまたは両液を併用
して洗浄し、引続き乾燥して分散性に富む微細粉末より
成る抗菌性ゼオライトの製造方法。
3. An antibacterial zeolite obtained by substituting 90% or less of the theoretical value of the ion exchange capacity of zeolite with an antibacterial metal by the method of claim 1, filtered and then mixed with an alcohol-water mixture. Alternatively, a method for producing an antibacterial zeolite comprising fine powder having a high dispersibility, which is obtained by washing with alcohol or both liquids and then drying.
JP62324259A 1987-12-22 1987-12-22 Method for producing antibacterial zeolite Expired - Lifetime JP2559125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324259A JP2559125B2 (en) 1987-12-22 1987-12-22 Method for producing antibacterial zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324259A JP2559125B2 (en) 1987-12-22 1987-12-22 Method for producing antibacterial zeolite

Publications (2)

Publication Number Publication Date
JPH01164721A JPH01164721A (en) 1989-06-28
JP2559125B2 true JP2559125B2 (en) 1996-12-04

Family

ID=18163809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324259A Expired - Lifetime JP2559125B2 (en) 1987-12-22 1987-12-22 Method for producing antibacterial zeolite

Country Status (1)

Country Link
JP (1) JP2559125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102705067B1 (en) * 2022-01-13 2024-09-09 주식회사 가나실업 Manufacturing method of an antibacterial artificial turf using a yarn containing an antibacterial substances to which the metal ions are selectively adsorbed

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9400579D0 (en) * 1994-01-13 1994-03-09 Unilever Plc Synthetic zeolite pigments
DE10122262A1 (en) 2001-05-08 2002-11-21 Schott Glas Polymers with bioactive glass with an antimicrobial effect
SK8509Y1 (en) * 2018-04-06 2019-08-05 Bjv Res S R O Synthetic fiber with admixture of natural material and method of its manufacture
CN109027437B (en) * 2018-08-27 2020-10-20 江苏吉庆管材有限公司 Antibacterial wear-resistant glass fiber pipeline lining and preparation method thereof
CN114271322B (en) * 2021-11-27 2023-07-25 广西东鸣现代农业发展有限公司 Crease-resistant fresh-keeping method for passion fruits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102705067B1 (en) * 2022-01-13 2024-09-09 주식회사 가나실업 Manufacturing method of an antibacterial artificial turf using a yarn containing an antibacterial substances to which the metal ions are selectively adsorbed

Also Published As

Publication number Publication date
JPH01164721A (en) 1989-06-28

Similar Documents

Publication Publication Date Title
EP0333118B1 (en) Antimicrobial powders and method for making same
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
EP0235431B1 (en) Amorphous aluminosilicate & process for producing the same
JPH0123414B2 (en)
JP2559125B2 (en) Method for producing antibacterial zeolite
JPH062570B2 (en) Antibacterial agent
CN1310589C (en) Method for preparing superfine composite inorganic antimicrobial agent
JPH0258204B2 (en)
EP2838364B1 (en) Antimicrobial chemical compositions
JPS60202162A (en) Antiseptic and mildewproofing paint composition
JPH06239713A (en) Antimicrobial zeolite and its production
JPH10273322A (en) Antifungal composite titanate and manufacture of the same
US9955700B2 (en) Antimicrobial chemical compositions
JPS63250309A (en) Antibacterial agent
EP0537479B1 (en) Zinc stannate powder for molding materials and process for preparation thereof
JPH0742101B2 (en) Submicron type A zeolite and method for producing the same
JPH0437604A (en) Ion exchange method for zeolite
JPH05148116A (en) Antibacterial mildew-proofing composition and its production
JP3599304B2 (en) Amorphous antibacterial titanate compound
JP3177039B2 (en) Phosphate antibacterial agent and method for producing the same
JPH02255844A (en) Resin composition
JP3467447B2 (en) Inorganic antibacterial material using calcium silicates
JP3579636B2 (en) Manufacturing method of antibacterial agent for ceramic products
KR100524391B1 (en) silver-ceramic nanocomposite material and preparation thereof
JPH03255009A (en) Antibacterial zeolite and its production