JP3679575B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3679575B2
JP3679575B2 JP29246697A JP29246697A JP3679575B2 JP 3679575 B2 JP3679575 B2 JP 3679575B2 JP 29246697 A JP29246697 A JP 29246697A JP 29246697 A JP29246697 A JP 29246697A JP 3679575 B2 JP3679575 B2 JP 3679575B2
Authority
JP
Japan
Prior art keywords
resin
photosensitive member
electrophotographic photosensitive
electrophotographic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29246697A
Other languages
Japanese (ja)
Other versions
JPH11125925A (en
Inventor
孝和 田中
秀樹 穴山
晃 ▲吉▼田
秀敏 平野
浩敏 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29246697A priority Critical patent/JP3679575B2/en
Publication of JPH11125925A publication Critical patent/JPH11125925A/en
Application granted granted Critical
Publication of JP3679575B2 publication Critical patent/JP3679575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体に関し、詳しくは特定の樹脂を含有する表面層を有する電子写真感光体に関する。
【0002】
【従来の技術】
電子写真方法は、米国特許第2297691号明細書に示されるように、画像露光の間に受けた照射量に応じて電気抵抗が変化し、かつ暗所では絶縁性の物質をコーティングした支持体よりなる光導電性材料を用いる。この光導電性材料を用いた電子写真に要求される基本的な特性としては、(1)暗所で適当な電位に帯電できること、(2)暗所において電位の逸散が少ないことおよび(3)光照射によって速やかに電荷を逸散せしめること等が挙げられる。
【0003】
従来より、電子写真感光体としてはセレン、酸化亜鉛、硫化カドミウム等の無機光導電性化合物を主成分とする感光層を有する無機感光体が広く使用されてきた。しかし、これらは前記(1)〜(3)の条件は満足するが熱安定性、耐湿性、耐久性、生産性において必ずしも満足できるものではなかった。
【0004】
無機感光体の欠点を克服する目的で、様々な有機光導電性化合物を主成分とする電子写真感光体の開発が近年盛んに行われている。たとえば、米国特許3837851号明細書にはトリアリルピラゾリンを含有する電荷輸送層を有する感光体、米国特許3871880号明細書にはペリレン顔料の誘導体からなる電荷発生層と3−プロピレンとホルムアルデヒドの縮合体からなる電荷輸送層とからなる感光体等が公知である。
【0005】
さらに有機光導電性化合物は、その化合物によって電子写真感光体の感光波長域を自由に選択することが可能であり、たとえばアゾ顔料では特開昭61−272754号公報、特開昭56−167759号公報に示された物質は可視領域で高感度を示すものが開示されておりまた、特開昭57−19576号公報、特開昭61−228453号公報で示された化合物は、赤外領域まで感度を有していることが示されている。
【0006】
これらの材料のうち、赤外領域に感度を示すものは、近年進歩の著しいレーザービームプリンター(以下LBPと記す)やLEDプリンターに使用されその需要頻度は高くなってきている。
【0007】
これら有機光導電性化合物を用いた電子写真感光体は、電気的、機械的双方の特性を満足させるために、電荷輸送層と電荷発生層を積層させた機能分離型の感光体として利用される場合が多い。一方、当然のことながら、電子写真感光体には適用される電子写真プロセスに応じた感度、電気的特性、さらには光学的特性を備えていることが要求される。
【0008】
特に繰り返し使用される電子写真感光体においては、その電子写真感光体表面にはコロナまたは直接帯電、画像露光、トナー現像、転写工程、表面クリーニングなどの電気的、機械的外力が直接加えられるため、それらに対する耐久性も要求される。
【0009】
具体的には、帯電時のオゾン、および窒素酸化物による電気的劣化や、帯電時の放電、クリーニング部材の摺擦によって表面が摩耗したり傷が発生したりする機械的劣化、電気的劣化に対する耐久性が求められている。
【0010】
電気的劣化は、光が照射した部分にキャリアーが滞留し、光が照射していない部分と電位差が生じる現象が特に問題であり、これはフォトメモリーとして生じる。
【0011】
機械的劣化は、特に無機感光体と異なり、物質的に柔らかいものが多い有機感光体は機械的劣化に対する耐久性が劣り、耐久性向上は特に切望されているものである。
【0012】
上記のような感光体に要求される耐久特性を満足させるために、いろいろ試みがなされてきた。
【0013】
表面層によく使用され摩耗性、電気特性に良好な樹脂としては、ビスフェノールAを骨格とするポリカーボネート樹脂が注目されているが、前述したような問題点すべてを解決できるわけでもなく、次のような問題点を有している。
(1)溶解性に乏しくジクロロメタンや1,2−ジクロロエタンなどのハロゲン化脂肪族炭化水素類の一部にしか良好な溶解性を示さない上、これらの溶剤は低沸点のため、これらの溶剤で調製した塗工液を用いて感光体を製造すると塗工面が白化しやすい。塗工液の固形分管理などにも手間がかかる。
(2)ハロゲン化脂肪族炭化水素類以外の溶剤に対しては、テトラヒドロフラン、ジオキサン、シクロヘキサノンあるいはそれらの混合溶剤に一部可溶であるが、その溶液は数日でゲル化するなど経時性が悪く感光体製造には不向きである。
(3)さらに上記(1)、(2)が改善されたとしても、ビスフェノールAを骨格とするポリカーボネート樹脂にはソルベントクラックが発生しやすい。
(4)加えて、従来のポリカーボネート樹脂では、該樹脂で形成された被膜に潤滑性がないため感光体に傷がつきやすく、電子写真感光体の摩耗量を低くするようなクリーニング設定では画像欠陥になったり、クリーニングブレードの早期の劣化によるクリーニング不良、トナー融着などが生じてしまうことがあった。
【0014】
前記(1)、(2)に挙げた溶液安定性については、ポリマーの構造単位として嵩高いシクロヘキシレン基を有するポリカーボネートZ樹脂を使用するか、ビスフェノールZ、ビスフェノールCなどと共重合させることによって解決されてきた。
【0015】
またソルベントクラックについても、特開平6−51544号公報、特開平6−75415号公報に開示されているように、シリコーン変成ポリカーボネート、エーテル変成ポリカーボネートを用いることにより解決することが可能である。ところが、これら変成ポリカーボネートは、従来のポリカーボネート樹脂に比べソルベントクラックを対策するために、ポリマー内の内部応力に対して柔軟性を持たせる構造をとっているため、結果、重合体本体の機械的強度が低下するという欠点があった。
【0016】
さらに近年、特開昭57−17826公報、特開昭58−40566公報に開示してあるような、帯電部材に直接電圧をかけて電子写真感光体に電荷を印加する直接帯電方式が主流となりつつある。
【0017】
これは、導電ゴムなどで構成されたローラー状の帯電部材を直接電子写真感光体に当接させて電荷を印加する方法であり、スコロトロンなどに比べ、オゾン発生量が格段に少ない、スコロトロンは帯電器に流す電流の80%前後はシールドに流れるため浪費されるのに対して、直接帯電はこの浪費分がなく非常に経済的である、などのメリットをもつ。
【0018】
【発明が解決しようとする課題】
しかし直接帯電は、パッシェン則による放電による帯電のため、帯電安定性が非常に悪いという欠点をもつ。この対策として、直流電圧に交流電圧を重畳させた、いわゆるAC/DC帯電方式が考案されている(特開昭63−149668公報)。
【0019】
この帯電方式により帯電時の安定性は良化したが、ACを重畳するために、電子写真感光体表面の放電量は大幅に増大し、電子写真感光体の削れ量が増加してしまうという欠点を新たに生じてしまい、機械的強度のみならず、電気的強度も要求されるようになってきた。
【0020】
本発明の目的は、従来のポリカーボネート樹脂を表面層として有していた問題点を解決し、耐ソルベントクラック性をもちつつ機械的強度が強く、かつ直接帯電による耐電気特性が良好であり、フォトメモリーの少ない電子写真感光体を提供することである。
【0021】
【課題を解決するための手段】
すなわち、本発明は、導電性支持体および該導電性支持体上に形成された感光層を有する電子写真感光体において、
該電子写真感光体の表面層が、無機フィラーであるコロイドシリカ粒子を化学結合で側鎖に導入(ペンダント)した樹脂を含有することを特徴とする電子写真感光体である。
【0022】
前記樹脂は、たとえば反応可能なアルコキシシリル基を側鎖に有するポリカーボネート樹脂、ポリアリレート樹脂、ポリシロキサン樹脂とコロイドシリカ粒子とを加水分解反応により縮合させることによって得られる。上記反応可能なアルコキシシリル基を側鎖に有する樹脂は、たとえば、常法で合成された下記式で示される末端不飽和結合を含む置換基を有する樹脂と相当するアルコキシシランとを触媒存在下で反応させることにより得られる。
【0023】
−(CH2 y −CH=CH2 (1)
(式中、yは0以上の整数を示す。)
前記縮合に用いられるコロイドシリカ粒子の粒子径は、0.01〜2μmが好ましく、さらには0.02〜1μmがより好ましい。
【0024】
【発明の実施の形態】
以下に、上記反応可能なアルコキシシリル基を側鎖に有する樹脂の繰り返し構成単位の具体例を示すが、これらに限定されるものではない。
【0025】
【化1】

Figure 0003679575
【0026】
【化2】
Figure 0003679575
【0027】
【化3】
Figure 0003679575
【0028】
【化4】
Figure 0003679575
【0029】
【化5】
Figure 0003679575
【0030】
【化6】
Figure 0003679575
【0031】
【化7】
Figure 0003679575
【0032】
【化8】
Figure 0003679575
【0033】
【化9】
Figure 0003679575
本発明による電子写真感光体は、特に優れた機械的強度とAC帯電における帯電気特性を併せ持ち、良好な電子写真特性を有するものである。
【0034】
本発明に使用される樹脂は、高硬度の無機フィラーであるコロイドシリカ粒子をペンダントした構造を有しているため、コロイドシリカ粒子の強度が反映され、膜の機械的強度が高くなったものと推測される。また耐電気特性においても、電気的劣化に強いコロイドシリカを構造中に含有することで、電気的劣化に対する耐久性も向上したと考えられる。
【0035】
本発明の電子写真感光体においては、樹脂の構成単位が単一のものであっても、2種類以上の別種の構成単位からなる共重合体でもよい。
【0036】
さらに、ポリカーボネートやポリアリレートなどの既存の樹脂と共重合体を形成してもよい。ただしこの場合は、本発明による樹脂成分が10〜90mol%存在するのが好ましく、より好ましくは20〜70mol%である。
【0037】
以下本発明に用いる電子写真感光体の構成について説明する。
【0038】
本発明の電子写真感光体は、感光層が電荷輸送材料と電荷発生材料を同一の層に含有する単層型であっても、電荷輸送層と電荷発生層に分離した積層型でもよいが、電子写真特性てきには積層型が好ましい。
【0039】
使用する導電性基体は、導電性を有するものであればよく、アルミニウム、ステンレスなどの金属、あるいは導電性を設けた金属、紙、プラスチックなどが挙げられ、形状はシート状、円筒状などが挙げられる。
【0040】
LBPなど、画像入力がレーザー光の場合は散乱による干渉縞防止、または基盤の傷を被覆することを目的とした導電層を設けてもよい。これはカーボンブラック、金属粒子等の導電性粉体をバインダー樹脂に分散させて形成することができる。導電層の膜厚は5〜40μm、好ましくは10〜30μmが適当である。
【0041】
その上に接着機能を有する中間層を設ける。中間層の材料としてはポリアミド、ポリビニルアルコール、ポリエチレンオキシド、エチルセルロース、カゼイン、ポリウレタン、ポリエーテルウレタン、などが挙げられる。これらは適当な溶剤に溶解して塗布される。中間層の膜厚は0.05〜5μm、好ましくは0.3〜1μmが適当である。
【0042】
中間層の上には電荷発生層が形成される。本発明に用いられる電荷発生物質としては、セレン−テルル、ピリリウム、チアピリリウム系染料、フタロシアニン、アントアントロン、ジベンズピレンキノン、トリスアゾ、シアニン、ジスアゾ、モノアゾ、インジゴ、キナクリドン、非対称キノシアニン系の各顔料が挙げられる。機能分離型の場合、電荷発生層は前記電荷発生物質を0.3〜4倍量の結着剤樹脂および溶剤とともにホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルおよび液衝突型高速分散機などの方法でよく分散し、分散液を塗布、乾燥させて形成される。電荷発生層の膜厚は5μm以下、好ましくは0.1〜2μmが適当である。
【0043】
電荷輸送層は主として電荷輸送材料と本発明からなるバインダー樹脂とを溶剤中に溶解させた塗料を塗工乾燥して形成する。用いられる電荷輸送材料としてはトリアリールアミン系化合物、ヒドラゾン化合物、スチルベン化合物、ピラゾリン系化合物、オキサゾール系化合物、トリアリルメタン系化合物、チアゾール系化合物などが挙げられる。
【0044】
これらは0.5〜2倍量のバインダー樹脂と組み合わされ、塗工、乾燥して電荷輸送層を形成する。電荷輸送層の膜厚は5〜40μm、好ましくは15〜30μmが適当である。
【0045】
以下に、本発明の実施例に使用される樹脂の合成例を説明する。
【0046】
(合成例1)
下記式(2)で示される繰り返し単位を有するポリカーボネート樹脂(重量平均分子量:30000)5gを乾燥トルエン300mlに溶解し、トリエトキシシラン1gと塩化白金酸1mgを加え、窒素気流下50℃で4時間加熱攪拌を行った。放冷後、反応液をヘキサンに注ぎ、白色固体4.5g(収率62.2%)を得た。
【0047】
次いで、得られた樹脂3gをTHF300mlに溶解し、コロイドシリカ(触媒化学工業(株)製OSCAL1232)50gおよび水15gを加え、加熱して5分間還流した。冷却後、メタノールに注ぎ、後記樹脂No.1を2.9g得た。
【0048】
【化10】
Figure 0003679575
(合成例2)
下記式(3)で示される繰り返し単位を有するポリアリレート樹脂(重量平均分子量:28000)6gを乾燥トルエン500mlに溶解し、トリエトキシシラン2.8gと塩化白金酸1mgを加え、窒素気流下50℃で6時間加熱攪拌を行った。放冷後、反応液をヘキサンに注ぎ、白色固体6.4g(収率65.3%)を得た。
【0049】
次いで、得られた樹脂5gをTHF400mlに溶解し、コロイドシリカ(触媒化学工業(株)製OSCAL1232)60gおよび水20gを加え、加熱して5分間還流した。冷却後、メタノールに注ぎ、後記樹脂No.9を4.5g得た。
【0050】
【化11】
Figure 0003679575
【0051】
【実施例】
以下実施例にしたがって説明するが、実施例中の樹脂No.1〜15は前記合成例と同様の方法で、相当するアルコキシシリル基含有樹脂とコロイドシリカより合成した。また、具体的な構造については、相当するアルコキシシリル基含有樹脂の構成単位で示す。
【0052】
(実施例1)
30φ254mmのAlシリンダーを支持体とし、それに、以下の材料より構成される塗料を支持体上に浸漬法で塗布し140℃、30分熱硬化して15μmの導電層を形成した。
【0053】
導電性顔料:SnO2 コート処理硫酸バリウム 10部
抵抗調節用顔料:酸化チタン 2部
バインダー樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール、メトキシプロパノール0.2/0.8 20部
次にこの上にNメトキシメチル化ナイロン3部および共重合ナイロン3部をメタノール65部、n−ブタノール30部の混合溶媒に溶解した溶液を浸漬法で塗布し0.5μmの中間層を形成した。
【0054】
次にCuKαのX線回折スペクトルにおける回折角2θ±0.2°が9.0°、14.2°、23.9°、27.1°に強いピークを有するTiOPc4部とポリビニルブチラール(商品名:エスレックBM2、積水化学製)2部およびシクロヘキサノン60部をφ1mmガラスビーズを用いたサンドミル装置で4時間分散した後、エチルアセテート100部を加えて電荷発生層用分散液を調製した。これを浸漬法で塗布し0.35μmの電荷発生層を形成した。
【0055】
次に下記構造式のアミン化合物9部
【0056】
【化12】
Figure 0003679575
下記構造式のアミン化合物1部
【0057】
【化13】
Figure 0003679575
と、前記合成例にしたがって合成した表1の樹脂No.1記載の重合体10部をモノクロロベンゼン30部ジクロロメタン70部の混合溶媒に溶解した。
【0058】
この塗料を浸漬法で塗布し120℃2時間乾燥し25μmの電荷輸送層を形成した。
【0059】
次に評価について説明する。
【0060】
装置はヒューレットパッカード製LBP「レーザージェット4plus」(プロセススピード71mm/sec)を改造して用いた。改造は一次帯電の制御を定電流制御を定電圧制御とした。作成した電子写真感光体を、この装置で28℃90%RH下で通紙耐久を行った。シーケンスはプリント1枚ごとに1回停止する間欠モードとした。トナーがなくなったならば補給し、画像で問題がでるまで耐久した。
【0061】
また、研磨テープを用いたテーバー摩耗試験機を用い20分間摩耗させそのときの重量減少分を測定した。さらに電子写真感光体の一部に3000lux20分間の白色蛍光灯の光をあて、4分間放置後明部電位を測定し、光を当てる前から明部電位がどれだけ下がったかを測定しフォトメモリー値とした。
【0062】
さらにソルベントクラック性は表面に指脂を付着させ48時間放置し、顕微鏡観察によりソルベントクラックの有無を観察した。その結果を表2に示す。
【0063】
【表1】
Figure 0003679575
分子量はゲルパーミネーションクロマトグラフィーで測定した。
【0064】
【表2】
Figure 0003679575
(比較例1〜4)
電荷輸送層のバインダー樹脂に表3の条件No.1〜4に示す樹脂を用いた以外は、実施例1と同様にして電子写真感光体を作成した。
【0065】
【表3】
Figure 0003679575
(比較例5)
電荷輸送層を以下の手順で形成した他は、実施例1と同様にして電子写真感光体を作成した。
【0066】
(電荷輸送層作成手順)
次に下記構造式のアミン化合物9部
【0067】
【化14】
Figure 0003679575
下記構造式のアミン化合物1部
【0068】
【化15】
Figure 0003679575
と下記繰り返し単位を有する樹脂10部
【0069】
【化16】
Figure 0003679575
およびコロイドシリカ(触媒化学(製)OSCAL1232)を3部、モノクロロベンゼン30部ジクロロメタン70部の混合溶媒に溶解した。
【0070】
この塗料を浸漬法で塗布し、120℃2時間乾燥し、25μmの電荷輸送層を形成した。
【0071】
(比較例6)
電荷輸送層のバインダーに下記繰り返し単位を有する樹脂を用いた以外は比較例5と同様にして電子写真感光体を作成した。
【0072】
【化17】
Figure 0003679575
比較例1〜6の電子写真感光体について評価した結果を表4に示す。
【0073】
【表4】
Figure 0003679575
【0074】
【発明の効果】
以上に説明したように本発明によれば、機械的強度を損なうことなく優れた耐ソルベントクラック性を有し、さらに機械的強度が強く、かつ直接帯電による放電に対する耐電気特性が良好であり、フォトメモリーの少ない、直接帯電に適した電子写真感光体を提供することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor having a surface layer containing a specific resin.
[0002]
[Prior art]
In the electrophotographic method, as shown in US Pat. No. 2,297,691, the electric resistance changes depending on the dose received during image exposure, and in the dark, a support coated with an insulating material is used. A photoconductive material is used. Basic characteristics required for electrophotography using this photoconductive material are (1) that it can be charged to an appropriate potential in a dark place, (2) that there is little potential dissipation in a dark place, and (3 ) Quickly dissipate charges by light irradiation.
[0003]
Conventionally, as an electrophotographic photosensitive member, an inorganic photosensitive member having a photosensitive layer mainly composed of an inorganic photoconductive compound such as selenium, zinc oxide, cadmium sulfide has been widely used. However, these satisfy the above conditions (1) to (3) but are not necessarily satisfactory in terms of thermal stability, moisture resistance, durability, and productivity.
[0004]
In order to overcome the drawbacks of inorganic photoreceptors, electrophotographic photoreceptors based on various organic photoconductive compounds as main components have been actively developed in recent years. For example, U.S. Pat. No. 3,378,851 discloses a photoreceptor having a charge transport layer containing triallyl pyrazoline, U.S. Pat. No. 3,871,880 discloses a charge generation layer comprising a derivative of perylene pigment, and condensation of 3-propylene and formaldehyde. Known are photoreceptors comprising a charge transport layer comprising a body.
[0005]
Furthermore, the organic photoconductive compound can freely select the photosensitive wavelength range of the electrophotographic photosensitive member depending on the compound. For example, for azo pigments, JP-A 61-272754 and JP-A 56-167759. The substances disclosed in the gazette have been disclosed to exhibit high sensitivity in the visible region, and the compounds disclosed in JP-A-57-19576 and JP-A-61-228453 can be used up to the infrared region. It has been shown to have sensitivity.
[0006]
Among these materials, those showing sensitivity in the infrared region are used in laser beam printers (hereinafter referred to as LBP) and LED printers that have made remarkable progress in recent years, and the frequency of demand thereof is increasing.
[0007]
Electrophotographic photoreceptors using these organic photoconductive compounds are used as function-separated photoreceptors in which a charge transport layer and a charge generation layer are laminated in order to satisfy both electrical and mechanical properties. There are many cases. On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process.
[0008]
Especially in electrophotographic photoreceptors that are used repeatedly, the surface of the electrophotographic photoreceptor is directly subjected to electrical and mechanical external forces such as corona or direct charging, image exposure, toner development, transfer process, surface cleaning, etc. Durability against them is also required.
[0009]
Specifically, it can be used for electrical degradation caused by ozone and nitrogen oxides during charging, mechanical discharge in which the surface is worn or scratched due to discharge during charging, or rubbing of the cleaning member, and electrical degradation. Durability is required.
[0010]
The electrical deterioration is particularly a phenomenon in which carriers are accumulated in a portion irradiated with light and a potential difference is generated from a portion not irradiated with light, which occurs as a photo memory.
[0011]
Mechanical degradation is particularly different from inorganic photoreceptors. Organic photoreceptors that are often soft in material are inferior in durability against mechanical degradation, and improvement in durability is particularly desired.
[0012]
Various attempts have been made to satisfy the durability characteristics required for the photoreceptor as described above.
[0013]
Polycarbonate resin with bisphenol A as a skeleton is attracting attention as a resin that is often used for the surface layer and has good wear and electrical properties. However, it does not solve all the above-mentioned problems. Has the following problems.
(1) It has poor solubility and exhibits good solubility only in a part of halogenated aliphatic hydrocarbons such as dichloromethane and 1,2-dichloroethane, and these solvents have low boiling points. When a photoreceptor is produced using the prepared coating solution, the coated surface tends to be whitened. It also takes time to manage the solid content of the coating liquid.
(2) Solvents other than halogenated aliphatic hydrocarbons are partially soluble in tetrahydrofuran, dioxane, cyclohexanone, or a mixed solvent thereof, but the solution has aging properties such as gelation in several days. It is bad and not suitable for photoconductor production.
(3) Even if the above (1) and (2) are improved, solvent cracks are likely to occur in the polycarbonate resin having bisphenol A as a skeleton.
(4) In addition, in the conventional polycarbonate resin, the film formed with the resin does not have lubricity, so the photoconductor is easily damaged, and image defects are caused in a cleaning setting that reduces the wear amount of the electrophotographic photoconductor. Or cleaning failure due to early deterioration of the cleaning blade, toner fusion, and the like may occur.
[0014]
The solution stability mentioned in the above (1) and (2) can be solved by using a polycarbonate Z resin having a bulky cyclohexylene group as a polymer structural unit or by copolymerizing with bisphenol Z, bisphenol C or the like. It has been.
[0015]
Solvent cracks can also be solved by using silicone-modified polycarbonate or ether-modified polycarbonate as disclosed in JP-A-6-51544 and JP-A-6-75415. However, these modified polycarbonates have a structure that provides flexibility against internal stress in the polymer in order to prevent solvent cracks compared to conventional polycarbonate resins, resulting in the mechanical strength of the polymer body. There was a drawback that it decreased.
[0016]
In recent years, a direct charging method in which a voltage is directly applied to a charging member and a charge is applied to an electrophotographic photosensitive member as disclosed in JP-A-57-17826 and JP-A-58-40566 is becoming mainstream. is there.
[0017]
This is a method in which a roller-shaped charging member made of conductive rubber or the like is directly brought into contact with the electrophotographic photosensitive member to apply a charge. Compared with a scorotron or the like, the amount of ozone generated is significantly smaller. About 80% of the current flowing through the device is wasted because it flows to the shield, whereas direct charging has the merit of being very economical because there is no wasted amount.
[0018]
[Problems to be solved by the invention]
However, the direct charging has a drawback that charging stability is very poor because of charging by discharge according to Paschen's law. As a countermeasure, a so-called AC / DC charging system in which an AC voltage is superimposed on a DC voltage has been devised (Japanese Patent Laid-Open No. 63-149668).
[0019]
Although this charging system improves the stability during charging, the discharge amount on the surface of the electrophotographic photosensitive member is greatly increased due to the superposition of AC, and the amount of abrasion of the electrophotographic photosensitive member is increased. As a result, not only mechanical strength but also electrical strength has been required.
[0020]
The object of the present invention is to solve the problem of having a conventional polycarbonate resin as a surface layer, to have a high mechanical strength while having a solvent crack resistance, a good electric resistance property by direct charging, and a photo An object of the present invention is to provide an electrophotographic photosensitive member with little memory.
[0021]
[Means for Solving the Problems]
That is, the present invention provides a conductive support and an electrophotographic photosensitive member having a photosensitive layer formed on the electrically conductive substrate,
The electrophotographic photosensitive member is characterized in that the surface layer of the electrophotographic photosensitive member contains a resin in which colloidal silica particles, which are inorganic fillers, are introduced (pendant) into a side chain by a chemical bond.
[0022]
The resin can be obtained, for example, by condensing a polycarbonate resin having a reactive alkoxysilyl group in the side chain, a polyarylate resin, a polysiloxane resin and colloidal silica particles by a hydrolysis reaction. The resin having a reactive alkoxysilyl group in the side chain is, for example, a resin having a substituent containing a terminal unsaturated bond represented by the following formula synthesized by a conventional method and a corresponding alkoxysilane in the presence of a catalyst. It is obtained by reacting.
[0023]
- (CH 2) y -CH = CH 2 (1)
(In the formula, y represents an integer of 0 or more.)
The particle diameter of the colloidal silica particles used for the condensation is preferably from 0.01 to 2 μm, more preferably from 0.02 to 1 μm.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Although the specific example of the repeating structural unit of the resin which has the alkoxysilyl group which can react above in the side chain is shown, it is not limited to these.
[0025]
[Chemical 1]
Figure 0003679575
[0026]
[Chemical formula 2]
Figure 0003679575
[0027]
[Chemical 3]
Figure 0003679575
[0028]
[Formula 4]
Figure 0003679575
[0029]
[Chemical formula 5]
Figure 0003679575
[0030]
[Chemical 6]
Figure 0003679575
[0031]
[Chemical 7]
Figure 0003679575
[0032]
[Chemical 8]
Figure 0003679575
[0033]
[Chemical 9]
Figure 0003679575
The electrophotographic photosensitive member according to the present invention has both excellent mechanical strength and electrical characteristics in AC charging, and has good electrophotographic characteristics.
[0034]
Since the resin used in the present invention has a structure in which colloidal silica particles, which are high-hardness inorganic fillers, are pendant, the strength of the colloidal silica particles is reflected, and the mechanical strength of the film is increased. Guessed. Further, in terms of electric resistance, it is considered that durability against electric deterioration is improved by including colloidal silica resistant to electric deterioration in the structure.
[0035]
In the electrophotographic photoreceptor of the present invention, the resin may be a single structural unit or may be a copolymer composed of two or more different structural units.
[0036]
Further, a copolymer may be formed with an existing resin such as polycarbonate or polyarylate. In this case, however, the resin component according to the present invention is preferably present in an amount of 10 to 90 mol%, more preferably 20 to 70 mol%.
[0037]
The structure of the electrophotographic photoreceptor used in the present invention will be described below.
[0038]
The electrophotographic photosensitive member of the present invention may be a single layer type in which the photosensitive layer contains the charge transport material and the charge generation material in the same layer, or a stacked type in which the charge transport layer and the charge generation layer are separated, A laminate type is preferred for electrophotographic characteristics.
[0039]
Any conductive substrate may be used as long as it has conductivity. Examples thereof include metals such as aluminum and stainless steel, metals provided with conductivity, paper, plastics, and the like. It is done.
[0040]
When the image input is laser light such as LBP, a conductive layer may be provided for the purpose of preventing interference fringes due to scattering or covering a scratch on the substrate. This can be formed by dispersing conductive powder such as carbon black and metal particles in a binder resin. The thickness of the conductive layer is 5 to 40 μm, preferably 10 to 30 μm.
[0041]
An intermediate layer having an adhesive function is provided thereon. Examples of the material for the intermediate layer include polyamide, polyvinyl alcohol, polyethylene oxide, ethyl cellulose, casein, polyurethane, and polyether urethane. These are dissolved in an appropriate solvent and applied. The thickness of the intermediate layer is 0.05 to 5 μm, preferably 0.3 to 1 μm.
[0042]
A charge generation layer is formed on the intermediate layer. Examples of the charge generating material used in the present invention include selenium-tellurium, pyrylium, thiapyrylium dyes, phthalocyanine, anthanthrone, dibenzpyrenequinone, trisazo, cyanine, disazo, monoazo, indigo, quinacridone, and asymmetric quinocyanine pigments. Can be mentioned. In the case of the functional separation type, the charge generation layer includes the charge generation material in a 0.3 to 4 times amount of binder resin and solvent, homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill, and liquid collision. It is well dispersed by a method such as a mold type high-speed disperser, and the dispersion is applied and dried. The film thickness of the charge generation layer is 5 μm or less, preferably 0.1 to 2 μm.
[0043]
The charge transport layer is formed by applying and drying a paint in which a charge transport material and the binder resin of the present invention are dissolved in a solvent. Examples of the charge transport material used include triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, triallylmethane compounds, and thiazole compounds.
[0044]
These are combined with 0.5 to 2 times the amount of binder resin, and applied and dried to form a charge transport layer. The thickness of the charge transport layer is 5 to 40 μm, preferably 15 to 30 μm.
[0045]
Below, the synthesis example of resin used for the Example of this invention is demonstrated.
[0046]
(Synthesis Example 1)
5 g of a polycarbonate resin (weight average molecular weight: 30000) having a repeating unit represented by the following formula (2) is dissolved in 300 ml of dry toluene, 1 g of triethoxysilane and 1 mg of chloroplatinic acid are added, and the mixture is stirred at 50 ° C. for 4 hours under a nitrogen stream. Heating and stirring were performed. After allowing to cool, the reaction solution was poured into hexane to obtain 4.5 g (yield 62.2%) of a white solid.
[0047]
Next, 3 g of the obtained resin was dissolved in 300 ml of THF, 50 g of colloidal silica (OSCAL1232 manufactured by Catalyst Chemical Industry Co., Ltd.) and 15 g of water were added, heated and refluxed for 5 minutes. After cooling, it was poured into methanol and resin No. 2.9 g of 1 was obtained.
[0048]
[Chemical Formula 10]
Figure 0003679575
(Synthesis Example 2)
6 g of a polyarylate resin (weight average molecular weight: 28000) having a repeating unit represented by the following formula (3) is dissolved in 500 ml of dry toluene, 2.8 g of triethoxysilane and 1 mg of chloroplatinic acid are added, and the mixture is 50 ° C. under a nitrogen stream. And stirred for 6 hours. After allowing to cool, the reaction solution was poured into hexane to obtain 6.4 g (yield 65.3%) of a white solid.
[0049]
Next, 5 g of the obtained resin was dissolved in 400 ml of THF, 60 g of colloidal silica (OSCAL1232 manufactured by Catalyst Chemical Industry Co., Ltd.) and 20 g of water were added, heated and refluxed for 5 minutes. After cooling, it was poured into methanol and resin No. 4.5 g of 9 was obtained.
[0050]
Embedded image
Figure 0003679575
[0051]
【Example】
Hereinafter, the resin No. in the examples will be described. Nos. 1 to 15 were synthesized from the corresponding alkoxysilyl group-containing resin and colloidal silica in the same manner as in the above synthesis example. Moreover, about a specific structure, it shows with the structural unit of corresponding alkoxy silyl group containing resin.
[0052]
(Example 1)
A 30φ254 mm Al cylinder was used as a support, and a coating composed of the following materials was applied on the support by a dipping method, followed by heat curing at 140 ° C. for 30 minutes to form a 15 μm conductive layer.
[0053]
Conductive pigment: SnO 2 coated barium sulfate 10 parts Resistance adjusting pigment: Titanium oxide 2 parts Binder resin: Phenol resin 6 parts Leveling material: Silicone oil 0.001 part Solvent: Methanol, methoxypropanol 0.2 / 0.8 Next, a solution prepared by dissolving 3 parts of N methoxymethylated nylon and 3 parts of copolymer nylon in a mixed solvent of 65 parts of methanol and 30 parts of n-butanol was applied on this by a dipping method to form a 0.5 μm intermediate layer. Formed.
[0054]
Next, TiOPc4 part and polyvinyl butyral (trade names) whose diffraction angles 2θ ± 0.2 ° in the X-ray diffraction spectrum of CuKα have strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 °. : ESREC BM2, manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone were dispersed in a sand mill using φ1 mm glass beads for 4 hours, and then 100 parts of ethyl acetate was added to prepare a dispersion for a charge generation layer. This was applied by an immersion method to form a 0.35 μm charge generation layer.
[0055]
Next, 9 parts of an amine compound having the following structural formula:
Embedded image
Figure 0003679575
1 part of amine compound of the following structural formula
Embedded image
Figure 0003679575
And the resin No. of Table 1 synthesized according to the synthesis example. 10 parts of the polymer described in 1 was dissolved in a mixed solvent of 30 parts of monochlorobenzene and 70 parts of dichloromethane.
[0058]
This paint was applied by an immersion method and dried at 120 ° C. for 2 hours to form a 25 μm charge transport layer.
[0059]
Next, evaluation will be described.
[0060]
The apparatus used was a modified Hewlett-Packard LBP "Laser Jet 4plus" (process speed 71 mm / sec). In the modification, the primary charging control is constant current control and the constant voltage control is used. The prepared electrophotographic photosensitive member was subjected to paper passing durability at 28 ° C. and 90% RH with this apparatus. The sequence was an intermittent mode that stopped once for each printed sheet. If the toner runs out, it was replenished and it lasted until there was a problem with the image.
[0061]
Moreover, it was worn for 20 minutes using a Taber abrasion tester using an abrasive tape, and the weight loss at that time was measured. Furthermore, illuminate a part of the electrophotographic photoreceptor with a white fluorescent light of 3000 lux for 20 minutes, leave it for 4 minutes, measure the bright part potential, and measure how much the bright part potential has dropped before applying the light. It was.
[0062]
Further, the solvent cracking property was obtained by attaching finger grease to the surface and leaving it for 48 hours, and observing the presence or absence of the solvent crack by microscopic observation. The results are shown in Table 2.
[0063]
[Table 1]
Figure 0003679575
The molecular weight was measured by gel permeation chromatography.
[0064]
[Table 2]
Figure 0003679575
(Comparative Examples 1-4)
In the charge transport layer binder resin, the condition No. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the resins shown in 1-4 were used.
[0065]
[Table 3]
Figure 0003679575
(Comparative Example 5)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the charge transport layer was formed by the following procedure.
[0066]
(Charge transport layer creation procedure)
Next, 9 parts of an amine compound having the following structural formula:
Embedded image
Figure 0003679575
1 part of an amine compound of the following structural formula
Embedded image
Figure 0003679575
And 10 parts of resin having the following repeating units:
Embedded image
Figure 0003679575
And colloidal silica (catalyst chemistry (made by OSCAL1232)) was dissolved in a mixed solvent of 3 parts, 30 parts of monochlorobenzene and 70 parts of dichloromethane.
[0070]
This paint was applied by an immersion method and dried at 120 ° C. for 2 hours to form a 25 μm charge transport layer.
[0071]
(Comparative Example 6)
An electrophotographic photoreceptor was prepared in the same manner as in Comparative Example 5 except that a resin having the following repeating unit was used as the binder for the charge transport layer.
[0072]
Embedded image
Figure 0003679575
Table 4 shows the evaluation results of the electrophotographic photoreceptors of Comparative Examples 1 to 6.
[0073]
[Table 4]
Figure 0003679575
[0074]
【The invention's effect】
As described above, according to the present invention, it has excellent solvent crack resistance without impairing mechanical strength, and further has high mechanical strength and good electric resistance against discharge by direct charging, It has become possible to provide an electrophotographic photosensitive member with little photo memory and suitable for direct charging.

Claims (4)

導電性支持体および該導電性支持体上に形成された感光層を有する電子写真感光体において、
該電子写真感光体の表面層が、無機フィラーであるコロイドシリカ粒子を化学結合で側鎖に導入した構造を有する樹脂を含有することを特徴とする電子写真感光体。
Conductive support and an electrophotographic photosensitive member having a photosensitive layer formed on the electrically conductive substrate,
The electrophotographic photosensitive member, wherein the surface layer of the electrophotographic photosensitive member contains a resin having a structure in which colloidal silica particles, which are inorganic fillers, are introduced into side chains by chemical bonds.
前記化学結合がシロキサン結合である請求項1に記載の電子写真感光体。  The electrophotographic photosensitive member according to claim 1, wherein the chemical bond is a siloxane bond. 前記樹脂の主鎖構造がポリカーボネート樹脂である請求項2に記載の電子写真感光体。  The electrophotographic photosensitive member according to claim 2, wherein the main chain structure of the resin is a polycarbonate resin. 前記樹脂の主鎖構造がポリアリレート樹脂である請求項2に記載の電子写真感光体。  The electrophotographic photosensitive member according to claim 2, wherein the main chain structure of the resin is a polyarylate resin.
JP29246697A 1997-10-24 1997-10-24 Electrophotographic photoreceptor Expired - Fee Related JP3679575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29246697A JP3679575B2 (en) 1997-10-24 1997-10-24 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29246697A JP3679575B2 (en) 1997-10-24 1997-10-24 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH11125925A JPH11125925A (en) 1999-05-11
JP3679575B2 true JP3679575B2 (en) 2005-08-03

Family

ID=17782183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29246697A Expired - Fee Related JP3679575B2 (en) 1997-10-24 1997-10-24 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3679575B2 (en)

Also Published As

Publication number Publication date
JPH11125925A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP3755856B2 (en) Electrophotographic photoreceptor
US7338739B2 (en) Crosslinked siloxane composite overcoat for photoreceptors
US8148039B2 (en) Crosslinked siloxane outmost layer having aromatic silicon-containing compounds for photoreceptors
EP0810480B1 (en) Electrophotograpic photosensitive member, and apparatus and process cartridge provided with the same
JP3684068B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3897522B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP2001194813A (en) Coating liquid for electrophotographic sensitive body, electrophotographic sensitive body, image forming device and process cartridge
JP2006079083A (en) Silicon layer for electrophotographic photoreceptor and method for manufacturing the same
JP3287379B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2000284514A (en) Electrophotographic photoreceptor and process cartridge and image forming device using that electrophotographic photoreceptor
JP3679575B2 (en) Electrophotographic photoreceptor
JP2000292956A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP3878064B2 (en) Electrophotographic photoreceptor and method for producing the same
JP3501615B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP3825852B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4217362B2 (en) Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus provided with the electrophotographic photosensitive member
JP3953072B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3679641B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPH09319129A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2002131942A5 (en)
JP3728087B2 (en) Electrophotographic photoreceptor, laser beam printer and electrophotographic process
JPH10115946A (en) Electrophotgraphic photoreceptor, and process cartridge and electrophotographic device provided with this electrophotographic photoreceptor
JP3652078B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP1076265A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4131596B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees