JP3678698B2 - Recycled resin production method using fiber interior material waste - Google Patents

Recycled resin production method using fiber interior material waste Download PDF

Info

Publication number
JP3678698B2
JP3678698B2 JP2001364655A JP2001364655A JP3678698B2 JP 3678698 B2 JP3678698 B2 JP 3678698B2 JP 2001364655 A JP2001364655 A JP 2001364655A JP 2001364655 A JP2001364655 A JP 2001364655A JP 3678698 B2 JP3678698 B2 JP 3678698B2
Authority
JP
Japan
Prior art keywords
resin
extruder
fiber
waste material
fiber interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364655A
Other languages
Japanese (ja)
Other versions
JP2003165112A (en
Inventor
成則 西尾
太郎 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2001364655A priority Critical patent/JP3678698B2/en
Publication of JP2003165112A publication Critical patent/JP2003165112A/en
Application granted granted Critical
Publication of JP3678698B2 publication Critical patent/JP3678698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、カーペット廃材等の繊維敷物廃材や、天井材の廃材、ドア材の廃材等の繊維内装材廃材を原料にして再生樹脂を生産性良くかつ低コストで製造する方法に関する。
【0002】
なお、この明細書において、「繊維内装材廃材」の語は、使用を終えて廃棄されるものは勿論のこと、繊維内装材の製造過程で発生した端材、裁断屑等を含む意味で用いる。
【0003】
【従来の技術】
経年使用されたカーペット等の繊維敷物は、従来は廃棄物として処理されることが多く、これがリサイクル利用されることは殆どなかったのであるが、近年の資源の有効利用の気運の高まりに伴って、このような使用済みの繊維敷物を原料に用いて再生樹脂を製造することが試みられている。
【0004】
例えばカーペット廃材としては、繊維基布の上にパイル糸が植設され、該基布の裏面にバッキング樹脂層が設けられたものが多いが、このようなカーペット廃材を原料にして再生樹脂を製造しようとする場合には、まずカーペット廃材を粉砕し、これを押出機内で溶融混練したのち押出して再生樹脂を得る方法が考えられる。しかし、一般にカーペット廃材は、繊維分(繊維基布、パイル糸)と樹脂分(バッキング樹脂)からなるが、この繊維分の含有比率が大きく、これにより溶融混練時の流動性が低下して押出時における押出負荷が大きいものとなり、生産性が非常に低いという大きな問題を抱えている。
【0005】
更に、このような繊維分と樹脂分とを有するカーペット廃材の粉砕品を押出機に供給すべく、これらを十分に均一混合したものを押出機の原料供給口に接続されたホッパー内に滞留させると、供給口への移動過程において分級を生じてこれら原料(繊維分、樹脂分)の混合状態が不均一になってしまい、このような不均一混合状態で押出機に供給されるので、得られたペレット等の再生樹脂成形品の品質のばらつきが大きくなるという問題もあった。なお、このような押出機内での不均一混合状態を解消するために相溶化剤を添加する方法も提案されているが、コスト高になる難点があるし、得られた再生樹脂を用いて成形するとクラックが発生しやすい。
【0006】
そこで、カーペット廃材を粉砕した後、この粉砕物を繊維粉砕物と樹脂粉砕物とに所定の分離操作を経て分離し、樹脂粉砕物だけを選別して押出機内に投入して、溶融混練、押出を行って再生樹脂を得、これを再利用することが一部で行われている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、カーペット廃材のうち繊維分は廃棄物として処分されることになるので、再生対象のカーペット廃材から得られるペレット等の再生樹脂の回収率(再生率)が低いものとなり、資源の有効利用を十分に図ったものとは到底言えない。即ち、資源の有効利用の観点から、カーペット廃材中の繊維分、樹脂分の両方をまとめて再生樹脂の原料として用いることができることが望ましいことは言うまでもない。
【0008】
また、上記従来技術では、カーペット廃材の粉砕物を、繊維粉砕物と樹脂粉砕物とに分離するための分離工程を必要とするので、再生コストが高くなる。
【0009】
この発明は、かかる技術的背景に鑑みてなされたものであって、繊維内装材廃材における繊維分も含めて再生樹脂の原料として用いることができ、資源の再生率が大きくて資源の有効利用を十分に図ることができると共に、押出時の押出負荷が小さくて生産性に優れ、再生樹脂を低コストで製造できる、繊維内装材廃材を原料とした再生樹脂の製造方法を提供することを第1の目的とする。
【0010】
更に、この発明は、繊維分と樹脂分とを均一混合状態で押出機内に供給することができて、得られるペレット等の再生樹脂における品質のばらつきを小さく抑制できる、繊維内装材廃材を原料とした再生樹脂の製造方法を提供することを第2の目的とする。
【0011】
【課題を解決するための手段】
記目的は、繊維内装材廃材と熱可塑性樹脂とを、混合比率が繊維分/樹脂分=10/90〜90/10(重量比)となるように押出機内に供給し、この押出機内でこれらを溶融混練したのち押出して再生樹脂を得る製造方法であって、スクリュー等を用いた強制押し込み操作を施すことによって前記繊維内装材廃材を押出機内に供給すると共に、前記強制押し込み工程の途中段階で前記熱可塑性樹脂を投入して、該熱可塑性樹脂を既に強制押し込み操作を受けた繊維内装材廃材と合流せしめ、更に強制押し込み操作を行うことによって繊維内装材廃材及び熱可塑性樹脂を押出機内に供給することを特徴とする繊維内装材廃材を原料とした再生樹脂の製造方法によって達成される。前記混合比率における「樹脂分」には、繊維内装材廃材に加えられる熱可塑性樹脂のみならず、繊維内装材廃材の構成部材であるバッキング樹脂等も含まれる。
【0012】
この製造方法は、原料として、繊維内装材廃材に対して熱可塑性樹脂を特定比率で混合せしめたものを用いるので、押出機内における溶融物の流動性を向上させることができ、これにより押出負荷を低減できるので、生産性を向上できる。また、このように繊維内装材廃材中の繊維分も含めて再生樹脂の原料として用いることが可能になるので、資源(繊維内装材廃材)の再生回収率を顕著に向上でき、資源の有効利用を十分に図ることができる。また、このように繊維内装材廃材を余すことなく原料として利用できるので、低コストで再生樹脂を製造できる。また、繊維内装材廃材の押出機内への供給は、スクリュー等を用いた強制押し込み操作を施して行うので、繊維内装材廃材中の繊維分と樹脂分(バッキング樹脂等)とを均一に混合した状態で押出機内に供給することが可能となる。加えて、上記強制押し込み工程の途中段階で前記熱可塑性樹脂を投入して、該熱可塑性樹脂を既に強制押し込み操作を受けた繊維内装材廃材と合流せしめ、更に強制押し込み操作を行うことによって繊維内装材廃材及び熱可塑性樹脂を押出機内に供給する方法を採用するので、繊維分と樹脂分とを均一混合状態で押出機内に供給することができて、繊維分が均一に分散された状態で溶融混練することができるので、得られるペレット等の再生樹脂における品質のばらつきを小さく抑制できる。
【0013】
押出機内での混合比率は繊維分/樹脂分=20/80〜80/20(重量比)に設定するのが、生産性をより向上させつつコストも一層低減できる点で、好ましい。
【0014】
上記繊維内装材廃材および熱可塑性樹脂としては、いずれも平均粒径1〜30mmに粉砕処理されたものを用いるのが好ましい。これにより押出機内での原料に対するスクリューの食い込み性が良くなって良好状態に溶融混練される
【0015】
押出機としては2軸押出機を用いるのが好ましく、これにより原料への食い込み性がさらに向上する。中でも、押出機としては異方向回転2軸押出機を用いるのが特に好ましく、これにより原料への食い込み性が顕著に向上して更に効率良く溶融混練できる。
【0016】
押出機内における混練温度は240℃を超えて300℃以下の範囲に設定するのが好ましい。これにより溶融混練時における樹脂分の劣化を防止できるし、引張伸度がより向上した、かつ流動性により優れた再生樹脂を製造できる。
【0017】
或いは、押出機内における混練温度は150〜240℃に設定するのが好ましい。このような比較的低温度領域で混練すれば、繊維を完全に溶融させることなく樹脂中に分散させることができ、その結果として引張強度がより向上した再生樹脂を製造できる。また、溶融混練時における樹脂分の劣化も防止できる。
【0018】
【発明の実施の形態】
この発明に係る再生樹脂の製造方法は、繊維内装材廃材と熱可塑性樹脂とを、混合比率が繊維分/樹脂分=10/90〜90/10(重量比)となるように押出機内に供給し、この押出機内でこれらを溶融混練したのち押出して再生樹脂を得ることを特徴とするものである。
【0019】
この製造方法は、原料として繊維内装材廃材を単独で用いて押出機内で溶融混練するのではなく、該繊維内装材廃材に対して熱可塑性樹脂(バージン樹脂、樹脂廃材等)を混合せしめたものを原料に用いるものとし、かつこの混合物における混合比率が繊維分/樹脂分=10/90〜90/10(重量比)に規定されているので、押出機内における溶融物の流動性を向上させることができて押出負荷を低減できるので、生産性を向上できる。また、このように繊維内装材廃材中の繊維分も含めて再生樹脂の原料として用いることができるので、資源(繊維内装材廃材)の再生回収率を顕著に向上できる、即ち資源の有効利用を十分に図ることができる。また、このように繊維内装材廃材を余すことなく原料として利用できるので、低コストで再生樹脂を製造できる。
【0020】
前記混合比率における「樹脂分」には、繊維内装材廃材に加えられる熱可塑性樹脂(バージン樹脂、樹脂廃材等)のみならず、繊維内装材廃材の構成部材であるバッキング樹脂などの熱可塑性樹脂も含まれる。従って、例えば繊維内装材廃材が、繊維基布の上にパイル糸が植設され、該基布の裏面にバッキング樹脂層が設けられたものであり、熱可塑性樹脂がポリエチレンである場合には、繊維基布とパイル糸が前記「繊維分」に相当し、バッキング樹脂とポリエチレンが前記「樹脂分」に相当する。
【0021】
前記混合比率は、繊維分/樹脂分=20/80〜80/20(重量比)に設定されるのが好ましい。樹脂分の比率が上記下限値より小さくなると、押出機内における原料溶融物の流動性が低下して押出負荷の増大により生産性が低下するので、好ましくない。一方、樹脂分の比率が上記上限値より大きくなると、相対的に繊維内装材廃材の使用比率が低下するのでコストが増大するし、効率良い資源の有効利用を図るのが難しくなるので、好ましくない。
【0022】
この発明の製造方法において、原料として用いる繊維内装材廃材としては、特に限定されるものではないが、例えばカーペット廃材等の繊維敷物廃材のみならず、天井材(自動車用等)の廃材、ドア材(自動車用等)の廃材などが挙げられる。なお、この繊維内装材廃材としては、使用を終えて廃棄されるものは勿論のこと、繊維内装材の製造過程で発生した端材、裁断屑等も用いられる。また、この繊維内装材廃材としては繊維のみからなる繊維内装材廃材も用いることができる。
【0023】
前記カーペット廃材としては、一般に繊維基布の上にパイル糸が植設され、該基布の裏面にバッキング樹脂層が設けられたものが多く、パイル糸としてはポリアミド、ポリエステル、ポリプロピレン、アクリル等の合成繊維が用いられ、繊維基布としてはポリエステル繊維からなるものが用いられることが多く、一方バッキング樹脂としては、ポリエチレン、エチレンビニルアセテート、ポリプロピレン等の熱可塑性樹脂が用いられている。
【0024】
また、原料として用いる熱可塑性樹脂としては、例えばバージン樹脂、樹脂廃材、再生された樹脂等、どのようなものでも使用することができ、またその種類も限定されず、例えばポリエチレン、ポリエチレンテレフタレート、エチレンビニルアセテート、ポリプロピレン、エチレンメチルメタアクリレート等を例示できる。前記樹脂廃材としては、例えばカーペットのバッキング加工工程において排出されるバッキング用樹脂廃材、ペットボトルなどを例示できる。前記熱可塑性樹脂としてこのような樹脂廃材を用いるものとすれば、製造コストをさらに低減できるし、資源の一層の有効利用を図ることができる。
【0025】
なお、前記繊維内装材廃材及び熱可塑性樹脂は、いずれも粉砕処理されたものを用いるのが一般的であり、その平均粒径は、いずれも1〜30mmの範囲にあるのが好ましい。30mmを超える場合には、押出機内での原料に対するスクリューの食い込み性が低下するので、好ましくない。一方、1mm未満の場合には、このような細かい粒径にするのに時間とコストを要するものとなるし、細かくなりすぎて作業環境や作業性が低下するので、好ましくない。このような特定範囲の粒径のものを得るには、特に限定されるものではないが、例えば粉砕処理を経たのちスクリーンメッシュを用いて選別採取するという手法を用いる。
【0026】
この発明で用いる原料には、上記繊維内装材廃材及び熱可塑性樹脂の他に適宜添加剤等を配合せしめても良い。このような添加剤としては、例えば炭酸カルシウム等の無機充填剤、相溶化剤等を例示できる。
【0027】
前記押出機としては2軸押出機を用いるのが好ましく、押出機内での原料に対するスクリューの食い込み性が向上する。特に好適なのは異方向回転2軸押出機であり、これを用いれば原料への食い込み性が顕著に向上して一段と効率良く溶融混練できる。
【0028】
前記押出機内における混練温度は240℃を超えて300℃以下の範囲に設定するのが好ましい。前記好適範囲の下限値を下回ると、繊維分の均一混練を十分に行い難くなるので好ましくない。また、前記好適範囲の上限値を上回ると、溶融混練時に樹脂分の劣化が生じやすくなるので、好ましくない。
【0029】
或いは、押出機内における混練温度を150〜240℃の範囲(150℃も含む、240℃も含む)に設定するものとすれば、繊維を完全に溶融させることなく樹脂中に分散させることができるので、得られる再生樹脂の引張強度をより向上させることができる利点がある。
【0030】
以下、この発明の製造方法の好適例について図1を参照しつつ説明する。図1において、(2)は異方向2軸押出機であり、水平に平行配置された相互に噛み合う2本のスクリュー軸(13)(13)を備えてなり、これらスクリュー軸(13)(13)は相互に異方向に回転するものとなされている。この押出機(2)の押出方向の上流側の原料供給口(10)には上下方向に延ばされた第2供給管(6)が連通接続され、該第2供給管(6)の上部は水平方向に延ばされた第1供給管(5)に連通接続され、この第1供給管(5)に第1ホッパー(3)が接続されている。この第1ホッパー(3)に繊維内装材廃材の粉砕物を収容する。前記第1供給管(5)内には、強制押し込み手段であるスクリュー(11)が配置されると共に、前記第2供給管(6)内にも強制押し込み手段であるスクリュー(12)が配置されており、これらスクリュー(11)(12)による強制押し込み操作によって、第1ホッパー(3)に収容された繊維内装材廃材の粉砕物を、原料供給口(10)から押出機(2)内に供給するものとなされている。
【0031】
更に、前記第2供給管(6)の上部位置に第3供給管(7)が連通接続され、該第3供給管(7)に第2ホッパー(4)が接続されている。この第2ホッパー(4)には熱可塑性樹脂を収容する。
【0032】
しかして、第1ホッパー(3)に収容された繊維内装材廃材は、供給管(5)(6)内でのスクリュー(11)(12)による強制押し込み操作により、押出機(2)内に供給され、このような強制押し込み操作によって繊維内装材廃材中の繊維分と樹脂分(バッキング樹脂等)とを均一に混合した状態で押出機(2)内に供給できるものとなる。更に、このような繊維内装材廃材の強制押し込み工程の途中段階で、即ち前記第2供給管(6)の上部位置で、第2ホッパー(4)から第3供給管(7)を介して供給されてくる熱可塑性樹脂を合流せしめ、これ以降繊維内装材廃材と熱可塑性樹脂の両者に強制押し込み操作を行って押出機(2)内にこれらを供給する。これにより繊維分と樹脂分(バッキング樹脂、熱可塑性樹脂等)とを均一混合状態で押出機(2)内に供給することができる。従って、押出機(2)内では繊維分が均一に分散された状態で溶融混練することができる。
【0033】
次いで、押出機(2)内で溶融混練を行って押出口(20)より押出した後、例えばストランド方式によりペレット状に成形された再生樹脂を得る。勿論、再生樹脂は、フィルム状、シート状等の他の成形形状で得るようにしても良い。
【0034】
なお、図2に示す装置は、図1に示す装置を基本構成とし、これに更に第3ホッパー(30)が設けられた構成であり、この第3ホッパー(30)は第4供給管(31)を介して第2供給管(6)の上部位置に連通接続されている。本構成は、前記熱可塑性樹脂として2種類のものを用いる場合に好適な構成であり、一方の樹脂を第2ホッパー(4)に収容し、他方の樹脂を第3ホッパー(30)に収容して、前記同様に再生樹脂の製造を行うことができる。
【0035】
【実施例】
次に、この発明の具体的実施例について説明する。
【0036】
<実施例1>
幅2m×長さ1mのカーペット廃材(繊維内装材廃材)を10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図1に示す装置の第1ホッパー(3)にストックした。
【0037】
カーペット製造のバッキング工程から排出された直径80cm、厚さ10cm程度の円盤状塊からなる樹脂廃材(熱可塑性樹脂)を、10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図1に示す装置の第2ホッパー(4)にストックした。
【0038】
カーペット廃材(繊維内装材廃材)と樹脂廃材(熱可塑性樹脂)を40/60の重量比となるように図1に示す装置の押出機(2)内に連続供給した。なお、この際の、繊維分/樹脂分=23/77(重量比)であった。押出機(2)内で約250℃で溶融混練せしめた後、ストランド状に押出した溶融樹脂を水槽内で冷却し、次いでストランドカッターにより直径3〜4mmの円柱状のペレット(再生樹脂)を得た。
【0039】
なお、前記カーペット廃材は、ポリアミドのパイル糸400g/m2 をポリエステル不織布(120g/m2 )にタフトした生機に低密度ポリエチレンを400g/m2 でバッキング加工し、さらに最下層に30g/m2 のポリエステル不織布を貼り合わせたタフテッドカーペット(使用済み)である。
【0040】
また、前記樹脂廃材は、エチレンビニルアセテート30wt%、低密度ポリエチレン15wt%、炭酸カルシウム50wt%、顔料1wt%、可塑剤4wt%の比率で溶融混練されたカーペット用バッキング樹脂廃材である。
【0041】
<実施例2>
幅5cm×長さ300mの紐状のカーペットの耳くず廃材を長さ20cm程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図1に示す装置の第1ホッパー(3)にストックした。
【0042】
カーペット製造のバッキング工程から排出された直径80cm、厚さ10cm程度の円盤状塊からなる樹脂廃材(熱可塑性樹脂)を、10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図1に示す装置の第2ホッパー(4)にストックした。
【0043】
カーペットの耳くず廃材(繊維内装材廃材)と樹脂廃材(熱可塑性樹脂)を40/60の重量比となるように図1に示す装置の押出機(2)内に連続供給した。なお、この際の、繊維分/樹脂分=11/89(重量比)であった。押出機(2)内で約250℃で溶融混練せしめた後、ストランド状に押出した溶融樹脂を水槽内で冷却し、次いでストランドカッターにより直径3〜4mmの円柱状のペレット(再生樹脂)を得た。
【0044】
なお、前記カーペットの耳くず廃材は、ポリエステルのわた400g/m2 をパンチングした生機にSBRラテックス50g/m2 を、さらに低密度ポリエチレンを1000g/m2 でバッキング加工したニードルパンチカーペットの耳くず廃材である。
【0045】
また、前記樹脂廃材は、実施例1と同じものである。
【0046】
<実施例3>
幅2m×長さ1mのカーペット廃材(繊維内装材廃材)を10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図2に示す装置の第1ホッパー(3)にストックした。
【0047】
カーペット製造のバッキング工程から排出された直径80cm、厚さ10cm程度の円盤状塊からなる樹脂廃材(熱可塑性樹脂)を、10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図2に示す装置の第2ホッパー(4)にストックした。
【0048】
回収したPETボトル(熱可塑性樹脂)を洗浄した後、10cm以下に粉砕したものを、図2に示す装置の第3ホッパー(30)にストックした。
【0049】
カーペット廃材(繊維内装材廃材)と樹脂廃材(熱可塑性樹脂)とPETボトル材(熱可塑性樹脂)を、60/20/20の重量比となるように図2に示す装置の押出機(2)内に連続供給した。なお、この際の、繊維分/樹脂分=26/74(重量比)であった。押出機(2)内で約250℃で溶融混練せしめた後、ストランド状に押出した溶融樹脂を水槽内で冷却し、次いでストランドカッターにより直径3〜4mmの円柱状のペレット(再生樹脂)を得た。
【0050】
なお、前記カーペット廃材は、ポリエステルのパイル糸500g/m2 をポリエステル不織布120g/m2 にタフトした生機に低密度ポリエチレンを800g/m2 でバッキング加工したタフテッドカーペット(使用済み)である。
【0051】
また、前記樹脂廃材は、低密度ポリエチレンからなるカーペット用バッキング樹脂廃材である。
【0052】
<実施例4>
幅2m×長さ1mのカーペット廃材(繊維内装材廃材)を10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図1に示す装置の第1ホッパー(3)にストックした。
【0053】
カーペット製造のバッキング工程から排出された直径80cm、厚さ10cm程度の円盤状塊からなる樹脂廃材(熱可塑性樹脂)を、10cm角程度の大きさに粗粉砕し、更に粉砕機により1cm以下の大きさに微粉砕したものを、図1に示す装置の第2ホッパー(4)にストックした。
【0054】
カーペット廃材(繊維内装材廃材)と樹脂廃材(熱可塑性樹脂)を90/10の重量比となるように図1に示す装置の押出機(2)内に連続供給した。なお、この際の、繊維分/樹脂分=66/34(重量比)であった。押出機(2)内で約250℃で溶融混練せしめた後、ストランド状に押出した溶融樹脂を水槽内で冷却し、次いでストランドカッターにより直径3〜4mmの円柱状のペレット(再生樹脂)を得た。
【0055】
なお、前記カーペット廃材は、ポリアミドのパイル糸1000g/m2 をポリエステル不織布(120g/m2 )にタフトした生機に低密度ポリエチレンを400g/m2 でバッキング加工してなるタフテッドカーペット(使用済み)である。また、前記樹脂廃材はポリエチレン樹脂廃材である。
【0056】
<実施例5>
押出機内での溶融混練温度を200℃に設定した以外は、実施例1と同様にしてペレット(再生樹脂)を得た。
【0057】
上記いずれの実施例においても、押出時の押出負荷が小さくて生産性良く、かつ良好な混練状態で再生樹脂を製造することができた。
【0058】
表1に、実施例1、実施例5で得られたペレット(再生樹脂)の樹脂物性を示す。この表1から明らかなように、比較的低温(200℃)で溶融混練された実施例5の再生樹脂と、比較的高温(250℃)で溶融混練された実施例1の再生樹脂とを比較すると、前者の方が引張強度に優れ、後者の方が引張伸度が向上し、かつ流動性に優れる結果となった。
【0059】
【表1】

Figure 0003678698
【0060】
上記実施例で得られたペレット(再生樹脂)が実用上問題なく十分に利用できる品質のものであることを確認するために、次のような試験を行った。
【0061】
即ち、表2に示す組成からなるバッキング用樹脂組成物Aと、同表に示すように実施例4で得られたペレットを一部混合せしめた組成からなるバッキング用樹脂組成物Bとで諸特性の相対比較を行った。
【0062】
表3に押出加工性の評価結果を示す。表3から明らかなように、樹脂組成物Bは樹脂組成物Aと加工性の点においてほぼ同等であって、実用上加工性は何ら問題のないことを確認した。また、生産性の点でも同等レベルであった。
【0063】
【表2】
Figure 0003678698
【0064】
【表3】
Figure 0003678698
【0065】
表4に樹脂体としての物性の評価結果を示す。表4から明らかなように、樹脂組成物Bは樹脂組成物Aと同等の強度、伸度を備えていた。また、流動性の指標であるMFR値についても同等であった。また、外観、風合いの点でも両者間に差異は認められなかった。
【0066】
【表4】
Figure 0003678698
【0067】
【発明の効果】
請求項1の製造方法によれば、原料として、繊維内装材廃材に対して熱可塑性樹脂を特定比率で混合せしめたものを用いるので、押出機内における溶融物の流動性が向上して押出負荷を低減でき、これにより生産性を向上できる。また、繊維内装材廃材中の繊維分も含めて再生樹脂の原料として用いることができるので、資源(繊維内装材廃材)の再生率を顕著に向上でき、資源の有効利用を十分に図ることができる。更に、繊維内装材廃材を余すことなく原料として利用できるので、低コストで再生樹脂を製造できる。また、繊維内装材廃材の押出機内への供給は、スクリュー等を用いた強制押し込み操作を施して行うので、繊維内装材廃材中の繊維分と樹脂分(バッキング樹脂等)とを均一に混合した状態で押出機内に供給できる。加えて、上記強制押し込み工程の途中段階で前記熱可塑性樹脂を投入して、該熱可塑性樹脂を既に強制押し込み操作を受けた繊維内装材廃材と合流せしめ、更に強制押し込み操作を行うことによって繊維内装材廃材及び熱可塑性樹脂を押出機内に供給する方法を採用するので、繊維分と樹脂分とを均一混合状態で押出機内に供給することができて、繊維分が均一に分散された状態で溶融混練することができるので、品質のばらつきの小さい高品質の再生樹脂(ペレット等)を製造することができる。
【0068】
請求項2の発明によれば、生産性をより向上できると共に、製造コストも一層低減できる。
【0069】
請求項3の発明によれば、押出機内での原料に対するスクリューの食い込み性が良くなって良好状態に溶融混練できる
【0070】
請求項の発明によれば、押出機内での原料に対するスクリューの食い込み性が向上する。
【0071】
請求項の発明によれば、原料への食い込み性が顕著に向上して一段と効率良く溶融混練できるので、高品質の再生樹脂を一層生産性良く製造することができる。
【0072】
請求項の発明によれば、溶融混練時の樹脂分の劣化を防止できるし、引張伸度及び流動性により優れた再生樹脂を製造できる。
【0073】
請求項の発明によれば、溶融混練時の樹脂分の劣化を防止できるし、引張強度がより向上した再生樹脂を製造できる。
【図面の簡単な説明】
【図1】 再生樹脂の製造方法を模式的に示す説明図である。
【図2】 製造方法の他の例を模式的に示す説明図である。
【符号の説明】
2…押出機
10…原料供給口[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for producing recycled resin with high productivity and low cost by using fiber covering waste materials such as carpet waste materials, fiber interior material waste materials such as ceiling material waste materials and door material waste materials as raw materials.
[0002]
  In this specification, the term “fiber interior material waste material” is used in the meaning of including scraps, cutting scraps, and the like generated during the production process of the fiber interior material, as well as those discarded after use. .
[0003]
[Prior art]
  Fiber rugs such as carpets that have been used for many years have been conventionally treated as waste, and this was rarely recycled, but with the recent increase in the effective use of resources, An attempt has been made to produce a recycled resin using such a used fiber rug as a raw material.
[0004]
  For example, many carpet wastes have pile yarn planted on a fiber base fabric and a backing resin layer is provided on the back of the base fabric. In order to obtain the recycled resin, the waste carpet material is first pulverized, melted and kneaded in an extruder, and then extruded. In general, however, carpet waste is composed of fiber (fiber base fabric, pile yarn) and resin (backing resin), but the content of this fiber is large, which reduces the fluidity during melt-kneading and extrusion. There is a big problem that the extrusion load at the time becomes large and the productivity is very low.
[0005]
  Further, in order to supply a pulverized carpet waste material having such a fiber content and a resin content to the extruder, a sufficiently uniform mixture thereof is retained in a hopper connected to the raw material supply port of the extruder. Then, classification occurs in the process of moving to the supply port, and the mixed state of these raw materials (fiber content, resin content) becomes non-uniform and is supplied to the extruder in such a non-uniform mixed state. There was also a problem that the variation in the quality of recycled resin molded products such as pellets was increased. In addition, a method of adding a compatibilizing agent to eliminate such a non-uniform mixing state in the extruder has been proposed, but there is a problem that the cost is high, and molding is performed using the obtained recycled resin. Then, cracks are likely to occur.
[0006]
  Therefore, after pulverizing the carpet waste material, this pulverized product is separated into a fiber pulverized product and a resin pulverized product through a predetermined separation operation, and only the resin pulverized product is selected and put into an extruder to be melt-kneaded and extruded. In some cases, a recycled resin is obtained by performing the above process and reused.
[0007]
[Problems to be solved by the invention]
  However, in the above prior art, the fiber content of the waste carpet material is disposed as waste, so that the recovery rate (regeneration rate) of recycled resin such as pellets obtained from the recycled carpet waste material becomes low, It cannot be said that the resource has been fully utilized effectively. That is, it goes without saying that, from the viewpoint of effective use of resources, it is desirable that both the fiber content and the resin content in the carpet waste can be used together as a raw material for the recycled resin.
[0008]
  Moreover, in the said prior art, since the separation process for isolate | separating the ground material of a carpet waste material into a fiber ground material and a resin ground material is required, the regeneration cost becomes high.
[0009]
  The present invention has been made in view of such a technical background, and can be used as a raw material for a recycled resin including a fiber content in a waste material of a fiber interior material. The first object of the present invention is to provide a method for producing a regenerated resin from waste fiber interior materials, which can be sufficiently achieved, has a low extrusion load during extrusion, is excellent in productivity, and can be produced at a low cost. The purpose.
[0010]
  Furthermore, the present invention uses a fiber interior material waste material as a raw material, which can supply the fiber and resin components into the extruder in a uniformly mixed state, and can suppress variation in quality in the recycled resin such as pellets obtained. A second object is to provide a method for producing the recycled resin.
[0011]
[Means for Solving the Problems]
  UpNoteSpecifically, the fiber interior material waste material and the thermoplastic resin are supplied into the extruder so that the mixing ratio is fiber / resin content = 10/90 to 90/10 (weight ratio). Melted and kneaded and then extruded to obtain recycled resinIn the manufacturing method, the fiber interior material waste material is supplied into an extruder by performing a forced pushing operation using a screw or the like, and the thermoplastic resin is charged in the middle of the forced pushing process, The plastic interior resin is made to merge with the fiber interior material waste material that has already been subjected to the forced push-in operation, and the fiber interior material waste material and the thermoplastic resin are supplied into the extruder by further performing the forced push-in operation.This is achieved by a method for producing a recycled resin using a waste fiber interior material as a raw material. The “resin component” in the mixing ratio includes not only the thermoplastic resin added to the fiber interior material waste material but also the backing resin that is a constituent member of the fiber interior material waste material.
[0012]
  Since this manufacturing method uses a material in which a thermoplastic resin is mixed at a specific ratio with a fiber interior material waste as a raw material, the fluidity of the melt in the extruder can be improved, thereby reducing the extrusion load. Since it can be reduced, productivity can be improved. In addition, since it can be used as a raw material for recycled resin, including the fiber content in waste materials for fiber interior materials, the recovery rate of resources (waste materials for fiber interior materials) can be remarkably improved, and resources can be used effectively. Can be sufficiently achieved. Moreover, since the fiber interior material waste material can be used as a raw material without remaining, a recycled resin can be produced at a low cost.Moreover, since the fiber interior material waste material is supplied into the extruder by a forced pushing operation using a screw or the like, the fiber content and the resin content (backing resin, etc.) in the fiber interior material waste material are uniformly mixed. It becomes possible to supply in an extruder in a state. In addition, the thermoplastic resin is added in the middle of the forced pushing process, and the thermoplastic resin is joined with the fiber interior material waste material that has already undergone the forced pushing operation. Since the waste material and thermoplastic resin are fed into the extruder, the fiber and resin can be fed into the extruder in a uniform mixed state, and the fiber is melted in a uniformly dispersed state. Since it can knead | mix, the dispersion | variation in quality in recycled resin, such as a pellet obtained, can be suppressed small.
[0013]
  It is preferable to set the mixing ratio in the extruder to fiber content / resin content = 20/80 to 80/20 (weight ratio) from the viewpoint of further improving productivity and further reducing cost.
[0014]
  As the fiber interior material waste material and the thermoplastic resin, it is preferable to use one that has been pulverized to an average particle diameter of 1 to 30 mm. As a result, the bite of the screw with respect to the raw material in the extruder is improved and the mixture is melt-kneaded in a good state..
[0015]
  As the extruder, it is preferable to use a twin screw extruder, which further improves the bite into the raw material. Among them, it is particularly preferable to use a counter-rotating twin-screw extruder as the extruder, whereby the biting property into the raw material is remarkably improved and the melt kneading can be performed more efficiently.
[0016]
  The kneading temperature in the extruder is preferably set in the range of more than 240 ° C and 300 ° C or less. As a result, the resin content can be prevented from being deteriorated during melt-kneading, and a recycled resin with improved tensile elongation and excellent fluidity can be produced.
[0017]
  Alternatively, the kneading temperature in the extruder is preferably set to 150 to 240 ° C. By kneading in such a relatively low temperature region, the fibers can be dispersed in the resin without being completely melted, and as a result, a recycled resin with improved tensile strength can be produced. Moreover, deterioration of the resin content during melt kneading can also be prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  In the method for producing a recycled resin according to the present invention, the waste fiber interior material and the thermoplastic resin are supplied into the extruder so that the mixing ratio is fiber / resin = 10/90 to 90/10 (weight ratio). In this extruder, these are melt-kneaded and then extruded to obtain a recycled resin.
[0019]
  In this manufacturing method, the fiber interior material waste material is used alone as a raw material, and is not melt-kneaded in the extruder, but the fiber interior material waste material is mixed with a thermoplastic resin (virgin resin, resin waste material, etc.). Is used as a raw material, and the mixing ratio in this mixture is defined as fiber / resin = 10/90 to 90/10 (weight ratio), so that the fluidity of the melt in the extruder is improved. And the extrusion load can be reduced, so that productivity can be improved. Moreover, since it can be used as a raw material for recycled resin including the fiber content in the fiber interior material waste material, the recycling recovery rate of resources (fiber interior material waste materials) can be remarkably improved, that is, effective use of resources. We can plan enough. Moreover, since the fiber interior material waste material can be used as a raw material without remaining, a recycled resin can be produced at a low cost.
[0020]
  The “resin content” in the mixing ratio includes not only thermoplastic resin (virgin resin, resin waste material, etc.) added to the fiber interior material waste material, but also thermoplastic resin such as backing resin, which is a constituent member of the fiber interior material waste material. included. Therefore, for example, when the fiber interior material waste material is a pile yarn planted on a fiber base fabric, a backing resin layer is provided on the back surface of the base fabric, and the thermoplastic resin is polyethylene, The fiber base fabric and the pile yarn correspond to the “fiber part”, and the backing resin and polyethylene correspond to the “resin part”.
[0021]
  The mixing ratio is preferably set to fiber content / resin content = 20/80 to 80/20 (weight ratio). If the ratio of the resin component is smaller than the lower limit value, the fluidity of the raw material melt in the extruder is lowered, and the productivity is lowered due to an increase in the extrusion load. On the other hand, if the ratio of the resin component is larger than the above upper limit value, the usage ratio of the fiber interior material waste material is relatively reduced, which increases costs and makes it difficult to effectively use resources efficiently. .
[0022]
  In the production method of the present invention, the fiber interior material waste material used as a raw material is not particularly limited. For example, the waste material of the ceiling material (for automobiles, etc.), the door material, as well as the waste material of the carpet covering such as the carpet waste material. Waste materials (for automobiles, etc.). As the fiber interior material waste material, not only those discarded after use, but also scraps, cutting scraps and the like generated in the process of manufacturing the fiber interior material are used. Moreover, the fiber interior material waste material which consists only of fiber can also be used as this fiber interior material waste material.
[0023]
  As the carpet waste material, pile yarn is generally planted on a fiber base fabric, and a backing resin layer is provided on the back surface of the base fabric, and the pile yarn is made of polyamide, polyester, polypropylene, acrylic, or the like. Synthetic fibers are used, and as the fiber base fabric, those made of polyester fibers are often used. On the other hand, thermoplastic resins such as polyethylene, ethylene vinyl acetate, and polypropylene are used as the backing resin.
[0024]
  In addition, as the thermoplastic resin used as a raw material, any material such as virgin resin, resin waste material, regenerated resin, etc. can be used, and the type thereof is not limited, for example, polyethylene, polyethylene terephthalate, ethylene Examples thereof include vinyl acetate, polypropylene, and ethylene methyl methacrylate. Examples of the resin waste material include a resin waste material for backing discharged in a carpet backing process and a plastic bottle. If such a resin waste material is used as the thermoplastic resin, the manufacturing cost can be further reduced, and more effective use of resources can be achieved.
[0025]
  In addition, as for the said fiber interior material waste material and a thermoplastic resin, it is common to use what was pulverized, and it is preferable that the average particle diameters are all in the range of 1-30 mm. When it exceeds 30 mm, the bite property of the screw with respect to the raw material in the extruder is lowered, which is not preferable. On the other hand, when it is less than 1 mm, it takes time and cost to make such a fine particle size, and it is not preferable because it becomes too fine and the working environment and workability deteriorate. Although there is no particular limitation for obtaining particles having a particle size in such a specific range, for example, a method of performing a pulverization process and then selecting and collecting using a screen mesh is used.
[0026]
  In addition to the fiber interior material waste material and the thermoplastic resin, additives and the like may be appropriately added to the raw material used in the present invention. Examples of such additives include inorganic fillers such as calcium carbonate, compatibilizing agents and the like.
[0027]
  As the extruder, a twin-screw extruder is preferably used, and the bite of the screw with respect to the raw material in the extruder is improved. Particularly preferred is a counter-rotating twin-screw extruder, and if this is used, the bite into the raw material is remarkably improved and the melt-kneading can be carried out more efficiently.
[0028]
  The kneading temperature in the extruder is preferably set in the range of more than 240 ° C and 300 ° C or less. Below the lower limit of the preferred range, it is not preferable because uniform kneading of the fiber is difficult to perform sufficiently. Moreover, since it will become easy to produce deterioration of the resin part at the time of melt-kneading when it exceeds the upper limit of the said suitable range, it is unpreferable.
[0029]
  Alternatively, if the kneading temperature in the extruder is set in the range of 150 to 240 ° C. (including 150 ° C., including 240 ° C.), the fibers can be dispersed in the resin without being completely melted. There is an advantage that the tensile strength of the obtained recycled resin can be further improved.
[0030]
  A preferred example of the manufacturing method of the present invention will be described below with reference to FIG. In FIG. 1, (2) is a different-direction twin-screw extruder, which is provided with two screw shafts (13) and (13) that are horizontally arranged in parallel with each other, and these screw shafts (13) and (13). ) Rotate in different directions. The raw material supply port (10) on the upstream side in the extrusion direction of the extruder (2) is connected in communication with a second supply pipe (6) extending in the vertical direction, and an upper portion of the second supply pipe (6). Is connected in communication with a first supply pipe (5) extending in the horizontal direction, and a first hopper (3) is connected to the first supply pipe (5). The pulverized material of the fiber interior material waste material is accommodated in the first hopper (3). In the first supply pipe (5), a screw (11) as a forced pushing means is arranged, and in the second supply pipe (6), a screw (12) as a forced pushing means is arranged. The pulverized material of the fiber interior material waste material accommodated in the first hopper (3) is forced into the extruder (2) from the raw material supply port (10) by the forced pushing operation by these screws (11) (12). It is supposed to be supplied.
[0031]
  Further, a third supply pipe (7) is connected to the upper position of the second supply pipe (6), and a second hopper (4) is connected to the third supply pipe (7). The second hopper (4) contains a thermoplastic resin.
[0032]
  Thus, the fiber interior material waste material accommodated in the first hopper (3) is forced into the extruder (2) by the forced pushing operation by the screws (11) and (12) in the supply pipes (5) and (6). It is supplied and can be supplied into the extruder (2) in such a state that the fiber component and the resin component (backing resin or the like) in the fiber interior material waste material are uniformly mixed by such forced pushing operation. Further, the fiber interior material waste material is supplied from the second hopper (4) through the third supply pipe (7) in the middle of the forced pushing-in process of the waste material of the fiber interior material, that is, at the upper position of the second supply pipe (6). The resulting thermoplastic resin is merged, and thereafter, the fiber interior material waste material and the thermoplastic resin are both forcedly pushed into and supplied to the extruder (2). Thereby, a fiber part and resin parts (backing resin, thermoplastic resin, etc.) can be supplied in an extruder (2) in a uniform mixed state. Therefore, in the extruder (2), melt kneading can be performed in a state where the fibers are uniformly dispersed.
[0033]
  Subsequently, after melt-kneading in an extruder (2) and extruding from an extrusion port (20), a recycled resin formed into a pellet shape by, for example, a strand method is obtained. Of course, the recycled resin may be obtained in other molded shapes such as a film shape and a sheet shape.
[0034]
  The apparatus shown in FIG. 2 has the basic structure of the apparatus shown in FIG. 1 and is further provided with a third hopper (30). The third hopper (30) is provided with a fourth supply pipe (31). ) To communicate with the upper position of the second supply pipe (6). This configuration is suitable when two types of thermoplastic resins are used, and one resin is accommodated in the second hopper (4) and the other resin is accommodated in the third hopper (30). Thus, the recycled resin can be produced in the same manner as described above.
[0035]
【Example】
  Next, specific examples of the present invention will be described.
[0036]
  <Example 1>
  A carpet waste material (fiber interior material waste material) having a width of 2 m and a length of 1 m is roughly pulverized to a size of about 10 cm square and further pulverized to a size of 1 cm or less by a pulverizer. Stocked in 1 hopper (3).
[0037]
  Resin waste material (thermoplastic resin) consisting of a disk-shaped lump with a diameter of about 80 cm and a thickness of about 10 cm discharged from the carpet manufacturing backing process is roughly crushed to a size of about 10 cm square, and further sized to 1 cm or less by a pulverizer. The finely pulverized product was stocked in the second hopper (4) of the apparatus shown in FIG.
[0038]
  Carpet waste material (fiber interior material waste material) and resin waste material (thermoplastic resin) were continuously fed into the extruder (2) of the apparatus shown in FIG. 1 so as to have a weight ratio of 40/60. In this case, the fiber content / resin content = 23/77 (weight ratio). After melt-kneading at about 250 ° C. in the extruder (2), the molten resin extruded in a strand shape is cooled in a water tank, and then a cylindrical pellet (recycled resin) having a diameter of 3 to 4 mm is obtained by a strand cutter. It was.
[0039]
  The carpet waste material is polyamide pile yarn of 400 g / m.2Polyester nonwoven fabric (120 g / m2400g / m of low density polyethylene on the raw machine2Backing process with 30g / m2This is a tufted carpet (used) bonded with a polyester nonwoven fabric.
[0040]
  Further, the resin waste material is a carpet backing resin waste material melt-kneaded at a ratio of ethylene vinyl acetate 30 wt%, low density polyethylene 15 wt%, calcium carbonate 50 wt%, pigment 1 wt%, and plasticizer 4 wt%.
[0041]
  <Example 2>
  The waste material from the waste of a string-like carpet with a width of 5 cm and a length of 300 m is roughly pulverized to a size of about 20 cm and further pulverized to a size of 1 cm or less by a pulverizer. Stocked in first hopper (3).
[0042]
  Resin waste material (thermoplastic resin) consisting of a disk-shaped lump with a diameter of about 80 cm and a thickness of about 10 cm discharged from the carpet manufacturing backing process is roughly crushed to a size of about 10 cm square, and further sized to 1 cm or less by a pulverizer. The finely pulverized product was stocked in the second hopper (4) of the apparatus shown in FIG.
[0043]
  Waste carpet waste material (fiber interior material waste material) and resin waste material (thermoplastic resin) were continuously fed into the extruder (2) of the apparatus shown in FIG. 1 so that the weight ratio was 40/60. In this case, the fiber content / resin content = 11/89 (weight ratio). After melt-kneading at about 250 ° C. in the extruder (2), the molten resin extruded in a strand shape is cooled in a water tank, and then a cylindrical pellet (recycled resin) having a diameter of 3 to 4 mm is obtained by a strand cutter. It was.
[0044]
  In addition, the waste wood waste of the carpet is 400 g / m of polyester cotton.2SBR latex 50g / m2And 1000 g / m of low density polyethylene2This is a waste material from the ear punch of the needle punched carpet that has been back-processed.
[0045]
  The resin waste material is the same as that in Example 1.
[0046]
  <Example 3>
  A carpet waste material (fiber interior material waste material) having a width of 2 m and a length of 1 m is roughly pulverized to a size of about 10 cm square and further pulverized to a size of 1 cm or less by a pulverizer. Stocked in 1 hopper (3).
[0047]
  Resin waste material (thermoplastic resin) consisting of a disk-shaped lump with a diameter of about 80 cm and a thickness of about 10 cm discharged from the carpet manufacturing backing process is roughly crushed to a size of about 10 cm square, and further sized to 1 cm or less by a pulverizer. The finely pulverized product was stocked in the second hopper (4) of the apparatus shown in FIG.
[0048]
  The collected PET bottle (thermoplastic resin) was washed and then pulverized to 10 cm or less, and stocked in the third hopper (30) of the apparatus shown in FIG.
[0049]
  Extruder (2) in the apparatus shown in FIG. 2 so that the weight ratio of carpet waste material (fiber interior material waste material), resin waste material (thermoplastic resin) and PET bottle material (thermoplastic resin) is 60/20/20. It was continuously fed into. In this case, the fiber content / resin content = 26/74 (weight ratio). After melt-kneading at about 250 ° C. in the extruder (2), the molten resin extruded in a strand shape is cooled in a water tank, and then a cylindrical pellet (recycled resin) having a diameter of 3 to 4 mm is obtained by a strand cutter. It was.
[0050]
  In addition, the carpet waste material is polyester pile yarn of 500 g / m.2Polyester nonwoven fabric 120g / m2Low density polyethylene 800g / m2It is a tufted carpet (used) backed with.
[0051]
  The resin waste material is a carpet backing resin waste material made of low-density polyethylene.
[0052]
  <Example 4>
  A carpet waste material (fiber interior material waste material) having a width of 2 m and a length of 1 m is roughly pulverized to a size of about 10 cm square and further pulverized to a size of 1 cm or less by a pulverizer. Stocked in 1 hopper (3).
[0053]
  Resin waste material (thermoplastic resin) consisting of a disk-shaped lump with a diameter of about 80 cm and a thickness of about 10 cm discharged from the carpet manufacturing backing process is roughly crushed to a size of about 10 cm square, and further sized to 1 cm or less by a pulverizer. The finely pulverized product was stocked in the second hopper (4) of the apparatus shown in FIG.
[0054]
  Carpet waste material (fiber interior material waste material) and resin waste material (thermoplastic resin) were continuously fed into the extruder (2) of the apparatus shown in FIG. 1 so as to have a weight ratio of 90/10. In this case, the fiber content / resin content = 66/34 (weight ratio). After melt-kneading at about 250 ° C. in the extruder (2), the molten resin extruded in a strand shape is cooled in a water tank, and then a cylindrical pellet (recycled resin) having a diameter of 3 to 4 mm is obtained by a strand cutter. It was.
[0055]
  The carpet waste material is polyamide pile yarn of 1000 g / m.2Polyester nonwoven fabric (120 g / m2400g / m of low density polyethylene on the raw machine2It is a tufted carpet (used) made by backing with The resin waste material is a polyethylene resin waste material.
[0056]
  <Example 5>
  Pellets (recycled resin) were obtained in the same manner as in Example 1 except that the melt kneading temperature in the extruder was set to 200 ° C.
[0057]
  In any of the above examples, the recycled resin could be produced in a good kneaded state with a low extrusion load during extrusion and good productivity.
[0058]
  Table 1 shows the resin physical properties of the pellets (recycled resin) obtained in Example 1 and Example 5. As is apparent from Table 1, the recycled resin of Example 5 melted and kneaded at a relatively low temperature (200 ° C.) was compared with the recycled resin of Example 1 melted and kneaded at a relatively high temperature (250 ° C.). As a result, the former was superior in tensile strength, and the latter was superior in tensile elongation and fluidity.
[0059]
[Table 1]
Figure 0003678698
[0060]
  In order to confirm that the pellets (recycled resin) obtained in the above examples were of a quality that could be used sufficiently without any practical problems, the following tests were conducted.
[0061]
  That is, various properties of the backing resin composition A having the composition shown in Table 2 and the backing resin composition B having a composition obtained by partially mixing the pellets obtained in Example 4 as shown in the same table. A relative comparison was made.
[0062]
  Table 3 shows the evaluation results of extrusion processability. As is clear from Table 3, the resin composition B was almost equivalent to the resin composition A in terms of workability, and it was confirmed that there was no problem in practical workability. In terms of productivity, it was at the same level.
[0063]
[Table 2]
Figure 0003678698
[0064]
[Table 3]
Figure 0003678698
[0065]
  Table 4 shows the evaluation results of the physical properties of the resin body. As is clear from Table 4, the resin composition B had the same strength and elongation as the resin composition A. Moreover, it was equivalent also about the MFR value which is a liquidity parameter | index. Also, no difference was observed between the two in terms of appearance and texture.
[0066]
[Table 4]
Figure 0003678698
[0067]
【The invention's effect】
  According to the manufacturing method of claim 1, since a material obtained by mixing a thermoplastic resin at a specific ratio with the fiber interior material waste is used as a raw material, the fluidity of the melt in the extruder is improved and the extrusion load is increased. Can be reduced, thereby improving productivity. In addition, since it can be used as a raw material for recycled resin, including the fiber content in the fiber interior material waste, the recycling rate of resources (fiber interior material waste) can be remarkably improved, and the effective use of resources can be sufficiently achieved. it can. Furthermore, since the fiber interior material waste can be used as a raw material without leaving, recycled resin can be produced at low cost.Moreover, since the fiber interior material waste material is supplied into the extruder by a forced pushing operation using a screw or the like, the fiber content and the resin content (backing resin, etc.) in the fiber interior material waste material are uniformly mixed. Can be fed into the extruder in a state. In addition, the thermoplastic resin is added in the middle of the forced pushing process, and the thermoplastic resin is joined with the fiber interior material waste material that has already undergone the forced pushing operation. Since the waste material and thermoplastic resin are fed into the extruder, the fiber and resin can be fed into the extruder in a uniform mixed state, and the fiber is melted in a uniformly dispersed state. Since they can be kneaded, a high-quality recycled resin (pellet or the like) with little variation in quality can be produced.
[0068]
  According to invention of Claim 2, productivity can be improved more and manufacturing cost can further be reduced.
[0069]
  According to invention of Claim 3, the bite property of the screw with respect to the raw material in an extruder improves, and it can melt-knead in a favorable state.
[0070]
  Claim4According to this invention, the biting property of the screw with respect to the raw material in the extruder is improved.
[0071]
  Claim5According to this invention, since the bite into the raw material is remarkably improved and the melt kneading can be performed more efficiently, a high-quality recycled resin can be produced with higher productivity.
[0072]
  Claim6According to the invention, it is possible to prevent deterioration of the resin component during melt-kneading, and it is possible to produce a recycled resin that is superior in tensile elongation and fluidity.
[0073]
  Claim7According to the invention, it is possible to prevent the resin content from being deteriorated during the melt-kneading, and it is possible to produce a recycled resin having further improved tensile strength.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a method for producing a recycled resin.
FIG. 2 is an explanatory view schematically showing another example of the manufacturing method.
[Explanation of symbols]
  2 ... Extruder
  10 ... Raw material supply port

Claims (7)

繊維内装材廃材と熱可塑性樹脂とを、混合比率が繊維分/樹脂分=10/90〜90/10(重量比)となるように押出機内に供給し、この押出機内でこれらを溶融混練したのち押出して再生樹脂を得る製造方法であって、スクリュー等を用いた強制押し込み操作を施すことによって前記繊維内装材廃材を押出機内に供給すると共に、前記強制押し込み工程の途中段階で前記熱可塑性樹脂を投入して、該熱可塑性樹脂を既に強制押し込み操作を受けた繊維内装材廃材と合流せしめ、更に強制押し込み操作を行うことによって繊維内装材廃材及び熱可塑性樹脂を押出機内に供給することを特徴とする繊維内装材廃材を原料とした再生樹脂の製造方法。The fiber interior material waste material and the thermoplastic resin were supplied into the extruder so that the mixing ratio would be fiber / resin content = 10/90 to 90/10 (weight ratio), and these were melt-kneaded in this extruder. A method for producing a recycled resin by extruding afterwards, by supplying the fiber interior material waste material into the extruder by performing a forced pushing operation using a screw or the like, and the thermoplastic resin in the middle of the forced pushing step The thermoplastic resin is made to merge with the fiber interior material waste material that has already been subjected to the forced push-in operation, and the fiber interior material waste material and the thermoplastic resin are supplied into the extruder by performing a further forced push-in operation. The manufacturing method of the recycled resin which uses the fiber interior material waste material as a raw material. 前記押出機内での混合比率を繊維分/樹脂分=20/80〜80/20(重量比)に設定する請求項1に記載の繊維内装材廃材を原料とした再生樹脂の製造方法。  The manufacturing method of the recycled resin which uses the fiber interior material waste material as a raw material of Claim 1 which sets the mixing ratio in the said extruder to fiber part / resin part = 20 / 80-80 / 20 (weight ratio). 前記繊維内装材廃材および前記熱可塑性樹脂のいずれもが平均粒径1〜30mmに粉砕処理されたものである請求項1または2に記載の繊維内装材廃材を原料とした再生樹脂の製造方法。  The method for producing a recycled resin using the fiber interior material waste material as a raw material according to claim 1 or 2, wherein both the fiber interior material waste material and the thermoplastic resin are pulverized to an average particle size of 1 to 30 mm. 前記押出機として2軸押出機を用いる請求項1〜3のいずれか1項に記載の繊維内装材廃材を原料とした再生樹脂の製造方法 The manufacturing method of the regenerated resin which used the fiber interior material waste material of any one of Claims 1-3 which uses a twin-screw extruder as said extruder . 前記押出機として異方向回転2軸押出機を用いる請求項1〜4のいずれか1項に記載の繊維内装材廃材を原料とした再生樹脂の製造方法 The manufacturing method of the reproduction | regeneration resin which uses the fiber interior material waste material of any one of Claims 1-4 using a different direction rotation biaxial extruder as said extruder . 前記押出機内における混練温度を240℃を超えて300℃以下の範囲に設定する請求項1〜5のいずれか1項に記載の繊維内装材廃材を原料とした再生樹脂の製造方法 The manufacturing method of the recycled resin which uses the fiber interior material waste material of any one of Claims 1-5 which sets the kneading | mixing temperature in the said extruder as the range exceeding 240 degreeC and 300 degrees C or less . 前記押出機内における混練温度を150〜240℃に設定する請求項1〜5のいずれか1項に記載の繊維内装材廃材を原料とした再生樹脂の製造方法 The manufacturing method of the regenerated resin which uses the fiber interior material waste material of any one of Claims 1-5 which sets the kneading | mixing temperature in the said extruder as 150-240 degreeC .
JP2001364655A 2001-11-29 2001-11-29 Recycled resin production method using fiber interior material waste Expired - Fee Related JP3678698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364655A JP3678698B2 (en) 2001-11-29 2001-11-29 Recycled resin production method using fiber interior material waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364655A JP3678698B2 (en) 2001-11-29 2001-11-29 Recycled resin production method using fiber interior material waste

Publications (2)

Publication Number Publication Date
JP2003165112A JP2003165112A (en) 2003-06-10
JP3678698B2 true JP3678698B2 (en) 2005-08-03

Family

ID=19174807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364655A Expired - Fee Related JP3678698B2 (en) 2001-11-29 2001-11-29 Recycled resin production method using fiber interior material waste

Country Status (1)

Country Link
JP (1) JP3678698B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385695B (en) * 2018-10-31 2024-03-01 青岛金盟科机械制造有限公司 Leather fiber leftover separating machine

Also Published As

Publication number Publication date
JP2003165112A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
DE60206271T2 (en) METHOD AND DEVICE FOR PRODUCING FILLED THERMOPLASTIC POLYMERS
US7022751B2 (en) Composite plastic materials produced from waste materials and method of producing same
US8992812B1 (en) Self-reinforced composite made of recycled materials and process of making the same
US20130099160A1 (en) Materials from Post-Industrial Absorbent Product Waste
JPS60109806A (en) Melting, kneading and molding method of fibrous sheet
JPH11192676A (en) Cloth laminated molding and method for retreating the same
EP3941703B1 (en) Process for the production of a composite material from textile waste and polyethylene film waste
JP3678698B2 (en) Recycled resin production method using fiber interior material waste
EP2216365A1 (en) Composite materials made using waste materials and methods of manufacturing such
DE102008063232A1 (en) Producing a processable plastic material from waste mixture of plastics, comprises presorting the waste mixture of plastics, cleaning and then crushing to flakes and/or gravels, and feeding the crushed product to a treatment
KR101276323B1 (en) The manufacturing method of recycling chip using a waste plastic composite sheet
KR100958370B1 (en) Manufacturing process of recycling chip used autocar&#39;s internal sheet waste
JP2932114B2 (en) Manufacturing method of recycled resin from waste material
DE19540366A1 (en) Recycling used thermoplastic carpets to form a regranulated sec. fibre reinforced plastic composite prod.
JP3158166B2 (en) carpet
JP3755257B2 (en) Method for manufacturing recycled sheet from carpet waste
JP3109016B2 (en) Method for producing flexible interior composite sheet using polypropylene carpet waste
CN1146395A (en) Plastic material made from waste material and method
JPS6173747A (en) Method for reclaiming semirigid vinyl chloride resin product
JPH08131989A (en) Regeneration treatment of organic fiber waste material
JP2004147792A (en) Polyolefin-based recycled tile carpet and its manufacturing method
JPS61169221A (en) Board and manufacture thereof
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JPH11105098A (en) Production of backing resin for carpet
JP3641915B2 (en) Eraser manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees