JP3681165B2 - communication cable - Google Patents

communication cable Download PDF

Info

Publication number
JP3681165B2
JP3681165B2 JP2001331312A JP2001331312A JP3681165B2 JP 3681165 B2 JP3681165 B2 JP 3681165B2 JP 2001331312 A JP2001331312 A JP 2001331312A JP 2001331312 A JP2001331312 A JP 2001331312A JP 3681165 B2 JP3681165 B2 JP 3681165B2
Authority
JP
Japan
Prior art keywords
insulated wire
communication cable
wire cores
cable according
quad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331312A
Other languages
Japanese (ja)
Other versions
JP2003132744A (en
Inventor
建也 渕上
寿雄 及川
浩 田中
吉孝 細川
博季 梁井
俊朗 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Daiden Co Inc
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc, Nippon Telegraph and Telephone Corp filed Critical Daiden Co Inc
Priority to JP2001331312A priority Critical patent/JP3681165B2/en
Publication of JP2003132744A publication Critical patent/JP2003132744A/en
Application granted granted Critical
Publication of JP3681165B2 publication Critical patent/JP3681165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Communication Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LAN間伝送用に使用される通信ケ−ブルに関し、特に4本の絶縁線芯を星形カッド状に撚り合わせた通信ケ−ブルに関するものである。
【0002】
【従来の技術】
従来より、LANや高速インタ−フェ−ス用の通信ケーブルとして8芯のツイストペアケ−ブルが使用されおり、このツイストペアケ−ブルは2本の絶縁線芯を撚り合わせて一対とし、この一対を4組集合させた状態でポリ塩化ビニル等のプラスチック材からなる外部被覆に収容される構成とし、4組のうち2組で送信・受信をして主に前述した高速デ−タ伝送の用途に使用される。また、星型カッドケーブルは、4本の絶縁線芯を星形カッド状に撚り合わせ、ポリ塩化ビニル等のプラスチック材からなる外部被覆に収容される構成とし、主に構内ケーブルとして使用されている。
【0003】
【発明が解決しようとする課題】
前記従来の通信ケーブルにおいて、ツイストペアケ−ブルは漏話が小さいが4組の対構造のため外径寸法が大きくなり線路スペースの確保が難しいという課題を有し、また、星型カッドケーブルはツイストペアケーブルよりも外径寸法が小さくできるものの、屈曲や外部応力によりカッド崩れが生じると漏話が大きくなるという課題を有する。
【0004】
本発明は前記課題を解消するためになされたもので、収納体積を小さくして取り扱いや設置が行いやすく、カッド崩れを防止して漏話の発生を抑制する通信ケーブルを提案することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る通信ケーブルは、外径が0.2〜0.8mmの導体を絶縁被覆した絶縁線芯を4本組み合わせて星形カッド状に撚りピッチを10〜20mmとして撚り合わせ、当該撚り合わせた4本の絶縁線芯の外側に熱可塑性樹脂からなる外部被覆を前記4本の絶縁線芯が形成する星形カッド状の溝にくい込ませるように施すものである。このように本発明においては、4本の絶縁線芯の撚りピッチを小さくして、熱可塑性樹脂からなる外部被覆を前記4本の絶縁線芯が形成する星形カッド状の溝に狭入させているので、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。また、4芯でかつ星型カッド状に形成されているので、外径が極めて小さくなり、通常のLAN用ケーブルと比べると、屈曲性が高く取り回しし易く、ドアの下部の狭い隙間等にも容易に配線でき、表面が滑らかで、束容積・重量が共に小さく持ち運びや保管に便利である。
【0006】
また、本発明に係る通信ケーブルは必要に応じて、各絶縁線芯の表面における長手方向に凸凹を形成するものである。このように本発明においては、4本の各絶縁線芯の表面における長手方向に凸凹を形成しているので、4本の各絶縁線芯の表面における凸凹が互いに係合して外力が働いてもカッド崩れが防止されて著しく漏話の発生の防止維持をすることができる。
また、本発明に係る通信ケーブルは必要に応じて、各絶縁線芯の長手方向表面の面粗度を粗くするものである。このように本発明においては、前記4本の絶縁線芯の長手方向表面の面粗度を粗くしているので、各絶縁線芯相互の摩擦力が働き、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。
【0007】
また、本発明に係る通信ケーブルは必要に応じて、前記4本の絶縁線芯の対角方向に位置する2本と、他の2本との外径を異ならせて形成するものである。このように本発明においては、前記4本の絶縁線芯の対角方向に位置する2本の外径を他の2本の外径より小さくしているので、2本の外径が大きい絶縁線芯が配置されることで形成される2つの溝に2本の外径が小さい各絶縁線芯が嵌り外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。
【0008】
また、本発明に係る通信ケーブルは必要に応じて、前記4本の絶縁線芯の対角方向に位置する2本と、他の2本との硬度を異ならせて形成するものである。このように本発明においては、前記4本の絶縁線芯の対角方向に位置する2本の硬度を他の2本の硬度より小さくしているので、2本の硬度が小さい絶縁線芯が配置されることで形成される2つの溝に対して2本の硬度が大きい各絶縁線芯が各溝に埋入して外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。
また、本発明に係る通信ケーブルは必要に応じて、前記4本の絶縁線芯を融着、接着又は粘着するものである。このように本発明においては、前記4本の絶縁線芯を融着、接着又は粘着するので、外力が働いても抵抗力が生じてカッド崩れが防止されて漏話の発生の防止維持をすることができる。
【0009】
【発明の実施の形態】
(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る通信ケーブルを図1に基づいて説明する。図1は本実施形態に係る通信ケーブルの断面図を示す。
【0010】
前記図1において本実施形態に係る通信ケーブルは、軟銅(例えば、直径0.5mm)で成形された導体21とポリエチレン等で成形された絶縁体22からなる絶縁線芯2(例えば、外径が0.8mm)を4本集合させて撚りピッチを15mmとする星形カッド状に撚り合わせ、この撚り合わせた4本の絶縁線芯2を塩化ビニル等の絶縁材で成形される外部被覆3で覆うという構成である。
前記外部被覆3は、電線押出機用ダイス(図示を省略)を用いて前記4本の絶縁線芯2より形成された星形カッドの溝に狭入させる構成である。
【0011】
次に、本実施形態に係る通信ケーブルの形成動作について説明する。絶縁線芯2は、軟銅の導体21を予め約80〜100℃の温度に予熱しておき、次に電線押出機用ダイスを有するスクリュー押出機(図示を省略)を用いてポリエチレン樹脂組成物を加熱混練し、電線押出機用ダイスより上記の予熱された導体21上に約180〜250℃の温度でかつ800m/分〜2000m/分の被覆速度で被覆することにより製造される。
前記通信ケーブルは、前記4本の絶縁線芯2を星形カッド状の通信ケーブルに撚り合わせることにより製造される。この撚り合わせは、対をなす絶縁線芯2間の静電結合および電磁結合の平衡を図るためになされ、撚りピッチを15mmとして行い、絶縁線芯2相互間の漏話の低減を図るために、絶縁線芯2を4本集合させて行われる。その際、撚りピッチを15mmという短いピッチとしているので絶縁線芯2の撚りによる相互位置や撚りピッチは、変動することなく固定化される。
4本の絶縁線芯2が形成する星形カッド状の溝にポリ塩化ビニル等の熱可塑性樹脂からなる外部被覆3を狭入させて通信ケーブルは形成される。
【0012】
以上のように本実施形態に係る通信ケーブルによれば、4本の絶縁線芯2の撚りピッチを小さくして、熱可塑性樹脂からなる外部被覆3を前記4本の絶縁線芯2が形成する星形カッド状の溝に狭入させているので、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。また、4芯でかつ星型カッド状に形成されているので、外径が小さくなり、一般のLAN用通信ケーブルと比べると、屈曲性が高く取り回しし易く、ドアの下部の狭い隙間等にも容易に配線でき、表面が滑らかで、束容積・重量が共に小さく持ち運びや保管に便利である。
【0013】
(本発明の第2の実施形態)
以下、本発明の第2の実施形態に係る通信ケーブルを図2及び図3に基づいて説明する。図2は本実施形態に係る通信ケーブルの断面図、図3は本実施形態に係る通信ケーブルにおける絶縁線芯2の斜視図を示す。
【0014】
前記図2において本実施形態に係る通信ケーブルは、前記弟1の実施形態に係る通信ケーブルと同様に、導体21と絶縁体22からなる絶縁線芯2を4本集合させて星形カッド状に撚り合わせ、この撚り合わせた4本の絶縁線芯2を外部被覆3で覆うという構成とし、この構成に加えて、前記各絶縁線芯2の絶縁体22の表面における長手方向に凸凹(例えば0.01〜0.1mmの溝を成形する)を成形する構成である。
前記各一対の絶縁線芯2における凸凹は、星形カッドの形状を保つことで各絶縁線芯2間の静電容量の均一性、電磁結合の減少を妨げず、漏話を大きくせずに成形する。
【0015】
次に、本実施形態に係る通信ケーブルの形成動作について説明する。絶縁線芯2は、軟銅の導体21を予め約80〜100℃の温度に予熱しておき、次に押出する物質の長手方向に凸凹ができるように成形した電線押出機用ダイスを有するスクリュー押出機を用いてポリエチレン樹脂組成物を加熱混練し、電線押出機用ダイスより上記の予熱された導体21上に約180〜250℃の温度でかつ800m/分〜2000m/分の被覆速度で被覆することにより製造される。図3は、上記のようにして製造された絶縁線芯2の斜視図を示す。
以下、前記第1の実施形態の通信ケーブルと同様に、形成される。
以上のように本実施形態に係る通信ケーブルによれば、4本の各絶縁線芯2の表面における長手方向に凸凹に成形しているので、この4本の各絶縁線芯2の表面の凸凹が互いに係合して外力が働いてもカッド崩れが防止されて著しく漏話の発生の防止維持をすることができる。
【0016】
(本発明の第3の実施形態)
以下、本発明の第1の実施形態に係る通信ケーブルを図4に基づいて説明する。図4は本実施形態に係る通信ケーブルの断面図を示す。
前記図4において本実施形態に係る通信ケーブルは、導体21と絶縁体22からなる絶縁線芯2を4本集合させて星形カッド状に撚り合わせ、この撚り合わせた4本の絶縁線芯2を外部被覆3で覆うという構成とし、この構成に加えて、対角方向に位置する2本の絶縁線芯2a(例えば、外径が0.5〜0.8mm)の外径を他の絶縁線芯2b(例えば、外径が0.75〜1.2mm)の2本の外径より小さくする構成である。
前記各2本の絶縁線芯2における外径の大きさは、星形カッドの形状を保つことで各絶縁線芯2間の静電容量の均一性、電磁結合の減少を妨げず、漏話を大きくせずに成形する。
【0017】
次に、本実施形態に係る通信ケーブルの形成動作について説明する。絶縁線芯2の製作は、軟銅の導体21を予め約80〜100℃の温度に予熱する。次に前記対角方向に位置する各2本の絶縁線芯2毎に半径が異なるように押出成形する2種の電線押出機用ダイスを用意し、この2種の電線押出機用ダイスがそれぞれ取り付けられたスクリュー押出機を用いて絶縁線芯2として押出成形する。さらに具体的には、この電線押出機用ダイスにより上記予熱された導体21上に約180〜250℃の温度でかつ800m/分〜2000m/分の被覆速度で加熱混練したポリエチレン樹脂組成物を被覆することにより、半径が異なる2種の絶縁線芯2a、2bが製造される。
【0018】
前記通信ケーブルは、前記2本の絶縁線芯2bを対角方向に位置させて並べ、この2本の絶縁線芯2bが形成する2つの溝部20a、20bに対して各絶縁線芯2aを配置させた状態で星形カッド状に撚り合わせることにより製造される。この撚り合わせは、対をなす絶縁線芯2aと2bとの間の静電結合および電磁結合の平衡を図るためになされ、撚りピッチを15mmとして行い、絶縁線芯2a、2b相互間の漏話の低減を図るために、絶縁線芯2a、2bを4本集合させて行われる。その際、撚りピッチを15mmという短いピッチとしているので絶縁線芯2a、2bの撚りによる相互位置や撚りピッチは、変動することなく固定化される。
4本の絶縁線芯2a、2bが形成する星形カッド状の溝にポリ塩化ビニル等の熱可塑性樹脂からなる外部被覆3を狭入させて通信ケーブルは形成される。
【0019】
以上のように本実施形態に係る通信ケーブルによれば、対角方向に位置する2本の絶縁線芯2aの外径を他の絶縁線芯2bの2本の外径より小さくしているので、2本の絶縁線芯2bにより形成される2つの溝部20a、20bに対して2本の絶縁線芯2aが各溝部20a、20bに嵌っており外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。
【0020】
(本発明の第4の実施形態)
以下、本発明の第1の実施形態に係る通信ケーブルを図5に基づいて説明する。図5は本実施形態に係る通信ケーブルの断面図を示す。
前記図5において本実施形態に係る通信ケーブルは、導体21と絶縁体22からなる絶縁線芯2を4本集合させて星形カッド状に撚り合わせ、この撚り合わせた4本の絶縁線芯2を外部被覆3で覆うという構成とし、この構成に加えて、対角方向に位置する2本の絶縁線芯2aの外径を他の絶縁線芯2bの2本の外径より小さくし、絶縁線芯2aの硬度(例えば、硬度が58〜65)を絶縁線芯2bの2本の硬度(例えば、硬度が44〜54)より大きくする構成である。
前記絶縁線芯2a、2bにおける硬度及び外径の大きさは、星形カッドの形状を保つことで各絶縁線芯2間の静電容量の均一性、電磁結合の減少を妨げず、漏話を大きくせずに成形する。
【0021】
次に、本実施形態に係る通信ケーブルの形成動作について説明する。絶縁線芯2の製作は、軟銅の導体21を予め約80〜100℃の温度に予熱する。次に前記対角方向に位置する各2本の絶縁線芯2毎に半径が異なるように押出成形する2種の電線押出機用ダイスを用意し、この2種の電線押出機用ダイスがそれぞれ取り付けられた2台のスクリュー押出機を用いて絶縁線芯2として押出成形する。さらに具体的には、上記予熱された導体21上に約180〜250℃の温度でかつ800m/分〜2000m/分の被覆速度で、硬化後の硬度が異なるように2種のポリエチレン系樹脂組成物をそれぞれ内包する各スクリュー押出機の電線押出機用ダイスによりを被覆することにより、半径と硬度とが異なる2種の絶縁線芯2a、2bが製造される。
【0022】
前記通信ケーブルは、前記2本の絶縁線芯2bを対角方向に位置させて並べ、この2本の絶縁線芯2bが形成する2つの溝部20a、20bに対して各絶縁線芯2aを埋入させた状態で星形カッド状に撚り合わせることにより製造される。この撚り合わせは、対をなす絶縁線芯2aと2bとの間の静電結合および電磁結合の平衡を図るためになされ、撚りピッチを15mmとして行い、絶縁線芯2a、2b相互間の漏話の低減を図るために、絶縁線芯2a、2bを4本集合させて行われる。その際、撚りピッチを15mmという短いピッチとしているので絶縁線芯2a、2bの撚りによる相互位置や撚りピッチは、変動することなく固定化される。
4本の絶縁線芯2a、2bが形成する星形カッド状の溝にポリ塩化ビニル等の熱可塑性樹脂からなる外部被覆3を狭入させて通信ケーブルは形成される。
【0023】
以上のように本実施形態に係る通信ケーブルによれば、対角方向に位置する2本の絶縁線芯2aの外径を他の絶縁線芯2bの2本の外径より小さくし、対角方向に位置する2本の絶縁線芯2aの硬度を他の絶縁線芯2bの2本の硬度より大きくしているので、2本の絶縁線芯2bが配置されることで形成される2つの溝部20a、20bに対して2本の絶縁線芯2aが各溝に埋入しており、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。
【0024】
(その他の実施形態)
なお、前記各実施形態に係る通信ケーブルにおいて、絶縁線芯2を電線押出機用ダイスより押出させる際に、被覆速度の変動や加熱混練する樹脂組成物を変更することにより、絶縁線芯2の表面の粗度(例えば、表面粗さが0.03〜0.12μm)を変更することもでき、4本の各絶縁線芯2相互の摩擦力を高らしめて、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができる。図6は、前記粗度を変更した絶縁線芯2の斜視図である。
【0025】
また、前記各実施形態に係る通信ケーブルにおいて、通信ケーブルの外周には、上記したポリ塩化ビニル等の熱可塑性樹脂からなる外部被覆3を被せる前に、部分的に紙、織布等でつくったテープで押え巻きすることもできる。
また、前記各実施形態に係る通信ケーブルにおいて、4本の絶縁線芯2を撚り合わせる前に、4本の絶縁線芯2を約200℃まで加熱して星型カッド状で融着させることもできる。
また、前記各実施形態に係る通信ケーブルにおいて、4本の絶縁線芯2を撚り合わせる前に、4本の絶縁線芯2を接着材により星型カッド状で接着させることもできる。
【0026】
また、前記各実施形態に係る通信ケーブルにおいて、絶縁体22をポリエチレンと接着剤を混練させて成形させることもでき、この絶縁体22からなる絶縁線芯2が粘着性をもつことができる。
また、前記各実施形態に係る通信ケーブルにおいて、外部被覆3と4本の絶縁線芯2から形成される星型カッドとのクリアランスを0〜−0.2mmにすることもできる。
また、前記各実施形態に係る通信ケーブルにおいて、4本の絶縁線芯2から形成される星型カッドの中心に円形、矩形等の形をした介在物4を挿入することもできる。さらに、前記介在物4の表面における長手方向に凸凹を形成し、又は、この介在物4の硬度を変更することもできる。図7は、介在物4を挿入した通信ケーブルの断面図である。
【0027】
また、前記第2の実施形態に係る通信ケーブルにおいて、絶縁線芯2の表面における長手方向に凸凹を成形したが、凸凹の代わりに切れ目をいれる構成とすることもできる。
また、前記第4の実施形態に係る通信ケーブルにおいて、絶縁線芯2aと2bとの外径を異ならせているが、絶縁線芯2aと2bとの外径を同じにし、絶縁線芯2aと2bとの硬度のみを異ならせることもできる。
【0028】
【発明の効果】
以上のように本発明においては、4本の絶縁線芯の撚りピッチを小さくして、熱可塑性樹脂からなる外部被覆を前記4本の絶縁線芯が形成する星形カッド状の溝に狭入させているので、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができるという効果を奏する。また、4芯でかつ星型カッド状に形成されているので、外径が小さくなり、通常のLAN用通信ケーブルと比べると、屈曲性が高く取り回しし易く、表面が滑らかで、束容積・重量が共に小さく持ち運びや保管に便利であるという効果を奏する。
【0029】
また、本発明においては、4本の各絶縁線芯の表面における長手方向に凸凹を形成しているので、4本の各絶縁線芯の表面における凸凹が互いに係合して外力が働いてもカッド崩れが防止されて著しく漏話の発生の防止維持をすることができるという効果を有する。
また、本発明においては、前記4本の絶縁線芯の長手方向表面の面粗度を粗くしているので、各絶縁線芯相互の摩擦力が働き、外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができるという効果を有する。
【0030】
また、本発明においては、前記4本の絶縁線芯の対角方向に位置する2本の外径を他の2本の外径より小さくしているので、2本の外径が大きい絶縁線芯が配置されることで形成される2つの溝に2本の外径が小さい各絶縁線芯が嵌り外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができるという効果を有する。
また、本発明においては、前記4本の絶縁線芯の対角方向に位置する2本の硬度を他の2本の硬度より小さくしているので、2本の硬度が小さい絶縁線芯が配置されることで形成される2つの溝に対して2本の硬度が大きい各絶縁線芯が各溝に埋入して外力が働いてもカッド崩れが防止されて漏話の発生の防止維持をすることができるという効果を有する。
また、本発明においては、前記4本の絶縁線芯を融着、接着又は粘着するので、外力が働いても抵抗力が生じてカッド崩れが防止されて漏話の発生の防止維持をすることができるという効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る通信ケーブルの断面図である。
【図2】本発明の第2の実施形態に係る通信ケーブルの断面図である。
【図3】本発明の第2の実施形態に係る通信ケーブルにおける絶縁線芯の斜視図である。
【図4】本発明の第3の実施形態に係る通信ケーブルの断面図である。
【図5】本発明の第4の実施形態に係る通信ケーブルの断面図である。
【図6】本発明のその他の実施形態に係る通信ケーブルにおける絶縁線芯の斜視図である。
【図7】本発明のその他の実施形態に係る通信ケーブルの断面図である。
【符号の説明】
2、2a、2b 絶縁線芯
21 導体
22 絶縁体
3 外部被覆
4 介在物
20a、20b 溝部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a communication cable used for transmission between LANs, and more particularly to a communication cable in which four insulated wire cores are twisted into a star quad.
[0002]
[Prior art]
Conventionally, an 8-core twisted pair cable has been used as a communication cable for a LAN or a high-speed interface. The twisted pair cable is formed by twisting two insulated wire cores into a pair. It is configured to be accommodated in an outer coating made of plastic material such as polyvinyl chloride in a state where four sets are assembled, and two of the four sets are used for transmission / reception, mainly for high-speed data transmission as described above used. In addition, the star-shaped quad cable has a configuration in which four insulated wire cores are twisted in a star-shaped quad shape and accommodated in an outer sheath made of a plastic material such as polyvinyl chloride, and is mainly used as a local cable. .
[0003]
[Problems to be solved by the invention]
In the conventional communication cable, the twisted pair cable has a small crosstalk, but has a problem that it is difficult to secure a line space because of the four pairs of structures, and the star quad cable is a twisted pair cable. Although the outer diameter can be made smaller than that, there is a problem that crosstalk increases when quad collapse occurs due to bending or external stress.
[0004]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to propose a communication cable that can be easily handled and installed by reducing the storage volume, and prevents the occurrence of crosstalk and prevents crosstalk. .
[0005]
[Means for Solving the Problems]
The communication cable according to the present invention is formed by combining four insulated wire cores having an outer diameter of 0.2 to 0.8 mm with insulation coating and twisting them in a star quad shape with a twist pitch of 10 to 20 mm. In addition, an outer coating made of a thermoplastic resin is applied to the outside of the four insulated wire cores so as to fit into the star-shaped quad grooves formed by the four insulated wire cores. As described above, in the present invention, the twist pitch of the four insulated wire cores is reduced, and the outer coating made of the thermoplastic resin is narrowly inserted into the star-shaped quad groove formed by the four insulated wire cores. Therefore, even if an external force is applied, the collapse of the quad is prevented and the occurrence of crosstalk can be prevented and maintained. In addition, because it has a four-core and star-shaped quad shape, the outer diameter is extremely small. Compared to ordinary LAN cables, it is highly flexible and easy to handle. Easy wiring, smooth surface, small bundle volume and weight, convenient for carrying and storage.
[0006]
Moreover, the communication cable which concerns on this invention forms unevenness in the longitudinal direction in the surface of each insulated wire core as needed. As described above, in the present invention, since the unevenness is formed in the longitudinal direction on the surface of each of the four insulated wire cores, the unevenness on the surface of each of the four insulated wire cores is engaged with each other, and an external force is applied. Also, the collapse of the quad is prevented, and the occurrence of crosstalk can be significantly prevented and maintained.
Moreover, the communication cable which concerns on this invention roughens the surface roughness of the surface of the longitudinal direction of each insulated wire core as needed. As described above, in the present invention, since the surface roughness of the longitudinal surface of the four insulated wire cores is increased, the frictional force between the insulated wire cores works, and even if an external force is applied, the quad collapse is prevented. Thus, it is possible to prevent and maintain the occurrence of crosstalk.
[0007]
In addition, the communication cable according to the present invention is formed by changing the outer diameters of two of the four insulated wire cores located in the diagonal direction and the other two as necessary. As described above, in the present invention, the two outer diameters positioned in the diagonal direction of the four insulated wire cores are made smaller than the other two outer diameters. Even if two insulated wire cores having small outer diameters are fitted in two grooves formed by arranging the wire cores and an external force is applied, the quad collapse is prevented and the occurrence of crosstalk can be prevented and maintained. .
[0008]
In addition, the communication cable according to the present invention is formed by differentiating the hardness of two of the four insulated wire cores located in the diagonal direction and the other two as required. As described above, in the present invention, since the two hardnesses positioned in the diagonal direction of the four insulated wire cores are smaller than the other two hardnesses, the two insulated wire cores having a small hardness are provided. Even if two insulation wires with high hardness are embedded in each groove and the external force is applied to the two grooves formed by the arrangement, the quad collapse is prevented and the occurrence of crosstalk is prevented and maintained. can do.
Further, the communication cable according to the present invention fuses, bonds or adheres the four insulated wire cores as necessary. As described above, in the present invention, the four insulated wire cores are fused, bonded, or adhered, so that even if an external force is applied, resistance is generated and the quad collapse is prevented to prevent the occurrence of crosstalk. Can do.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment of the present invention)
Hereinafter, a communication cable according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a communication cable according to this embodiment.
[0010]
In FIG. 1, the communication cable according to the present embodiment includes an insulated wire core 2 (for example, an outer diameter) made of a conductor 21 formed of soft copper (for example, a diameter of 0.5 mm) and an insulator 22 formed of polyethylene or the like. 0.8 mm) is twisted into a star-shaped quad shape with a twist pitch of 15 mm, and the four insulated wire cores 2 are formed with an outer covering 3 formed of an insulating material such as vinyl chloride. It is the composition of covering.
The outer covering 3 is configured to be narrowly inserted into a star-shaped quad groove formed from the four insulated wire cores 2 using a wire extruder die (not shown).
[0011]
Next, the forming operation of the communication cable according to the present embodiment will be described. The insulated wire core 2 is prepared by preheating the annealed copper conductor 21 at a temperature of about 80 to 100 ° C., and then using a screw extruder (not shown) having a die for an electric wire extruder. It is manufactured by heating and kneading and coating the preheated conductor 21 from a die for an electric wire extruder at a temperature of about 180 to 250 ° C. and a coating speed of 800 m / min to 2000 m / min.
The communication cable is manufactured by twisting the four insulated wire cores 2 into a star-shaped quad-shaped communication cable. This twisting is performed in order to balance the electrostatic coupling and electromagnetic coupling between the insulated wire cores 2 forming a pair. The twist pitch is set to 15 mm, and in order to reduce crosstalk between the insulated wire cores 2, This is performed by collecting four insulated wire cores 2 together. At this time, since the twist pitch is as short as 15 mm, the mutual position and the twist pitch due to the twist of the insulated wire core 2 are fixed without fluctuation.
A communication cable is formed by narrowing an outer covering 3 made of a thermoplastic resin such as polyvinyl chloride into a star-shaped quad-shaped groove formed by four insulated wire cores 2.
[0012]
As described above, according to the communication cable according to the present embodiment, the four insulated wire cores 2 form the outer coating 3 made of thermoplastic resin by reducing the twist pitch of the four insulated wire cores 2. Since the star-shaped groove is narrowly inserted, even if an external force is applied, the quad collapse is prevented and the occurrence of crosstalk can be prevented and maintained. In addition, because it has a four-core and star-shaped quad shape, its outer diameter is smaller, and it is more flexible and easier to handle than ordinary LAN communication cables. Easy wiring, smooth surface, small bundle volume and weight, convenient for carrying and storage.
[0013]
(Second embodiment of the present invention)
Hereinafter, a communication cable according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the communication cable according to the present embodiment, and FIG. 3 is a perspective view of the insulated wire core 2 in the communication cable according to the present embodiment.
[0014]
In FIG. 2, the communication cable according to the present embodiment is formed into a star-shaped quad by assembling four insulated wire cores 2 composed of the conductor 21 and the insulator 22 in the same manner as the communication cable according to the first embodiment. The four insulated wire cores 2 that are twisted together are covered with an outer coating 3, and in addition to this structure, the surface of the insulator 22 of each of the insulated wire cores 2 is uneven in the longitudinal direction (for example, 0 .01-0.1 mm groove) is formed.
The unevenness in each of the pair of insulated wire cores 2 is formed without maintaining the shape of a star-shaped quad without interfering with the uniformity of capacitance between the insulated wire cores 2 and the decrease in electromagnetic coupling, and without increasing crosstalk. To do.
[0015]
Next, the forming operation of the communication cable according to the present embodiment will be described. The insulated wire core 2 is a screw extrusion having a wire extruder die formed by preheating an annealed copper conductor 21 to a temperature of about 80 to 100 ° C., and then forming an uneven shape in the longitudinal direction of the material to be extruded next. The polyethylene resin composition is heated and kneaded using a machine and coated on the preheated conductor 21 from the die for the wire extruder at a temperature of about 180 to 250 ° C. and a coating speed of 800 m / min to 2000 m / min. It is manufactured by. FIG. 3 shows a perspective view of the insulated wire core 2 manufactured as described above.
Thereafter, it is formed in the same manner as the communication cable of the first embodiment.
As described above, according to the communication cable according to the present embodiment, since the surface of each of the four insulated wire cores 2 is formed to be uneven in the longitudinal direction, the surface of each of the four insulated wire cores 2 is uneven. Even if they are engaged with each other and an external force is applied, the collapse of the quad is prevented and the occurrence of crosstalk can be remarkably prevented and maintained.
[0016]
(Third embodiment of the present invention)
Hereinafter, a communication cable according to a first embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a cross-sectional view of the communication cable according to the present embodiment.
In FIG. 4, the communication cable according to the present embodiment includes four insulated wire cores 2 each made up of a conductor 21 and an insulator 22 and twisted into a star-shaped quad, and the four insulated wire cores 2 twisted together. In addition to this configuration, the outer diameter of the two insulated wire cores 2a (for example, the outer diameter is 0.5 to 0.8 mm) located in the diagonal direction is covered with other insulation. It is the structure made smaller than the two outer diameters of the wire core 2b (for example, outer diameter is 0.75-1.2 mm).
The size of the outer diameter of each of the two insulated wire cores 2 is such that the shape of a star-shaped quad is maintained, so that the uniformity of capacitance between the insulated wire cores 2 and the decrease in electromagnetic coupling are not hindered, and crosstalk is prevented. Mold without increasing the size.
[0017]
Next, the forming operation of the communication cable according to the present embodiment will be described. In manufacturing the insulated wire core 2, the annealed copper conductor 21 is preheated to a temperature of about 80 to 100 ° C. in advance. Next, two types of wire extruder dies for extrusion molding so that the radii are different for each of the two insulated wire cores 2 positioned in the diagonal direction are prepared. The insulation wire core 2 is extruded using an attached screw extruder. More specifically, the preheated conductor 21 is coated with the polyethylene resin composition heated and kneaded at a temperature of about 180 to 250 ° C. and a coating speed of 800 m / min to 2000 m / min. Thus, two types of insulated wire cores 2a and 2b having different radii are manufactured.
[0018]
In the communication cable, the two insulated wire cores 2b are arranged in a diagonal direction, and the insulated wire cores 2a are arranged in two grooves 20a and 20b formed by the two insulated wire cores 2b. It is manufactured by twisting into a star-shaped quad in the state of being allowed to stand. This twisting is performed in order to balance the electrostatic coupling and electromagnetic coupling between the pair of insulated wire cores 2a and 2b. The twist pitch is set to 15 mm, and the crosstalk between the insulated wire cores 2a and 2b is reduced. In order to reduce it, four insulated wire cores 2a and 2b are assembled. At that time, since the twist pitch is as short as 15 mm, the mutual position and twist pitch due to twisting of the insulated wire cores 2a and 2b are fixed without fluctuation.
A communication cable is formed by narrowing an outer sheath 3 made of a thermoplastic resin such as polyvinyl chloride into a star-shaped quad groove formed by four insulated wire cores 2a and 2b.
[0019]
As described above, according to the communication cable according to the present embodiment, the outer diameters of the two insulated wire cores 2a located in the diagonal direction are smaller than the two outer diameters of the other insulated wire cores 2b. The two insulated wire cores 2a are fitted in the groove portions 20a and 20b with respect to the two groove portions 20a and 20b formed by the two insulated wire cores 2b. Can be prevented and maintained.
[0020]
(Fourth embodiment of the present invention)
Hereinafter, a communication cable according to a first embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a cross-sectional view of a communication cable according to the present embodiment.
In the communication cable according to the present embodiment in FIG. 5, the four insulated wire cores 2 composed of the conductors 21 and the insulators 22 are gathered and twisted into a star-shaped quad shape, and the four insulated wire cores 2 that are twisted together. In addition to this configuration, the outer diameters of the two insulated wire cores 2a located in the diagonal direction are made smaller than the two outer diameters of the other insulated wire cores 2b, so that the insulation is provided. In this configuration, the hardness of the wire core 2a (for example, the hardness is 58 to 65) is made larger than the two hardnesses (for example, the hardness is 44 to 54) of the insulated wire core 2b.
The insulation wire cores 2a and 2b have a hardness and an outer diameter that maintain the shape of the star-shaped quad, so that the uniformity of the capacitance between the insulation wire cores 2 and the decrease in electromagnetic coupling are not hindered, and crosstalk is prevented. Mold without increasing the size.
[0021]
Next, the forming operation of the communication cable according to the present embodiment will be described. In manufacturing the insulated wire core 2, the annealed copper conductor 21 is preheated to a temperature of about 80 to 100 ° C. in advance. Next, two types of wire extruder dies for extrusion molding so that the radii are different for each of the two insulated wire cores 2 positioned in the diagonal direction are prepared. The insulated wire core 2 is extruded by using two attached screw extruders. More specifically, two polyethylene resin compositions are used so that the hardness after curing is different on the preheated conductor 21 at a temperature of about 180 to 250 ° C. and a coating speed of 800 m / min to 2000 m / min. Two types of insulated wire cores 2a and 2b having different radii and hardness are manufactured by covering with a die for an electric wire extruder of each screw extruder that encloses an object.
[0022]
In the communication cable, the two insulated wire cores 2b are arranged in a diagonal direction, and the respective insulated wire cores 2a are embedded in the two grooves 20a and 20b formed by the two insulated wire cores 2b. It is manufactured by twisting it into a star-shaped quad in the state of entering. This twisting is performed in order to balance the electrostatic coupling and electromagnetic coupling between the pair of insulated wire cores 2a and 2b. The twist pitch is set to 15 mm, and the crosstalk between the insulated wire cores 2a and 2b is reduced. In order to reduce it, four insulated wire cores 2a and 2b are assembled. At that time, since the twist pitch is as short as 15 mm, the mutual position and twist pitch due to twisting of the insulated wire cores 2a and 2b are fixed without fluctuation.
A communication cable is formed by narrowing an outer sheath 3 made of a thermoplastic resin such as polyvinyl chloride into a star-shaped quad groove formed by four insulated wire cores 2a and 2b.
[0023]
As described above, according to the communication cable according to the present embodiment, the outer diameters of the two insulated wire cores 2a located in the diagonal direction are made smaller than the two outer diameters of the other insulated wire cores 2b, and the diagonal is obtained. Since the hardness of the two insulated wire cores 2a positioned in the direction is larger than the two hardnesses of the other insulated wire cores 2b, the two insulated wire cores 2b formed by arranging the two insulated wire cores 2b Two insulated wire cores 2a are embedded in each groove with respect to the groove portions 20a and 20b, and even if an external force is applied, the collapse of the quad is prevented and the occurrence of crosstalk can be prevented and maintained.
[0024]
(Other embodiments)
In addition, in the communication cable which concerns on each said embodiment, when extruding the insulated wire core 2 from the die | dye for electric wire extruders, by changing the resin composition to which the coating speed fluctuation | variation or heating kneading | mixing, The roughness of the surface (for example, the surface roughness is 0.03 to 0.12 μm) can be changed, and the frictional force between the four insulated wire cores 2 is increased so that even if an external force is applied, the quad collapses. Can be prevented and the occurrence of crosstalk can be prevented and maintained. FIG. 6 is a perspective view of the insulated wire core 2 with the roughness changed.
[0025]
Further, in the communication cable according to each of the above embodiments, the outer periphery of the communication cable is partially made of paper, woven cloth or the like before being covered with the outer coating 3 made of thermoplastic resin such as polyvinyl chloride. It can also be wound with tape.
In addition, in the communication cable according to each of the above embodiments, before the four insulated wire cores 2 are twisted, the four insulated wire cores 2 may be heated to about 200 ° C. and fused in a star-shaped quad shape. it can.
In the communication cable according to each of the above embodiments, the four insulated wire cores 2 can be bonded in a star quad shape with an adhesive before the four insulated wire cores 2 are twisted together.
[0026]
Moreover, in the communication cable according to each of the above embodiments, the insulator 22 can be formed by kneading polyethylene and an adhesive, and the insulated wire core 2 made of the insulator 22 can have adhesiveness.
In the communication cable according to each of the above embodiments, the clearance between the outer sheath 3 and the star quad formed from the four insulated wire cores 2 can be set to 0 to −0.2 mm.
In addition, in the communication cable according to each of the embodiments, the inclusion 4 having a circular shape, a rectangular shape, or the like can be inserted into the center of the star-shaped quad formed from the four insulated wire cores 2. Furthermore, unevenness can be formed in the longitudinal direction on the surface of the inclusion 4 or the hardness of the inclusion 4 can be changed. FIG. 7 is a cross-sectional view of the communication cable with the inclusion 4 inserted therein.
[0027]
Moreover, in the communication cable which concerns on the said 2nd Embodiment, although the unevenness | corrugation was shape | molded in the longitudinal direction in the surface of the insulated wire core 2, it can also be set as the structure which can make a cut instead of an unevenness | corrugation.
Further, in the communication cable according to the fourth embodiment, the insulated wire cores 2a and 2b have different outer diameters, but the insulated wire cores 2a and 2b have the same outer diameter, and the insulated wire cores 2a and 2b Only the hardness of 2b can be varied.
[0028]
【The invention's effect】
As described above, in the present invention, the twist pitch of the four insulated wire cores is reduced, and the outer coating made of thermoplastic resin is narrowly inserted into the star-shaped quad groove formed by the four insulated wire cores. Therefore, even if an external force is applied, the quad collapse is prevented, and it is possible to prevent and maintain the occurrence of crosstalk. In addition, because it has a 4-core and star-shaped quad shape, it has a smaller outer diameter, and is more flexible and easier to handle than ordinary LAN communication cables, has a smooth surface, and has a bundle volume and weight. Both are small and convenient to carry and store.
[0029]
Further, in the present invention, since the unevenness is formed in the longitudinal direction on the surface of each of the four insulated wire cores, even if the unevenness on the surface of each of the four insulated wire cores is engaged with each other, an external force is applied. The collapse of the quad is prevented, and it is possible to significantly prevent and maintain the occurrence of crosstalk.
Further, in the present invention, since the surface roughness of the longitudinal surface of the four insulated wire cores is increased, the frictional force between the insulated wire cores works, and even if an external force is applied, the quad collapse is prevented. Thus, it is possible to prevent and maintain the occurrence of crosstalk.
[0030]
Further, in the present invention, the two outer diameters positioned in the diagonal direction of the four insulated wire cores are made smaller than the other two outer diameters, so that the two insulated wires having a larger outer diameter are used. Even if two insulated wire cores with small outer diameters are fitted in the two grooves formed by the arrangement of the cores and an external force is applied, the quad collapse is prevented and the occurrence of crosstalk can be prevented and maintained. Has an effect.
Further, in the present invention, the two hardnesses positioned in the diagonal direction of the four insulated wire cores are made smaller than the other two hardnesses, so that two insulated wire cores having a small hardness are arranged. As a result, even if two insulated wires having high hardness are embedded in each groove and an external force is applied to the two grooves formed, the quad collapse is prevented and the occurrence of crosstalk is prevented and maintained. It has the effect of being able to.
In the present invention, since the four insulated wire cores are fused, bonded or adhered, even if an external force is applied, resistance is generated and the quad collapse is prevented, thereby preventing the occurrence of crosstalk. It has the effect of being able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a communication cable according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a communication cable according to a second embodiment of the present invention.
FIG. 3 is a perspective view of an insulated wire core in a communication cable according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional view of a communication cable according to a third embodiment of the present invention.
FIG. 5 is a cross-sectional view of a communication cable according to a fourth embodiment of the present invention.
FIG. 6 is a perspective view of an insulated wire core in a communication cable according to another embodiment of the present invention.
FIG. 7 is a cross-sectional view of a communication cable according to another embodiment of the present invention.
[Explanation of symbols]
2, 2a, 2b Insulated wire core 21 Conductor 22 Insulator 3 Outer coating 4 Inclusions 20a, 20b Groove

Claims (6)

外径が0.2〜0.8mmの導体を絶縁被覆した絶縁線芯を4本組み合わせて星形カッド状に撚りピッチを6〜20mmとして撚り合わせ、当該撚り合わせた4本の絶縁線芯の外側に熱可塑性樹脂からなる外部被覆を前記4本の絶縁線芯が形成する星形カッド状の溝にくい込ませるように施すことを
特徴とする通信ケーブル。
A combination of four insulated wire cores coated with a conductor having an outer diameter of 0.2 to 0.8 mm, twisted into a star-shaped quad with a twist pitch of 6 to 20 mm, and the four twisted insulated wire cores A communication cable, characterized in that an outer coating made of a thermoplastic resin is provided on the outside so as to be inserted into the star-shaped quad groove formed by the four insulated wire cores.
前記請求項1に記載の通信ケーブルにおいて、
各絶縁線芯の表面における長手方向に凸凹を形成することを
特徴とする通信ケーブル。
The communication cable according to claim 1,
A communication cable characterized by forming irregularities in the longitudinal direction on the surface of each insulated wire core.
前記請求項1または2に記載の通信ケーブルにおいて、
各絶縁線芯の長手方向表面の面粗度を粗くすることを
特徴とする通信ケーブル。
In the communication cable according to claim 1 or 2,
A communication cable characterized by roughening the surface roughness of the longitudinal surface of each insulated wire core.
前記請求項1ないし3に記載の通信ケーブルにおいて、
前記4本の絶縁線芯の対角方向に位置する2本と、他の2本との外径を異ならせて形成することを
特徴とする通信ケーブル。
The communication cable according to any one of claims 1 to 3,
2. A communication cable, wherein two of the four insulated wire cores located in a diagonal direction and the other two are formed with different outer diameters.
前記請求項1ないし4に記載の通信ケーブルにおいて、
前記4本の絶縁線芯の対角方向に位置する2本と、他の2本との硬度を異ならせて形成することを
特徴とする通信ケーブル。
The communication cable according to any one of claims 1 to 4,
A communication cable, wherein the two insulated wire cores positioned in the diagonal direction and the other two are formed with different hardnesses.
前記請求項1ないし5に記載の通信ケーブルにおいて、
前記4本の絶縁線芯を融着、接着又は粘着することを
特徴とする通信ケーブル。
The communication cable according to any one of claims 1 to 5,
A communication cable characterized in that the four insulated wire cores are fused, bonded or adhered.
JP2001331312A 2001-10-29 2001-10-29 communication cable Expired - Fee Related JP3681165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331312A JP3681165B2 (en) 2001-10-29 2001-10-29 communication cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331312A JP3681165B2 (en) 2001-10-29 2001-10-29 communication cable

Publications (2)

Publication Number Publication Date
JP2003132744A JP2003132744A (en) 2003-05-09
JP3681165B2 true JP3681165B2 (en) 2005-08-10

Family

ID=19146914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331312A Expired - Fee Related JP3681165B2 (en) 2001-10-29 2001-10-29 communication cable

Country Status (1)

Country Link
JP (1) JP3681165B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027040A (en) * 2005-07-21 2007-02-01 Fujikura Ltd Electric cable
JP4984626B2 (en) * 2006-04-28 2012-07-25 日立電線株式会社 Electric cable
JP5166766B2 (en) * 2007-04-26 2013-03-21 株式会社オートネットワーク技術研究所 Insulated wire and wire harness
JP2011514649A (en) * 2008-03-17 2011-05-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Crushable conductor insulator
CN117501387A (en) * 2021-07-21 2024-02-02 住友电气工业株式会社 Multi-core cable

Also Published As

Publication number Publication date
JP2003132744A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
EP1532641B1 (en) Separable multi-member composite cable
JP5062200B2 (en) Coaxial cable manufacturing method
EP0117943B1 (en) Method of manufacturing a communication cable
US20190172606A1 (en) Multicoaxial cable
JP2014211511A (en) Optical cable
US4277642A (en) Cordage having a plurality of conductors in a partitioned jacket
CN102842386B (en) Dual-core cable and manufacturing method thereof
JP3681165B2 (en) communication cable
JP2020021701A (en) Multicore communication cable
JP2003059348A (en) Cable for transmitting electric signal
JP2003059348A5 (en)
JP2003132746A (en) Electric-optical composite cable and is manufacturing method
JP2001318286A (en) Optical fiber cable and electric power-light combined line
JP2002289042A (en) Self adhesive insulated electric wire and multi-core parallel insulated electric wire using the same, and their manufacturing apparatus
JP3623121B2 (en) Composite cable
JP2004335279A (en) Flat cable and its manufacturing method
JPH03219505A (en) Coaxial cable
CN102280173B (en) Two-core cable and manufacturing method thereof
JP5875153B2 (en) Wire core bundle and communication cable using the wire core bundle
JP2014216052A (en) Cable
CN115602390B (en) Photoelectric composite cable special for coal mining machine and production process
CN218241403U (en) Water-blocking and air-blocking electric wire
JPH10223071A (en) Manufacture of cross-linked polyethylene insulation power cable
CN217444130U (en) High antitorque anti-interference robot cable
CN114242313A (en) Novel small-size flat telescopic wire and forming method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees