JP3677873B2 - Spiral type non-aqueous secondary battery and method for manufacturing the same - Google Patents

Spiral type non-aqueous secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP3677873B2
JP3677873B2 JP15631996A JP15631996A JP3677873B2 JP 3677873 B2 JP3677873 B2 JP 3677873B2 JP 15631996 A JP15631996 A JP 15631996A JP 15631996 A JP15631996 A JP 15631996A JP 3677873 B2 JP3677873 B2 JP 3677873B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode lead
secondary battery
lead
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15631996A
Other languages
Japanese (ja)
Other versions
JPH09320639A (en
Inventor
和男 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP15631996A priority Critical patent/JP3677873B2/en
Publication of JPH09320639A publication Critical patent/JPH09320639A/en
Application granted granted Critical
Publication of JP3677873B2 publication Critical patent/JP3677873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
製造時の電池性能のばらつきを少なくした渦巻型非水二次電池に関し、特に中心部における渦巻状の電極群の均一性を改良した渦巻電極の製造法に関する。
【0002】
【従来の技術】
近年、電子機器の高性能化、小型化、ポータブル化により、その電源として使用される電池に、従来のニッケルカドミウム電池や鉛蓄電池等に代わる高エネルギー密度の二次電池が要求されるようになっている。そこで、最近では負極に水素吸蔵合金を用いたニッケル水素電池や、軽金属を挿入放出可能な物質を正極及び負極に用いた非水二次電池が使用されるようになってきている。特にリチウムの挿入放出を応用した密閉型非水二次電池は電池電圧が3.6Vと高く、高エネルギー密度を有するため、電池の小型軽量化が可能であり、また自己放電も少なくサイクル特性にも優れていることから、ポータブル機器用の電源として急速にその需要が伸びてきている。
一般にこの種の電源としては、帯状の電極を渦巻き状に巻回した電極群を用いた円筒型の電池が用いられている。高エネルギー密度を達成するためには、巻き込む電極シートの長さをできるだけ長くするとともに均一な渦巻電極を作ることが必要である。しかしながら、電池の正負極端子に接続する電極リードは、集電体そのものや活物質が塗布された電極部分とは厚みや剛性が異なるため、電極リード溶接部が他の部分とは違う曲率になったり、折れ曲がりが生じたりする。こうした問題を解決するためにあらかじめ電極リードを所定の曲率に加工しておくことが特開平2−132758号等に記載されている。しかしながらこの方法では、電極リードに曲率を与える工程が必要となり巻回機のパス長が長くなったり、曲率を与えたリードを溶接した集電体を搬送するため、巻きずれや引っかかり等のトラブルを発生しやすい。
【0003】
【発明が解決しようとする課題】
本発明は、これらの事情に鑑みてなされたもので、渦巻状の電極群の真円度を良化させ、電池性能のばらつきを少なくした非水二次電池とその製造方法を提供することを目的とするものである。
【0004】
本発明の課題は、軽金属を挿入放出可能な正極シート及び負極シートと、セパレータを巻回してなる電極群と非水電解液を有底電池外装缶内に収納した渦巻型非水二次電池において、該正極シートを構成する正極集電体に溶接する正極リードの幅と厚みの関係が下記一般式(1)で表され、かつ該正極リードの該正極集電体への溶接幅が正極リード幅の3/4以下であり、該正極リードの幅端を溶接しないことを特徴とする渦巻型非水二次電池により達成された。
1000<B/2t3<10000(1)
ここで、Bは正極リードの幅(mm)、tは正極リードの厚み(mm)を表す。
【0005】
本発明の好ましい態様には以下のものがあるが、本発明はこれらに限定されるものではない。
(1)軽金属を挿入放出可能な正極シート及び負極シートと、セパレータを巻回してなる電極群と非水電解液を有底電池外装缶内に収納した渦巻型非水二次電池において、該正極シートを構成する正極集電体に溶接する正極リードの幅と厚みの関係が下記一般式(1)で表され、かつ該正極リードの該正極集電体への溶接幅が正極リード幅の3/4以下であり、該正極リードの幅端を溶接しないことを特徴とする渦巻型非水二次電池。
1000<B/2t3<10000(1)
ここで、Bは正極リードの幅(mm)、tは正極リードの厚み(mm)を表す。
(2)該正極リードの幅と厚みの関係が下記一般式(2)で表されることを特徴とする項1に記載の渦巻型非水二次電池。
1500<B/2t3<7000(2)
ここで、Bは正極リードの幅(mm)、tは正極リードの厚み(mm)を表す。
(3)該正極リードがアルミニウム又はアルミニウム合金であることを特徴とする項1または2に記載の非水二次電池。
(4)該アルミニウム又はアルミニウム合金中のアルミニウム含有率が99.3%以上、99.99%以下であることを特徴とする項3に記載の渦巻型非水二次電池。
(5)該アルミニウム又はアルミニウム合金が焼き鈍し処理されたものであることを特徴とする項3または4に記載の非水二次電池。
【0006】
以下本発明について詳述する。
本発明の電極群は、正極シート、セパレーター、負極シートを重ね渦巻状に巻回したものであり、各正負極シートは、集電体上に活物質合剤が塗布されているとともに電極リードが接続されている。電極リードは、活物質合剤未塗布部もしくは塗布後合剤を剥離した部分に接続されていることが好ましい。電極リードは正負極の短絡を防ぐため、相互に離れた位置にあることが好ましい。例えば、正極リードは渦巻状の巻回群の中央部に、負極リードは外周部に存在する形態が特に好ましい。また、正負極リードの一方が電極シートの中央部に、他方が電極シートの端部(渦巻電極群では中央部か外周部)に位置する形態であってもよい。
【0007】
本発明を具体的にするため、正極リードは渦巻状の巻回群の中央部に、負極リードは外周部に存在する形態を例として説明する。
塗布後、脱水乾燥した正極シートの正極集電体の露出部(電極合剤未塗布部)に正極リードを溶接する。このリードに関し、従来技術では巻回を行う前工程で概略巻き芯径と同じ曲率半径を持つ型で正極リードにプレス成形し、次工程で巻回している。これに対し本発明は、前工程での正極リードの成型無しに、正極リードの形状と材質、溶接条件を規定することで巻回することのみで真円度の高い巻回群を得るものである。
本発明の正極リードは、正極リードの幅B(mm)は1.5〜10mmが好ましく、2〜5mmがより好ましい。正極リードの厚みt(mm)は0.03〜1mmが好ましく、0.05〜0.3mmがより好ましい。Bとtは下記の関係を満たすことが好ましい。
1000<B/2t3 <10000 (1)
B/2t3 が1000以下、10000以上の場合は巻回した渦巻電極群の真円度(変形度)が良くないものができた。特に10000以上の場合はリードの端部で折れ曲がりが発生していた。式(1)においてはB、tは次の一般式(2)で表されるとより好ましい。
1500<B/2t3 <7000 (2)
更に、正極リードの該正極集電体への溶接幅が、正極リード幅の3/4以下であり、かつ正極リードの幅端を溶接しないことが望ましい。電極リードの端部はリード作成時にバリが生じていたり他の部分より厚めになっていたりするためこの部分を溶接することは巻回群の真円度を高めるためには不利である。
正極リードの材質としては、軟性金属が好ましく、アルミニウム又はアルミニウム合金がより好ましい。アルミニウム又はアルミニウム合金中のアルミニウム含有率は99.3%以上、99.99%以下であると特に好ましい。
アルミニウム合金中のアルミニウム以外の元素としては、珪素、鉄、銅、マンガン、マグネシウム、亜鉛などを挙げることができる。この中で、珪素と鉄は0.7%以下、銅は0.1%以下、マンガン、亜鉛、マグネシウムは0.05%以下が好ましい。
更に好ましいのは、これらのアルミニウム又はアルミニウム合金の焼き鈍し品で、340℃〜410℃で熱処理した後、空冷または炉冷したものである。
特に好ましいアルミニウム又はアルミニウム合金は、JIS規格の番号で、JISH416O,A1N30H−Oである。
これらのリードを正極集電体に溶接するには、超音波溶接、レーザー溶接、抵抗溶接等の手段を用いることができる。例えば超音波溶接機で20kHzまたは40kHzで溶接することができる。
【0008】
本発明の電極に用いる集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、正極には、材料としてステンレス鋼、ニッケル、アルミニウム、チタン、炭素などの他に、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが用いられるが、アルミニウムあるいはアルミニウム合金が特に好ましい。負極には、材料としてステンレス鋼、ニッケル、銅、チタン、アルミニウム、炭素などの他に、銅やステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの、Al−Cd合金などが用いられるが、銅あるいは銅合金が特に好ましい。これらの材料の表面を酸化することも用いられる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは1〜500μmのものが用いられる。本発明の正極に用いる集電体とリードは同一の材質であることが好ましく、アルミニウムの含有率の高いものが好ましい。
【0009】
本発明の非水二次電池に用いられる正・負極は、正極合剤あるいは負極合剤を集電体上に塗設、成形して作ることができる。正極あるいは負極合剤には、それぞれ正極活物質あるいは負極材料の他、それぞれに導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。
【0010】
本発明で使用できる正極中の活物質は、軽金属を挿入放出できるものであれば良いが、好ましくはリチウム含有遷移金属酸化物であり、更に好ましくはLix CoO2 、Lix NiO2 、Lix Coa Ni1-a 2 、Lix Cob 1-b z 、Lix Cob Fe1-b z 、Lix Mn2 4 、Lix MnO2 、LiMn2 3 、Lix Mnb Co2-b z 、Lix Mnb Ni2-b z 、Lix Mnb 2-b z 、Lix Mnb Fe1-b z (ここでx=0.05〜1.2、a=0.1〜0.9、b=0.8〜0.98、z=1.5〜5)である。
以下、本発明で言う軽金属とは、周期律表第1A族(水素を除く)及び第2A族に属する元素であり、好ましくはリチウム、ナトリウム、カリウムであり、特にリチウムであることが好ましい。
【0011】
本発明で使用できる負極中の活物質は、軽金属を挿入放出できるものであれば良いが、好ましくは黒鉛(天然黒鉛、人造黒鉛、気相成長黒鉛)、コークス(石炭または石油系)、有機ポリマー焼成物(ポリアクリロニトリルの樹脂または繊維、フラン樹脂、クレゾール樹脂、フェノール樹脂)、メゾフェースピッチ焼成物、金属酸化物、金属カルコゲナイド、リチウム含有遷移金属酸化物及びカルコゲナイドである。
特に,Ge,Sn,Pb,Bi,Al,Ga,Si、Sbの単独あるいはこれらの組み合わせからなる酸化物、カルコゲナイドが好ましい。更に、これらに網目形成剤として知られているSiO2 ,B2 3 ,P2 5 ,Al2 3 ,V2 5 などを加えて非晶質化させたものが特に好ましい。これらは化学量論組成のものであっても、不定比化合物であっても良い。
これらの化合物の好ましい例として以下のものを上げることができるが本発明はこれらに限定されるものではない。
【0012】
GeO、GeO2 、SnO、SnO2 、SnSiO3 、PbO、SiO、Sb2 5 、Bi2 3 、Li2 SiO3 、Li4 Si2 7 、Li2 GeO3 、SnAl0.4 0.5 0.5 0.1 3.65、SnAl0.4 0.5 0.5 Cs0.1 3.65、SnAl0.4 0.5 0.5 0.1 Ge0.053.85、SnAl0.4 0.5 0.5 0.1 Mg0.1 Ge0.023.83、SnAl0.4 0.4 0.4 Ba0.083.28、SnAl0.5 0.4 0.5 Mg0.1 0.2 3.65、SnAl0.4 0.5 0.5 Cs0.1 Mg0.1 0.2 3.65、SnB0.5 0.5 Cs0.05Mg0.050.1 3.03、Sn1.1 Al0.4 0.4 0.4 Ba0.083.34、Sn1.2 Al0.5 0.3 0.4 Cs0.2 3.5 、SnSi0.5 Al0.2 0.1 0.1 Mg0.1 2.8 、SnSi0.5 Al0.3 0.4 0.5 4.30、SnSi0.6 Al0.1 0.1 0.1 Ba0.2 2.95、SnSi0.6 Al0.4 0.2 Mg0.1 3.2 、Sn0.9 Mn0.3 0.4 0.4 Ca0.1 Rb0.1 2.95、Sn0.9 Fe0.3 0.4 0.4 Ca0.1 Rb0.1 2.95、Sn0.3 Ge0.7 Ba0.1 0.9 3.35、Sn0.9 Mn0.1 Mg0.1 0.9 3.35、Sn0.2 Mn0.8 Mg0.1 0.9 3.35
【0013】
さらに本発明の負極材料は、軽金属、特にリチウムを挿入して用いることができる。リチウムの挿入方法は、電気化学的、化学的、熱的方法が好ましい。
【0014】
本発明の負極材料へのリチウム挿入量は、リチウムの析出電位に近似するまででよいが、上記の好ましい負極材料当たり50〜700モル%が好ましい。特に100〜600モル%が好ましい。
【0015】
本発明で使用できる正極及び負極中の導電剤は、グラファイト、アセチレンブラック、カーボンブラック、ケッチェンブラック、炭素繊維や金属粉、金属繊維やポリフェニレン誘導体であり、特にグラファイト、アセチレンブラックが好ましい。
本発明で使用できる正極及び負極中の結着剤は、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリビニルアルコール、澱粉、再生セルロース、ジアセチルセルロース、ヒドロキシプロピルセルロース、ポリビニルクロリド、ポリビニルピロリドン、ポリエチレン、ポリプロピレン、SBR,EPDM、スルホン化EPDM、フッ素ゴム、ポリブタジエン、ポリエチレンオキシドであり、特にポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましい。
【0016】
本発明で使用できる正極及び負極の支持体即ち集電体は、材質として、正極にはアルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、負極には銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、形態としては、箔、エキスパンドメタル、パンチングメタル、金網である。特に、正極にはアルミニウム箔、負極には銅箔が好ましい。
本発明で使用できるセパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとテフロンの混合体、ポリエチレンとテフロンの混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。
【0017】
本発明で使用できる電解液は、有機溶媒としてプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスフォキシド、ジオキソラン、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ニトロメタン、アセトニトリル、蟻酸メチル、酢酸メチル、プロピオン酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロ誘導体、ジエチルエーテル、1,3−プロパンサルトンの少なくとも1種以上を混合したもの、また電解質として、LiClO4 、LiBF4 、LiPF6 、LiCF3 SO3 、LiCF3 CO2 、LiAsF6 、LiSbF6 、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl4 、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムの1種以上の塩を溶解したものが好ましい。特にプロピレンカーボネートあるいはエチレンカーボネートと1、2−ジメトキシエタン及び/あるいはジエチルカーボネートとの混合溶媒にLiCF3 SO3 、LiClO4 、LiBF4 、及び/あるいはLiPF6 を溶解したものが好ましく、特に、少なくともエチレンカーボネートとLiPF6 を含むことが好ましい。
【0018】
電池の形状はシリンダー、角のいずれにも適用できる。この場合、電極は、合剤を集電体上に塗設、乾燥、脱水、プレスして用いる。
電池は、セパレーターと共に巻回した電極を電池缶に挿入し、缶と電極を電気的に接続し、電解液を注入し封口して形成する。この時、安全弁を電池蓋として用いることができる。更に電池の安全性を保証するためにPTC素子を用いるのが好ましい。
【0019】
本発明で使用できる有底電池外装缶は、材質として、ニッケルメッキを施した鉄鋼板、ステンレス鋼板(SUS304、SUS304L,SUS304N、SUS316、SUS316L、SUS430、SUS444等)、ニッケルメッキを施したステンレス鋼板(同上)、アルミニウムまたはその合金、ニッケル、チタン、銅であり、形状として、真円形筒状、楕円形筒状、正方形筒状、長方形筒状である。特に、外装缶が負極端子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場合は、ステンレス鋼板、アルミニウムまたはその合金が好ましい。
【0020】
本発明で使用できるガスケットは、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ポリアミドであり、耐有機溶媒性及び低水分透過性から、オレフィン系ポリマーが好ましく、特にプロピレン主体のポリマーが好ましい。さらに、プロピレンとエチレンのブロック共重合ポリマーであることが好ましい。
【0021】
本発明の電池は必要に応じて外装材で被覆される。外装材としては、熱収縮チューブ、粘着テープ、金属フィルム、紙、布、塗料、プラスチックケース等がある。また、外装の少なくとも一部に熱で変色する部分を設け、使用中の熱履歴がわかるようにしても良い。
本発明の電池は必要に応じて複数本を直列及び/または並列に組み電池パックに収納される。電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
【0022】
本発明の電池は様々な機器に使用される。特に、ビデオムービー、モニター内蔵携帯型ビデオデッキ、モニター内蔵ムービーカメラ、コンパクトカメラ、一眼レフカメラ、使い捨てカメラ、レンズ付きフィルム、ノート型パソコン、ノート型ワープロ、電子手帳、携帯電話、コードレス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等に使用されることが好ましい。
【0023】
上述したように、非水二次電池の場合、使用する電極が、ニッケルカドミウム電池やニッケル水素電池の場合より薄くしかも長い帯状である場合が多いため、巻回された電極群の電解液浸透性が非常に悪く、電池組立時の電解液注入時間が長くかかり、よって注液装置がとても大きなものとなるだけでなく、非水電解液であるがゆえにその揮発性の高さから注液量の精度管理が難しい。これを解決するために、電極群の上面に配置される絶縁体に多くの貫通孔を設けようとすると、絶縁体の強度が低下し、電池落下時の電極群のずれによる内部短絡が起こり易くなってしまう。逆に、絶縁体に設ける貫通孔をできるだけ少なくして厚みを大きくすれば、強度は増すが、電極群の電解液浸透性が低下してしまう。本発明の密閉型非水二次電池は、電極群の電解液浸透性が良く、電池組立時の電解液注入を短時間で行うことが可能であり、なおかつ電池落下時の内部短絡をも防止することができる構成をなしている。つまり、電極群の上面に配置される絶縁体において、環状壁の外周部に形成される鍔部の底面より、環状壁の内周部に形成される中央平面部の底面が上方に位置し、鍔部には複数の貫通孔を有する。さらに中央平面部の中央部とその周辺に貫通孔を有するため、電解液注入時に電池外装缶内のエアーあるいは不活性ガスがこれらの貫通孔を通って抜け易くなり、電解液が電極群に浸透し易くなる。また、絶縁体中央部には平面部が存在するため、電池落下時の電極群のずれを最小限に抑えることができる。したがって、組立作業性が高く、しかも安全性の高い密閉型非水二次電池とすることができる。
【0024】
【実施例】
以下に具体例をあげ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。
【0025】
正極は、活物質としてLiCoO2 (87重量部)を用い、導電剤として鱗片状黒鉛(6重量部)とアセチレンブラック(3重量部)を、結着剤としてポリテトラフルオロエチレン水分散物(3重量部)とポリアクリル酸ナトリウム(1重量部)を加え、水を媒体として混練して得られたスラリーをアルミニウム箔(集電体:厚さ20μm)の両面にエクストルージョン法により塗布し、この塗布物を乾燥した後、カレンダープレス機により圧縮成形して帯状の正極(厚さ250μm)とした。
負極においては、一酸化錫(73.3重量部)、二酸化珪素(19.5重量部)、酸化マグネシウム(3.5重量部)、酸化ほう素(3.7重量部)を乾式混合し、アルゴン雰囲気下で10時間(1200℃)焼成した後、冷却して粉砕して得た平均粒径4.5μmのSnSi0.6 Mg0.2 0.2 2.7 を負極材料として用いた。
負極は、上記の負極材料(88重量部)と、導電剤として燐片状黒鉛(6重量部)、結着剤としてポリフッ化ビリニデンの水分散物(4重量部)とカルボキシメチルセルロース(1重量部)及び酢酸リチウム(1重量部)を加え、水を媒体として混練して得られたスラリーを銅箔(集電体:厚さ18μm)の両面にエクストルージョン法により塗布し、正極と同様、乾燥、圧縮成形して帯状の負極(厚さ78μm)とした。
【0026】
低湿度雰囲気中(露点:−50℃)で、上記で得られた正極と負極を脱水乾燥(遠赤外線ヒーター、150℃、2時間)した後所定の寸法に裁断し、負極シートの未塗布部にはニッケル製のリード板を超音波溶接した。さらに、正極シートの厚み20μのアルミニウム集電体の露出部にリード板を超音波溶接した。リード板はアルミニウムの焼き鈍し品JIS−IN30H−Oで、幅4mm、厚み0.1mm、長さ75mmのものを用いた。超音波溶接は表面に細かい凹凸部を多数設けた鉄敷(アンビル)の上に、正極の集電体の露出部分を位置決めし、短冊状のリードタブをその上に重ねて置き、超音波溶接機(ブランソン製、20kHz、2000W)の超音波ホーンで0.5MPaの圧力で加圧しながら75msecの間、振幅22μmの超音波振動を加えて溶接した。超音波ホーンの加圧面は2.5mm×48mmの長方形状で0.4mmピッチで細かい凹凸面が設けられている。溶接後、正極シートの長手方向の端面付近に対応するリードの場所に幅12mmの絶縁テープを一周に渡って貼った。絶縁テープは基材がポリイミドでシリコーン系粘着材を用いた粘着テープを使用した。
【0027】
得られたリード付きの正極シート、セパレーター、負極シートを用い、巻回機の巻き芯径を3.5mmとし、巻回張力がセパレーターでは150g、正負極シートでは300gで巻回した。巻回張力を上げると真円度は良化するが内部短絡が増加した。正極リードが渦巻状電極の中心部、負極リードが外周部にくるように巻回して渦巻状電極群Aを作った。正極リードの材質と形状を下表のように変更して電極群B〜Kを作った。ここで1N30H−Oは焼き鈍し品を、1N30Hは焼き鈍していないものを表す。
表中α値はB/2t3 を表す。リードの曲率加工は、半円柱状突起を有する上金型と、対応する半円柱状くぼみを有する下金型に集電体に溶接された正極リードを挟み加圧成形し、リードの幅方向にR1.75mmの丸みを付けた。真円度評価は電極群の最大径と最小径とをレーザー変位計で測定しその差を見た。また、電極群を樹脂で固めた後切断して正極リードの曲率のつき方を顕微鏡で観察し、官能評価した。また、巻回適正は、正極リードつきの正極シートの巻回時の搬送性を評価し50個の電池を作製するときに引っかかりの生じた個数を示した。
【0028】

Figure 0003677873
【0029】
【発明の効果】
正極リードが溶着された正極シートを巻回するときに搬送経路での引っかかり等のトラブルをなくすことができる。リードを溶接後巻芯径に合わせて曲率を持たせるためのプレス工程が省略できるのでパス長が短くなり、巻ずれなどのトラブルを減少できる。巻回群の真円度の向上により電池缶への巻回群の挿入や正負極リードの端子溶接などでの故障が減少できる。更に巻回群の極板距離の均一化により電池性能の均一性が向上する。
【図面の簡単な説明】
【図1】本発明の密閉型非水二次電池の実施例を示す縦断面図
【符号の説明】
6 正極リード
7 負極リード
8 正極シート
9 負極シート
10 セパレーター
11 電池外装缶
12 端子キャップ
13 ガスケット
14 安全弁[0001]
BACKGROUND OF THE INVENTION
More particularly, the present invention relates to a spiral electrode manufacturing method in which the uniformity of a spiral electrode group in the center is improved.
[0002]
[Prior art]
In recent years, high performance, downsizing, and portability of electronic devices have led to demand for high energy density secondary batteries to replace conventional nickel cadmium batteries and lead storage batteries as batteries used as power sources. ing. Therefore, recently, nickel-metal hydride batteries using a hydrogen storage alloy for the negative electrode and non-aqueous secondary batteries using a material capable of inserting and releasing light metals for the positive electrode and the negative electrode have been used. In particular, a sealed non-aqueous secondary battery using lithium insertion and release has a high battery voltage of 3.6 V and a high energy density. Therefore, the battery can be reduced in size and weight, and it has less self-discharge and cycle characteristics. Therefore, demand for power supplies for portable devices is growing rapidly.
In general, as this type of power source, a cylindrical battery using an electrode group in which strip-like electrodes are wound in a spiral shape is used. In order to achieve a high energy density, it is necessary to make the wound electrode sheet as long as possible and to make a uniform spiral electrode. However, the electrode leads connected to the positive and negative terminals of the battery are different in thickness and rigidity from the current collector and the electrode part coated with the active material, so the electrode lead welded part has a different curvature from the other parts. Or bends. In order to solve such a problem, Japanese Patent Application Laid-Open No. 2-132758 describes that an electrode lead is processed into a predetermined curvature in advance. However, this method requires a step of giving curvature to the electrode lead, and the path length of the winding machine becomes long, or a current collector welded with the lead having the curvature is conveyed, so troubles such as winding deviation and catching are caused. Likely to happen.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of these circumstances, and provides a non-aqueous secondary battery with improved roundness of a spiral electrode group and reduced variation in battery performance, and a method for manufacturing the same. It is the purpose.
[0004]
An object of the present invention is a spiral non-aqueous secondary battery in which a positive electrode sheet and a negative electrode sheet capable of inserting and releasing a light metal, an electrode group formed by winding a separator, and a non-aqueous electrolyte are housed in a bottomed battery outer can. The relationship between the width and thickness of the positive electrode lead welded to the positive electrode current collector constituting the positive electrode sheet is represented by the following general formula (1) , and the weld width of the positive electrode lead to the positive electrode current collector is the positive electrode lead This was achieved by a spiral non-aqueous secondary battery that is not more than 3/4 of the width and is characterized by not welding the width end of the positive electrode lead .
1000 <B / 2t 3 <10000 (1)
Here, B represents the width (mm) of the positive electrode lead, and t represents the thickness (mm) of the positive electrode lead.
[0005]
Preferred embodiments of the present invention include the following, but the present invention is not limited to these.
(1) In a spiral non-aqueous secondary battery in which a positive electrode sheet and a negative electrode sheet capable of inserting and releasing light metal, an electrode group formed by winding a separator, and a non-aqueous electrolyte are housed in a bottomed battery outer can, The relationship between the width and thickness of the positive electrode lead welded to the positive electrode current collector constituting the sheet is expressed by the following general formula (1) , and the weld width of the positive electrode lead to the positive electrode current collector is 3 of the positive electrode lead width. A spiral type non-aqueous secondary battery that is / 4 or less and does not weld the width end of the positive electrode lead .
1000 <B / 2t 3 <10000 (1)
Here, B represents the width (mm) of the positive electrode lead, and t represents the thickness (mm) of the positive electrode lead.
(2) The spiral nonaqueous secondary battery according to item 1, wherein the relationship between the width and thickness of the positive electrode lead is represented by the following general formula (2).
1500 <B / 2t 3 <7000 (2)
Here, B represents the width (mm) of the positive electrode lead, and t represents the thickness (mm) of the positive electrode lead.
(3) The nonaqueous secondary battery according to item 1 or 2, wherein the positive electrode lead is aluminum or an aluminum alloy.
(4) The spiral nonaqueous secondary battery according to item 3, wherein the aluminum content in the aluminum or aluminum alloy is 99.3% or more and 99.99% or less.
(5) The nonaqueous secondary battery according to item 3 or 4, wherein the aluminum or aluminum alloy is annealed.
[0006]
The present invention is described in detail below.
The electrode group of the present invention is obtained by winding a positive electrode sheet, a separator, and a negative electrode sheet in a spiral shape. Each positive and negative electrode sheet has an active material mixture applied on a current collector and electrode leads. It is connected. The electrode lead is preferably connected to the part where the active material mixture has not been applied or the part where the mixture has been peeled off after application. The electrode leads are preferably located away from each other in order to prevent a short circuit between the positive and negative electrodes. For example, it is particularly preferable that the positive electrode lead is present at the center of the spiral winding group and the negative electrode lead is present at the outer periphery. Alternatively, one of the positive and negative electrode leads may be located at the center of the electrode sheet, and the other may be located at the end of the electrode sheet (in the spiral electrode group, the center or the outer periphery).
[0007]
In order to make the present invention concrete, an example in which the positive electrode lead exists in the central part of the spiral winding group and the negative electrode lead exists in the outer peripheral part will be described as an example.
After application, the positive electrode lead is welded to the exposed portion (the electrode mixture uncoated portion) of the positive electrode current collector of the dehydrated and dried positive electrode sheet. With respect to this lead, in the prior art, the positive electrode lead is press-molded with a die having the same radius of curvature as the core diameter in the previous step of winding, and wound in the next step. On the other hand, the present invention obtains a winding group with high roundness only by winding by specifying the shape, material and welding conditions of the positive electrode lead without forming the positive electrode lead in the previous step. is there.
In the positive electrode lead of the present invention, the width B (mm) of the positive electrode lead is preferably 1.5 to 10 mm, and more preferably 2 to 5 mm. The thickness t (mm) of the positive electrode lead is preferably 0.03 to 1 mm, and more preferably 0.05 to 0.3 mm. B and t preferably satisfy the following relationship.
1000 <B / 2t 3 <10000 (1)
When B / 2t 3 was 1000 or less and 10,000 or more, a wound electrode group having a poor roundness (deformation degree) was obtained. Particularly in the case of 10,000 or more, bending occurred at the end of the lead. In the formula (1), B and t are more preferably represented by the following general formula (2).
1500 <B / 2t 3 <7000 (2)
Furthermore, it is desirable that the welding width of the positive electrode lead to the positive electrode current collector is 3/4 or less of the positive electrode lead width and that the width end of the positive electrode lead is not welded. Since the end portion of the electrode lead is burred at the time of lead formation or thicker than other portions, welding this portion is disadvantageous in order to increase the roundness of the winding group.
The material of the positive electrode lead is preferably a soft metal, more preferably aluminum or an aluminum alloy. The aluminum content in aluminum or aluminum alloy is particularly preferably 99.3% or more and 99.99% or less.
Examples of elements other than aluminum in the aluminum alloy include silicon, iron, copper, manganese, magnesium, and zinc. Among these, silicon and iron are preferably 0.7% or less, copper is 0.1% or less, and manganese, zinc and magnesium are preferably 0.05% or less.
More preferable are annealed products of these aluminum or aluminum alloys, which are heat-treated at 340 ° C. to 410 ° C. and then air-cooled or furnace-cooled.
Particularly preferred aluminum or aluminum alloy is JIS standard number, JIS416O, A1N30H-O.
In order to weld these leads to the positive electrode current collector, means such as ultrasonic welding, laser welding, and resistance welding can be used. For example, welding can be performed at 20 kHz or 40 kHz with an ultrasonic welder.
[0008]
The current collector used for the electrode of the present invention may be anything as long as it is an electronic conductor that does not cause a chemical change in the constructed battery. For example, in addition to stainless steel, nickel, aluminum, titanium, carbon, and the like as materials for the positive electrode, a material obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver is used. Alloys are particularly preferred. For the negative electrode, in addition to stainless steel, nickel, copper, titanium, aluminum, carbon, etc., the surface of copper or stainless steel treated with carbon, nickel, titanium or silver, Al-Cd alloy, etc. are used. However, copper or a copper alloy is particularly preferable. Oxidizing the surface of these materials is also used. Further, it is desirable to make the current collector surface uneven by surface treatment. As the shape, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used in addition to the foil. A thickness of 1 to 500 μm is used. The current collector and the lead used in the positive electrode of the present invention are preferably made of the same material, and preferably have a high aluminum content.
[0009]
The positive and negative electrodes used in the nonaqueous secondary battery of the present invention can be prepared by coating a positive electrode mixture or a negative electrode mixture on a current collector and molding it. In addition to the positive electrode active material or the negative electrode material, the positive electrode or the negative electrode mixture can contain a conductive agent, a binder, a dispersant, a filler, an ionic conductive agent, a pressure enhancer, and various additives, respectively.
[0010]
The active material in the positive electrode that can be used in the present invention may be any material that can insert and release light metals, but is preferably a lithium-containing transition metal oxide, more preferably Li x CoO 2 , Li x NiO 2 , Li x. Co a Ni 1-a O 2 , Li x Co b V 1-b O z, Li x Co b Fe 1-b O z, Li x Mn 2 O 4, Li x MnO 2, LiMn 2 O 3, Li x Mn b Co 2-b O z , Li x Mn b Ni 2-b O z, Li x Mn b V 2-b O z, Li x Mn b Fe 1-b O z ( where x = 0.05 to 1.2, a = 0.1 to 0.9, b = 0.8 to 0.98, z = 1.5 to 5).
Hereinafter, the light metal referred to in the present invention is an element belonging to Group 1A (excluding hydrogen) and Group 2A of the periodic table, preferably lithium, sodium, and potassium, and particularly preferably lithium.
[0011]
The active material in the negative electrode that can be used in the present invention may be any material that can insert and release light metals, but preferably graphite (natural graphite, artificial graphite, vapor-grown graphite), coke (coal or petroleum), organic polymer. Baked products (polyacrylonitrile resin or fiber, furan resin, cresol resin, phenol resin), mesophase pitch fired product, metal oxide, metal chalcogenide, lithium-containing transition metal oxide and chalcogenide.
In particular, an oxide or chalcogenide made of Ge, Sn, Pb, Bi, Al, Ga, Si, or Sb alone or a combination thereof is preferable. Further, those obtained by adding SiO 2 , B 2 O 3 , P 2 O 5 , Al 2 O 3 , V 2 O 5, etc., which are known as network formers, to an amorphous state are particularly preferable. These may be of stoichiometric composition or non-stoichiometric compounds.
Preferred examples of these compounds include the following, but the present invention is not limited thereto.
[0012]
GeO, GeO 2, SnO, SnO 2, SnSiO 3, PbO, SiO, Sb 2 O 5, Bi 2 O 3, Li 2 SiO 3, Li 4 Si 2 O 7, Li 2 GeO 3, SnAl 0.4 B 0.5 P 0.5 K 0.1 O 3.65 , SnAl 0.4 B 0.5 P 0.5 Cs 0.1 O 3.65 , SnAl 0.4 B 0.5 P 0.5 K 0.1 Ge 0.05 O 3.85 , SnAl 0.4 B 0.5 P 0.5 K 0.1 Mg 0.1 Ge 0.02 O 3.83 , SnAl 0.4 B 0.4 P 0.4 Ba 0.08 O 3.28 , SnAl 0.5 B 0.4 P 0.5 Mg 0.1 F 0.2 O 3.65 , SnAl 0.4 B 0.5 P 0.5 Cs 0.1 Mg 0.1 F 0.2 O 3.65 , SnB 0.5 P 0.5 Cs 0.05 Mg 0.05 F 0.1 O 3.03 , Sn 1.1 Al 0.4 B 0.4 P 0.4 Ba 0.08 O 3.34 , Sn 1.2 Al 0.5 B 0.3 P 0.4 Cs 0.2 O 3.5 , SnSi 0.5 Al 0.2 B 0.1 P 0.1 Mg 0.1 O 2.8 , SnSi 0.5 Al 0.3 B 0.4 P 0.5 O 4.30 , SnSi 0.6 Al 0.1 B 0. 1 P 0.1 Ba 0.2 O 2.95 , SnSi 0.6 Al 0.4 B 0.2 Mg 0.1 O 3.2 , Sn 0.9 Mn 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 , Sn 0.9 Fe 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 , Sn 0.3 Ge 0.7 Ba 0.1 P 0.9 O 3.35, Sn 0.9 Mn 0.1 Mg 0.1 P 0.9 O 3.35, Sn 0.2 Mn 0.8 Mg 0.1 P 0.9 O 3.35.
[0013]
Furthermore, the negative electrode material of the present invention can be used by inserting a light metal, particularly lithium. The lithium insertion method is preferably an electrochemical, chemical or thermal method.
[0014]
The amount of lithium inserted into the negative electrode material of the present invention may be close to the lithium deposition potential, but is preferably 50 to 700 mol% per the above preferred negative electrode material. 100 to 600 mol% is particularly preferable.
[0015]
The conductive agent in the positive electrode and the negative electrode that can be used in the present invention is graphite, acetylene black, carbon black, ketjen black, carbon fiber or metal powder, metal fiber or polyphenylene derivative, and graphite and acetylene black are particularly preferable.
The binder in the positive electrode and the negative electrode that can be used in the present invention is polyacrylic acid, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl alcohol, starch, regenerated cellulose, diacetyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, polyvinyl Pyrrolidone, polyethylene, polypropylene, SBR, EPDM, sulfonated EPDM, fluororubber, polybutadiene, polyethylene oxide are preferable, and polyacrylic acid, carboxymethylcellulose, polytetrafluoroethylene, and polyvinylidene fluoride are particularly preferable.
[0016]
The positive electrode and negative electrode support or current collector that can be used in the present invention is made of aluminum, stainless steel, nickel, titanium, or an alloy thereof for the positive electrode, and copper, stainless steel, nickel, titanium for the negative electrode. Or an alloy of these, and the form is foil, expanded metal, punching metal, or wire mesh. In particular, an aluminum foil is preferable for the positive electrode and a copper foil is preferable for the negative electrode.
The separator that can be used in the present invention is only required to be an insulating thin film having a large ion permeability, a predetermined mechanical strength, and an olefin polymer, a fluorine polymer, a cellulose polymer, polyimide, nylon, Glass fiber and alumina fiber are used, and as a form, a nonwoven fabric, a woven fabric, and a microporous film are used. In particular, the material is preferably polypropylene, polyethylene, a mixture of polypropylene and polyethylene, a mixture of polypropylene and Teflon, or a mixture of polyethylene and Teflon, and the form is preferably a microporous film. In particular, a microporous film having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferable.
[0017]
The electrolyte solution that can be used in the present invention includes, as an organic solvent, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, Dioxolane, 1,3-dioxolane, formamide, dimethylformamide, nitromethane, acetonitrile, methyl formate, methyl acetate, methyl propionate, phosphate ester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate Derivatives, tetrahydro derivatives, diethyl ether, a mixture of at least one of 1,3-propane sultone, and electrolytes LiClO 4, LiBF 4, LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic lithium carboxylate, LiAlCl 4, LiCl, LiBr, LiI, chloroborane lithium, What melt | dissolved the 1 or more types of salt of lithium tetraphenylborate is preferable. In particular, a solution obtained by dissolving LiCF 3 SO 3 , LiClO 4 , LiBF 4 , and / or LiPF 6 in a mixed solvent of propylene carbonate or ethylene carbonate and 1,2-dimethoxyethane and / or diethyl carbonate is preferable. It preferably contains carbonate and LiPF 6 .
[0018]
The battery shape can be applied to either cylinder or corner. In this case, the electrode is used by coating the mixture on the current collector, drying, dehydrating, and pressing.
A battery is formed by inserting an electrode wound with a separator into a battery can, electrically connecting the can and the electrode, injecting an electrolyte, and sealing. At this time, the safety valve can be used as a battery lid. Furthermore, it is preferable to use a PTC element in order to guarantee the safety of the battery.
[0019]
The bottomed battery outer can that can be used in the present invention is made of steel plate, stainless steel plate (SUS304, SUS304L, SUS304N, SUS316, SUS316L, SUS430, SUS444, etc.) plated with nickel, Same as above), aluminum or alloys thereof, nickel, titanium, and copper, and the shapes are a perfect circular cylinder, an elliptical cylinder, a square cylinder, and a rectangular cylinder. In particular, when the outer can also serves as the negative electrode terminal, a stainless steel plate and a nickel-plated steel plate are preferable, and when the outer can also serves as the positive electrode terminal, a stainless steel plate, aluminum, or an alloy thereof is preferable.
[0020]
Gaskets that can be used in the present invention are olefin polymers, fluoropolymers, cellulosic polymers, polyimides, and polyamides as materials. Olefin polymers are preferred from the viewpoint of organic solvent resistance and low moisture permeability, and are mainly composed of propylene. Polymers are preferred. Furthermore, a block copolymer of propylene and ethylene is preferable.
[0021]
The battery of the present invention is covered with an exterior material as necessary. Examples of the exterior material include a heat-shrinkable tube, an adhesive tape, a metal film, paper, cloth, paint, and a plastic case. Further, at least a part of the exterior may be provided with a portion that changes color by heat so that the heat history during use can be known.
A plurality of the batteries of the present invention are assembled in series and / or in parallel as needed, and stored in a battery pack. In addition to safety elements such as positive temperature coefficient resistors, temperature fuses, fuses and / or current interrupting elements, the battery pack also requires safety circuits (monitoring the voltage, temperature, current, etc. of each battery and / or the entire battery pack) In this case, a circuit having a function of interrupting current may be provided. In addition to the positive and negative terminals of the entire assembled battery, the battery pack should be provided with the positive and negative terminals of each battery, the entire assembled battery, the temperature detection terminal of each battery, the current detection terminal of the entire assembled battery, etc. as external terminals. You can also. The battery pack may incorporate a voltage conversion circuit (such as a DC-DC converter). The connection of each battery may be fixed by welding a lead plate, or may be fixed so that it can be easily attached and detached with a socket or the like. Further, the battery pack may be provided with display functions such as the remaining battery capacity, the presence / absence of charging, and the number of uses.
[0022]
The battery of the present invention is used in various devices. In particular, video movies, portable video decks with built-in monitors, movie cameras with built-in monitors, compact cameras, single-lens reflex cameras, disposable cameras, film with lenses, notebook computers, notebook-type word processors, electronic notebooks, mobile phones, cordless phones, whiskers, It is preferably used for electric tools, electric mixers, automobiles and the like.
[0023]
As described above, in the case of a non-aqueous secondary battery, since the electrode to be used is often a thin and long strip shape compared to the case of a nickel cadmium battery or a nickel metal hydride battery, the electrolyte solution permeability of the wound electrode group Is very bad, and it takes a long time to inject the electrolyte when assembling the battery.Therefore, not only the injection device becomes very large, but also the non-aqueous electrolyte makes it difficult to inject the injection amount due to its high volatility. Accuracy control is difficult. In order to solve this problem, if many through holes are provided in the insulator disposed on the upper surface of the electrode group, the strength of the insulator is lowered, and an internal short circuit is likely to occur due to the displacement of the electrode group when the battery drops. turn into. On the contrary, if the thickness is increased by reducing the number of through holes provided in the insulator as much as possible, the strength increases, but the electrolyte permeability of the electrode group decreases. The sealed non-aqueous secondary battery of the present invention has good electrolyte permeability of the electrode group, can inject the electrolyte at the time of battery assembly in a short time, and also prevents internal short circuit when the battery drops It has a configuration that can be done. That is, in the insulator disposed on the upper surface of the electrode group, the bottom surface of the central plane portion formed on the inner peripheral portion of the annular wall is positioned above the bottom surface of the flange portion formed on the outer peripheral portion of the annular wall, The collar portion has a plurality of through holes. In addition, since there are through holes in the central part of the center flat part and its periphery, air or inert gas in the battery outer can easily escapes through these through holes when the electrolyte is injected, and the electrolyte penetrates into the electrode group. It becomes easy to do. In addition, since the flat portion exists in the central portion of the insulator, the displacement of the electrode group when the battery drops can be minimized. Therefore, it is possible to obtain a sealed non-aqueous secondary battery with high assembly workability and high safety.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples unless it exceeds the gist of the invention.
[0025]
The positive electrode uses LiCoO 2 (87 parts by weight) as an active material, flaky graphite (6 parts by weight) and acetylene black (3 parts by weight) as a conductive agent, and a polytetrafluoroethylene aqueous dispersion (3 Part by weight) and sodium polyacrylate (1 part by weight), and a slurry obtained by kneading with water as a medium was applied to both sides of an aluminum foil (current collector: thickness 20 μm) by the extrusion method. After the coated material was dried, it was compression-molded with a calender press to obtain a strip-like positive electrode (thickness 250 μm).
In the negative electrode, tin monoxide (73.3 parts by weight), silicon dioxide (19.5 parts by weight), magnesium oxide (3.5 parts by weight), boron oxide (3.7 parts by weight) were dry mixed, after calcination for 10 hours under an argon atmosphere (1200 ° C.), it was used SnSi 0. 6 Mg 0.2 B 0.2 O 2.7 having an average particle size of 4.5μm obtained by pulverizing cooled as a negative electrode material.
The negative electrode is composed of the above negative electrode material (88 parts by weight), flake graphite (6 parts by weight) as a conductive agent, an aqueous dispersion of polyvinylidene fluoride (4 parts by weight) and carboxymethyl cellulose (1 part by weight) as a binder. ) And lithium acetate (1 part by weight), and a slurry obtained by kneading with water as a medium was applied to both sides of a copper foil (current collector: thickness 18 μm) by the extrusion method, and dried in the same manner as the positive electrode. Then, compression molding was performed to obtain a strip-shaped negative electrode (thickness: 78 μm).
[0026]
In a low-humidity atmosphere (dew point: −50 ° C.), the positive electrode and the negative electrode obtained above were dehydrated and dried (far infrared heater, 150 ° C., 2 hours), then cut to a predetermined size, and the uncoated portion of the negative electrode sheet A nickel lead plate was ultrasonically welded. Further, the lead plate was ultrasonically welded to the exposed portion of the aluminum current collector having a thickness of 20 μm of the positive electrode sheet. The lead plate was an annealed aluminum product JIS-IN30H-O having a width of 4 mm, a thickness of 0.1 mm, and a length of 75 mm. In ultrasonic welding, the exposed part of the positive electrode current collector is positioned on an iron bed (anvil) with many fine irregularities on the surface, and a strip-shaped lead tab is placed on top of it. While pressing with an ultrasonic horn (Branson, 20 kHz, 2000 W) at a pressure of 0.5 MPa, ultrasonic vibration with an amplitude of 22 μm was applied for 75 msec and welding was performed. The pressure surface of the ultrasonic horn is a rectangular shape of 2.5 mm × 48 mm and is provided with fine uneven surfaces at a pitch of 0.4 mm. After welding, an insulating tape having a width of 12 mm was pasted around the end of the lead sheet corresponding to the vicinity of the end face in the longitudinal direction of the positive electrode sheet. The insulating tape used was an adhesive tape whose base material was polyimide and a silicone-based adhesive material.
[0027]
Using the obtained positive electrode sheet with a lead, separator, and negative electrode sheet, the winding core diameter of the winding machine was 3.5 mm, and the winding tension was 150 g for the separator and 300 g for the positive and negative electrode sheets. Increasing the winding tension improved the roundness but increased the internal short circuit. A spiral electrode group A was formed by winding the positive electrode lead so that the central portion of the spiral electrode and the negative electrode lead were on the outer periphery. Electrode groups B to K were made by changing the material and shape of the positive electrode lead as shown in the table below. Here, 1N30H-O represents an annealed product, and 1N30H represents an unannealed product.
The α value in the table represents B / 2t 3 . Lead curvature processing is performed by pressing a positive electrode lead welded to a current collector between an upper die having a semi-cylindrical protrusion and a lower die having a corresponding semi-cylindrical depression, and in the width direction of the lead. R1.75 mm rounded. For roundness evaluation, the maximum and minimum diameters of the electrode group were measured with a laser displacement meter to see the difference. In addition, the electrode group was solidified with a resin and then cut, and the curvature of the positive electrode lead was observed with a microscope for sensory evaluation. In addition, the winding appropriateness indicates the number of occurrences of catching when 50 positive batteries were manufactured by evaluating the transportability of the positive electrode sheet with the positive electrode lead.
[0028]
Figure 0003677873
[0029]
【The invention's effect】
When winding the positive electrode sheet on which the positive electrode lead is welded, troubles such as catching on the conveyance path can be eliminated. Since the press process for giving curvature to the core diameter after welding the lead can be omitted, the path length is shortened and troubles such as winding slip can be reduced. By improving the roundness of the winding group, failures due to insertion of the winding group into the battery can or terminal welding of the positive and negative electrode leads can be reduced. Further, the uniformity of the battery performance is improved by making the electrode plate distance of the winding group uniform.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a sealed nonaqueous secondary battery of the present invention.
6 Positive electrode lead 7 Negative electrode lead 8 Positive electrode sheet 9 Negative electrode sheet 10 Separator 11 Battery outer can 12 Terminal cap 13 Gasket 14 Safety valve

Claims (5)

軽金属を挿入放出可能な正極シート及び負極シートと、セパレータを巻回してなる電極群と非水電解液を有底電池外装缶内に収納した渦巻型非水二次電池において、該正極シートを構成する正極集電体に溶接する正極リードの幅と厚みの関係が下記一般式(1)で表され、かつ該正極リードの該正極集電体への溶接幅が正極リード幅の3/4以下であり、該正極リードの幅端を溶接しないことを特徴とする渦巻型非水二次電池。
1000<B/2t3<10000(1)
ここで、Bは正極リードの幅(mm)、tは正極リードの厚み(mm)を表す。
A positive electrode sheet and a negative electrode sheet capable of inserting and releasing light metals, an electrode group formed by winding a separator, and a spiral type non-aqueous secondary battery in which a non-aqueous electrolyte is housed in a bottomed battery outer can The relationship between the width and thickness of the positive electrode lead welded to the positive electrode current collector is represented by the following general formula (1) , and the weld width of the positive electrode lead to the positive electrode current collector is 3/4 or less of the positive electrode lead width. A spiral non-aqueous secondary battery characterized in that the positive end of the positive electrode lead is not welded .
1000 <B / 2t 3 <10000 (1)
Here, B represents the width (mm) of the positive electrode lead, and t represents the thickness (mm) of the positive electrode lead.
該正極リードの幅と厚みの関係が下記一般式(2)で表されることを特徴とする請求項1に記載の渦巻型非水二次電池。
1500<B/2t3<7000(2)
ここで、Bは正極リードの幅(mm)、tは正極リードの厚み(mm)を表す。
The spiral type non-aqueous secondary battery according to claim 1, wherein the relationship between the width and thickness of the positive electrode lead is represented by the following general formula (2).
1500 <B / 2t 3 <7000 (2)
Here, B represents the width (mm) of the positive electrode lead, and t represents the thickness (mm) of the positive electrode lead.
該正極リードがアルミニウム又はアルミニウム合金であることを特徴とする請求項1または2に記載の非水二次電池。  The non-aqueous secondary battery according to claim 1, wherein the positive electrode lead is aluminum or an aluminum alloy. 該アルミニウム又はアルミニウム合金中のアルミニウム含有率が99.3%以上、99.99%以下であることを特徴とする請求項3に記載の渦巻型非水二次電池。  The spiral nonaqueous secondary battery according to claim 3, wherein the aluminum content in the aluminum or aluminum alloy is 99.3% or more and 99.99% or less. 該アルミニウム又はアルミニウム合金が焼き鈍し処理されたものであることを特徴とする請求項3または4に記載の非水二次電池。  The nonaqueous secondary battery according to claim 3 or 4, wherein the aluminum or aluminum alloy is annealed.
JP15631996A 1996-05-29 1996-05-29 Spiral type non-aqueous secondary battery and method for manufacturing the same Expired - Fee Related JP3677873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15631996A JP3677873B2 (en) 1996-05-29 1996-05-29 Spiral type non-aqueous secondary battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15631996A JP3677873B2 (en) 1996-05-29 1996-05-29 Spiral type non-aqueous secondary battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09320639A JPH09320639A (en) 1997-12-12
JP3677873B2 true JP3677873B2 (en) 2005-08-03

Family

ID=15625206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15631996A Expired - Fee Related JP3677873B2 (en) 1996-05-29 1996-05-29 Spiral type non-aqueous secondary battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3677873B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324143A (en) * 2005-05-19 2006-11-30 Nissan Motor Co Ltd Secondary battery
JP2009059487A (en) * 2007-08-30 2009-03-19 Panasonic Corp Nonaqueous secondary battery
JP5270910B2 (en) * 2007-11-30 2013-08-21 古河電池株式会社 Ultrasonic welding method of positive electrode current collector and tab for storage battery

Also Published As

Publication number Publication date
JPH09320639A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP4645559B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
US5766791A (en) Sealed nonaqueous secondary battery
JP3637408B2 (en) Sheet electrode and battery using the same
JP4161400B2 (en) Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof
JP3687251B2 (en) Non-aqueous secondary battery with wound electrode group and method for manufacturing the same
KR20040088358A (en) Lithium secondary battery
US6379403B1 (en) Cell electrode sheet with displaced electrode depolarizing mixes
JP4193271B2 (en) Solid electrolyte battery
JPH10302737A (en) Battery gasket and battery using the same
JP3653913B2 (en) Sheet electrode and non-aqueous secondary battery using the same
JPH10340714A (en) Battery-sealing body
JPH11250937A (en) Nonaqueous electrolyte secondary battery
JP2004247119A (en) Nonaqueous electrolyte secondary battery
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JP3735937B2 (en) Terminal cap and cylindrical non-aqueous secondary battery using them
JP2004164867A (en) Nonaqueous electrolyte battery
JP4003268B2 (en) Electrode sheet and battery
JP2000173657A (en) Solid electrolyte battery
JP4910918B2 (en) Electrode sheet and battery
JP3627359B2 (en) Sealed non-aqueous secondary battery
JP4103168B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP3632968B2 (en) Nonaqueous electrolyte secondary battery
JP3677873B2 (en) Spiral type non-aqueous secondary battery and method for manufacturing the same
JP3692605B2 (en) Sealed non-aqueous secondary battery
JPH10188952A (en) Electrode for battery and battery using the electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees