JP3679803B2 - Image recording / playback device - Google Patents
Image recording / playback device Download PDFInfo
- Publication number
- JP3679803B2 JP3679803B2 JP2004303042A JP2004303042A JP3679803B2 JP 3679803 B2 JP3679803 B2 JP 3679803B2 JP 2004303042 A JP2004303042 A JP 2004303042A JP 2004303042 A JP2004303042 A JP 2004303042A JP 3679803 B2 JP3679803 B2 JP 3679803B2
- Authority
- JP
- Japan
- Prior art keywords
- recording
- image
- image signal
- signal
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Television Signal Processing For Recording (AREA)
- Studio Devices (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Description
本発明は、例えば複数のテレビ規格でのカメラ撮影、圧縮信号処理、VTR記録を一括して行えるマルチモード対応のカメラ一体型VTR等に適用し得る画像記録再生装置に関する。 The present invention relates to an image recording / reproducing apparatus that can be applied to, for example, a multi-mode camera-integrated VTR that can collectively perform camera shooting, compression signal processing, and VTR recording in a plurality of television standards.
従来、カメラ一体型VTR(以下、カムコーダという)は、各テレビ放送方式(NTSC、PAL等)専用のものであって、モード選択としてはテープ速度が切替えられるものが知られている程度である。図20に特許文献1に記載されたカムコーダの一構成例を示す。
Conventionally, a camera-integrated VTR (hereinafter referred to as a camcorder) is dedicated to each television broadcasting system (NTSC, PAL, etc.), and it is known that a tape speed can be switched as a mode selection. FIG. 20 shows a configuration example of the camcorder described in
図20において、光学系161、撮像素子162、カメラ信号処理回路163などからなる周知の回路より出力される映像信号には、加算器164においてタイムコード発生器166で発生されたタイムコードに基づいてキャラクタ発生器165で発生されたキャラクタ信号が多重される。この映像信号は、音声信号(Audio)と4周波数方式のトラッキング制御に用いる4種のパイロット信号(4f)と共に、レコーダ信号処理回路167において記録に適した信号形態の記録信号に変換された後、アンプ168、30HzのPGパルスで切替えられるヘッドスイッチ169を経て、回転ヘッド170a、170bにより磁気テープ171に交互に記録される。尚、上記4周波数のパイロット信号を用いて、標準モードと長時間記録モードとの判別を行う技術は、例えば特許文献2、3等に記載されている。
In FIG. 20, a video signal output from a known circuit including an
しかしながら、従来のカムコーダでは1台で複数のテレビ規格に対応していないため、用途に応じて複数のカムコーダを用意し、それらを使い分けなければならない。 However, since a conventional camcorder does not support a plurality of television standards, it is necessary to prepare a plurality of camcorders according to applications and use them properly.
また、放送方式が多様化してくるに従って、他国間の番組ソフトテープ交換や、多方式共通ソフトの製作などの要求が高まり、現行の各テレビ放送方式専用のVTRでは複数台必要となるなど、運用面での不便さ、不都合が表面化してくることになる。従って、多放送方式に対応した単体のVTRが望まれていた。 In addition, as broadcasting systems become diversified, demands such as exchange of program software tapes between other countries and production of multi-system common software have increased, and multiple current VTRs dedicated to television broadcasting systems are required. Inconvenience and inconvenience on the surface will surface. Therefore, a single VTR corresponding to the multi-broadcast method has been desired.
本発明は、上記課題を解決し、複数の解像度の画像信号に対応可能な画像記録再生装置を提供することを目的とする。 An object of the present invention is to solve the above-described problems and to provide an image recording / reproducing apparatus that can handle image signals having a plurality of resolutions.
本発明の画像記録再生装置は、被写体像を光電変換し第1の画像信号を出力する撮像手段と、前記第1の画像信号の解像度を低減して第2の画像信号に変換する第1の変換手段と、前記第1または第2の画像信号をA/D変換してデジタル化するデジタル変換手段と、離散コサイン変換、量子化および符号化処理を組み合わせて前記第1または第2の画像信号を圧縮する圧縮手段と、前記第1の画像信号を表示する表示手段と、画像信号の記録モードと再生モードを切り換える切り換え手段と、記録する画像に対して複数の解像度の中から予め解像度を選択する解像度選択手段と、前記解像度選択手段を使用者が動作指示する操作手段と、前記圧縮手段により圧縮されかつ選択された解像度を有する第1または第2の画像信号と共に、前記操作手段によって選択指示された解像度を示す識別情報を記録媒体にデジタル記録する記録手段と、前記記録媒体に記録された識別情報を検出する検出手段と、前記記録媒体に記録された第1の画像信号を伸長し再生する再生手段と、再生モードで画像を再生するときは前記識別情報に応じて第2の画像信号の解像度を増加させて前記第1の画像信号に変換する第2の変換手段と、前記撮像手段から出力された第1の画像信号と前記再生手段により再生され前記第2の変換手段を介して出力された第1の画像信号とを選択的に前記表示手段に表示するように制御する制御手段とを備えた点に特徴を有する。
また、本発明の画像記録再生装置の他の特徴とするところは、前記制御手段は、前記記録モードで画像を記録するときは第1の画像信号を第2の画像信号に変換して前記表示手段に表示する点にある。
An image recording / reproducing apparatus according to the present invention includes an imaging unit that photoelectrically converts a subject image and outputs a first image signal, and a first image signal that reduces the resolution of the first image signal and converts it into a second image signal. The first or second image signal is a combination of a conversion means, a digital conversion means for A / D converting and digitizing the first or second image signal, and a discrete cosine transform, quantization and encoding processing. A compression means for compressing the image, a display means for displaying the first image signal, a switching means for switching between the recording mode and the reproduction mode of the image signal, and a resolution selected in advance from a plurality of resolutions for the recorded image Together with the first or second image signal compressed by the compression unit and having the selected resolution, the operation unit for instructing the user to operate the resolution selection unit. Recording means for digitally recording identification information indicating the resolution selected and designated by the means on a recording medium; detection means for detecting identification information recorded on the recording medium; and a first image signal recorded on the recording medium And a second conversion means for increasing the resolution of the second image signal according to the identification information and converting it to the first image signal when reproducing the image in the reproduction mode. The first image signal outputted from the imaging means and the first image signal reproduced by the reproducing means and outputted via the second converting means are selectively displayed on the display means. It is characterized in that it has a control means for controlling.
According to another feature of the image recording / reproducing apparatus of the present invention, the control means converts the first image signal into a second image signal when the image is recorded in the recording mode. The point is to display on the means.
本発明によれば、複数の解像度に対応可能で、表示出力として所望の画像信号を出力することが可能な画像記録再生装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the image recording / reproducing apparatus which can respond to several resolution and can output a desired image signal as a display output can be provided.
図1は、現行の放送方式及び将来の高精細テレビ(HDTV)を対象とした、複数のテレビ規格でのカメラ撮影、圧縮信号処理、VTR記録を一括して取り扱える、マルチモード対応のカメラ一体型ディジタルVTR(以下、カムコーダという)の構成を示す。マルチモードとしては、1.撮像モード、2.圧縮モード及び3.記録モードの3つの主要モードがあり、以下、各モードについて図1を参照しながら詳細に説明する。 Figure 1 shows a multi-mode compatible camera that can handle camera shooting, compression signal processing, and VTR recording in multiple TV standards for the current broadcasting system and future high-definition television (HDTV). A configuration of a digital VTR (hereinafter referred to as a camcorder) is shown. As the multi-mode, 1. imaging mode; 2. compression mode and There are three main modes of the recording mode. Hereinafter, each mode will be described in detail with reference to FIG.
1.撮像モードの選択
図1において、HDTVカメラ(以下、HDカメラと称す)1に内蔵された固体撮像素子としてのCCDにより被写体像が光電変換され、高精細な情報量の多いHD信号として出力される。このHD信号は、例えばスタジオ規格では、撮像有効画素数1920H×1035V画素でサンプリング周波数は75.3MHzである。このHD信号は2分配され、一方はHD信号をそのまま撮像モード選択回路2に入力し、もう一方をダウンコンバータ等の方式変換器3に入力する。
1. Selection of Imaging Mode In FIG. 1, a subject image is photoelectrically converted by a CCD as a solid-state imaging device built in an HDTV camera (hereinafter referred to as HD camera) 1 and output as a high-definition HD signal with a large amount of information. . For example, in the studio standard, the HD signal has an effective imaging pixel number of 1920 H × 1035 V pixels and a sampling frequency of 75.3 MHz. The HD signal is divided into two, one of which is input as it is to the imaging
この方式変換器3は、例えば「昭和60.9 NHK技研月報 pp.359〜364」に記載されているように、HD信号を標準放送方式(以下、SDと称す)であるNTSC,PAL,SECAM等に変換するために、情報量を減少させるものである。
For example, as described in “Showa 60.9 NHK Giken Monthly Report pp. 359-364”, this
ここで、HD−NTSC方式変換器3を例にとると、図2に示すような構成となり、アスペクト比変換部31、走査線数変換部32、フィールド周波数変換部33及びNTSCエンコーダ34により構成されている。以下、各部について説明する。
Here, taking the HD-
*アスペクト比変換部31
図3に代表的なアスペクト比変換のモードを3種類示す。
モードA:サイドパネル方式と呼ばれ、16:9のハイビジョン画像の両側を削除して、アスペクト比を4:3とするものである。従来方式のNTSC信号を希望する場合には、本モードを選択すると良い。
モードB:スクイーズ方式又はフルモードと呼ばれ、ハイビジョン画像を横方向に圧縮し、アスペクト比を4:3とするもので、変換画像は縦長となる。ワイド画面対応のNTSC信号に変換する場合には、本モードを選択すると良い。
モードC:レターボックス方式と呼ばれ、アスペクト比4:3の画面の中に16:9の画像を表示するように変換するもので、NTSC画像では上下両端では画像がなく黒となる。HDカメラで撮像した画角を活かした絵作りをしたい場合には、本モードを選択すると良い。
*
FIG. 3 shows three types of typical aspect ratio conversion modes.
Mode A: This is called a side panel method, in which both sides of a 16: 9 high-definition image are deleted and the aspect ratio is 4: 3. This mode may be selected when a conventional NTSC signal is desired.
Mode B: Called squeeze mode or full mode, which compresses a high-definition image in the horizontal direction and sets the aspect ratio to 4: 3, and the converted image is vertically long. This mode may be selected when converting to an NTSC signal compatible with a wide screen.
Mode C: Letterbox method, which is converted to display a 16: 9 image on a 4: 3 aspect ratio screen. In an NTSC image, there is no image at the upper and lower ends, and the image is black. If you want to make a picture that takes advantage of the angle of view captured by the HD camera, you can select this mode.
*走査線数変換部32
走査線数の変換処理は垂直内挿フィルタにおいて行われ、7サイクルを1周期とするライン順位に応じて切り替わる加重平均回路を構成している。
* Scanning line
The conversion processing of the number of scanning lines is performed in the vertical interpolation filter, and constitutes a weighted average circuit that switches according to the line order with 7 cycles as one period.
*フィールド周波数変換部33
フィールド周波数の変換処理は走査線数変換の後、バッファメモリを用いて行われ、フレームシンクロナイザと同様の機能を持つ時間軸補正器にて実時間処理が可能である。一般に使用されているフレームシンクロナイザでは、1フレームメモリの容量で約33秒に一回フレームスキップを引き起こすが、動画で起こると不自然なとびになる。これに対し、動き適応型フィールド数変換では、フレーム差信号を用いて動き検出、シーンチェンジ検出を行い、次の4条件のいずれかが満たされた時フレームスキップを行う。
(1)静止画像であるとき
(2)シーンチェンジが発生したとき
(3)動画領域が比較的小さいとき
(4)フレームバッファメモリの残余がなくなったとき
尚、フィールド周波数はハイビジョンが60Hz、NTSC方式が59.94Hzで1000/1001の相違がある。
*
Field frequency conversion processing is performed using a buffer memory after conversion of the number of scanning lines, and real-time processing is possible with a time axis corrector having the same function as the frame synchronizer. A frame synchronizer generally used causes a frame skip once every approximately 33 seconds with the capacity of one frame memory. In contrast, in motion adaptive field number conversion, motion detection and scene change detection are performed using a frame difference signal, and frame skip is performed when any of the following four conditions is satisfied.
(1) When it is a still image (2) When a scene change occurs (3) When the moving image area is relatively small (4) When there is no remaining frame buffer memory The field frequency is 60 Hz for high vision and the NTSC system There is a difference of 1000/1001 at 59.94 Hz.
次に、HD−NTSC方式変換器3の全体的な動作について説明する。
Next, the overall operation of the HD-
図2において、HD信号は、アスペクト比変換部31で16:9から4:3に変換され、次いで走査線数変換部32及びフィールド周波数変換部33で1125本から525本、60Hzから59.94Hzに変換され、NTSCエンコーダ34を経てNTSCコンポジット信号として出力される。
In FIG. 2, the HD signal is converted from 16: 9 to 4: 3 by the
次に、図1において、操作パネル4では、HD,SD−Hi(業務用の高画質で水平解像度450本程度),SD−Low(一般家庭用の標準画質で水平解像度230本程度)が選択できるようになっており、HDモードを選択すれば、システムコントローラ5を経て撮像モード選択回路2に入力され、入力されたHD信号を選択しスルーで出力する。また、SD−Hi又はSD−Lowを選択した場合には、上記方式変換器3によりダウンコンバート変換されたNTSC信号を選択して出力する。
Next, in FIG. 1, the
2.圧縮モードの選択
撮像モード選択回路2から出力された映像信号は、映像情報として圧縮回路6に入力される。この圧縮回路6は、複数の圧縮モード1、2を有しており、圧縮モード1、2に応じて圧縮率と圧縮方式とが変えられるようになっている。圧縮率は1/4,1/8,1/16,1/32等が挙げられる。圧縮方式はDCT,DPCM,アダマール変換,ADRC等が挙げられ、これらの組み合わせ、例えば、圧縮モード1をDCTとし、圧縮モード2をDPCMとすることができる。また、同一圧縮方式で圧縮率のみを選択可能としても構わない。
2. Selection of Compression Mode The video signal output from the imaging
圧縮処理された信号は、圧縮モード選択回路7に入力され、所望の圧縮モードを選択し、圧縮処理信号を出力する。これらのモード選択は、VTR側の記録時間や画質の選択あるいはカメラの撮像画質やモード設定と密接な関係があり、VTRまたはカメラのモード設定に応じて自動的に選択設定される。また、画像圧縮後のデータレートは、後述の記録系との関連で、例えばHDで50Mbps,SD−Hiで25Mbps,SD−Lowで12.5Mbps等の整数比となることが望ましい。
The compressed signal is input to the compression
3.記録モードの選択
圧縮モード選択回路7より出力された圧縮信号は、記録処理回路8に入力され、2組のヘッド対Ha,HbとHc,Hdとに対応したチャネル別の信号に2分配し、それぞれ記録アンプ9により増幅されて、ドラム10に設けられた2組のヘッド対の磁気ヘッドHa〜Hdにてテープ11上のトラックにディジタル記録される。トラック幅は各記録モード共に同一で、圧縮モード選択回路7の選択結果に応じ、記録モードが適宜選択され、データレートに見合ったデータ記録トラックを記録テープ11上に形成する。
3. Selection of recording mode The compressed signal output from the compression
一方、サーボ制御回路12により、ドラム10とキャプスタン13は各々ドラムモータ14とキャプスタンモータ15により駆動制御され、ドラム10の回転数及びテープ走行速度を所定目標値に保つ。また、テープ11はキャプスタン13とピンチローラ16とにより挾持されて走行する。
On the other hand, the
このサーボ制御回路12の所定目標値は、操作パネル4からの動作指示に応じシステムコントローラ5を介して各種モードに応じて設定される。この操作パネル4に設けられたモード選択スイッチの状態に応じて上記各種モード選択は表1の通り行われる。
The predetermined target value of the
次に、本発明によるHDカメラ1の一実施例を図4を参照して説明する。
Next, an embodiment of the
被写体101からの入射光は、焦点位置(以下、フォーカスと称す)、倍率(焦点距離)(以下、ズームと称す)を可変するフォーカスレンズ102、ズームレンズ103と光量を調節するアイリス104とからなる撮像光学系を通り、カラーフィルター105とCCD(固体撮像素子)106とからなる光電変換部に入射し、カラー映像信号に変換される。
Incident light from the subject 101 includes a
フォーカスレンズ102、ズームレンズ103、アイリス104には、例えばステッピングモータ等を用いた駆動部109a,109b,109cがそれぞれ備えられており、AF回路111、AE回路110あるいはキー入力部116からの信号に応じてシステムコントローラ113を介して制御されることにより、適性画面が撮像できるように成されている。
The
CCD106は、受光部で発生した光電荷が転送部に転送され、出力信号として取り出される。この信号はCDS回路107により雑音が低減され、AGC回路108によってゲインが制御される。このときAE回路110からの情報も参考にし、システムコントローラ113を経てゲインが調整され、その後、色処理回路114とプロセス回路115とに信号が供給されるように成されている。
In the
システムコントローラ113は、フォーカス、ズーム、露出等のキー入力部116によって設定された値に応じて、上記撮像光学系の駆動部109a〜109cを適宜制御する。また、CCD106の駆動パルスが各種動作と同期するようにクロック発生回路117を制御している。
The
ゲイン調整後、AWB回路112により、ホワイトバランス調整用の制御信号が生成され、色処理回路114にて色差信号のゲインが調節される。次に、プロセス回路115によってRGBの3原色に分離されたカラー映像信号がエンコーダ118に入力される。
After the gain adjustment, the
エンコーダ118は、カラー映像信号をコンポジット信号に変調出力する。このコンポジット出力信号は、システムコントローラ113からの情報が得られるように表示情報発生回路119の出力信号と加算器121で加算されて、ビューファインダー120に入力されることにより、被写体101の様子と共に各種の情報を見ることができる。
The
尚、コンポジット出力信号は、前段のRGB原色信号から取り出しても良いし、前々段のY,R−Y,B−Y信号から取り出しても良い。また、エンコーダ118のY/C分離型(例えばS端子形式)の2つの色信号I,Q若しくはR−Y,B−Yが直交変調された形態で取り出しても良い。
尚、例示していないが、上記の各信号処理をディジタルデータの状態で処理する場合には、DAC(ディジタルアナログ変換器)を通す前のディジタルデータの状態で出力しても構わない。
The composite output signal may be extracted from the RGB primary color signal in the previous stage or may be extracted from the Y, RY, and BY signals in the previous stage. Further, two Y / C separation type (for example, S terminal type) color signals I, Q or RY, BY of the
Although not illustrated, when each signal processing is performed in the state of digital data, it may be output in the state of digital data before passing through a DAC (digital-analog converter).
次に、動画像圧縮技術について説明する。 Next, the moving image compression technique will be described.
ディジタルデータ圧縮の目的は、画像の有する冗長性を取り除くことにより、データ量を削減することである。静止画像においては、画像の空間的冗長性に着目した処理を行う。また、動画像の場合においては、画像の時間的冗長性に着目した処理を行うが、基本原理は静止画像圧縮技術に基づいている。動画像圧縮の技術要素は次の4点である。
(1)DCT処理
(2)量子化処理
(3)符号化処理
(4)動き適応化処理
The purpose of digital data compression is to reduce the amount of data by removing the redundancy of the image. For a still image, processing focusing on the spatial redundancy of the image is performed. In the case of a moving image, processing focusing on temporal redundancy of an image is performed, but the basic principle is based on a still image compression technique. The technical elements of moving image compression are the following four points.
(1) DCT processing (2) Quantization processing (3) Encoding processing (4) Motion adaptation processing
なお、伸張過程は、上記圧縮過程の逆操作と考えれば良い。また、上記(1)〜(4)が静止画と動画に共通の項目である。詳細は、例えば「エレクトロニクス 1992年5月号マルチメディアと情報圧縮を追う(2)」等に記載されている。
以下、順を追って(1)〜(4)について概要を説明する。
The decompression process may be considered as the reverse operation of the compression process. The above items (1) to (4) are items common to still images and moving images. Details are described in, for example, “Electronics May 1992, Pursuing Multimedia and Information Compression (2)”.
Hereinafter, the outline of (1) to (4) will be described in order.
(1)DCT(Discrete Cosine Transform :離散コサイン変換)処理
定義:空間座標の値を周波数に変換することをいう。
圧縮の前処理として8×8画素程度の画素の集まりに入力画面をブロック化する。次に、DCT係数の乗算処理を行うことで、空間データを周波数データに変換する。このDCTだけでは何らデータ量の削減にはならないが、画面内に広く分散していたデータを他の座標系でみると、データが集中配置されるように座標変換できる。つまり、画像の一般的な特性として、空間周波数の低い側により多くの情報エネルギーが集中するという傾向を利用して、DCT以降の圧縮処理を効果的に実行するという役割をこの処理ステップが果たすのである。
(1) DCT (Discrete Cosine Transform) processing Definition: Transforms the value of spatial coordinates into frequency.
As preprocessing for compression, the input screen is blocked into a group of pixels of about 8 × 8 pixels. Next, spatial data is converted to frequency data by performing multiplication processing of DCT coefficients. This DCT alone does not reduce the amount of data at all, but when the data widely distributed in the screen is viewed in another coordinate system, the coordinate conversion can be performed so that the data is centrally arranged. In other words, as a general characteristic of the image, this processing step plays a role of effectively executing the compression processing after DCT by utilizing the tendency that more information energy is concentrated on the low spatial frequency side. is there.
(2)量子化処理
定義:周波数成分に変換された係数の語長をまるめることで、データ量を削減する。
DCTにより生成した各周波数成分毎のデータ係数の集合に適当な数値にて割り算を施し少数点以下を切り捨てる。その結果、各係数データを表現するのに要するビット数が低減でき、全体の量子化データ量が圧縮されることになる。この除数を各周波数成分毎にきめ細かく設定することで、必要な画質を保ちながら圧縮率を向上させることができる。
(2) Quantization processing Definition: The amount of data is reduced by rounding the word length of the coefficient converted to the frequency component.
A set of data coefficients for each frequency component generated by DCT is divided by an appropriate numerical value, and the decimal points are rounded down. As a result, the number of bits required to express each coefficient data can be reduced, and the entire amount of quantized data is compressed. By finely setting the divisor for each frequency component, the compression rate can be improved while maintaining the required image quality.
(3)符号化処理
定義:データ発生頻度に応じた長さの符号を割り当てることを特徴とする符号化であり、以下の三つの処理から成っている。
(3) Encoding process Definition: An encoding process characterized by assigning a code having a length corresponding to the data generation frequency, and includes the following three processes.
a.ジグザグスキャン
2次元配列されている周波数係数データを1次元データ列に変換するためにDC成分から水平と垂直の高周波成分へジグザグ状に移動しながら、データの並び替え動作を行う。
a. Zigzag scan In order to convert the two-dimensionally arranged frequency coefficient data into a one-dimensional data string, a data rearrangement operation is performed while moving from a DC component to a horizontal and vertical high-frequency component in a zigzag manner.
b.ランレングス符号化
同一数値(主にゼロ)の連続発生を一括して表現する符号で置き換える。例えば「ゼロが8連続している」等である。このように複数データに1つの符号を割り当てることで、符号化ビット数を削減する。また、ある位置以降のデータが全てゼロの場合には、エンドコードを割り当てる。これは、「本データをもって、当ブロック内のデータ伝送を終了する」と定義されたもので、大きなデータ削減効果を有する。
b. Run-length coding Replace with a code that expresses consecutive occurrences of the same numerical value (mainly zero). For example, “eight zeros are consecutive”. By assigning one code to a plurality of data in this way, the number of encoded bits is reduced. Also, if all data after a certain position is zero, an end code is assigned. This is defined as “the data transmission in this block is completed with this data”, and has a large data reduction effect.
c.VLC(Variable Length Coding: 可変長符号化)
出現頻度の高い数値に、ビット数の少ない符号を割り当てることで、実質的な総符号化ビット数の削減を行う。
c. VLC (Variable Length Coding)
By assigning a code with a small number of bits to a numerical value having a high appearance frequency, the total number of encoded bits is substantially reduced.
(4)動き適応化処理
定義:静止画圧縮に「動きを検出し予測」する技術を付加したのが基本原理である。
以下に、テレビ放送規格の動画像情報圧縮技術の3つの要点を説明する。
(4) Motion adaptation processing Definition: The basic principle is that a technology for “detecting and predicting motion” is added to still image compression.
Below, three points of the moving picture information compression technique of the television broadcast standard will be described.
a.動き検出
フレームメモリ等の画像データのバッファにフィールドまたはフレームの整数倍の時間に相当する画像データを蓄積し、時間遅延を発生させる。このメモリの入出力端の時間差において、対応する画素のデータがどれくらいの差異を生じたかにより動きを判別する。
最も単純な例では、フィールド間の輝度データの差異を演算し、この差分値の絶対量をもって動き量とする。
この他に、相関マッチング法などの画素データの相関度の高い位置の2次元座標の移動を算出することにより、動きベクトルを検出する手法も確立されている。
a. Motion detection Image data corresponding to an integral multiple of a field or frame is accumulated in a buffer of image data such as a frame memory to generate a time delay. The movement is determined according to how much the corresponding pixel data has changed in the time difference between the input and output ends of the memory.
In the simplest example, a difference in luminance data between fields is calculated, and an absolute amount of the difference value is used as a motion amount.
In addition, a method for detecting a motion vector by calculating the movement of a two-dimensional coordinate at a position where the degree of correlation of pixel data is high, such as a correlation matching method, has been established.
b.動き予測補償
画像の動きを動きベクトルから予測して、新たな画像を演算により生成する。この画面と実際の画面との差異分のみを補償データとして送信することでデータ量が削減できる。つまり、動きの少ない静止部分の多い画面や動きがゆるやかであったり、直線的であったりして予測誤差の発生の少ない動画面ほど圧縮効果が高くなる。
b. Motion prediction compensation A motion of an image is predicted from a motion vector, and a new image is generated by calculation. The amount of data can be reduced by transmitting only the difference between this screen and the actual screen as compensation data. In other words, the compression effect is higher for a screen with a small amount of motion and a moving image surface with a small amount of prediction errors and a motion image that is gentle or linear.
c.インターレース符号化
NTSC等のテレビ信号は、図5に示すように走査線(以下、ラインと称す)が1本毎に飛び越し配置されるインターレースという構造になっている。奇数ライン262.5本から構成される奇数フィールドと偶数ライン262.5本から構成される偶数フィールドとが一対となり、一つのフレーム画面(525ライン)が成り立っている。
c. Interlace coding Television signals such as NTSC have a structure called interlace in which scanning lines (hereinafter referred to as lines) are interlaced as shown in FIG. An odd field composed of 262.5 odd lines and an even field composed of 262.5 even lines are paired to form one frame screen (525 lines).
ところが、画面内の被写体の動きが大きい場合には、奇数・偶数フィールドを単純に合成すると、ブレた画像となり見づらいものになる。このブレの部分では画面内の空間的相関度が垂直方向に低下しており、圧縮符号化処理においては、上記の空間的冗長度が減少してしまう。 However, when the movement of the subject in the screen is large, simply combining the odd and even fields results in a blurred image that is difficult to see. In this blurred portion, the spatial correlation in the screen is reduced in the vertical direction, and the spatial redundancy is reduced in the compression encoding process.
そこで、動き量の少ないときには、垂直相関が高いフレーム画を用いて圧縮処理画素ブロックを形成するが、動き検出の結果、所定量以上の動きが発生していると認められた場合には、垂直相関が極端に低下するフレーム画を避け、画面内相関を適度に有するフィールド画のみを奇数・偶数各々用いて、圧縮処理画素ブロックを形成する。 Therefore, when the amount of motion is small, a compression-processed pixel block is formed using a frame image having a high vertical correlation. However, if it is determined that motion of a predetermined amount or more has occurred as a result of motion detection, A compression-processed pixel block is formed by using only odd and even field images having moderate intra-screen correlation while avoiding frame images in which the correlation is extremely lowered.
上記フィールド・フレームの切り替え処理を行わず、常にフレーム処理をしていると、大半の画像に対しては満足のいく圧縮結果が得られるが、大きな動き部分では背景と人物とが櫛の歯状に組み合わされて、1ライン交互に異なるデータが発生し、本来最も発生頻度が低いと想定していた垂直最高周波数成分を大量に発生させてしまうことになる。このように、最悪のケースを回避する手段を設け、いわゆる苦手被写体による圧縮システムの破綻を防止している。
以上説明したように、動きに応じて符号化処理を適宜切り替えるようにすることで、動画像全体としてより良い効率と画質とを両立した圧縮処理が実現できる。
If the above frame / frame switching process is not performed and frame processing is always performed, a satisfactory compression result is obtained for most images, but the background and the person are comb-like in a large moving part. As a result, different data are generated alternately for one line, and a large amount of vertical maximum frequency components, which were originally assumed to be the lowest in frequency, are generated. In this way, means for avoiding the worst case is provided to prevent the compression system from failing due to the so-called poor subject.
As described above, by appropriately switching the encoding process according to the motion, it is possible to realize a compression process that achieves better efficiency and image quality for the entire moving image.
次に、上記した動画像圧縮基本技術を一部利用した圧縮回路6の一実施例を図6を参照して以下に説明する。
Next, an embodiment of the
撮像モード選択後、入力バッファメモリ660に映像信号としてのSD又はHD信号が供給される。そして、入力バッファメモリ660から出力された映像信号は、ブロック化処理回路661にて各々8×8画素から成るブロックに分割される。
そして、DCT(離散コサイン変換)処理回路662により直交変換が行われ、周波数成分の変換座標面に変換する。その結果、画像一般の傾向として、DC係数と低域周波数成分のAC係数のみが大きな値をもち、高周波成分のAC係数は0に近い小さな値をもつ。
After selecting the imaging mode, an SD or HD signal as a video signal is supplied to the
Then, orthogonal transformation is performed by a DCT (Discrete Cosine Transform)
一方、入力バッファメモリ660から出力された信号の内、画面間の相関性の高い場合は、奇数フィールドと偶数フィールドとが一体となってフレーム処理され、逆に相関性の低い場合は、奇数・偶数各々独立にフィールド処理される。これは動き検出回路663で判断され、入力バッファメモリ660の入出力端の時間差において、対応する画素データがどれくらいの差異を生じたかによって、画像の動き量及び方向の判別情報がシステムコントローラ664に入力される。
On the other hand, among the signals output from the
動き検出回路663の結果に応じて、システムコントローラ664からブロック化処理回路661にフレーム又はフィールド処理の命令を行う。ブロック化処理回路661では、前記命令に応じてブロック化処理を行う。DCT処理回路662から出力された周波数係数データは、量子化処理回路665に入力される。そして、各周波数成分毎のデータ係数の集合を適当な数値にて除算し、少数点以下を四捨五入して、ビット数を低減させて全体の量子化データ量を圧縮させる。さらに、各周波数成分毎に除数を任意設定することにより、必要な画質を保ちながら圧縮率を向上させることができる。
Depending on the result of the
次に、このように圧縮された量子化データを符号化回路666に入力する。ここでは、1次元データ列に変換するためにDC成分から水平と垂直の高周波数成分へジグザクスキャンしてデータを並び替える。このデータを、例えば同一数値となったゼロの連続発生を一括して表現する符号に置き換え、ランレングス符号化を行う。また、ブロック内のある位置以降のデータが全てゼロの場合には、上記のエンドコードを割り当てることにより、大幅なデータ削減を行うことができる。そしてVLCにより、出現頻度の高い数値にビット数の少ない符号を割り当て、実質的な総符号化ビット数の削減を行う。
Next, the quantized data compressed in this way is input to the
可変長符号化されたデータは、データ量算出回路667に入力され、そのデータ量をシステムコントローラ664に入力する。データ量に応じて、水平と垂直の周波数成分毎の係数が設定されるように、システムコントローラ664と係数設定回路668とを接続した構成になっている。この係数設定回路668によって係数が所定値となり、その出力結果を量子化処理回路665に入力する。この次は、上記の順序で量子化データを圧縮する。
The variable length encoded data is input to the data amount
符号化回路666によって総ビット数が削減され、所定の圧縮がなされたデータは、出力バッファメモリ669に入力される。出力バッファメモリ669から一定のデータレートで符号化データが出力されるが、出力バッファメモリ669がアンダーフロー又はオーバーフローにならないように、データの点有率をシステムコントローラ664により制御される。例えば、オーバーフローに近い状態(占有率が大きい場合)の時は、係数設定を大きくし、伝送されるデータ量が小さくなるように調整される。また、アンダーフローに近い状態の時は上記と逆の動作が行われる。さらに動画像の圧縮率と圧縮方式等の切り替えは、モード選択部670の操作に応じてシステムコントローラ664の制御により行われる。
Data whose total number of bits has been reduced by the
以上説明してきたように、画像の動き検出結果とモード選択部670より入力された各種モード設定等に応じて、システムコントローラ664によりDCT、量子化、符号化処理の内容を適宜切り替えることによって、動画像圧縮回路の圧縮率、圧縮方式等の適応的な制御が可能となる。これによって、動画像の効率の良い圧縮処理が実現できる。なお、係数設定回路668で除数の設定を変えることにより、任意に圧縮率を変えることができることは勿論である。
As described above, the
次に図7の記録系構成図を用いてディジタルVTRの構成及び記録動作の説明を行う。 Next, the configuration of the digital VTR and the recording operation will be described with reference to the recording system configuration diagram of FIG.
*映像入力
入力された映像の輝度信号Yと色信号Cとは各々AD変換器81Y、81CでディジタルデータDy 、Dc に変換されて本システムに取り込まれる。
* Each AD converter and the luminance signal Y and color signal C of the video
*ビデオデータ処理回路82
上記データDy 、Dc はデータマルチプレクサ821で多重化され、システムコントローラ5からのモード情報に応じて情報量圧縮回路822により前述した圧縮回路を用いて画像情報のデータ量を圧縮する。場合によってはYC独立に圧縮処理回路を備えても良い。次に画像データを伝送路誤りに強くする意味でシャッフル回路823によりシャッフリング処理を施す。また、画像の平面内の粗密による情報量の発生の偏りを均一化するための目的であれば、上記圧縮処理の前にシャッフリング処理工程を持ってくると、ランレングス等の可変長符号を用いた場合でも都合が良い。
* Video
The data D y and D c are multiplexed by the
これを受けてID付加回路824はデータ・シャフリングの復元のためのデータ識別(ID)情報を付加する。このIDには、前記システムのモード情報等も同時に記録しておき、再生時の逆圧縮処理(情報量伸張処理)の際の補助情報とする。次にECC付加回路825においてこれらのデータを誤り無く再生するためのエラー訂正信号(ECC)を付加する。このような冗長信号の付加までを映像と音声の夫々の情報毎に処理する。
In response to this, the
*音声入力
ステレオ音声信号L、RはAD変換器80L、80Rに取り込まれ、圧縮手法は画像の場合と異なるが、同様の回路構成を有するオーディオデータ処理回路86により処理される。ビデオデータの記録レートが大きい場合、例えばHD信号の場合には、音声情報には圧縮処理を施さずに記録処理に移っても良い。
* Audio input Stereo audio signals L and R are taken into
*データ分配
このようにして生成されたビデオデータVとオーディオデータAとは、伝送路(ここでは記録再生用の個々の磁気ヘッド系)の容量に見合ったデータレートになるようにデータ分配をデータ分配器83、84により行う。
* Data distribution The video data V and the audio data A generated in this way are data distributed so that the data rate matches the capacity of the transmission path (in this case, the individual magnetic head system for recording and reproduction). This is performed by the
*付加情報
上記A、V信号の他にトラッキングサーボのためにパイロット信号発生器85から出力されるパイロット信号Pと、システムコントローラ5からの情報に基づきサブコード発生器87より生成する補助データSとをデータ・マルチプレクサ88、89により記録・伝送路毎に多重化する。例えば、これが時間軸多重化処理であれば、上記パイロット信号Pはディジタル・オーディオ・テープレコーダ(以下DAT)等で周知のエリア分割ATF等の形態を取るのが適当である。
* Additional information In addition to the A and V signals, pilot signal P output from the
*ディジタル変調
MPX出力の2値信号に対応して記録するためのディジタル変調処理をディジタル変調回路90、91にて施す。一例を挙げると、8−10変換とNRZI等の変換処理である。
各伝送路は本実施例において2チャンネルずつの磁気ヘッド系を備えているので、ヘッド切換回路92、93にて各ヘッドHa〜Hdに対応した記録アンプ9a〜9dをドラム10の回転状況に応じてサーボ制御回路12の指示の下に選択的に適宜切換処理を実行している。
* Digital modulation
Since each transmission line is provided with a magnetic head system of two channels in this embodiment, the recording amplifiers 9a to 9d corresponding to the heads Ha to Hd are changed according to the rotation state of the
その結果、所定の記録タイミングで情報信号に応じた記録電流を回転ドラム10上の複数ヘッドHa〜Hdに供給できる。
このように所定期間毎にA、P、S、Vの各信号を切り換えて順次磁気記録系へ信号供給してテープ11に記録形成したトラックパターンを図8に示す。
As a result, a recording current corresponding to the information signal can be supplied to the plurality of heads Ha to Hd on the
FIG. 8 shows a track pattern recorded on the
*システム制御系
上記テープ11の走行を制御するサーボ、システムコントロール部分を説明する。
図1の操作パネル4から入力される指示情報への対応や、本ディジタルVTRのシステム全体の動作モード、及び各種の状態遷移を管理するのがシステムコントローラ5で、回転ドラム10やキャプスタン駆動の定常維持を主に受け持っているのが、サーボ制御回路12である。これら2つの回路を1つのマイコン・ブロック94として捉えることもできる。
* System control system A servo and system control part for controlling the running of the
The
このサーボ制御回路12には、テープ送り速度制御のためのキャプスタンモータ15及びその回転状況を把握するためのキャプスタンFG95と、回転ドラム10の回転駆動のためのドラムモータ14及び回転速度と回転位相の確認のための各々の検出器FG96とPG97とが接続され、各々が制御されている。
The
次に図9の再生系構成図に用いてディジタル記録式VTRの構成及び再生動作の説明を行う。 Next, the configuration and playback operation of the digital recording type VTR will be described with reference to the playback system configuration diagram of FIG.
図1の操作パネル4よりシステムコントローラ5に入力された動作モード切り換え指示に応じて、記録系と同一のサーボ制御回路12及びシステムコントローラ5の回路により、テープ11の走行に関する方向と速度及びドラム10の回転制御を行う。
In response to an operation mode switching instruction input to the
回転制御されたドラム10上の複数の磁気ヘッドHa〜Hdより得られたデータは各々再生ヘッドアンプ61、62、63、64にて信号増幅され、凡そ180度対向した2組のアジマス角度の異なるヘッド同士をヘッド切り換え回路56、59に供給しサーボ制御回路12に基づいた適宜信号出力を選択し、次段のディジタル復調回路55、58に各々供給する。
Data obtained from the plurality of magnetic heads Ha to Hd on the rotation-controlled
ディジタル復調回路55、58は微分検出、積分検出、ビタビ復号等の冗長検出等々の手法を利用し上記再生信号から「0、1」の2値信号に再変換する。
ディジタル復調回路55、58の出力信号は各々信号分配回路54、57に供給され、ビデオ信号V、オーディオ信号A、トラッキングサーボ用パイロット信号P、サブコード情報S等に分離、分配される。
The
Output signals of the
V:ビデオ信号
複数ヘッドに分散されていたビデオ信号Vが前記信号分配器54、57から出力され、データ統合回路65にて統合処理され、ビデオデータプロセス回路52にて元の映像信号に復元される。
V: Video signal The video signal V distributed to a plurality of heads is output from the
先ず、エラー修整回路525で記録再生系で発生したデータの伝送誤りを検出し、訂正可能な範囲のエラーは訂正し、訂正不能な場合には補間修正する。次に、ID検出回路524にてビデオデータ中に挿入してある各種ID信号やV信号従属のサブコードデータを抽出しシステムコントローラ5に情報を供給する。
First, an
デシャフリング回路523は、データの連続欠落による修復不可能エラーの及ぼす画質劣化を防止するために記録時に施されたシャフリング処理を、上記ID情報等に基づきデータ配列を復元する。また、情報量伸張回路522は、記録時のデータ量削減のための情報量圧縮処理とは逆の手順で情報の復元を行う。記録時に記録モードの設定を行うように成されている時には、記録モード毎に情報量の圧縮手法や圧縮率が異なる可能性があるので、上記の再生ID情報に基づきシステムコントローラ5を介して記録時のモード設定に対応した復元処理を行うようにする。最後にデータ分離回路521にてYC各々の情報毎にDA変換器51Y、51Cへ出力する。以上のようにして、記録時に入力された信号とほぼ同等の画像が再構築される。
The
A:オーディオ信号
複数ヘッドに分散されていたオーディオ信号Aが前記信号分配器54、57から出力され、データ統合回路66により統合処理され、オーディオデータプロセス回路60において元の音声信号に復元される。
A: Audio signal The audio signal A distributed to a plurality of heads is output from the
先ず、エラー修正回路605により記録再生系で再生したデータの伝送誤りを検出し、訂正可能な範囲のエラーは訂正し、訂正不可能な場合には補間修正する。次にID検出回路604でオーディオデータ中に挿入してある各種ID信号やA信号従属のサブコードデータを抽出し、システムコントローラ5に情報を供給する。
First, an
デシャフリング回路603はデータの連続欠落による修復不可能エラーの及ぼす音質劣化を防止するために記録時に施されたシャフリング処理を、上記ID情報等に基づきデータ配列を復元するものである。
情報量伸張回路602は、記録時のデータ量削減のための情報量圧縮処理とは逆の手順で情報の復元を行う。記録時に記録モードの設定を行うように成されている時には、記録モード毎に情報量の圧縮手法や圧縮率が異なる可能性があるので、上記の再生ID情報に基づきシステムコントローラ5を介して記録時のモード設定に対応した復元処理を行うようにする。
次にデータ分離回路601によりL,R各々の情報毎にDA変換器50L、50Rへ出力する。以上のようにして、記録時に入力された信号とほぼ同等の音声が再生される。
The
The information
Next, the
P:パイロット信号
エリア分割ATF方式のトラッキング・パイロット信号が、信号分配器54、57から出力されパイロット信号検出器53に入力される。ここで、DAT同様の処理を行うとすれば、左右トラックからのオフトラック量に見合ったタイミング基準信号との時間差がエラー信号として検出される。このエラー信号はサーボ制御回路12へ供給されて、テープ送り速度等を制御するのに用いられたり、記録モードの判別の補助情報としても用いられる。
P: Pilot signal The area division ATF tracking pilot signal is output from the
S:サブコード情報
前記V、Aを主情報とすると、これに対して補助的な位置付けの容量的にも小さいデータ群をサブコードと称し、別エリアに記録再生可能にしている。特に、上記IDデータとの違いは、A、Vデータと独立して記録再生ができるようにサブコードエリアの前後にガードスペースを設けてある。これによりサブコードのアフレコが可能になっている。用途の違いとしては、上記IDデータは主データ固有の記録モード等正常な再生に不可欠な情報で、本サブコードはテープの位置検索等のアドレスコード、プログラムのインデックス記録等に適している。これらの情報はシステムコントローラ5により判定処理され、必要に応じて各部を制御する。
S: Subcode information When V and A are the main information, a data group with a small capacity, which is auxiliary to this, is called a subcode and can be recorded and reproduced in another area. In particular, the difference from the ID data is that guard spaces are provided before and after the subcode area so that recording and reproduction can be performed independently of the A and V data. This makes it possible to post-record subcodes. As the difference in use, the ID data is information indispensable for normal reproduction such as a recording mode unique to the main data, and this subcode is suitable for address codes for tape position search, program index recording, and the like. These pieces of information are subjected to determination processing by the
サブコードは図10に示すように、いわゆる頭出し機能を実現するためのサーチマーク部とサブデータ部とより構成される。サブデータ部は、本例では4ブロック( Block0 〜Block3 )で構成される。このブロックは更に8個のデータワード(word0 〜word7 )と同期用のシンクワードと誤り訂正用のCRCC部とから成る。さらに各データワードが8ビットから成り、この部分に各放送方式、テープ速度、オーディオチャンネルモード、圧縮率等々がモード判別情報として記録される。
As shown in FIG. 10, the subcode includes a search mark portion and a subdata portion for realizing a so-called cueing function. In this example, the sub data portion is composed of 4 blocks (
本実施例のVTRには、前記の通り3つの記録再生モードを有している。
任意に選択された記録モードの設定に応じて、各々記録トラックパターンが異なるので、これに応じた再生が可能なようにサブコードエリアに判別ID情報を記録しておく。以下、3通りの記録トラックパターンと再生時のモード判別手順を説明する。
The VTR of this embodiment has three recording / reproducing modes as described above.
Since each recording track pattern differs according to the setting of the arbitrarily selected recording mode, the discrimination ID information is recorded in the subcode area so that reproduction can be performed accordingly. Hereinafter, three kinds of recording track patterns and a mode discrimination procedure during reproduction will be described.
1.SD−low
図11、図12を用いてSDの長時間記録モードを説明する。
図11(a)に示す回転ドラム10上に取り付けられた4つの磁気ヘッドの内HaとHbを用いて図11(b)に示すように、1画面当たり5本のトラックを形成する。毎秒150回転とした場合は、回転位相を示すドラムPGは図12の150rpsで示す矩形パルスのハイとローのタイミングに応じてヘッドHaとHbとに記録電流が供給されている。
1. SD-low
The long-time recording mode of SD will be described with reference to FIGS.
As shown in FIG. 11B, five tracks are formed per screen using Ha and Hb of the four magnetic heads mounted on the
2.SD−high
図13、図14を用いてSDの高画質記録モードを説明する。
図13(a)に示す回転ドラム10上に取り付けられた4つの磁気ヘッドの内HaとHcとを用いて図13(b)に示すように1画面当たり10本のトラックを形成する。毎秒150回転とした場合は、回転位相を示すドラムPGは図14の150rpsで示す矩形パルスのハイとローのタイミングに応じてヘッドHaとHcとに記録電流が供給されている。
2. SD-high
The SD high-quality recording mode will be described with reference to FIGS.
As shown in FIG. 13B, 10 tracks are formed per screen using Ha and Hc of the four magnetic heads mounted on the
3.HD
図15、図16に用いてHDの高精細画質記録モードを説明する。
図15(a)に示す回転ドラム10上に取り付けられた4つの磁気ヘッドHa〜Hdの全てを用い図15(b)に示すように1画面当たり20本のトラックを形成する。毎秒150回転とした場合は、回転位相を示すドラムPGは図16の150rpsで示す矩形パルスのハイとローのタイミングに応じて、ヘッドHa〜Hdに記録電流が供給されている。
3. HD
The HD high-definition image quality recording mode will be described with reference to FIGS.
All four magnetic heads Ha to Hd mounted on the
表2は上記の3つのモードに対するテープスピード、フィールド当たりトラック本数、圧縮率等の各パラメータを示す。 Table 2 shows parameters such as tape speed, number of tracks per field, and compression rate for the above three modes.
図17に再生時のモード判別とその制御の手順を示す。 FIG. 17 shows the mode discrimination and control procedure during reproduction.
ステップS1では現在のVTRの再生走行モードを確認する。ステップS2では3つのモードに応じてステップS3、S4、S5のN=5、N=10、N=20の何れかに分岐する。次にステップS6で再生ディジタル信号からサブコードを検出し、このサブコード中から記録時のモードを判別して再生するべきモードを決定する。ステップS7でも再生IDの前記3種のモードの内の1つに応じてステップS8、S9、S10の単位時間当たりの所要トラック本数M=5、M=10、M=20の何れかに分岐する。ステップS11では上記NとMの大小を比較した結果に応じてキャプスタンの速度制御の目標値を再設定する。ここでも3つの場合に応じてステップS12、S13、S14の何れかに分岐する。N>Mの場合には、現状の速度の方が記録時よりも大なので、速度を下げる。N<Mの場合には、現状の速度の方が記録時よりも小なので、速度を上げる。N=Mの場合には、現状の速度をそのまま維持する。そして再び、現状モードの確認に戻り、以下上記のルーチンを繰り返す。 In step S1, the current VTR regeneration running mode is confirmed. In step S2, the process branches to any of N = 5, N = 10, and N = 20 in steps S3, S4, and S5 according to the three modes. Next, in step S6, a subcode is detected from the reproduced digital signal, and a mode to be reproduced is determined by determining a recording mode from the subcode. Even in step S7, the number of required tracks per unit time M = 5, M = 10, and M = 20 in steps S8, S9, and S10 is branched according to one of the three modes of the reproduction ID. . In step S11, the target value of capstan speed control is reset according to the result of comparing the magnitudes of N and M. Again, the process branches to one of steps S12, S13, and S14 depending on the three cases. When N> M, the current speed is higher than that at the time of recording, so the speed is lowered. In the case of N <M, the current speed is lower than that at the time of recording, so the speed is increased. When N = M, the current speed is maintained as it is. Then, returning to the confirmation of the current mode again, the above routine is repeated.
上述した実施例では、複数のTV規格の映像信号を得るために、主たる撮像手段と、TV規格変換手段との組み合わせにより説明してきたが、光電変換手段を含む撮像系をTV規格毎に複数設け、各々独立して複数の映像信号を取り出すように構成してもよい。さらに、HD−TV系とSD−TV系に各々別の撮像手段を設け、各撮像手段出力を各々異なるHD−TV規格とSD−TV規格(NTSC、PAL)とで走査線(1050本/1125本/1250本)方式変換手段を設けるという、上記の複合構成でもよい。 In the above-described embodiments, the combination of the main image pickup means and the TV standard conversion means has been described in order to obtain a plurality of TV standard video signals. However, a plurality of image pickup systems including photoelectric conversion means are provided for each TV standard. Alternatively, a plurality of video signals may be taken out independently. Further, separate image pickup means are provided for the HD-TV system and the SD-TV system, respectively, and the output of each image pickup means is scanned with different HD-TV standards and SD-TV standards (NTSC, PAL) (1050 lines / 1125). The above-mentioned combined configuration of providing a book / 1250 book) system conversion means may be used.
次に前述した図2に示すようなダウンコンバータとしての方式変換器、図18に示すようなアップコンバータとしての方式変換器を用いた場合の映像記録再生装置の実施例について図19と共に説明する。 Next, an embodiment of a video recording / reproducing apparatus using the above-described system converter as a down converter as shown in FIG. 2 and the system converter as an up converter as shown in FIG. 18 will be described with reference to FIG.
図18はアップコンバータとしてのNTSC−HD方式変換器の一例を示す。図18においてNTSC信号は、動き適応型NTSCデコーダ70を経て復調され、アスペクト比変換部71で4:3から16:9に変換し、次いで走査線数変換部72及びフィールド周波数変換部73で525本から1125本、59.94Hzから60Hzにそれぞれ変換し、HD信号として出力する。
FIG. 18 shows an example of an NTSC-HD converter as an up-converter. In FIG. 18, the NTSC signal is demodulated through the motion
図19に本発明の映像記録再生装置のブロック図を示す。操作パネル200では、記録/再生及びHD/SD等が選択できるようになされている。以下、4通りの記録再生系の動作を説明する。なお、本実施例では入力信号をHD信号とする。
FIG. 19 shows a block diagram of a video recording / reproducing apparatus of the present invention. On the
(1)SDで記録する場合(長時間記録モード)
操作パネル200で「記録」及び「SD」を選択し、システムコントローラ201を経てスイッチ206の端子を(1)又は(2)に接続させる。そして、HD入力信号はダウンコンバータ203によりダウンコンバート変換され、SD(例えばNTSC)信号とする。さらに、スイッチ202の端子を(1)に接続するようにシステムコントローラ201で制御し、SD信号を記録系209を通じてテープ210に記録する。この時のモニタはSDモニタ204を使用する。
(1) When recording with SD (long-time recording mode)
“Record” and “SD” are selected on the
(2)HDで記録する場合(高画質モード)
操作パネル200で「記録」及び「HD」を選択し、システムコントローラ201を経てスイッチ202の端子を(2)に接続させ、スルーでHDを記録する。この時のモニタはHDモニタ205又はSDモニタ204のどちらか一方を選択することができる。
(2) When recording in HD (high quality mode)
“Record” and “HD” are selected on the
HDモニタ205を使用する場合は、スイッチ206の端子を(1)又は(2)に接続させ、スルーでHD信号を出力させる。
SDモニタ204を使用する場合は、上記と同ようにスイッチ206の端子を(1)又は(2)に接続させ、ダウンコンバータ203でSDに変換し、スイッチ207の端子(1)、(2)、(4)のいずれか1つを選択して接続すればSDモニタが可能となる。カメラ一体型VTRを以上のような構成とすることにより小型化が計れる。
When the
When the SD monitor 204 is used, the terminal of the
(3)SDで再生する場合
操作パネル200で「再生」及び「SD」を選択し、システムコントローラ201を経てスイッチ207の端子を(3)に接続させる。再生SD信号は、テープ210、再生系211を通じて、SDモニタ204で再生出力される。また、HDモニタ205で出力させる場合は、アップコンバータ208でHD信号に変換し、スイッチ206の端子を(3)に接続させればよい。
(3) When playing back with SD: “Playback” and “SD” are selected on the
(4)HDで再生する場合
操作パネル200で「再生」及び「HD」を選択し、システムコントローラ201を経てスイッチ206の端子を(4)に接続させる。再生HD信号は、スルーでHDモニタ205で再生出力される。一方、SDモニタ204に再生出力させる場合は、上記と同ようにスイッチ206の端子(4)に接続させ、ダウンコンバータ203によってSD変換し、スイッチ207の端子(1)に接続させれば、SDモニタが可能となる。表3はスイッチ202、206、207のSD、HDに対応する端子(1)〜(4)の接続を示す。
(4) When playing in HD Select “Playback” and “HD” on the
以上述べたように、映像信号の入力に対し、その記録及び再生においてダウンコンバータ203を共用しているので、回路規模の縮小が計れると共に、HD信号及びSD信号に応じて選択的に記録又は再生が可能となる。また、HD入力信号であっても、出力モニタとしてSDモニタを用いることができる。さらに、カメラ一体型VTRとして用いた場合、モニタとしてSDモニタを使用することができるため、従来よりも小型化が可能となる。
As described above, since the
なお、本実施例ではアップコンバータ208を用いたが、HDモニタ205の代わりにマルチスキャンモニタを用いれば、SD(例えばNTSC)信号が入力された場合、走査線が525本でスキャンされるので、アップコンバータ208は不要となる。さらに、SD信号として一般家庭用の標準画質で水平解像度230本程度のものをSD−Lowモードとして付加しても構わない。
In this embodiment, the up-
1 カメラ
2 撮像モード選択回路
3 方式変換器
5 システムコントローラ
6 圧縮回路
8 記録処理回路
11 磁気テープ
Ha〜Hd ヘッド
202、206、207 スイッチ
203 ダウンコンバータ
209 記録系
211 再生系
DESCRIPTION OF
Claims (2)
前記第1の画像信号の解像度を低減して第2の画像信号に変換する第1の変換手段と、
前記第1または第2の画像信号をA/D変換してデジタル化するデジタル変換手段と、
離散コサイン変換、量子化および符号化処理を組み合わせて前記第1または第2の画像信号を圧縮する圧縮手段と、
前記第1の画像信号を表示する表示手段と、
画像信号の記録モードと再生モードを切り換える切り換え手段と、
記録する画像に対して複数の解像度の中から予め解像度を選択する解像度選択手段と、
前記解像度選択手段を使用者が動作指示する操作手段と、
前記圧縮手段により圧縮されかつ選択された解像度を有する第1または第2の画像信号と共に、前記操作手段によって選択指示された解像度を示す識別情報を記録媒体にデジタル記録する記録手段と、
前記記録媒体に記録された識別情報を検出する検出手段と、
前記記録媒体に記録された第1の画像信号を伸長し再生する再生手段と、
再生モードで画像を再生するときは前記識別情報に応じて第2の画像信号の解像度を増加させて前記第1の画像信号に変換する第2の変換手段と、
前記撮像手段から出力された第1の画像信号と前記再生手段により再生され前記第2の変換手段を介して出力された第1の画像信号とを選択的に前記表示手段に表示するように制御する制御手段とを備えたことを特徴とする画像記録再生装置。 Imaging means for photoelectrically converting a subject image and outputting a first image signal;
First conversion means for reducing the resolution of the first image signal and converting it to a second image signal;
Digital conversion means for A / D converting and digitizing the first or second image signal;
Compression means for compressing the first or second image signal by combining discrete cosine transform, quantization and encoding processing;
Display means for displaying the first image signal;
Switching means for switching between image signal recording mode and playback mode;
Resolution selection means for selecting a resolution in advance from a plurality of resolutions for an image to be recorded;
An operation means for a user to instruct the resolution selection means to operate;
A recording means for digitally recording on the recording medium identification information indicating the resolution selected by the operation means together with the first or second image signal compressed by the compression means and having the selected resolution;
Detecting means for detecting identification information recorded on the recording medium;
Reproducing means for expanding and reproducing the first image signal recorded on the recording medium;
A second conversion means for increasing the resolution of the second image signal according to the identification information and converting the image to the first image signal when reproducing the image in the reproduction mode;
Control to selectively display the first image signal output from the imaging unit and the first image signal reproduced by the reproducing unit and output via the second converting unit on the display unit. And an image recording / reproducing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004303042A JP3679803B2 (en) | 2004-10-18 | 2004-10-18 | Image recording / playback device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004303042A JP3679803B2 (en) | 2004-10-18 | 2004-10-18 | Image recording / playback device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004125936A Division JP3619250B2 (en) | 2004-04-21 | 2004-04-21 | Camera-integrated image recording / playback device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005107578A Division JP3780294B2 (en) | 2005-04-04 | 2005-04-04 | Monitor integrated imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005033837A JP2005033837A (en) | 2005-02-03 |
JP3679803B2 true JP3679803B2 (en) | 2005-08-03 |
Family
ID=34214524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004303042A Expired - Fee Related JP3679803B2 (en) | 2004-10-18 | 2004-10-18 | Image recording / playback device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3679803B2 (en) |
-
2004
- 2004-10-18 JP JP2004303042A patent/JP3679803B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005033837A (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100267036B1 (en) | Image prcessing device | |
US8102436B2 (en) | Image-capturing apparatus and method, recording apparatus and method, and reproducing apparatus and method | |
US6636266B2 (en) | Image recording device with structure for adjusting the device based on the video signal | |
JP3172643B2 (en) | Digital recording and playback device | |
JP3564087B2 (en) | Video recording and playback device | |
JP3619250B2 (en) | Camera-integrated image recording / playback device | |
JP2004282780A (en) | Image pickup device | |
JP3780294B2 (en) | Monitor integrated imaging device | |
JP3769001B2 (en) | Monitor type imaging device | |
JP3288134B2 (en) | Camera integrated video recording device | |
US6611286B1 (en) | Image sensing apparatus using a non-interlace scanning type image sensing device | |
JP3679803B2 (en) | Image recording / playback device | |
JP3679802B2 (en) | Imaging device | |
JP3809458B2 (en) | Monitor integrated imaging device | |
JP3487557B2 (en) | Image processing apparatus and method | |
JPH06339114A (en) | Video information recording and reproducing device | |
JP3852451B2 (en) | Information signal recording apparatus and information signal reproducing apparatus | |
JP2004242357A (en) | Imaging apparatus | |
JPH09214878A (en) | Image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050404 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20050404 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20050506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050513 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |