JP3682749B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3682749B2
JP3682749B2 JP28508397A JP28508397A JP3682749B2 JP 3682749 B2 JP3682749 B2 JP 3682749B2 JP 28508397 A JP28508397 A JP 28508397A JP 28508397 A JP28508397 A JP 28508397A JP 3682749 B2 JP3682749 B2 JP 3682749B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
temperature
tin
tout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28508397A
Other languages
Japanese (ja)
Other versions
JPH1082316A (en
Inventor
耕一 大畑
兼仁 中村
肇 勝呂
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP28508397A priority Critical patent/JP3682749B2/en
Publication of JPH1082316A publication Critical patent/JPH1082316A/en
Application granted granted Critical
Publication of JP3682749B2 publication Critical patent/JP3682749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排ガス中に含まれる窒素酸化物量を低減する内燃機関の排ガス浄化装置に関するものである。
【0002】
【従来の技術】
従来より、ディーゼルエンジン等の内燃機関の排ガス中に含まれる窒素酸化物等を浄化するために排気管内に触媒が設置されている。この場合、窒素酸化物の浄化効率を高めるには、触媒に還元剤(例えば炭化水素)を供給することが効果的であり、そのために、特開平5−263624号公報や特開平6−123219号公報に示すように、排気管の触媒の上流側に炭化水素(以下「HC」と記す)供給装置を設け、このHC供給装置からHCを触媒に供給するようにしたものがある。
【0003】
【発明が解決しようとする課題】
ところで、触媒による窒素酸化物浄化率は触媒温度に依存し、図6に示すように所定温度範囲(例えば200から300℃)においてのみ高い窒素酸化物浄化率を示す。そこで、特開平5−263624号公報では、触媒の入口の排ガス温度を測定して、その排ガス温度とエンジン運転状態に応じて、予め設定されたマップデータからHC供給量を算出するようになっている。また、特開平6−123219号公報では、触媒の入口に設置した熱電対等により触媒温度を測定し、この触媒温度とエンジン運転状態とから排ガス中の窒素酸化物量を推定し、この窒素酸化物量と触媒温度とに基づいてHC供給量を算出するようになっている。従って、上記2つの公報では、いずれも、触媒の入口で測定した排ガス温度(又は触媒温度)をそのまま利用してHC供給量を算出するようになっている。
【0004】
しかし、実際のエンジン運転状態においては排ガス温度は大きく変化し、触媒内部における排ガスからの熱伝達や触媒内部で発生する反応熱の熱伝導によって触媒内部に排ガス流れ方向に大きな温度分布が生じる。従って、上記2つの公報のように、触媒の入口で測定した排ガス温度(又は触媒温度)を基準にしてHC供給量を算出したのでは、実際の触媒の温度分布に対してHC供給量が多すぎたり、少なすぎたりする状態が起こりやすく、安定した窒素酸化物の浄化率が得られない。しかも、触媒に供給するHCは燃料を使用するため、HC供給量が多すぎれば、燃費が悪化することにもなる。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、触媒に供給する炭化水素(HC)の量を実際の触媒温度分布を考慮して設定することができて、窒素酸化物浄化率と燃費の双方を向上させることができる内燃機関の排ガス浄化装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の排ガス浄化装置は、機関運転状態検出手段により検出した機関運転状態に基づいて排ガス中の窒素酸化物量を算出すると共に、触媒上流側の排ガス温度Tinと触媒下流側の排ガス温度Toutの双方を検出して比較し、温度の高い方を触媒代表温度選択手段により触媒代表温度として選択する。そして、この触媒代表温度と前記排ガス中の窒素酸化物量とに基づいて基本炭化水素供給量を算出し、その基本炭化水素供給量に基づいて炭化水素供給手段を制御する。
【0007】
つまり、従来構成のものは、触媒入口の温度を検出して、炭化水素供給量を算出していたため、実際の触媒の温度分布に対してHC供給量が多すぎたり、少なすぎたりする状態が起こりやすい。これに対し、請求項1では、触媒上流側の排ガス温度Tinと触媒下流側の排ガス温度Toutの双方を検出して比較し、温度の高い方を所定の判断基準で触媒代表温度として選択する。前記触媒代表温度選択手段は、触媒上流側の排ガス温度Tinが触媒下流の排ガス温度Toutより高い場合には、上流側の触媒温度の方が下流側の触媒温度より高温と推定されるため、触媒上流側の排ガス温度Tinを触媒代表温度(つまり触媒全体の代表的温度)として選択し、触媒上流側の排ガス温度Tinが触媒下流の排ガス温度Toutより低い場合は、下流側の触媒温度の方が上流側の触媒温度より高温と推定されるため、触媒下流側の排ガス温度Toutを触媒代表温度として選択するので、触媒温度分布状態と触媒代表温度との差が従来よりも少なくなり、基本炭化水素供給量の算出精度を従来より向上することができる。
【0008】
この場合、請求項2のように、触媒上流側の排ガス温度Tinと触媒下流側の排ガス温度Tout窒素酸化物浄化率が最大となる温度Tmax(図6参照)とを比較し、この比較結果に基づいて基本炭化水素供給量を補正手段により補正するようにすることが好ましい。このようにすれば、基本炭化水素供給量を実際の触媒内部の反応状態に応じて増減補正することができ、触媒全体に炭化水素を過不足なく行き渡らせることができる。
【0009】
更に、請求項3では、前記触媒代表温度選択手段は、
(1)Tin>Toutの場合
1)Tin>Tmaxの場合には、触媒の上流側部分が十分に活性化しており、触媒上流側で炭化水素がほぼ消費されて無くなると推測されるため、触媒下流側部分の触媒温度が低温であっても高温であっても、窒素酸化物の浄化にはあまり寄与せず、炭化水素が未反応で触媒をすり抜けて出ていくこともないと考えられる。従って、この場合には、基本炭化水素供給量の補正は行わない。
【0010】
▲2▼Tmax ≧Tin>Tout の場合には、触媒上流側で炭化水素がなくならず触媒下流側にも炭化水素が流入する。Tin>Tout の場合には、基本炭化水素供給量は触媒上流側の排ガス温度Tinを触媒代表温度として算出されているため、触媒に供給した炭化水素の一部が未反応で触媒をすり抜けていく。従って、この場合には、上流側の排ガス温度Tinと下流側の排ガス温度Tout との差に応じて基本炭化水素供給量を減量補正する。
(2)Tin≦Tout の場合
▲1▼Tout <Tmax の場合には、触媒の下流側部分の活性化は不十分であり、触媒上流側の活性化は下流側よりも更に低い。Tin≦Tout の場合には、基本炭化水素供給量は触媒下流側の排ガス温度Tout を触媒代表温度として算出されているため、触媒下流側よりも更に活性化が低い触媒上流側から炭化水素が多量に触媒下流側に流れて、触媒下流側部分に流入する炭化水素量が多くなり過ぎ、炭化水素の一部が未反応で触媒をすり抜けて出ていく。従って、この場合には、下流側の排ガス温度Tout と上流側の排ガス温度Tinとの差に応じて基本炭化水素供給量を減量補正する。
【0011】
▲2▼Tin≦Tmax ≦Tout の場合には、触媒上流側から徐々に炭化水素が消費され、窒素酸化物もそれに伴って徐々に浄化される。触媒下流側部分は十分に活性化しているため、炭化水素が未反応で触媒をすり抜けていくこともない。この場合には、触媒活性化が適度で窒素酸化物浄化率の高い温度域が有効に使用されるため、触媒全体に供給すべき炭化水素の量は、窒素酸化物浄化率が最大となる温度Tmax を触媒代表温度と仮定して算出した基本炭化水素供給量と同量であり、その値になるまで増量補正する。
【0012】
▲3▼Tmax <Tin≦Tout の場合には、下流側の排ガス温度Tout により基本炭化水素供給量を算出しているが、触媒上流側では触媒下流側よりも触媒温度が適温に近いので、炭化水素量を増量すれば、窒素酸化物浄化率を高くすることができる。従って、この場合には、下流側の排ガス温度Tout と上流側の排ガス温度Tinとの差に応じて基本炭化水素供給量を増量補正する。
【0013】
【発明の実施の形態】
以下、本発明をディーゼルエンジンに適用した実施形態を図1乃至図8に基づいて説明する。まず、図1に基づいてシステム全体の概略構成を説明する。内燃機関であるディーゼルエンジン11の吸気管12には、吸入空気量を検出する吸入空気量センサ13(吸入空気量検出手段)が設けられている。ディーゼルエンジン11には、エンジン回転数を検出するエンジン回転数センサ14(機関運転状態検出手段)が設けられている。
【0014】
一方、ディーゼルエンジン11の排ガス通路を構成する排気管15の途中には触媒16が設置されている。この触媒16は、図6に示すように触媒温度がTs〜Tk の範囲(例えば200℃〜300℃)においてのみ高い窒素酸化物浄化率を示す。この触媒16の上流側には、図1に示すように、排ガス温度を検出する排ガス温度センサ17,24(排ガス温度検出手段)が設置されている。排ガス温度センサ17,24は、触媒16の上流側と下流側の双方に設置され、触媒入ガス温度Tinと触媒出ガス温度Tout の双方を検出できるようにされている。
【0015】
また、触媒16の上流側には、触媒16に炭化水素(HC)を供給する炭化水素噴射ノズル18が設けられ、燃料タンク19内の燃料(軽油)がポンプ20で汲み上げられて炭化水素噴射ノズル18から排気管15内に噴射される。これら炭化水素噴射ノズル18とポンプ20とから特許請求の範囲でいう炭化水素供給手段が構成されている。
【0016】
一方、アクセル21には、アクセル開度を検出するアクセル開度センサ22が設けられている。上述した各種のセンサの出力信号は電子制御ユニット(以下「ECU」と略記する)23に入力される。このECU23は、マイクロコンピュータを主体として構成され、それに内蔵されたROM等の記憶手段(図示せず)には、後述する図2及び図3に示す炭化水素供給量制御ルーチンが記憶されていると共に、触媒温度と排ガス中の窒素酸化物量とにより炭化水素供給量を規定するマップデータが記憶され、図2及び図3に示すルーチンを実行することによって、触媒16に供給する炭化水素の量を制御する。
【0017】
ここで、実施形態における炭化水素供給量制御について図2及び図3のフローチャートに従って説明する。図2及び図3の炭化水素供給量制御ルーチンは、所定時間毎(例えば1秒毎)に繰り返し実行される。本ルーチンの処理が開始されると、まずステップ201で、エンジン回転数センサ14、アクセル開度センサ22、吸入空気量センサ13、触媒上流側の排ガス温度センサ17、触媒下流側の排ガス温度センサ24から出力されるエンジン回転数、アクセル開度、吸入空気量、触媒入ガス温度Tin、触媒出ガス温度Tout の各信号を読み込む。この後、ステップ202で、読み込んだエンジン回転数とアクセル開度とに基づいて、ディーゼルエンジン11から排出される排ガス中の窒素酸化物量を、予め実験データや理論値で設定されたマップデータより算出する。
【0018】
一般に、触媒16の反応速度は触媒温度上昇に対して指数関数的に増加し、触媒16全体の反応速度は触媒温度の最高温度で支配されるので、次のステップ203で、触媒入ガス温度Tinと触媒出ガス温度Tout とを比較し、高い方を触媒16全体の代表的温度(触媒代表温度)として選択する。即ち、Tin>Tout の場合には、触媒入ガス温度Tinを触媒代表温度とし(ステップ204)、Tin≦Tout の場合には、触媒出ガス温度Tout を触媒代表温度とする(ステップ205)。これらステップ203〜205の処理が特許請求の範囲でいう触媒代表温度選択手段として機能する。
【0019】
そして、次のステップ206では、上記ステップ203〜205で選択した触媒代表温度と、上記ステップ202で算出した排ガス中の窒素酸化物量とに基づいて、図7、図8に示すようなマップデータから基本炭化水素供給量Qを算出する。この後、ステップ207,208,211で、触媒入ガス温度Tinと前記触媒出ガス温度Tout と窒素酸化物浄化率が最大となる温度Tmax (図6参照)とを比較し、その比較結果に応じて次のように基本炭化水素供給量Qを補正する。なお、図7に示すマップは触媒温度、窒素酸化物量、窒素酸化物浄化率、基本炭化水素供給量との関係を説明する図であり、図8は図7に示される関係により決定された炭化水素供給量を示す図である。
(1)Tin>Tout の場合
Tin>Tout の場合には、ステップ207からステップ208に進み、触媒入ガス温度Tinと窒素酸化物浄化率が最大となる温度Tmax とを比較し、その比較結果に応じて次のように補正処理を行う。
【0020】
▲1▼Tin>Tmax の場合には、触媒16の上流側部分が十分に活性化しており、触媒上流側で炭化水素がほぼ消費されて無くなると推測されるため、触媒下流側部分の触媒温度が低温であっても高温であっても、窒素酸化物の浄化にはあまり寄与せず、炭化水素が未反応で触媒16をすり抜けて出ていくこともないと考えられる。従って、この場合には、ステップ209に進み、基本炭化水素供給量Qの補正は行わない。
【0021】
▲2▼Tmax ≧Tin>Tout の場合には、触媒上流側で炭化水素がなくならず触媒下流側にも炭化水素が流入する。Tin>Tout の場合には、前記ステップ206で、基本炭化水素供給量Qは触媒入ガス温度Tinを触媒代表温度として算出されているため、触媒16に供給した炭化水素の一部が未反応で触媒16をすり抜けていく。従って、この場合には、ステップ210に進み、触媒入ガス温度Tinと触媒出ガス温度Tout との差に比例して基本炭化水素供給量Qを減量補正する。
(2)Tin≦Tout の場合
Tin≦Tout の場合には、ステップ207からステップ211に進み、触媒出ガス温度Tout と窒素酸化物浄化率が最大となる温度Tmax とを比較し、その比較結果に応じて次のように補正処理を行う。
【0022】
▲1▼Tout <Tmax の場合には、触媒16の下流側部分の活性化は不十分であり、触媒上流側の活性化は下流側よりも更に低い。Tin≦Tout の場合には、前記ステップ206で、基本炭化水素供給量Qは触媒出ガス温度Tout を触媒代表温度として算出されているため、触媒下流側よりも更に活性化が低い触媒上流側から炭化水素が多量に触媒下流側に流れて、触媒下流側部分に流入する炭化水素量が多くなり過ぎ、炭化水素の一部が未反応で触媒16をすり抜けて出ていく。従って、この場合には、ステップ212に進み、触媒出ガス温度Tout と触媒入ガス温度Tinとの差に比例して基本炭化水素供給量Qを減量補正する。
【0023】
▲2▼Tin≦Tmax ≦Tout の場合には、ステップ211からステップ213を経てステップ214に進む。Tin≦Tmax ≦Tout の場合には、触媒上流側から徐々に炭化水素が消費され、窒素酸化物もそれに伴って徐々に浄化される。触媒下流側部分は十分に活性化しているため、炭化水素が未反応で触媒16をすり抜けていくこともない。この状態では、触媒活性化が適度で窒素酸化物浄化率の高い温度域が有効に使用されるため、触媒16全体に供給すべき炭化水素の量は、窒素酸化物浄化率が最大となる温度Tmax を触媒代表温度と仮定して算出した基本炭化水素供給量Qと同量であり、その値になるまで増量補正する(ステップ214)。
【0024】
▲3▼Tmax <Tin≦Tout の場合には、前記ステップ206で、触媒出ガス温度Tout により基本炭化水素供給量Qを算出しているが、触媒上流側では触媒下流側よりも触媒温度が適温に近いので、炭化水素量を増量すれば、窒素酸化物浄化率を高くすることができる。従って、この場合には、ステップ211からステップ213を経てステップ215進み、触媒出ガス温度Tout と触媒入ガス温度Tinとの差に比例して基本炭化水素供給量Qを増量補正する。
【0025】
以上のようにして基本炭化水素供給量Qを必要に応じて増減補正した後、ステップ216に進み、補正処理後の基本炭化水素供給量Qに相当する量の炭化水素(燃料)を炭化水素噴射ノズル18から触媒16の上流側に噴射して、本ルーチンを終了する。
以上の制御を行った場合の効果を図4に示すタイムチャートにより説明する。図4のタイムチャートは、市街地走行時に頻繁に生じる加速→定速走行→減速の走行パターンの例である。図5に示すように、Tinは触媒16に流入する排ガスの温度(以下「触媒入ガス温度」という)、Tout は触媒16から流出する排ガスの温度(以下「触媒出ガス温度」という)、T1 は上流側の触媒温度、T2 は触媒中心温度、T3 は下流側の触媒温度である。
【0026】
図4(b)に示すように、加速により触媒入ガス温度Tinが上昇すると、上流側の触媒温度T1 は触媒入ガス温度Tinとほぼ同じように上昇するが、触媒中心温度T2 と下流側の触媒温度T3 は、触媒16の熱容量により温度上昇が遅れ、加速中の時刻t1 においては、T1 >T2 >T3 となり、触媒16に温度分布が生じる。
【0027】
その後、加速から定速走行に移行すると、触媒入ガス温度Tinが低下して、上流側の触媒温度T1 が触媒入ガス温度Tinとほぼ同じように低下するが、触媒16内の熱伝達・熱伝導や反応熱の発生により、触媒16内の最高温点が上流側から下流側に徐々に移っていく。これにより、定速走行への移行によって触媒入ガス温度Tin(上流側の触媒温度T1 )が低下するようになっても、暫くは、触媒中心温度T2 が上昇し、更に遅れて下流側の触媒温度T3 が上昇する。
【0028】
従来は、触媒入ガス温度Tin(上流側の触媒温度T1 )を基準にして炭化水素供給量を算出していたので、図4(c)に点線で示すように炭化水素供給量が上流側の触媒温度T1 の変化に追従した値となる。従って、上流側の触媒温度T1 が高い領域(加速中)では、窒素酸化物量をある程度低減できるが、加速から定速走行に移行して上流側の触媒温度T1 が低下するに従って、炭化水素供給量も少なくされる。
【0029】
しかし、上流側の触媒温度T1 が低下した後でも、暫くは、触媒中心温度T2 が上昇し、更に遅れて下流側の触媒温度T3 が上昇するため、触媒16の中間部から下流側の部分は、暫くは、窒素酸化物の還元反応を促進する活性状態を維持する。従って、従来のように、上流側の触媒温度T1 の低下に伴って炭化水素供給量を少なくしたのでは、触媒16の中間部から下流側の部分が活性状態になっているにも拘らず、この部分に供給する炭化水素が少なくなってしまい、排ガス中の窒素酸化物量の低減効果が小さいという欠点がある。
【0030】
これに対し、本実施形態では、触媒全体の温度(触媒代表温度)を触媒入ガス温度Tinだけでなく、触媒出ガスTout によって補正をすることにより、触媒温度分布により生じる供給炭化水素の過不足をなくすことができる。つまり、上流側の触媒温度T1 が低下した後でも、触媒16の中間部から下流側の部分が活性状態になっている間は、図4(c)に実線で示すように、炭化水素供給量が従来よりも多く設定され、触媒16の中間部から下流側の活性部分を有効に利用して排ガス中の窒素酸化物の浄化を促進させることができ、図4(d)に実線で示すように、排ガス中の窒素酸化物量の低減効果を従来よりも大きくすることができる。
【0031】
また、従来は、加速時に触媒16の中間部から下流側の部分が温度上昇していなくても、加速時の触媒入ガス温度Tin(上流側の触媒温度T1 )の温度上昇に伴って、図4(c)に点線で示すように炭化水素供給量が急激に増加されるため、触媒16の上流側部分で反応せずに残った多量の炭化水素が触媒16の中間部から下流側に流れ込むようになる。しかし、触媒16の中間部から下流側の部分が温度上昇して活性状態になるまでには、時間遅れがあるため、その間は、多量の炭化水素が反応せずに触媒16の下流側をすり抜けてしまい、結果的に、無駄な炭化水素を供給していることになり、燃費を悪化させる原因になる。
【0032】
これに対し、本実施形態では、触媒16の排ガス流れ方向の触媒温度分布を考慮して炭化水素供給量を設定するため、上流側の触媒温度T1 が温度上昇しても、その下流側部分がまだ温度上昇していなければ、それに応じた炭化水素供給量が設定される。つまり、本実施形態では、触媒16のうちの活性状態になっている上流側部分で窒素酸化物を浄化するのに必要最小限の炭化水素供給量を算出するため、触媒16の上流側部分をすり抜けて下流側の不活性部分に流れ込む炭化水素の量は従来よりも著しく少なくなり、必要最小限の炭化水素供給量で排ガス中の窒素酸化物を効率良く浄化することができて、窒素酸化物浄化率の向上と燃費向上とを両立させることができる。
【0033】
本実施形態により、必要最小限の炭化水素供給量で排ガス中の窒素酸化物を効率良く浄化することができて、窒素酸化物浄化率の向上と燃費向上とを両立させることができる。
尚、上記実施形態では、触媒16に供給する炭化水素として燃料(軽油)を用いたが、灯油等の液状の炭化水素や、プロパン等のガス状の炭化水素を用いるようにしても良い。
【図面の簡単な説明】
【図1】本発明の実施形態を示す排ガス浄化装置全体の概略構成を示す図
【図2】炭化水素供給量制御ルーチンの処理の流れを示すフローチャート(その1)
【図3】炭化水素供給量制御ルーチンの処理の流れを示すフローチャート(その2)
【図4】(a)〜(d)は、車速変化に対する各部の温度、炭化水素供給量及び窒素酸化物量の変化の様子を示したタイムチャート
【図5】触媒入ガス温度Tin、触媒出ガス温度Tout 、触媒内の温度T1 ,T2 ,T3 の位置関係を説明する図
【図6】触媒温度と窒素酸化物浄化率との関係を示す図
【図7】触媒温度、窒素酸化物量、窒素酸化物浄化率、基本炭化水素供給量との関係を説明する図
【図8】触媒温度、窒素酸化物量、窒素酸化物浄化率、基本炭化水素供給量との関係を説明する図
【符号の説明】
11 ディーゼルエンジン(内燃機関)
12 吸気管
13 吸入空気量センサ(吸入空気量検出手段)
14 エンジン回転数センサ(機関運転状態検出手段)
15 排気管(排ガス通路)
16 触媒
17 排ガス温度センサ(排ガス温度検出手段)
18 炭化水素噴射ノズル(炭化水素供給手段)
19 燃料タンク
20 ポンプ(炭化水素供給手段)
21 アクセル
22 アクセル開度センサ
23 ECU(補正手段,記憶手段,触媒代表温度選択手段)
24 排ガス温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that reduces the amount of nitrogen oxides contained in the exhaust gas of the internal combustion engine.
[0002]
[Prior art]
Conventionally, a catalyst is installed in an exhaust pipe in order to purify nitrogen oxides and the like contained in exhaust gas of an internal combustion engine such as a diesel engine. In this case, in order to increase the purification efficiency of nitrogen oxides, it is effective to supply a reducing agent (for example, hydrocarbon) to the catalyst. For this purpose, Japanese Patent Laid-Open Nos. 5-263624 and 6-123219 are proposed. As disclosed in the publication, a hydrocarbon (hereinafter referred to as “HC”) supply device is provided upstream of the catalyst in the exhaust pipe, and HC is supplied from the HC supply device to the catalyst.
[0003]
[Problems to be solved by the invention]
By the way, the nitrogen oxide purification rate by the catalyst depends on the catalyst temperature, and shows a high nitrogen oxide purification rate only in a predetermined temperature range (for example, 200 to 300 ° C.) as shown in FIG. Therefore, in Japanese Patent Laid-Open No. 5-263624, the exhaust gas temperature at the inlet of the catalyst is measured, and the HC supply amount is calculated from preset map data according to the exhaust gas temperature and the engine operating state. Yes. In JP-A-6-123219, the temperature of the catalyst is measured by a thermocouple or the like installed at the inlet of the catalyst, and the amount of nitrogen oxides in the exhaust gas is estimated from the catalyst temperature and the engine operating state. The HC supply amount is calculated based on the catalyst temperature. Therefore, in both of the above two publications, the HC supply amount is calculated using the exhaust gas temperature (or catalyst temperature) measured at the catalyst inlet as it is.
[0004]
However, in the actual engine operating state, the exhaust gas temperature changes greatly, and a large temperature distribution is generated in the exhaust gas flow direction inside the catalyst due to heat transfer from the exhaust gas inside the catalyst and heat conduction of reaction heat generated inside the catalyst. Therefore, as described in the above two publications, when the HC supply amount is calculated based on the exhaust gas temperature (or catalyst temperature) measured at the catalyst inlet, the HC supply amount is larger than the actual catalyst temperature distribution. Too much or too little is likely to occur, and a stable nitrogen oxide purification rate cannot be obtained. In addition, since the HC supplied to the catalyst uses fuel, if the amount of HC supplied is too large, the fuel consumption will also deteriorate.
[0005]
The present invention has been made in view of such circumstances, and the object thereof is to set the amount of hydrocarbon (HC) to be supplied to the catalyst in consideration of the actual catalyst temperature distribution, An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can improve both the nitrogen oxide purification rate and the fuel consumption.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to claim 1 of the present invention calculates the amount of nitrogen oxides in exhaust gas based on the engine operating state detected by the engine operating state detecting means, and upstream of the catalyst. Both the exhaust gas temperature Tin on the side and the exhaust gas temperature Tout on the downstream side of the catalyst are detected and compared, and the higher temperature is selected as the catalyst representative temperature by the catalyst representative temperature selection means. The basic hydrocarbon supply amount is calculated based on the catalyst representative temperature and the nitrogen oxide amount in the exhaust gas, and the hydrocarbon supply means is controlled based on the basic hydrocarbon supply amount.
[0007]
In other words, the conventional configuration detects the temperature at the catalyst inlet and calculates the hydrocarbon supply amount, so that the HC supply amount is too large or too small relative to the actual catalyst temperature distribution. It is easy to happen. In contrast, in claim 1, both the exhaust gas temperature Tin on the upstream side of the catalyst and the exhaust gas temperature Tout on the downstream side of the catalyst are detected and compared, and the higher one is selected as the catalyst representative temperature based on a predetermined criterion . When the exhaust gas temperature Tin on the upstream side of the catalyst is higher than the exhaust gas temperature Tout on the downstream side of the catalyst, the catalyst representative temperature selection means estimates that the upstream catalyst temperature is higher than the downstream catalyst temperature. When the exhaust gas temperature Tin on the upstream side is selected as the catalyst representative temperature (that is, the representative temperature of the entire catalyst), and the exhaust gas temperature Tin on the upstream side of the catalyst is lower than the exhaust gas temperature Tout on the downstream side of the catalyst, the downstream catalyst temperature is Since it is estimated that the temperature is higher than the catalyst temperature on the upstream side, the exhaust gas temperature Tout on the downstream side of the catalyst is selected as the catalyst representative temperature, so that the difference between the catalyst temperature distribution state and the catalyst representative temperature is smaller than in the past, and the basic hydrocarbon The calculation accuracy of the supply amount can be improved as compared with the prior art.
[0008]
In this case, as in claim 2, the exhaust gas temperature Tin on the upstream side of the catalyst, the exhaust gas temperature Tout on the downstream side of the catalyst, and the temperature Tmax (see FIG. 6) at which the nitrogen oxide purification rate is maximized are compared. It is preferable to correct the basic hydrocarbon supply amount by the correcting means based on the above. In this way, the basic hydrocarbon supply amount can be corrected to increase or decrease in accordance with the actual reaction state inside the catalyst, and hydrocarbons can be distributed throughout the catalyst without excess or deficiency.
[0009]
Further, in claim 3, the catalyst representative temperature selection means includes:
(1) In the case of Tin> Tout 1) In the case of Tin> Tmax, it is assumed that the upstream portion of the catalyst is sufficiently activated and hydrocarbons are almost consumed on the upstream side of the catalyst. Even if the temperature of the downstream portion of the catalyst is low or high, it does not contribute much to the purification of nitrogen oxides, and it is considered that hydrocarbons do not pass through the catalyst without being reacted. Therefore, in this case, the basic hydrocarbon supply amount is not corrected.
[0010]
(2) When Tmax ≧ Tin> Tout, hydrocarbons do not disappear on the upstream side of the catalyst, but hydrocarbons also flow on the downstream side of the catalyst. In the case of Tin> Tout, the basic hydrocarbon supply amount is calculated using the exhaust gas temperature Tin on the upstream side of the catalyst as the catalyst representative temperature, so that part of the hydrocarbons supplied to the catalyst passes through the catalyst without being reacted. . Therefore, in this case, the basic hydrocarbon supply amount is corrected to decrease in accordance with the difference between the exhaust gas temperature Tin on the upstream side and the exhaust gas temperature Tout on the downstream side.
(2) When Tin ≦ Tout (1) When Tout <Tmax, activation of the downstream portion of the catalyst is insufficient, and activation on the upstream side of the catalyst is lower than that on the downstream side. In the case of Tin ≦ Tout, the basic hydrocarbon supply amount is calculated using the exhaust gas temperature Tout on the downstream side of the catalyst as the catalyst representative temperature, so that a large amount of hydrocarbons are present from the upstream side of the catalyst, which is less activated than the downstream side of the catalyst. Then, the amount of hydrocarbons flowing to the downstream side of the catalyst and flowing into the downstream side portion of the catalyst becomes excessive, and a part of the hydrocarbons passes through the catalyst without being reacted. Therefore, in this case, the basic hydrocarbon supply amount is corrected to decrease according to the difference between the downstream exhaust gas temperature Tout and the upstream exhaust gas temperature Tin.
[0011]
(2) In the case of Tin ≦ Tmax ≦ Tout, hydrocarbons are gradually consumed from the upstream side of the catalyst, and nitrogen oxides are gradually purified accordingly. Since the downstream side portion of the catalyst is sufficiently activated, hydrocarbons will not pass through the catalyst without being reacted. In this case, since the temperature range where the catalyst activation is moderate and the nitrogen oxide purification rate is high is effectively used, the amount of hydrocarbons to be supplied to the entire catalyst is the temperature at which the nitrogen oxide purification rate is maximized. The amount is the same as the basic hydrocarbon supply amount calculated assuming that Tmax is the catalyst representative temperature, and the increase is corrected until it reaches that value.
[0012]
(3) In the case of Tmax <Tin ≦ Tout, the basic hydrocarbon supply amount is calculated from the exhaust gas temperature Tout on the downstream side. However, since the catalyst temperature is closer to the optimum temperature on the upstream side of the catalyst than on the downstream side of the catalyst, If the amount of hydrogen is increased, the nitrogen oxide purification rate can be increased. Accordingly, in this case, the basic hydrocarbon supply amount is increased and corrected according to the difference between the downstream exhaust gas temperature Tout and the upstream exhaust gas temperature Tin.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a diesel engine will be described with reference to FIGS. First, a schematic configuration of the entire system will be described with reference to FIG. The intake pipe 12 of the diesel engine 11 which is an internal combustion engine is provided with an intake air amount sensor 13 (intake air amount detection means) for detecting the intake air amount. The diesel engine 11 is provided with an engine speed sensor 14 (engine operating state detecting means) for detecting the engine speed.
[0014]
On the other hand, a catalyst 16 is installed in the middle of the exhaust pipe 15 constituting the exhaust gas passage of the diesel engine 11. As shown in FIG. 6, the catalyst 16 exhibits a high nitrogen oxide purification rate only when the catalyst temperature is in the range of Ts to Tk (for example, 200 ° C. to 300 ° C.). As shown in FIG. 1, exhaust gas temperature sensors 17 and 24 (exhaust gas temperature detecting means) for detecting the exhaust gas temperature are installed on the upstream side of the catalyst 16. The exhaust gas temperature sensors 17 and 24 are installed on both the upstream side and the downstream side of the catalyst 16 so that both the catalyst inlet gas temperature Tin and the catalyst outlet gas temperature Tout can be detected.
[0015]
Further, on the upstream side of the catalyst 16, a hydrocarbon injection nozzle 18 for supplying hydrocarbon (HC) to the catalyst 16 is provided, and the fuel (light oil) in the fuel tank 19 is pumped up by the pump 20 and the hydrocarbon injection nozzle. 18 is injected into the exhaust pipe 15. The hydrocarbon injection nozzle 18 and the pump 20 constitute hydrocarbon supply means in the claims.
[0016]
On the other hand, the accelerator 21 is provided with an accelerator opening sensor 22 for detecting the accelerator opening. Output signals of the various sensors described above are input to an electronic control unit (hereinafter abbreviated as “ECU”) 23. The ECU 23 is mainly composed of a microcomputer, and a storage means (not shown) such as a ROM incorporated therein stores a hydrocarbon supply amount control routine shown in FIGS. 2 and 3 to be described later. The map data defining the hydrocarbon supply amount is stored by the catalyst temperature and the amount of nitrogen oxides in the exhaust gas, and the amount of hydrocarbon supplied to the catalyst 16 is controlled by executing the routines shown in FIGS. To do.
[0017]
Here, the hydrocarbon supply amount control in the embodiment will be described with reference to the flowcharts of FIGS. The hydrocarbon supply amount control routine of FIGS. 2 and 3 is repeatedly executed at predetermined time intervals (for example, every second). When the processing of this routine is started, first, at step 201, the engine speed sensor 14, the accelerator opening sensor 22, the intake air amount sensor 13, the exhaust gas temperature sensor 17 on the upstream side of the catalyst, and the exhaust gas temperature sensor 24 on the downstream side of the catalyst. The engine speed, accelerator opening, intake air amount, catalyst input gas temperature Tin, and catalyst output gas temperature Tout are read out. Thereafter, in step 202, based on the read engine speed and accelerator opening, the amount of nitrogen oxides in the exhaust gas discharged from the diesel engine 11 is calculated from map data set in advance with experimental data and theoretical values. To do.
[0018]
In general, the reaction rate of the catalyst 16 increases exponentially with increasing catalyst temperature, and the reaction rate of the entire catalyst 16 is governed by the maximum temperature of the catalyst temperature. Therefore, in the next step 203, the catalyst input gas temperature Tin And the catalyst outgas temperature Tout are compared, and the higher one is selected as the representative temperature of the entire catalyst 16 (catalyst representative temperature). That is, when Tin> Tout, the catalyst input gas temperature Tin is set as the catalyst representative temperature (step 204), and when Tin ≦ Tout, the catalyst output gas temperature Tout is set as the catalyst representative temperature (step 205). The processing of these steps 203 to 205 functions as catalyst representative temperature selection means in the claims.
[0019]
Then, in the next step 206, based on the catalyst representative temperature selected in the above steps 203 to 205 and the nitrogen oxide amount in the exhaust gas calculated in the above step 202, the map data as shown in FIGS. The basic hydrocarbon supply amount Q is calculated. Thereafter, in steps 207, 208, and 211, the catalyst input gas temperature Tin, the catalyst output gas temperature Tout, and the temperature Tmax (see FIG. 6) at which the nitrogen oxide purification rate is maximized are compared, and according to the comparison result. The basic hydrocarbon supply amount Q is corrected as follows. The map shown in FIG. 7 is a diagram for explaining the relationship between the catalyst temperature, the nitrogen oxide amount, the nitrogen oxide purification rate, and the basic hydrocarbon supply amount, and FIG. 8 is the carbonization determined by the relationship shown in FIG. It is a figure which shows hydrogen supply amount.
(1) When Tin> Tout When Tin> Tout, the routine proceeds from step 207 to step 208, where the catalyst input gas temperature Tin is compared with the temperature Tmax at which the nitrogen oxide purification rate is maximum, and the comparison result is obtained. Accordingly, correction processing is performed as follows.
[0020]
(1) When Tin> Tmax, the upstream portion of the catalyst 16 is sufficiently activated, and it is assumed that hydrocarbons are almost completely consumed on the upstream side of the catalyst. Even if the temperature is low or high, it does not contribute much to the purification of nitrogen oxides, and it is considered that hydrocarbons do not pass through the catalyst 16 without being reacted. Therefore, in this case, the process proceeds to step 209, and the basic hydrocarbon supply amount Q is not corrected.
[0021]
(2) When Tmax ≧ Tin> Tout, hydrocarbons do not disappear on the upstream side of the catalyst, but hydrocarbons also flow on the downstream side of the catalyst. In the case of Tin> Tout, the basic hydrocarbon supply amount Q is calculated in step 206 using the catalyst input gas temperature Tin as the catalyst representative temperature. Therefore, a part of the hydrocarbons supplied to the catalyst 16 is unreacted. It passes through the catalyst 16. Accordingly, in this case, the process proceeds to step 210, and the basic hydrocarbon supply amount Q is corrected to decrease in proportion to the difference between the catalyst input gas temperature Tin and the catalyst output gas temperature Tout.
(2) When Tin ≦ Tout When Tin ≦ Tout, the routine proceeds from step 207 to step 211, where the catalyst output gas temperature Tout is compared with the temperature Tmax at which the nitrogen oxide purification rate is maximum, and the comparison result is Accordingly, correction processing is performed as follows.
[0022]
(1) When Tout <Tmax, the activation of the downstream portion of the catalyst 16 is insufficient, and the activation on the upstream side of the catalyst is lower than that on the downstream side. In the case of Tin ≦ Tout, the basic hydrocarbon supply amount Q is calculated in step 206 using the catalyst output gas temperature Tout as the catalyst representative temperature, so that the activation is further lower than the catalyst downstream side than the catalyst downstream side. A large amount of hydrocarbon flows to the downstream side of the catalyst, the amount of hydrocarbon flowing into the downstream portion of the catalyst becomes excessive, and part of the hydrocarbon passes through the catalyst 16 without being reacted. Accordingly, in this case, the process proceeds to step 212, and the basic hydrocarbon supply amount Q is corrected to decrease in proportion to the difference between the catalyst output gas temperature Tout and the catalyst input gas temperature Tin.
[0023]
(2) If Tin ≦ Tmax ≦ Tout, the process proceeds from step 211 to step 214 through step 213. In the case of Tin ≦ Tmax ≦ Tout, hydrocarbons are gradually consumed from the upstream side of the catalyst, and nitrogen oxides are gradually purified accordingly. Since the downstream portion of the catalyst is sufficiently activated, hydrocarbons do not pass through the catalyst 16 without being reacted. In this state, since the temperature range where the catalyst activation is moderate and the nitrogen oxide purification rate is high is effectively used, the amount of hydrocarbons to be supplied to the entire catalyst 16 is the temperature at which the nitrogen oxide purification rate is maximized. It is the same amount as the basic hydrocarbon supply amount Q calculated on the assumption that Tmax is the catalyst representative temperature, and the increase is corrected until it reaches that value (step 214).
[0024]
(3) When Tmax <Tin ≦ Tout, the basic hydrocarbon supply amount Q is calculated based on the catalyst output gas temperature Tout in the above step 206. However, the catalyst temperature is more appropriate on the upstream side of the catalyst than on the downstream side of the catalyst. Therefore, if the amount of hydrocarbons is increased, the nitrogen oxide purification rate can be increased. Therefore, in this case, the process proceeds from step 211 to step 213 through step 215, and the basic hydrocarbon supply amount Q is corrected to increase in proportion to the difference between the catalyst output gas temperature Tout and the catalyst input gas temperature Tin.
[0025]
As described above, the basic hydrocarbon supply amount Q is corrected to increase or decrease as necessary, and then the routine proceeds to step 216, where hydrocarbon injection of an amount of hydrocarbon (fuel) corresponding to the corrected basic hydrocarbon supply amount Q is performed. The routine is terminated by injecting from the nozzle 18 to the upstream side of the catalyst 16.
The effect of performing the above control will be described with reference to the time chart shown in FIG. The time chart of FIG. 4 is an example of a travel pattern of acceleration → constant speed travel → deceleration frequently generated during city travel. As shown in FIG. 5, Tin is the temperature of exhaust gas flowing into the catalyst 16 (hereinafter referred to as “catalyst input gas temperature”), Tout is the temperature of exhaust gas flowing out from the catalyst 16 (hereinafter referred to as “catalyst output gas temperature”), T 1 Is the upstream catalyst temperature, T2 is the catalyst center temperature, and T3 is the downstream catalyst temperature.
[0026]
As shown in FIG. 4B, when the catalyst input gas temperature Tin rises due to acceleration, the upstream catalyst temperature T1 rises in substantially the same manner as the catalyst input gas temperature Tin, but the catalyst center temperature T2 and the downstream side catalyst temperature T1 rise. The temperature rise of the catalyst temperature T3 is delayed due to the heat capacity of the catalyst 16, and at time t1 during acceleration, T1>T2> T3, and the catalyst 16 has a temperature distribution.
[0027]
Thereafter, when shifting from acceleration to constant speed running, the catalyst input gas temperature Tin decreases, and the upstream catalyst temperature T1 decreases substantially in the same manner as the catalyst input gas temperature Tin. Due to conduction and generation of reaction heat, the highest temperature point in the catalyst 16 gradually moves from the upstream side to the downstream side. As a result, even if the catalyst input gas temperature Tin (upstream catalyst temperature T1) decreases due to the shift to the constant speed running, the catalyst center temperature T2 rises for a while, and the downstream catalyst is further delayed. The temperature T3 increases.
[0028]
Conventionally, since the hydrocarbon supply amount was calculated based on the catalyst input gas temperature Tin (upstream catalyst temperature T1), the hydrocarbon supply amount is increased on the upstream side as shown by the dotted line in FIG. The value follows the change in the catalyst temperature T1. Therefore, in the region where the upstream catalyst temperature T1 is high (acceleration), the amount of nitrogen oxides can be reduced to some extent, but as the catalyst temperature T1 on the upstream side decreases from the acceleration to the constant speed running, the hydrocarbon feed rate decreases. Is also reduced.
[0029]
However, even after the upstream catalyst temperature T1 has dropped, the catalyst center temperature T2 rises for a while, and the downstream catalyst temperature T3 rises with a delay. For a while, the active state that promotes the reduction reaction of nitrogen oxides is maintained. Therefore, as in the prior art, when the amount of hydrocarbons supplied is reduced as the upstream catalyst temperature T1 decreases, the downstream portion from the intermediate portion of the catalyst 16 is in an active state. There is a drawback that the amount of hydrocarbons supplied to this portion is reduced and the effect of reducing the amount of nitrogen oxides in the exhaust gas is small.
[0030]
On the other hand, in this embodiment, by correcting the temperature of the entire catalyst (catalyst representative temperature) not only by the catalyst input gas temperature Tin but also by the catalyst output gas Tout, excess or deficiency of the supplied hydrocarbon caused by the catalyst temperature distribution Can be eliminated. That is, as shown by the solid line in FIG. 4C, while the upstream side catalyst temperature T1 is lowered, as long as the downstream side part from the intermediate part of the catalyst 16 is in the active state, Is set more than before, and the active portion downstream from the intermediate portion of the catalyst 16 can be effectively used to promote the purification of nitrogen oxides in the exhaust gas, as shown by the solid line in FIG. In addition, the effect of reducing the amount of nitrogen oxides in the exhaust gas can be made larger than before.
[0031]
Conventionally, even if the temperature downstream from the intermediate portion of the catalyst 16 does not increase during acceleration, the temperature increases as the catalyst input gas temperature Tin (upstream catalyst temperature T1) increases during acceleration. As indicated by the dotted line in FIG. 4 (c), the amount of hydrocarbons to be supplied is abruptly increased, so that a large amount of hydrocarbons remaining without reacting in the upstream portion of the catalyst 16 flows from the intermediate portion of the catalyst 16 to the downstream side. It becomes like this. However, there is a time delay until the temperature of the downstream portion from the intermediate portion of the catalyst 16 rises to the active state, and during that time, a large amount of hydrocarbons do not react and pass through the downstream side of the catalyst 16. As a result, wasteful hydrocarbons are supplied, causing fuel consumption to deteriorate.
[0032]
On the other hand, in this embodiment, the hydrocarbon supply amount is set in consideration of the catalyst temperature distribution in the exhaust gas flow direction of the catalyst 16, so even if the upstream catalyst temperature T1 rises, the downstream portion thereof If the temperature has not risen yet, a hydrocarbon supply amount corresponding to the temperature rise is set. That is, in the present embodiment, in order to calculate the minimum amount of hydrocarbon supply necessary for purifying nitrogen oxides in the upstream portion of the catalyst 16 that is in the active state, the upstream portion of the catalyst 16 is The amount of hydrocarbons that slip through and flow into the inactive part on the downstream side is significantly smaller than before, and it is possible to efficiently purify nitrogen oxides in exhaust gas with the minimum required amount of hydrocarbon supply. It is possible to achieve both improvement in the purification rate and improvement in fuel consumption.
[0033]
According to the present embodiment, nitrogen oxides in exhaust gas can be efficiently purified with a minimum amount of supplied hydrocarbons, and both improvement in the nitrogen oxide purification rate and improvement in fuel consumption can be achieved.
In the above embodiment, fuel (light oil) is used as the hydrocarbon to be supplied to the catalyst 16, but liquid hydrocarbon such as kerosene and gaseous hydrocarbon such as propane may be used.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an entire exhaust gas purification apparatus showing an embodiment of the present invention. FIG. 2 is a flowchart showing a flow of processing of a hydrocarbon supply amount control routine (part 1).
FIG. 3 is a flowchart (part 2) showing a flow of processing of a hydrocarbon supply amount control routine.
FIGS. 4A to 4D are time charts showing changes in the temperature of each part, the amount of hydrocarbons supplied, and the amount of nitrogen oxides with respect to changes in vehicle speed. FIG. 5 is a graph showing catalyst input gas temperature Tin and catalyst output gas. Fig. 6 is a diagram for explaining the positional relationship between the temperature Tout and the temperatures T1, T2, and T3 in the catalyst. Fig. 6 is a diagram showing the relationship between the catalyst temperature and the nitrogen oxide purification rate. Fig. 7 is the catalyst temperature, nitrogen oxide content, and nitrogen oxidation. Fig. 8 is a diagram for explaining the relationship between the purification rate and the basic hydrocarbon feed rate. Fig. 8 is a diagram for explaining the relationship between the catalyst temperature, the nitrogen oxide content, the nitrogen oxide purification rate, and the basic hydrocarbon feed rate.
11 Diesel engine (internal combustion engine)
12 Intake pipe 13 Intake air amount sensor (intake air amount detection means)
14 Engine speed sensor (Engine operating state detection means)
15 Exhaust pipe (exhaust gas passage)
16 Catalyst 17 Exhaust gas temperature sensor (Exhaust gas temperature detection means)
18 Hydrocarbon injection nozzle (hydrocarbon supply means)
19 Fuel tank 20 Pump (hydrocarbon supply means)
21 Accelerator 22 Accelerator opening sensor 23 ECU (correction means, storage means, catalyst representative temperature selection means)
24 Exhaust gas temperature sensor

Claims (3)

内燃機関の排ガス通路に設置された排ガス浄化用の触媒と、
前記触媒に窒素酸化物の還元剤として炭化水素を供給する炭化水素供給手段と、
触媒上流側の排ガス温度を検出する手段と、
触媒下流側の排ガス温度を検出する手段と、
機関運転状態を検出する機関運転状態検出手段と、
前記機関運転状態に基づいて排ガス中の窒素酸化物量を算出する手段と、
前記触媒上流側の排ガス温度Tinと前記触媒下流側の排ガス温度Toutとを比較し、温度の高い方を触媒代表温度として選択する触媒代表温度選択手段と、
前記触媒代表温度と前記排ガス中の窒素酸化物量とに基づいて基本炭化水素供給量を算出する手段と、
前記基本炭化水素供給量に基づいて前記炭化水素供給手段を制御する手段とを備えていることを特徴とする内燃機関の排ガス浄化装置。
A catalyst for exhaust gas purification installed in the exhaust gas passage of the internal combustion engine;
Hydrocarbon supply means for supplying hydrocarbons as a reducing agent for nitrogen oxides to the catalyst;
Means for detecting the exhaust gas temperature upstream of the catalyst;
Means for detecting the exhaust gas temperature downstream of the catalyst;
Engine operating state detecting means for detecting the engine operating state;
Means for calculating the amount of nitrogen oxides in the exhaust gas based on the engine operating state;
A catalyst representative temperature selection means for comparing the exhaust gas temperature Tin on the upstream side of the catalyst with the exhaust gas temperature Tout on the downstream side of the catalyst and selecting the higher one as the catalyst representative temperature;
Means for calculating a basic hydrocarbon supply amount based on the catalyst representative temperature and the amount of nitrogen oxides in the exhaust gas;
An exhaust gas purification apparatus for an internal combustion engine, comprising: means for controlling the hydrocarbon supply means based on the basic hydrocarbon supply amount.
前記触媒上流側の排ガス温度Tinと前記触媒下流側の排ガス温度Tout窒素酸化物浄化率が最大となる温度Tmaxとを比較し、この比較結果に基づいて前記基本炭化水素供給量を補正する補正手段を備えていることを特徴とする請求項1に記載の内燃機関の排ガス浄化装置。A correction for comparing the exhaust gas temperature Tin on the upstream side of the catalyst, the exhaust gas temperature Tout on the downstream side of the catalyst, and the temperature Tmax at which the nitrogen oxide purification rate is maximized, and correcting the basic hydrocarbon supply amount based on the comparison result The exhaust gas purifying device for an internal combustion engine according to claim 1, further comprising means. 前記触媒代表温度選択手段は、
Tin>Toutの場合は、
Tin>Tmaxならば、前記基本炭化水素供給量を補正せず、
Tin≦Tmaxならば、Tin−Toutの値に応じて前記基本炭化水素供給量を減量補正し、
Tin≦Toutの場合は、
Tout<Tmaxならば、Tout−Tinの値に応じて前記基本炭化水素供給量を減量補正し、
Tin≦Tmax≦Toutならば、Tmaxを前記触媒代表温度と仮定して算出した基本炭化水素供給量に増量補正し、
Tin>Tmaxならば、Tout−Tinの値に応じて前記基本炭化水素供給量を増量補正することを特徴とする請求項2に記載の内燃機関の排ガス浄化装置。
The catalyst representative temperature selection means includes:
If Tin> Tout,
If Tin> Tmax, the basic hydrocarbon feed rate is not corrected,
If Tin ≦ Tmax, the basic hydrocarbon supply amount is reduced and corrected according to the value of Tin−Tout,
When Tin ≦ Tout,
If Tout <Tmax, the basic hydrocarbon supply amount is corrected to decrease according to the value of Tout−Tin,
If Tin ≦ Tmax ≦ Tout, increase correction is made to the basic hydrocarbon supply amount calculated assuming that Tmax is the catalyst representative temperature,
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein if Tin> Tmax, the basic hydrocarbon supply amount is increased and corrected in accordance with a value of Tout-Tin.
JP28508397A 1997-10-17 1997-10-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3682749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28508397A JP3682749B2 (en) 1997-10-17 1997-10-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28508397A JP3682749B2 (en) 1997-10-17 1997-10-17 Exhaust gas purification device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16892596A Division JPH108950A (en) 1996-06-28 1996-06-28 Exhaust gas purifier for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1082316A JPH1082316A (en) 1998-03-31
JP3682749B2 true JP3682749B2 (en) 2005-08-10

Family

ID=17686926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28508397A Expired - Fee Related JP3682749B2 (en) 1997-10-17 1997-10-17 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3682749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266220A (en) * 2005-03-25 2006-10-05 Mitsubishi Fuso Truck & Bus Corp Rising temperature controller of aftertreatment device

Also Published As

Publication number Publication date
JPH1082316A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP4326976B2 (en) Engine exhaust purification system
EP1830040B1 (en) Engine exhaust purification apparatus
US5842341A (en) Exhaust emission purification apparatus for an internal combustion engine
US6823663B2 (en) Exhaust gas aftertreatment systems
WO2006132364A1 (en) Engine exhaust purification apparatus
JP2008057364A (en) Exhaust emission control system of internal combustion engine
KR101949043B1 (en) Exhaust gas control apparatus for internal combustion engine and control method for exhaust gas control apparatus
JP2007113403A (en) Outside air temperature detecting device and exhaust emission control device
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
US20050066652A1 (en) Diesel aftertreatment systems
JP4419150B2 (en) NOx catalyst abnormality diagnosis device and abnormality diagnosis method
JP2009092001A (en) Control device for internal combustion engine, control method, program for materializing method, and record medium recording program
US20180328252A1 (en) Exhaust Gas Control System for Internal Combustion Engine and Method of Controlling Exhaust Gas Control System for Internal Combustion Engine
JP3855444B2 (en) Reducing agent supply device for internal combustion engine
JP4781151B2 (en) Exhaust gas purification system for internal combustion engine
JPH108950A (en) Exhaust gas purifier for internal combustion engine
JP3202546B2 (en) Nitrogen oxide purifier for internal combustion engine
JPH07119447A (en) Exhaust emission control method for internal combustion engine, exhaust emission control device suitable for the method, and deterioration degree of catalyst detecting device
JP3682749B2 (en) Exhaust gas purification device for internal combustion engine
JP4884270B2 (en) Engine exhaust purification system
JP4895887B2 (en) Engine exhaust purification system
JPH10259714A (en) Exhaust emission control device for internal combustion engine
JPH10259713A (en) Exhaust gas purifying device for internal combustion engine
JP7238818B2 (en) Exhaust purification device control device, exhaust purification device, and vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees