JP3681142B2 - Differential protection relay - Google Patents

Differential protection relay Download PDF

Info

Publication number
JP3681142B2
JP3681142B2 JP08446897A JP8446897A JP3681142B2 JP 3681142 B2 JP3681142 B2 JP 3681142B2 JP 08446897 A JP08446897 A JP 08446897A JP 8446897 A JP8446897 A JP 8446897A JP 3681142 B2 JP3681142 B2 JP 3681142B2
Authority
JP
Japan
Prior art keywords
differential protection
protection relay
digital
relay device
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08446897A
Other languages
Japanese (ja)
Other versions
JPH10262327A (en
Inventor
博 太田
Original Assignee
ティーエム・ティーアンドディー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエム・ティーアンドディー株式会社 filed Critical ティーエム・ティーアンドディー株式会社
Priority to JP08446897A priority Critical patent/JP3681142B2/en
Publication of JPH10262327A publication Critical patent/JPH10262327A/en
Application granted granted Critical
Publication of JP3681142B2 publication Critical patent/JP3681142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、保護継電装置、特に送電線の両端において互いに伝送手段を介して系統電気量を伝送し合うことにより、系統の保護を行なう差動保護継電装置に関する。
【0002】
【従来の技術】
図5はディジタル伝送方式を適用した従来のPCM差動保護継電装置のシステム構成図である。図5において、A,Bは電気所であり保護区間送電線11の両端には遮断器12A ,12B が接続されている。各端電流は両電気所において変流器13A ,13B により取り入れられ、差動保護継電器1A,1Bに導入される。
【0003】
差動保護継電器1A,1Bに取り込まれた電流は入力変換器14A ,14B にて所定の電気量に変換され、フィルタ15A ,15B を介して不要な周波数成分の電気量を除去して、サンプリング・ホールド回路(S/H)16A ,16B にて次のサンプリング時までホールドされる。
【0004】
そして前記ホールドされた電気量はアナログ/ディジタル変換器(A/D)17A ,17B によりディジタルデータに変換された後、判定部(PU)19A ,19B に送られる。又、両端電気所A,BのA/D出力は夫々信号伝送装置(CC)18A ,18B を介し、相手端子へ互いに伝送され、夫々各端子の判定部(PU)19A ,19B に送られる。
【0005】
前記相手端子へ伝送するディジタルデータ,前記自端へ伝送されてきた相手端子のディジタルデータ,前記アナログ/ディジタル変換回路出力のディジタルデータのビット長は同一である。判定部(PU)19A ,19B では、A電気所電流データIA とB電気所電流データIB を用いて被保護区間送電線に流入する事故電流の有無を判定する。
【0006】
判定結果は前述の遮断器12A ,12B へのトリップ指令として出力される。この判定は上記電流データIA ,IB を用いて一例として(1) 式により行なわれる。本特性は横軸にΣ|I|=|IA |+|IB |、縦軸に|Id |=|IA +IB |をとり、両端データIA とIB との位相差を例えば180度一定に保った時、図6のような比率特性となる。
【数1】
|IA +IB |≧K1 (|IA |+|IB |)+K0 ・最小感度…………………(1)
(K0 ,K1 は定数)
【0007】
入力変換器14A ,14B は図7に示すように、変換比を切り換える切り換え回路71を有し、前記切り換え回路にて差動保護継電器の最小感度を「0.5A,1.0A,1.5A,2.0A」の中より選択する。
【0008】
例えば、送電線からみた最小感度を800Aとすると、A電気所の変流器の変換比が8000/5の場合、A電気所の差動保護継電器の最小感度は0.5A(800A×5/8000)を選択し、B電気所の変流器の変換比が4000/5の場合、B電気所の差動保護継電器の最小感度は1.0A(800A×5/4000)を選択する。
【0009】
【発明が解決しようとする課題】
上記したように最小感度を切り換え回路により切り換える方式では、変流器の変換比によっては差動保護できない場合がある。例えば、図8に示すように、送電線からみた最小感度を800Aとすると、A電気所の変流器の変換比が8000/5の場合、A電気所の差動保護継電器の最小感度は0.5A(800A×5/8000)を選択すればよい。
【0010】
しかしB電気所の変流器の変換比が6000/5の場合、B電気所の差動保護継電器の最小感度は0.667A(800A×5/6000)を選択するのが望ましいが、切り換え回路に該当の最小感度0.667Aがない。したがってB電気所の差動保護継電器の外部に変換比3/4の補助変成器81B を追加する必要があった。
【0011】
このように外部に補助変成器を設けないと、事故無し時に差電流が流れるため差動保護ができなくなる。又、外部に補助変成器を設ける代わりに、ソフトウェアで3/4倍する方法の場合、差動保護継電器の最小感度の選択の他に倍率の整定が必要となり、整定操作が煩雑となっていた。
【0012】
本発明は上記課題を解決するためになされたものであり、差動保護継電器の最小感度を連続の整定値で設定することにより、継電器の外部に補助変成器を追加することなく差動保護が可能な差動保護継電装置を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明の請求項1に係る差動保護継電装置は、電力系統の各端子電流値を入力変換部により所定の電気レベルに変換し、所定周期をもってサンプリングすることによりサンプリングデータを検出するサンプリング回路と、前記サンプリングデータをディジタルデータに変換するアナログ/ディジタル変換回路と、前記ディジタルデータを相手端子へ伝送する伝送手段と、差動保護継電器の最小感度の入力を行なう整定手段と、前記ディジタルデータと相手端子で得られ伝送路を介して自端へ伝送されてきた相手端子のディジタルデータを用いて所定の差動保護演算を行なう演算回路とを備えた差動保護継電装置において、前記相手端子へ伝送するディジタルデータのビット長及び前記自端へ伝送されてきた相手端子のディジタルデータのビット長をX、前記アナログ/ディジタル変換回路のビット長をY(X<Y)とすると、前記アナログ/ディジタル変換回路より得られたディジタルデータに定数[1/(2 Y-X )×K/差動保護継電器の最小感度(Kは定数)]を乗じる乗算手段を備えた。
【0015】
本発明の請求項1に係る差動保護継電装置は、自端へ伝送されてきた相手端子のディジタルデータのビット長をX、前記アナログ/ディジタル変換回路のビット長をY(X<Y)とすると、前記アナログ/ディジタル変換回路より得られたディジタルデータに定数[1/(2 Y-X )×K/差動保護継電器の最小感度]を乗じるようにした。
【0016】
これにより、いずれの最小電流値の場合も最小感度のdigit数を固定にすることにより、最小感度における量子化誤差を一定に保つことができるばかりか、相手端子との整合がとれるので、そのまま差動保護のデータとして使用できる。
【0017】
本発明の請求項に係る差動保護継電装置は、請求項1において、所定の周波数成分を抽出するフィルタ処理手段を備えた。
【0018】
本発明の請求項に係る差動保護継電装置は、請求項1において、差動保護継電器の最小感度は所定ステップ幅の連続値とする手段を備えた。
【0019】
本発明の請求項に係る差動保護継電装置は、請求項1において、サンプリング回路及びアナログ/ディジタル変換回路と他の継電器の入力変換部,サンプリング回路及びアナログ/ディジタル変換回路を共用する手段を備えた。
【0020】
本発明の請求項に係る差動保護継電装置は、請求項1において、差動保護継電器を主保護継電器として用いたとき、後備保護用入力変換部を前記主保護継電器の入力変換部にて共用する手段を備えた。
【0021】
【発明の実施の形態】
図1は本発明に係るPCM差動保護継電装置の実施の形態の構成図である。本実施の形態では従来の構成に対し、相手端子へ伝送するディジタルデータのビット長及び自端へ伝送されてきた相手端子のディジタルデータのビット長をX、及びアナログ/ディジタル変換回路のビット長をYとしたとき、X<Yの関係にあり、乗算手段を追加した構成となっている。図1において、図5と同一部分については同一符号を付して説明を省略する。
【0022】
そして図2に示すように入力変換器14A,14Bは、変換比を切り換える切り換え回路を有しない構成となっている。10A,10Bは定数乗算手段で、本実施の形態にて新たに付加されたものである。一例として、ここでは前記ビット長Xを12ビット、ビット長Yを16ビットとしたとき、定数[1/(2(16−12))×K/差動保護継電器の最小感度(Kは定数)]とした定数乗算手段で、乗算したものを相手端子へ伝送すると共に、判定部(PU)19A,19Bにて例えば(1)式の判定式による差動保護演算を実施する。
【0023】
次に定数を乗算することの意味を説明する。前記16ビットのうちの1ビットは正負の符号に割り当てられるので、電気量の大きさは0〜32768(215)digitのディジタル量で表わすことができる。入力変換器14A ,14B は切り換え回路を有しない構成であるため、入力フルスケールは一定となる。
【0024】
例えば、前記入力フルスケール102.4Aとすると、最小感度が0.5A、K=2のとき、前記定数乗算手段の定数は[1/(2 16-12 )×K/差動保護継電器の最小感度(Kは定数)]=1/16×2/0.5=0.25となる。したがって、最小感度電流0.5Aのdigit数は、32768digit×0.5A/102.4A×0.25=40digitとなる。
【0025】
又、最小感度が1.0A、K=2のとき、前記定数乗算手段の定数は[1/(2 16-12 )×K/差動保護継電器の最小感度(Kは定数)]=1/16×2/1.0=0.125となる。したがって、最小感度電流1.0Aのdigit数は、32768digit×1.0A/102.4A×0.125=40digitとなる。
【0026】
又、最小感度が0.667A、K=2のとき、前記定数乗算手段の定数は[1/(2 16-12 )×K/差動保護継電器の最小感度(Kは定数)]=1/16×2/0.667=0.187となる。したがって、最小感度電流0.667Aのdigit数は、32768digit×0.667A/102.4A×0.187=40digitとなる。
【0027】
以上のように、いずれの最小電流値の場合も最小感度のdigit数は固定である。最小感度のdigit数を固定にすることにより、最小感度における量子化誤差を一定に保つことができるだけでなく、相手端との電流との整合がとれるので、そのまま差動保護のデータとして使用できる。
【0028】
従来の最小感度は入力変換器の巻数に対応していたため、例えば「0.5A,1.0A,1.5A,2.0A」というような離散値となっていたが、本発明では最小感度の設定を整定手段より行なうため、例えば「0.500A,0.501A,0.502A,……,2.000A」というような所定ステップ幅の連続値とすることができる。
【0029】
例えば、送電線からみた最小感度を800Aとすると、A電気所の変流器の変換比が8000/5の場合、A電気所の差動保護継電器の最小感度は0.500A(800A×5/8000)を選択し、B電気所の変流器の変換比が6000/5の場合、B電気所の差動保護継電器の最小感度は0.667A(800A×5/6000)を選択することにより差動保護が可能となる。
【0030】
本実施の形態によれば、継電器の外部に補助変成器を追加する必要がない。又、外部に補助変成器を設ける代わりに、ソフトウェアで整合をとる方法のように、差動保護継電器の最小感度の選択の他に倍率の整定を行なう必要がない。
【0031】
図3は本発明PCM差動保護継電装置の他の実施の形態を示す構成図である。図3において、図1と同一部分については同一符号を付して説明を省略する。本実施の形態の特徴部分は乗算手段10Aの定数を[1/(2 Y-X )×K(Kは定数)]とした点であり、その他は図1と同じである。本実施の形態においても前記同様の効果が得られる。
【0032】
図4は本発明に係るPCM差動保護継電装置の他の実施の形態を示す構成図である。図4において、図1と同一部分については同一符号を付して説明を省略する。本実施の形態の特徴部分は図1に対してディジタル・フィルタ(DF)(41A)を付加したことである。
【0033】
本実施の形態によれば、ディジタル・フィルタ手段(DF)を追加することにより、入力の電流に含まれる直流分を除去してA/D変換後の量子化誤差を小さくすることができる他、電流に含まれる高調波を除去することができる。
【0034】
更に、本発明は入力変換器の切り換え回路がなくなったことにより、PCM差動保護継電器の入力変換部,サンプリング回路及びアナログ/ディジタル変換回路と他の継電器の入力変換部,サンプリング回路及びアナログ/ディジタル変換回路を共用することが可能となり、ハードウェアを削減により、ハードウェアの簡略化や信頼性が向上することができる。
【0035】
【発明の効果】
以上説明したように、本発明によれば両端子の変流器の変換比が異なる場合も差動保護が可能となるだけでなく、他の継電器の入力変流器との共用化をはかることができ、ハードウェアを大幅に削減することができる。
【図面の簡単な説明】
【図1】本発明のPCM差動保護継電装置の実施の形態を示す構成図。
【図2】本発明の適用される入力変換器の実施の形態を示す構成図。
【図3】本発明のPCM差動保護継電装置の他の実施の形態を示す構成図。
【図4】本発明のPCM差動保護継電装置の他の実施の形態を示す構成図。
【図5】従来のPCM差動保護継電装置の構成例図。
【図6】PCM差動保護継電装置の比率特性図。
【図7】従来のPCM差動保護継電装置の入力変換器の一例図。
【図8】従来のPCM差動保護継電装置の外部補助変成器の設置例図。
【符号の説明】
1A,1B 差動保護継電器
10A ,10B 定数乗算手段
11 保護区間送電線
12A ,12B 遮断器
13A ,13B 変流器
14A ,14B 入力変換器(CT)
15A ,15B フィルタ(FIL)
16A ,16B サンプリング・ホールド回路(S/H)
17A ,17B アナログ/ディジタル変換器(A/D)
18A ,18B 信号伝送装置(CC)
19A ,19B 判定部(PU)
41A ,41B ディジタルフィルタ(DF)
81B 補助変成器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a protective relay device, and more particularly to a differential protective relay device that protects a system by mutually transmitting system electricity through transmission means at both ends of a power transmission line.
[0002]
[Prior art]
FIG. 5 is a system configuration diagram of a conventional PCM differential protection relay device to which a digital transmission method is applied. In FIG. 5, A and B are electric stations, and circuit breakers 12 </ b> A and 12 </ b> B are connected to both ends of the protection section transmission line 11. The end currents are taken in by the current transformers 13A and 13B at both electric stations and introduced into the differential protection relays 1A and 1B.
[0003]
The current taken in the differential protection relays 1A and 1B is converted into a predetermined amount of electricity by the input converters 14A and 14B, and the amount of electricity of unnecessary frequency components is removed via the filters 15A and 15B. Holds by hold circuits (S / H) 16A and 16B until the next sampling.
[0004]
The held quantity of electricity is converted into digital data by analog / digital converters (A / D) 17A and 17B and then sent to determination units (PU) 19A and 19B. The A / D outputs of both ends A and B are transmitted to the counterpart terminals via signal transmission devices (CC) 18A and 18B, respectively, and sent to the decision units (PU) 19A and 19B of the respective terminals.
[0005]
The bit lengths of the digital data transmitted to the counterpart terminal, the digital data of the counterpart terminal transmitted to the terminal, and the digital data of the analog / digital conversion circuit output are the same. Determination unit (PU) 19A, the 19B, determines the presence or absence of fault current flowing into the protected section transmission lines using A substation current data I A and B substation current data I B.
[0006]
The judgment result is output as a trip command to the circuit breakers 12A and 12B. This determination is performed by the equation (1) as an example using the current data I A and I B. This characteristic takes Σ | I | = | I A | + | I B | on the horizontal axis and | I d | = | I A + I B | on the vertical axis, and shows the phase difference between the two end data I A and I B. For example, when it is kept constant at 180 degrees, the ratio characteristic as shown in FIG. 6 is obtained.
[Expression 1]
| I A + I B | ≧ K 1 (| I A | + | I B |) + K 0 · Minimum Sensitivity ……………… (1)
(K0 and K1 are constants)
[0007]
As shown in FIG. 7, the input converters 14A and 14B have a switching circuit 71 for switching the conversion ratio, and the minimum sensitivity of the differential protection relay is set to “0.5A, 1.0A, 1.5A by the switching circuit. , 2.0A ".
[0008]
For example, if the minimum sensitivity as viewed from the transmission line is 800A, and the conversion ratio of the current transformer at A is 8000/5, the minimum sensitivity of the differential protection relay at A is 0.5A (800A × 5 / 8000), and the conversion ratio of the current transformer at B electric station is 4000/5, the minimum sensitivity of the differential protection relay at B electric station is 1.0 A (800 A × 5/4000).
[0009]
[Problems to be solved by the invention]
As described above, in the method in which the minimum sensitivity is switched by the switching circuit, differential protection may not be possible depending on the conversion ratio of the current transformer. For example, as shown in FIG. 8, assuming that the minimum sensitivity as viewed from the transmission line is 800 A, the minimum sensitivity of the differential protection relay at the A station is 0 when the conversion ratio of the current transformer at the A station is 8000/5. .5A (800A × 5/8000) may be selected.
[0010]
However, when the conversion ratio of the current transformer at B electric station is 6000/5, it is desirable to select 0.667A (800A × 5/6000) as the minimum sensitivity of the differential protection relay at B electric station. There is no minimum sensitivity of 0.667A. Therefore, it was necessary to add an auxiliary transformer 81B having a conversion ratio of 3/4 to the outside of the differential protection relay at the B electric station.
[0011]
If an auxiliary transformer is not provided outside in this way, differential protection cannot be performed because a differential current flows when there is no accident. In addition, instead of providing an auxiliary transformer externally, in the case of the method of 3/4 times by software, setting of the magnification is required in addition to selecting the minimum sensitivity of the differential protection relay, and the setting operation is complicated. .
[0012]
The present invention has been made to solve the above-mentioned problems, and by setting the minimum sensitivity of the differential protection relay with a continuous set value, differential protection can be achieved without adding an auxiliary transformer outside the relay. It aims to provide a possible differential protection relay device.
[0013]
[Means for Solving the Problems]
A differential protection relay device according to claim 1 of the present invention is a sampling circuit that detects sampling data by converting each terminal current value of a power system into a predetermined electrical level by an input conversion unit and sampling with a predetermined period. An analog / digital conversion circuit for converting the sampling data into digital data, a transmission means for transmitting the digital data to a counterpart terminal, a setting means for inputting the minimum sensitivity of the differential protection relay, and the digital data In the differential protection relay device comprising an arithmetic circuit for performing a predetermined differential protection operation using digital data of the counterpart terminal obtained at the counterpart terminal and transmitted to the local end via the transmission line, the counterpart terminal The bit length of the digital data transmitted to the terminal and the bit of the digital data of the counterpart terminal transmitted to the terminal A length X, the when the bit length of the analog / digital converter and Y (X <Y), the digital data to a constant obtained from the analog / digital conversion circuit [1 / (2 (YX) ) × K / difference Multiplier means for multiplying the minimum sensitivity of the dynamic protection relay (K is a constant)].
[0015]
In the differential protection relay device according to claim 1 of the present invention, the bit length of the digital data of the counterpart terminal transmitted to the terminal is X, and the bit length of the analog / digital conversion circuit is Y (X <Y). Then, the digital data obtained from the analog / digital conversion circuit is multiplied by a constant [1 / (2 ( YX ) ) × K / minimum sensitivity of differential protection relay].
[0016]
As a result, by fixing the number of digits of the minimum sensitivity at any minimum current value, not only can the quantization error at the minimum sensitivity be kept constant, but also the matching with the counterpart terminal can be taken. Can be used as dynamic protection data.
[0017]
A differential protection relay device according to a second aspect of the present invention includes the filter processing means for extracting a predetermined frequency component in the first aspect.
[0018]
According to a third aspect of the present invention, there is provided a differential protection relay device according to the first aspect, further comprising means for making the minimum sensitivity of the differential protection relay a continuous value of a predetermined step width.
[0019]
A differential protection relay device according to a fourth aspect of the present invention is the differential protection relay device according to the first aspect, wherein the sampling circuit and the analog / digital conversion circuit and the input conversion unit, the sampling circuit, and the analog / digital conversion circuit of another relay are shared. Equipped with.
[0020]
The differential protection relay device according to claim 5 of the present invention is the differential protection relay device according to claim 1, wherein when the differential protection relay is used as the main protection relay, the backup protection input conversion unit is used as the input conversion unit of the main protection relay. And shared means.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram of an embodiment of a PCM differential protection relay device according to the present invention. In this embodiment, the bit length of the digital data transmitted to the counterpart terminal and the bit length of the digital data of the counterpart terminal transmitted to the terminal are set to X and the bit length of the analog / digital conversion circuit, compared to the conventional configuration. When Y is set, X <Y, and multiplication means is added. In FIG. 1, the same parts as those of FIG.
[0022]
As shown in FIG. 2, the input converters 14A and 14B are configured not to have a switching circuit for switching the conversion ratio. 10A and 10B are constant multiplication means, which are newly added in the present embodiment. As an example, here, when the bit length X is 12 bits and the bit length Y is 16 bits, constant [1 / (2 (16-12) ) × K / minimum sensitivity of the differential protection relay (K is a constant) ] Is transmitted to the counterpart terminal, and the determination unit (PU) 19A, 19B performs, for example, differential protection calculation based on the determination formula (1).
[0023]
Next, the meaning of multiplying by a constant will be described. Since one of the 16 bits is assigned to a positive or negative sign, the magnitude of the electric quantity can be represented by a digital quantity of 0 to 32768 (2 15 ) digits. Since the input converters 14A and 14B do not have a switching circuit, the input full scale is constant.
[0024]
For example, when the input full scale is 102.4A, when the minimum sensitivity is 0.5A and K = 2, the constant of the constant multiplying unit is [1 / (2 ( 16-12 ) ) × K / differential protection relay. Minimum sensitivity (K is a constant)] = 1/16 × 2 / 0.5 = 0.25. Therefore, the number of digits of the minimum sensitivity current 0.5 A is 32768 digits × 0.5 A / 102.4 A × 0.25 = 40 digits.
[0025]
When the minimum sensitivity is 1.0 A and K = 2, the constant multiplication means constant is [1 / (2 ( 16-12 ) ) × K / minimum sensitivity of the differential protection relay (K is a constant)] = 1/16 × 2 / 1.0 = 0.125. Therefore, the number of digits of the minimum sensitivity current of 1.0 A is 32768 digits × 1.0 A / 102.4 A × 0.125 = 40 digits.
[0026]
When the minimum sensitivity is 0.667A and K = 2, the constant multiplication means constant is [1 / (2 ( 16-12 ) ) × K / minimum sensitivity of the differential protection relay (K is a constant)] = 1/16 × 2 / 0.667 = 0.187. Therefore, the number of digits of the minimum sensitivity current 0.667A is 32768 digits × 0.667A / 102.4A × 0.187 = 40 digits.
[0027]
As described above, the number of digits with the minimum sensitivity is fixed at any minimum current value. By fixing the number of digits of the minimum sensitivity, not only can the quantization error at the minimum sensitivity be kept constant, but also the current with the other end can be matched, so that it can be used directly as differential protection data.
[0028]
Since the conventional minimum sensitivity corresponds to the number of turns of the input converter, for example, discrete values such as “0.5 A, 1.0 A, 1.5 A, 2.0 A” are used. Is set by the setting means, for example, a continuous value having a predetermined step width such as “0.500A, 0.501A, 0.502A,..., 2.000A” can be obtained.
[0029]
For example, if the minimum sensitivity as viewed from the transmission line is 800A, and the conversion ratio of the current transformer at A is 8000/5, the minimum sensitivity of the differential protection relay at A is 0.500A (800A × 5 / 8000), and when the conversion ratio of the current transformer at B Electric Station is 6000/5, the minimum sensitivity of the differential protection relay at B Electric Station is 0.667A (800A x 5/6000) Differential protection is possible.
[0030]
According to the present embodiment, there is no need to add an auxiliary transformer outside the relay. Further, instead of providing an auxiliary transformer externally, it is not necessary to set the magnification in addition to selecting the minimum sensitivity of the differential protection relay as in the method of matching by software.
[0031]
FIG. 3 is a block diagram showing another embodiment of the PCM differential protection relay device of the present invention. In FIG. 3, the same parts as those in FIG. The characteristic part of the present embodiment is that the constant of the multiplication means 10A is set to [1 / (2 ( YX ) ) × K (K is a constant)], and the others are the same as in FIG. In the present embodiment, the same effect as described above can be obtained.
[0032]
FIG. 4 is a block diagram showing another embodiment of the PCM differential protection relay device according to the present invention. In FIG. 4, the same parts as those in FIG. The characteristic part of this embodiment is that a digital filter (DF) (41A) is added to FIG.
[0033]
According to the present embodiment, by adding the digital filter means (DF), the DC component included in the input current can be removed to reduce the quantization error after A / D conversion. Harmonics included in the current can be removed.
[0034]
Furthermore, the present invention eliminates the input converter switching circuit, so that the input conversion unit, sampling circuit and analog / digital conversion circuit of the PCM differential protection relay and the input conversion unit, sampling circuit and analog / digital of other relays are provided. The conversion circuit can be shared, and the hardware can be reduced, thereby simplifying the hardware and improving the reliability.
[0035]
【The invention's effect】
As described above, according to the present invention, not only can differential protection be possible even when the conversion ratios of the current transformers at both terminals are different, but also the common use with the input current transformer of another relay can be achieved. This can greatly reduce the hardware.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a PCM differential protection relay device of the present invention.
FIG. 2 is a configuration diagram showing an embodiment of an input converter to which the present invention is applied.
FIG. 3 is a configuration diagram showing another embodiment of the PCM differential protection relay device of the present invention.
FIG. 4 is a configuration diagram showing another embodiment of the PCM differential protection relay device of the present invention.
FIG. 5 is a configuration example of a conventional PCM differential protection relay device.
FIG. 6 is a ratio characteristic diagram of a PCM differential protection relay device.
FIG. 7 is an example diagram of an input converter of a conventional PCM differential protection relay device.
FIG. 8 is an installation example of an external auxiliary transformer of a conventional PCM differential protection relay device.
[Explanation of symbols]
1A, 1B differential protection relay
10A, 10B Constant multiplication means
11 Protection section transmission line
12A, 12B circuit breaker
13A, 13B current transformer
14A and 14B input converter (CT)
15A, 15B filter (FIL)
16A, 16B Sampling and holding circuit (S / H)
17A, 17B Analog / digital converter (A / D)
18A and 18B signal transmission equipment (CC)
19A, 19B judgment part (PU)
41A, 41B Digital filter (DF)
81B Auxiliary transformer

Claims (5)

電力系統の各端子電流値を入力変換部により所定の電気レベルに変換し、所定周期をもってサンプリングすることによりサンプリングデータを検出するサンプリング回路と、前記サンプリングデータをディジタルデータに変換するアナログ/ディジタル変換回路と、前記ディジタルデータを相手端子へ伝送する伝送手段と、差動保護継電器の最小感度の入力を行なう整定手段と、前記ディジタルデータと相手端子で得られ伝送路を介して自端へ伝送されてきた相手端子のディジタルデータを用いて所定の差動保護演算を行なう演算回路とを備えた差動保護継電装置において、前記相手端子へ伝送するディジタルデータのビット長及び前記自端へ伝送されてきた相手端子のディジタルデータのビット長をX、前記アナログ/ディジタル変換回路のビット長をY(X<Y)とすると、前記アナログ/ディジタル変換回路より得られたディジタルデータに定数[1/(2 Y-X )×K/差動保護継電器の最小感度(Kは定数)]を乗じる乗算手段を備えたことを特徴とする差動保護継電装置。A sampling circuit for detecting sampling data by converting each terminal current value of the power system to a predetermined electrical level by an input conversion unit and sampling with a predetermined period, and an analog / digital conversion circuit for converting the sampling data to digital data Transmission means for transmitting the digital data to the counterpart terminal, settling means for inputting the minimum sensitivity of the differential protection relay, and the digital data obtained at the counterpart terminal and transmitted to the local terminal via the transmission line. In a differential protection relay device comprising an arithmetic circuit for performing a predetermined differential protection operation using the digital data of the counterpart terminal, the bit length of the digital data to be transmitted to the counterpart terminal and the self-terminal are transmitted. X is the bit length of the digital data of the other terminal, and the analog / digital conversion circuit The bit length Y When (X <Y), the constant [1 / the digital data obtained from the analog / digital converter (2 (YX)) minimum sensitivity × K / differential protection relay (K is a constant) ] A differential protection relay device characterized by comprising multiplication means for multiplying 請求項1記載の差動保護継電装置において、アナログ/ディジタル変換回路の後段にディジタル・フィルタ処理手段を備えたことを特徴とする差動保護継電装置。 2. The differential protection relay device according to claim 1, further comprising a digital filter processing means subsequent to the analog / digital conversion circuit . 請求項1記載の差動保護継電装置において、差動保護継電器の最小感度は所定ステップ幅の連続値とする手段を備えたことを特徴とする差動保護継電装置。 2. The differential protection relay device according to claim 1, further comprising means for setting the minimum sensitivity of the differential protection relay to a continuous value having a predetermined step width . 請求項1記載の差動保護継電装置において、差動保護継電器の入力変換部,サンプリング回路及びアナログ/ディジタル変換回路と他要素の継電器の入力変換部,サンプリング回路及びアナログ/ディジタル変換回路を共用したことを特徴とする差動保護継電装置。 2. The differential protection relay device according to claim 1, wherein the input conversion unit, sampling circuit and analog / digital conversion circuit of the differential protection relay are shared with the input conversion unit, sampling circuit and analog / digital conversion circuit of the relay of another element. A differential protection relay device characterized by that. 請求項1記載の差動保護継電装置において、差動保護継電器を主保護継電器として用いたとき、後備保護用入力変換部を前記主保護継電器の入力変換部にて共用したことを特徴とする差動保護継電装置。 The differential protection relay device according to claim 1, wherein when the differential protection relay is used as a main protection relay, a backup protection input conversion unit is shared by the input conversion unit of the main protection relay. Differential protection relay device.
JP08446897A 1997-03-18 1997-03-18 Differential protection relay Expired - Lifetime JP3681142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08446897A JP3681142B2 (en) 1997-03-18 1997-03-18 Differential protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08446897A JP3681142B2 (en) 1997-03-18 1997-03-18 Differential protection relay

Publications (2)

Publication Number Publication Date
JPH10262327A JPH10262327A (en) 1998-09-29
JP3681142B2 true JP3681142B2 (en) 2005-08-10

Family

ID=13831475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08446897A Expired - Lifetime JP3681142B2 (en) 1997-03-18 1997-03-18 Differential protection relay

Country Status (1)

Country Link
JP (1) JP3681142B2 (en)

Also Published As

Publication number Publication date
JPH10262327A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US6839210B2 (en) Bus total overcurrent system for a protective relay
WO2009116292A1 (en) Digital protection relay device and data transmission device for digital protection relay device
JP5068200B2 (en) Current differential protection relay
JP3681142B2 (en) Differential protection relay
US6621672B2 (en) Circuit breaker having analog override
JP4262155B2 (en) Protective relay device for generator main circuit
JP2003199240A (en) Digital protective relay
US4782421A (en) Electrical supply line protection apparatus
JP2008131788A (en) Transmission line protection relay system and device therewith
Brunner The impact of IEC 61850 on protection
US20050099746A1 (en) Device and method for protection against overcurrents in an electrical energy distribution cabinet
CN210350775U (en) Generator protection complete equipment suitable for small unit
JP2953891B2 (en) Digital bus protection device
JP3460879B2 (en) Digital out-of-step detection relay
JPS6028718A (en) Digital difference protecting relay
JP2000152486A (en) Current differential relay device
JP3211289B2 (en) Protection relay with switching function for instrument transformer
JPS5818863B2 (en) Bus bar protection method
JPH06284553A (en) Monitor for power equipment
RU2311711C1 (en) Method for building and adjusting current cutoff
SU1192016A1 (en) Device for compensating errors of current transformers
Bridgeman et al. The resonance damping effect associated with linear shunt loads and single-phase converters
JPH05207645A (en) Faulty section deciding system for current differential protective relay
JPS6051408A (en) Protecting relaying method
JPH01255428A (en) Current differential relay

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term