JP3677558B2 - Si single crystal fine particle lamination method - Google Patents

Si single crystal fine particle lamination method Download PDF

Info

Publication number
JP3677558B2
JP3677558B2 JP2001273153A JP2001273153A JP3677558B2 JP 3677558 B2 JP3677558 B2 JP 3677558B2 JP 2001273153 A JP2001273153 A JP 2001273153A JP 2001273153 A JP2001273153 A JP 2001273153A JP 3677558 B2 JP3677558 B2 JP 3677558B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal fine
fine particle
fine particles
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001273153A
Other languages
Japanese (ja)
Other versions
JP2003081691A (en
Inventor
俊理 小田
克彦 西口
新為 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001273153A priority Critical patent/JP3677558B2/en
Publication of JP2003081691A publication Critical patent/JP2003081691A/en
Application granted granted Critical
Publication of JP3677558B2 publication Critical patent/JP3677558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、量子サイズ効果デバイス、例えば量子サイズ効果電子銃等に用いられるSi単結晶微粒子の積層方法に関する。
【0002】
【従来の技術】
従来、平面ディスプレイ用電子銃として、Siや金属の円錐を利用した電界放射型の電子エミッターが検討されてきたが、放出効率を高めること及び電子ビームを一点に絞ることが困難であることが明らかとなり、この問題を解決する手段として、近年、量子サイズ効果を利用した電子銃が注目され、盛んに研究されている。
【0003】
量子サイズ効果を利用した電子銃として、ポーラスSi(PS)を用いるもの(TECHNICAL REPORT OF IEICE LQE99−16(1999−06)pp116−121)が既に提案されており、この平面型電子銃の外部量子効率、すなわち、全駆動電流に対する放出電子電流の比は、約1%に達している。
【0004】
また、量子サイズ効果を利用した電子銃の他の例として、量子サイズ効果微粒子を積層して構成するもの(例えば特願2000−151448号明細書参照)が既に提案されている。この電子銃に用いられる量子サイズ効果微粒子は、ナノメーター・オーダーのSiO2 酸化膜で表面を覆った、粒径10nm以下のSi単結晶微粒子である。
このSi単結晶微粒子層を形成する方法として、例えば、VHFプラズマ中でSiH4 ガスを原料としてSi単結晶微粒子を形成し、このSi単結晶微粒子を基板上に堆積し、堆積したSi単結晶微粒子表面を酸化してSi単結晶微粒子層を形成する方法(IFUKU,T/et al.J.J.AP Part 1,Vol.36,No.6B,pp4031−4034参照)が知られている。
【0005】
【発明が解決しようとする課題】
しかしながらこの方法では、量子サイズ効果微粒子間の間隙が多く、その結果、外部量子効率が十分でないといった課題がある。
【0006】
上記課題に鑑み、本発明は、Si単結晶微粒子層のSi単結晶微粒子間の間隙を無くし、隙間無く緻密に積層したSi単結晶微粒子層を作製できるSi単結晶微粒子の積層方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明のSi単結晶微粒子の積層方法は、表面にSiO 2 膜を有するSi単結晶微粒子が、互いに空隙を有して積層されたSi単結晶微粒子層において、SiO2 膜を溶融させることにより、Si単結晶微粒子を互いに密に再配列させ、空隙をなくすことを特徴とする。
この構成によれば、Si単結晶微粒子のSiO2 膜が溶融することによって、積層されているSi単結晶微粒子が配列の自由エネルギーが小さくなるように再配列し、Si単結晶微粒子を積層する際にSi単結晶微粒子層中にできた空隙が減少する。Si単結晶微粒子層の空隙が減少する結果、電子のトンネリング確率が増大し、かつ、印加電界分布が均一となり、電子銃の外部量子効率が増大することになる。
【0008】
上記構成において、SiO 2 膜を溶融する方法は、SiO 2 膜の表面自由エネルギーが高いことを利用して、バルクのSiO 2 の溶融温度よりも低い温度の加熱で行うようにすれば好ましい。
この方法によれば、Si単結晶微粒子が超微粒子であるので、SiO 2 膜の表面自由エネルギーが大きく、バルクSiO 2 の融点よりも低い温度で溶融し、従って、Si単結晶微粒子層の空隙をより低い温度の熱処理でなくすことができる。
【0009】
また、上記構成において、SiO 2 膜を溶融する方法は、SiO 2 膜にリンをドープして融点を下げ、バルクのSiO 2 の溶融温度よりも低い温度の加熱で行うようにしてもよい
この方法によれば、リン(P)をドープすることによってSiO 2 が溶融し易くなり、バルクSiO 2 の融点よりも低い温度で溶融し、従って、Si単結晶微粒子層の空隙をより低い温度の熱処理でなくすことができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。なお、以下の図面において実質的に同一または対応する部材については同一符号を用いる。
最初に、本発明のSi単結晶微粒子の積層方法を適用するSi単結晶微粒子電子銃の構成について説明する。なお、このSi単結晶微粒子電子銃については、本発明者らによって既に提案された特願2000−151448号に記載の明細書が参照され得る。
【0011】
図1は、Si単結晶微粒子電子銃の構成、外部量子効率を測定するための測定系、Si単結晶微粒子層、及びSi単結晶微粒子を示す図であり、図1(a)はSi単結晶微粒子電子銃の構成と外部量子効率測定系を示す図、図1(b)はSi単結晶微粒子層の電子顕微鏡像を示す図、図1(c)はSi単結晶微粒子の透過電子線回折像を示す図である。
図に示すように、Si単結晶微粒子電子銃1は、基板及び電子源として用いるn+ −Si(0.01Ωcm)基板2と、Si基板2上にSi単結晶微粒子3を堆積したSi単結晶微粒子層4と、Si単結晶微粒子層4上に蒸着したAu電極5と、Au電極5から一定距離離したプレート状の引き出し電極6とから構成されている。Si単結晶微粒子3は図1(c)の電子顕微鏡像で示すように、粒径10±5nmのSi単結晶粒子3aと、その表面を覆う数nmのSiO2 膜3bとで構成されている。
【0012】
Si単結晶微粒子電子銃1を動作させるには、Si基板2とAu電極5との間にAu電極5の電位が高くなるようにダイオード電圧V1 を印加し、さらに、Au電極5と引き出し電極6との間に引き出し電極6の電位が高くなるように、引き出し電圧V2 を印加する。Si単結晶微粒子電子銃1の外部量子効率は、Si基板2とAu電極5との間を流れるダイオード電流Id と、Au電極5と引き出し電極6との間を流れる放出電流IE との和である全電流IT に対する放出電流IE の比で定義する。
【0013】
図2は、Si単結晶微粒子電子銃1の電子放出の原理をエネルギーバンド・モデルで示す図である。
Si基板2のフェルミレベルにある電子21は、Si単結晶微粒子3のSiO2 3bの電位障壁22に印加される電圧によって加速されると共に、電位障壁22をトンネリングして通過し、Si単結晶粒子3a中を無散乱で通過し、Au電極5の仕事関数エネルギー以上の運動エネルギーを獲得してAu電極5の外に放出され、引き出し電圧V2 によって加速されて引き出し電極6に衝突する。
このように、電子21がSi単結晶微粒子層4中を散乱されることなく加速されることから、電子放出が可能になる。
【0014】
次に、VHFプラズマ中でSiH4 ガスを原料としてSi単結晶微粒子3及びSi単結晶微粒子層4を形成する方法とその装置について説明する。
図3は、Si単結晶微粒子3及びSi単結晶微粒子層4を形成する装置の構成を示す図である。
図に示すように、Si単結晶微粒子3を生成及び堆積するVHFプラズマCVD装置は、144MHzでプラズマを生成するプラズマセル31と、プラズマセル31の孔32を介して結合した超高真空槽33とから構成されている。
Si単結晶微粒子3を形成するには、SiH4 とArをプラズマセル31に導入し、144MHzでプラズマを励起する。Si単結晶微粒子はプラズマ中で生じた数種類のSiH4 ラジカル及びイオンがガス中で互いに結合して形成され、孔32を介して超高真空槽33に引き出され、超高真空槽33に配置したSi基板2上に堆積され、Si単結晶微粒子層4が形成される。Si単結晶微粒子層4を堆積したSi基板2を、酸素雰囲気中で酸化し、Si単結晶微粒子3の表面をSiO2 膜3bで覆う。
【0015】
次に、この方法の課題点を説明する。
上記のようにして形成したSi単結晶微粒子層4は、図1(b)に示したように空隙が多く、その結果、トンネル確率が小さくなると共に、電界分布が不均一となって電子がSi単結晶微粒子層4を通過しにくくなり、外部量子効率が小さくなってしまう。
Si単結晶微粒子3が堆積する際に、Si単結晶微粒子同士が接触すると同時に結合してしまう確率が高く、このため空隙が多くなるものと考えられる。
【0016】
そこで本発明者らは、Si単結晶微粒子層4中の空隙をなくす方法を開発し、Si単結晶微粒子電子銃1の外部量子効率を飛躍的に高めることに成功した。
以下に、本発明のSi単結晶微粒子の積層方法を説明する。
本発明のSi単結晶微粒子の積層方法は、Si単結晶微粒子層のSi単結晶微粒子表面のSiO2 膜を溶融させてSi単結晶微粒子層中のSi単結晶微粒子を互いに密に再配列させることを特徴とする。
この構成によれば、Si単結晶微粒子のSiO2 膜が溶融することによって、積層されているSi単結晶微粒子が配列の自由エネルギーが小さくなるように再配列し、Si単結晶微粒子を積層する際にできた空隙が減少する。
Si単結晶微粒子層の空隙が減少する結果、電子のトンネリング確率が増大し、かつ、印加電界分布が均一となり、電子銃の外部量子効率が増大する。
【0017】
また、Si単結晶微粒子表面のSiO2 膜を溶融する方法は、Si単結晶微粒子層のSi単結晶微粒子のSiO2 膜にP(リン)をドープして熱処理することを特徴とする。
この構成によれば、PをドープしたSiO2 は、溶融温度が低くなるので、バルクSiO2 の融点よりも低温でSiO2 膜を溶融させることができる。
【0018】
次に、本発明の第1の実施例を示す。
試料は、Si基板2上にVHFプラズマ中でSiH4 ガスを原料としてSi単結晶微粒子3を積層し、Si単結晶微粒子3の表面を酸化して形成したSi単結晶微粒子層4を、溶融石英管を用いた電気炉に挿入し、N2 ガスを流し、N2 ガスの上流にP2 5 (五酸化燐)を配置し、1100℃で10分間の熱処理を行って作製した。
【0019】
図4は、本発明のPドープ熱処理を行って形成した場合と、しない場合のSi単結晶微粒子層の断面SEM(Secodary Electron Microscopy)像を示す図であり、図4(a)はPドープ熱処理をしない場合の断面像、図4(b)はPドープ熱処理後の断面像を示す。なお、図4(b)中、Nc−SilayerとはSi単結晶微粒子層4のことである。
図から明らかなように、図4(a)に見られるSi単結晶微粒子間の間隙が、図4(b)では全く見られず、Si単結晶微粒子表面のSiO2 にPがドープされてSiO2 の融点が下がり、1100℃の温度で溶融してSi単結晶微粒子が再配列したことがわかる。また、熱処理前のSi単結晶微粒子層の厚さが160nmであったが、熱処理後では60nmであったことからもSi単結晶微粒子が再配列して高密度に積層されたことがわかる。さらに、VHFプラズマ中でSiH4 ガスを原料として形成したSi単結晶微粒子の表面はH(水素)で終端されているため、P2 5 から発生する酸素によっても容易に酸化され、空隙を埋め尽くしたものと考えられる。
【0020】
次に、本実施例で作製したSi単結晶微粒子電子銃の外部量子効率の測定結果を示す。
図5は、本発明のPドープ熱処理を行って作製したSi単結晶微粒子電子銃とPドープ熱処理をしないで作製したSi単結晶微粒子電子銃の外部量子効率の測定結果を示す図であり、図5(a)は本発明のPドープ熱処理を行って作製した場合の、また、図5(b)はPドープ熱処理をしないで作製した場合の、Si単結晶微粒子電子銃の外部量子効率である。
図において、横軸はダイオード電圧を示し、左側の縦軸はダイオード電流密度及び放出電流密度を示し、右側の縦軸は外部量子効率を示す。引き出し電圧は100Voltである。
図から明らかなように、Pドープ熱処理をしないで作製したSi単結晶微粒子電子銃の外部量子効率に比べ、本発明のPドープ熱処理を行って作製したSi単結晶微粒子電子銃の外部量子効率は飛躍的に高くなっており、例えばダイオード電圧20Volt付近で比較すると、Pドープ熱処理をしない場合には約10-2%であるのに対し、本発明の方法によれば約1%に増大していることがわかる。
【0021】
次に、本発明の第2の実施例を示す。
試料は、Si基板2上に、VHFプラズマ中でSiH4 ガスを原料としてSi単結晶微粒子3を積層し、Si単結晶微粒子3の表面を酸化して形成したSi単結晶微粒子層4を形成し、この試料を溶融石英管を用いた電気炉に挿入し、N2 ガスを流して、1200℃で10分間の熱処理を行っって作製した。
図6は、本発明のN2 中熱処理をした場合と、N2 中熱処理をしない場合のSi単結晶微粒子層の断面SEM像を示す図であり、図6(a)はN2 中熱処理をしない場合の断面像、図6(b)はN2 中熱処理をした場合の断面像を示す。
図から明らかなように、図6(a)に見られるSi単結晶微粒子間の間隙が、図6(b)では減少しており、Si単結晶微粒子表面のSiO2 がSi単結晶微粒子表面の大きな表面自由エネルギーによって容易に溶融し、1200℃の温度でSi単結晶微粒子が再配列したことがわかる。
この方法は、P等の不純物原子がSi単結晶微粒子中に拡散することが無いので、Si単結晶微粒子の性質が変化することが無く、特性変動の少ない電子銃が実現できる。
【0022】
【発明の効果】
上記説明から理解されるように、本発明によれば、Si単結晶微粒子層のSi単結晶微粒子間の間隙が無くなり、隙間無く緻密に積層したSi単結晶微粒子層を作製することができる。したがって、本発明を量子サイズ効果デバイス、例えば量子サイズ効果電子銃等のSi単結晶微粒子層の作製に用いれば、極めて外部量子効率の高い量子サイズ効果電子銃が得られる。
【図面の簡単な説明】
【図1】Si単結晶微粒子電子銃の構成、外部量子効率を測定するための測定系、Si単結晶微粒子層及びSi単結晶微粒子を示す図であり、(a)はSi単結晶微粒子電子銃の構成と外部量子効率測定系を、(b)はSi単結晶微粒子層の電子顕微鏡像を、また、(c)はSi単結晶微粒子の透過電子線回折像を示している。
【図2】Si単結晶微粒子電子銃の電子放出の原理をエネルギーバンド・モデルで示す図である。
【図3】Si単結晶微粒子及びSi単結晶微粒子層を形成する装置の構成を示す図である。
【図4】本発明のPドープ熱処理をした場合と、しない場合のSi単結晶微粒子層の断面SEM(Secodary Electron Microscopy)像を示す図であり、(a)はPドープ熱処理をしない場合の断面像、(b)はPドープ熱処理後の断面像を示す。
【図5】本発明のPドープ熱処理を行って作製したSi単結晶微粒子電子銃とPドープ熱処理をしないで作製したSi単結晶微粒子電子銃の外部量子効率の測定結果を示しており、(a)は本発明のPドープ熱処理を行って作製した場合の、また、(b)はPドープ熱処理をしないで作製した場合の、Si単結晶微粒子電子銃の外部量子効率を示すグラフである。
【図6】本発明のN2 中熱処理をした場合と、N2 中熱処理をしない場合のSi単結晶微粒子層の断面SEM像を示す図であり、(a)はN2 中熱処理をしない場合の断面像、(b)はN2 中熱処理をした場合の断面像を示す。
【符号の説明】
1 Si単結晶微粒子電子銃
2 Si基板
3 Si単結晶微粒子
3a Si単結晶
3b SiO2
4 Si単結晶微粒子層
5 Au電極
6 引き出し電極
21 電子
22 電位障壁
31 プラズマセル
32 孔
33 超高真空槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stacking Si single crystal fine particles used in a quantum size effect device such as a quantum size effect electron gun.
[0002]
[Prior art]
Conventionally, field emission electron emitters using Si or metal cones have been studied as electron guns for flat displays, but it is clear that it is difficult to increase emission efficiency and focus the electron beam to one point. As a means for solving this problem, in recent years, an electron gun using the quantum size effect has attracted attention and has been actively studied.
[0003]
As an electron gun using the quantum size effect, an electron gun using porous Si (PS) (TECHNICAL REPORT OF IEICE LQE99-16 (1999-06) pp116-121) has already been proposed. The efficiency, i.e. the ratio of the emitted electron current to the total drive current, has reached about 1%.
[0004]
As another example of an electron gun using the quantum size effect, a configuration in which quantum size effect fine particles are stacked (for example, see Japanese Patent Application No. 2000-151448) has already been proposed. The quantum size effect fine particles used in the electron gun are Si single crystal fine particles having a particle size of 10 nm or less and having a surface covered with a nanometer order SiO 2 oxide film.
As a method for forming this Si single crystal fine particle layer, for example, Si single crystal fine particles are formed using SiH 4 gas as a raw material in VHF plasma, and the Si single crystal fine particles are deposited on a substrate. A method for forming a Si single crystal fine particle layer by oxidizing the surface (see IFUKU, T / et al. JJ AP Part 1, Vol. 36, No. 6B, pp 4031-4034) is known.
[0005]
[Problems to be solved by the invention]
However, this method has a problem that there are many gaps between the quantum size effect fine particles, and as a result, the external quantum efficiency is not sufficient.
[0006]
In view of the above problems, the present invention provides a method for laminating Si single crystal particles, which can produce a Si single crystal particle layer in which Si single crystal particle layers are eliminated without gaps and densely laminated without gaps. With the goal.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method for laminating Si single crystal fine particles according to the present invention includes a Si single crystal fine particle layer in which Si single crystal fine particles having a SiO 2 film on the surface are laminated with gaps therebetween. By melting the two films, the Si single crystal fine particles are closely rearranged to eliminate the voids .
According to this configuration, when the SiO 2 film of the Si single crystal fine particles melts, the stacked Si single crystal fine particles are rearranged so that the free energy of arrangement becomes small, and when the Si single crystal fine particles are stacked In addition, voids formed in the Si single crystal fine particle layer are reduced. As a result of the decrease in the voids in the Si single crystal fine particle layer, the probability of electron tunneling increases, the applied electric field distribution becomes uniform, and the external quantum efficiency of the electron gun increases.
[0008]
In the above structure, a method of melting the SiO 2 film, by utilizing the fact that the surface free energy of the SiO 2 film is high, preferred if as performed by heating at a temperature lower than the melting temperature of the bulk of SiO 2.
According to this method, since the Si single crystal fine particles are ultrafine particles, the surface free energy of the SiO 2 film is large and melts at a temperature lower than the melting point of the bulk SiO 2. Lower temperature heat treatment can be eliminated.
[0009]
In the above structure, a method of melting the SiO 2 film lowers the melting point by doping with phosphorus to SiO 2 film may be performed by heating at a temperature lower than the melting temperature of the bulk of SiO 2.
According to this method, SiO 2 is easily melted by doping phosphorus (P), and melts at a temperature lower than the melting point of bulk SiO 2. Therefore, the voids of the Si single crystal fine particle layer are melted at a lower temperature. It can be eliminated by heat treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following drawings, the same reference numerals are used for substantially the same or corresponding members.
First, the configuration of an Si single crystal fine particle electron gun to which the Si single crystal fine particle laminating method of the present invention is applied will be described. As for this Si single crystal fine particle electron gun, the specification described in Japanese Patent Application No. 2000-151448 already proposed by the present inventors can be referred to.
[0011]
FIG. 1 is a diagram showing a configuration of a Si single crystal fine particle electron gun, a measurement system for measuring external quantum efficiency, a Si single crystal fine particle layer, and a Si single crystal fine particle. FIG. FIG. 1B is a diagram showing an electron microscopic image of the Si single crystal fine particle layer, and FIG. 1C is a transmission electron diffraction image of the Si single crystal fine particles. FIG.
As shown in the figure, a Si single crystal fine particle electron gun 1 includes an n + -Si (0.01 Ωcm) substrate 2 used as a substrate and an electron source, and a Si single crystal in which Si single crystal fine particles 3 are deposited on the Si substrate 2. It is composed of a fine particle layer 4, an Au electrode 5 deposited on the Si single crystal fine particle layer 4, and a plate-like lead electrode 6 separated from the Au electrode 5 by a certain distance. As shown in the electron microscopic image of FIG. 1 (c), the Si single crystal fine particle 3 is composed of a Si single crystal particle 3a having a particle size of 10 ± 5 nm and a SiO 2 film 3b having a thickness of several nm covering the surface thereof. .
[0012]
In order to operate the Si single crystal fine particle electron gun 1, a diode voltage V 1 is applied between the Si substrate 2 and the Au electrode 5 so that the potential of the Au electrode 5 becomes higher, and further, the Au electrode 5 and the extraction electrode 6, the extraction voltage V 2 is applied so that the potential of the extraction electrode 6 becomes high. The external quantum efficiency of the Si single crystal fine particle electron gun 1 is the sum of the diode current I d flowing between the Si substrate 2 and the Au electrode 5 and the emission current I E flowing between the Au electrode 5 and the extraction electrode 6. defined as the ratio of the emission current I E to the total current I T is.
[0013]
FIG. 2 is a diagram showing the principle of electron emission of the Si single crystal fine particle electron gun 1 by an energy band model.
The electrons 21 at the Fermi level of the Si substrate 2 are accelerated by the voltage applied to the potential barrier 22 of the SiO 2 3b of the Si single crystal fine particles 3 and pass through the potential barrier 22 by tunneling to form Si single crystal particles. pass without scattering in 3a, won work function energy or kinetic energy of the Au electrodes 5 are released outside the Au electrodes 5, impinge on the extraction electrode 6 are accelerated by the extraction voltage V 2.
As described above, the electrons 21 are accelerated without being scattered in the Si single crystal fine particle layer 4, so that electrons can be emitted.
[0014]
Next, a method and apparatus for forming the Si single crystal fine particles 3 and the Si single crystal fine particle layer 4 using SiH 4 gas as a raw material in VHF plasma will be described.
FIG. 3 is a diagram showing a configuration of an apparatus for forming the Si single crystal fine particles 3 and the Si single crystal fine particle layer 4.
As shown in the figure, a VHF plasma CVD apparatus for generating and depositing Si single crystal fine particles 3 includes a plasma cell 31 that generates plasma at 144 MHz, and an ultrahigh vacuum chamber 33 that is coupled through a hole 32 of the plasma cell 31. It is composed of
In order to form the Si single crystal fine particles 3, SiH 4 and Ar are introduced into the plasma cell 31 and the plasma is excited at 144 MHz. The Si single crystal fine particles are formed by combining several types of SiH 4 radicals and ions generated in the plasma with each other in the gas, drawn out to the ultrahigh vacuum chamber 33 through the holes 32, and arranged in the ultrahigh vacuum chamber 33. Deposited on the Si substrate 2, the Si single crystal fine particle layer 4 is formed. The Si substrate 2 on which the Si single crystal fine particle layer 4 is deposited is oxidized in an oxygen atmosphere, and the surface of the Si single crystal fine particles 3 is covered with the SiO 2 film 3b.
[0015]
Next, problems of this method will be described.
The Si single crystal fine particle layer 4 formed as described above has a large number of voids as shown in FIG. 1B. As a result, the tunnel probability is reduced, the electric field distribution is non-uniform, and the electrons are Si. It becomes difficult to pass through the single crystal fine particle layer 4, and the external quantum efficiency becomes small.
When the Si single crystal fine particles 3 are deposited, there is a high probability that the Si single crystal fine particles come into contact with each other at the same time, so that the voids increase.
[0016]
Accordingly, the present inventors have developed a method for eliminating voids in the Si single crystal fine particle layer 4 and succeeded in dramatically increasing the external quantum efficiency of the Si single crystal fine particle electron gun 1.
Below, the lamination | stacking method of Si single crystal microparticles | fine-particles of this invention is demonstrated.
In the method of laminating Si single crystal fine particles according to the present invention, the Si single crystal fine particles in the Si single crystal fine particle layer are closely rearranged by melting the SiO 2 film on the Si single crystal fine particle surface of the Si single crystal fine particle layer. It is characterized by.
According to this configuration, when the SiO 2 film of the Si single crystal fine particles melts, the stacked Si single crystal fine particles are rearranged so that the free energy of arrangement becomes small, and when the Si single crystal fine particles are stacked The voids that are formed are reduced.
As a result of the decrease in the voids in the Si single crystal fine particle layer, the probability of electron tunneling increases, the applied electric field distribution becomes uniform, and the external quantum efficiency of the electron gun increases.
[0017]
Further, a method of melting the SiO 2 film of Si single crystal fine particle surface is characterized by a heat treatment by doping P (phosphorus) in the SiO 2 film of Si single crystal fine particles of Si single crystal fine particle layer.
According to this configuration, SiO 2 doped with P has a low melting temperature, so that the SiO 2 film can be melted at a temperature lower than the melting point of bulk SiO 2 .
[0018]
Next, a first embodiment of the present invention will be shown.
As a sample, a Si single crystal fine particle layer 4 formed by laminating Si single crystal fine particles 3 using SiH 4 gas as a raw material on a Si substrate 2 in a VHF plasma and oxidizing the surface of the Si single crystal fine particles 3 is fused quartz. The tube was inserted into an electric furnace, N 2 gas was allowed to flow, P 2 O 5 (phosphorus pentoxide) was placed upstream of the N 2 gas, and heat treatment was performed at 1100 ° C. for 10 minutes.
[0019]
FIG. 4 is a diagram showing a cross-sectional SEM (Sectional Electron Microscopy) image of the Si single crystal fine particle layer with and without the P-doping heat treatment of the present invention, and FIG. 4A is a P-doping heat treatment. 4B shows a cross-sectional image after the P-doping heat treatment. In FIG. 4B, Nc-Silayer is the Si single crystal fine particle layer 4.
As is clear from the figure, the gap between the Si single crystal fine particles seen in FIG. 4A is not seen at all in FIG. 4B, and P is doped with SiO 2 on the surface of the Si single crystal fine particles to obtain SiO 2 It can be seen that the melting point of 2 decreased and melted at a temperature of 1100 ° C. to rearrange the Si single crystal fine particles. Moreover, although the thickness of the Si single crystal fine particle layer before the heat treatment was 160 nm, it was found that the Si single crystal fine particles were rearranged and laminated at a high density because it was 60 nm after the heat treatment. Furthermore, since the surface of Si single crystal fine particles formed from SiH 4 gas as a raw material in VHF plasma is terminated with H (hydrogen), it is easily oxidized by oxygen generated from P 2 O 5 to fill the voids. It is considered exhausted.
[0020]
Next, the measurement result of the external quantum efficiency of the Si single crystal fine particle electron gun produced in this example is shown.
FIG. 5 is a diagram showing the measurement results of the external quantum efficiency of the Si single crystal fine particle electron gun produced by performing the P-doped heat treatment of the present invention and the Si single crystal fine particle electron gun produced without performing the P-doped heat treatment. 5 (a) shows the external quantum efficiency of the Si single crystal fine particle electron gun when manufactured by performing the P-doping heat treatment of the present invention, and FIG. .
In the figure, the horizontal axis represents the diode voltage, the left vertical axis represents the diode current density and the emission current density, and the right vertical axis represents the external quantum efficiency. The extraction voltage is 100 Volt.
As is clear from the figure, the external quantum efficiency of the Si single crystal fine particle electron gun produced by performing the P doped heat treatment of the present invention is larger than the external quantum efficiency of the Si single crystal fine particle electron gun produced without performing the P dope heat treatment. For example, when compared with a diode voltage of around 20 Volt, for example, when the P-doping heat treatment is not performed, it is about 10 −2 %, but according to the method of the present invention, it is increased to about 1%. I understand that.
[0021]
Next, a second embodiment of the present invention will be shown.
The sample was formed by stacking Si single crystal fine particles 3 on a Si substrate 2 using SiH 4 gas as a raw material in VHF plasma and oxidizing the surface of the Si single crystal fine particles 3 to form a Si single crystal fine particle layer 4. This sample was inserted into an electric furnace using a fused quartz tube, and N 2 gas was flowed to perform heat treatment at 1200 ° C. for 10 minutes.
FIG. 6 is a diagram showing a cross-sectional SEM image of the Si single crystal fine particle layer when the N 2 heat treatment of the present invention is performed and when the N 2 heat treatment is not performed, and FIG. 6A shows the N 2 heat treatment. FIG. 6B shows a cross-sectional image when N 2 heat treatment is performed.
As is clear from the figure, the gap between the Si single crystal fine particles seen in FIG. 6A is reduced in FIG. 6B, and the SiO 2 on the surface of the Si single crystal fine particles is changed to the surface of the Si single crystal fine particle surface. It can be seen that it was easily melted by the large surface free energy, and the Si single crystal fine particles were rearranged at a temperature of 1200 ° C.
In this method, since an impurity atom such as P does not diffuse into the Si single crystal fine particles, the properties of the Si single crystal fine particles are not changed, and an electron gun with little characteristic variation can be realized.
[0022]
【The invention's effect】
As understood from the above description, according to the present invention, there is no gap between the Si single crystal fine particles of the Si single crystal fine particle layer, and it is possible to produce a Si single crystal fine particle layer that is densely stacked without any gap. Therefore, if the present invention is used for manufacturing a Si single crystal fine particle layer such as a quantum size effect device, for example, a quantum size effect electron gun, a quantum size effect electron gun with extremely high external quantum efficiency can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a Si single crystal fine particle electron gun, a measurement system for measuring external quantum efficiency, a Si single crystal fine particle layer, and a Si single crystal fine particle. FIG. (B) shows an electron microscopic image of the Si single crystal fine particle layer, and (c) shows a transmission electron diffraction image of the Si single crystal fine particle.
FIG. 2 is a diagram showing the principle of electron emission of an Si single crystal fine particle electron gun using an energy band model.
FIG. 3 is a diagram showing a configuration of an apparatus for forming Si single crystal fine particles and Si single crystal fine particle layers.
FIGS. 4A and 4B are cross-sectional SEM (Sectional Electron Microscopy) images of the Si single crystal fine particle layer with and without the P-doped heat treatment of the present invention, and FIG. Image (b) shows a cross-sectional image after the P-doping heat treatment.
FIG. 5 shows measurement results of external quantum efficiencies of a Si single crystal fine particle electron gun produced by performing the P-doping heat treatment of the present invention and a Si single crystal fine particle electron gun produced without performing the P-doping heat treatment; ) Is a graph showing the external quantum efficiency of the Si single crystal fine particle electron gun when manufactured by performing the P-doped heat treatment of the present invention, and (b) when manufactured without performing the P-doped heat treatment.
FIG. 6 is a diagram showing a cross-sectional SEM image of a Si single crystal fine particle layer when N 2 heat treatment is performed according to the present invention and when N 2 heat treatment is not performed, and (a) shows a case where N 2 heat treatment is not performed. (B) shows a cross-sectional image in the case of heat treatment in N 2 .
[Explanation of symbols]
1 Si single crystal fine particle electron gun 2 Si substrate 3 Si single crystal fine particle 3a Si single crystal 3b SiO 2
4 Si single crystal fine particle layer 5 Au electrode 6 Extraction electrode 21 Electron 22 Potential barrier 31 Plasma cell 32 Hole 33 Ultra high vacuum chamber

Claims (2)

互いに空隙を有して積層されたSi単結晶微粒子の表面にSiO 2 膜を形成し、
上記SiO 2 膜にリンをドープして熱処理することで該SiO2 膜を溶融させ上記Si単結晶微粒子を互いに密に再配列させ上記空隙をなくすことを特徴とする、Si単結晶微粒子積層方法。
Forming a SiO 2 film on the surface of Si single crystal fine particles laminated with a gap between each other ,
By melting the SiO 2 film by a heat treatment by doping phosphorus into the SiO 2 film, characterized in that eliminating the voids of the Si single crystal fine particles are densely rearranged one another, Si single crystal particle laminated Method.
前記熱処理は、バルクのSiO2 の溶融温度よりも低い温度の加熱で行うことを特徴とする、請求項1に記載のSi単結晶微粒子積層方法。 The method for laminating Si single crystal particles according to claim 1, wherein the heat treatment is performed by heating at a temperature lower than a melting temperature of bulk SiO 2 .
JP2001273153A 2001-09-10 2001-09-10 Si single crystal fine particle lamination method Expired - Fee Related JP3677558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273153A JP3677558B2 (en) 2001-09-10 2001-09-10 Si single crystal fine particle lamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273153A JP3677558B2 (en) 2001-09-10 2001-09-10 Si single crystal fine particle lamination method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005036883A Division JP4337123B2 (en) 2005-02-14 2005-02-14 Si single crystal fine particle lamination method

Publications (2)

Publication Number Publication Date
JP2003081691A JP2003081691A (en) 2003-03-19
JP3677558B2 true JP3677558B2 (en) 2005-08-03

Family

ID=19098408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273153A Expired - Fee Related JP3677558B2 (en) 2001-09-10 2001-09-10 Si single crystal fine particle lamination method

Country Status (1)

Country Link
JP (1) JP3677558B2 (en)

Also Published As

Publication number Publication date
JP2003081691A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US6780075B2 (en) Method of fabricating nano-tube, method of manufacturing field-emission type cold cathode, and method of manufacturing display device
JP3352842B2 (en) Thin film formation method by gas cluster ion beam
JP3768908B2 (en) Electron emitting device, electron source, image forming apparatus
JP5242009B2 (en) Photovoltaic device using carbon nanowall
JP4830217B2 (en) Field emission cold cathode and manufacturing method thereof
JP2966842B1 (en) Field emission electron source
JP2014060178A (en) Microchannel plate device having adjustable resistance film
WO1999010908A1 (en) Electron emitting device, field emission display, and method of producing the same
JPWO2006043656A1 (en) Fine particle deposition apparatus, fine particle deposition method, and light emitting device manufacturing method
US20220216026A1 (en) Electron emission device and electron microscope
JP3792977B2 (en) Electron emission film and field emission cold cathode device
JP5116961B2 (en) Diode using carbon nanowall
Kang et al. Effect of sp 2 content and tip treatment on the field emission of micropatterned pyramidal diamond tips
Nose et al. Electron field emission from undoped polycrystalline diamond particles synthesized by microwave-plasma chemical vapor deposition
JP2007504607A (en) Field emission device
JP3604652B2 (en) Electron emission cathode and method of manufacturing the same
JP3677558B2 (en) Si single crystal fine particle lamination method
JP4337123B2 (en) Si single crystal fine particle lamination method
JP6229258B2 (en) Bonded wafer manufacturing method and bonded wafer
US20100068896A1 (en) Method of processing substrate
JP2006114265A (en) Manufacturing method of micro electron source device
JP3806751B2 (en) Quantum size effect type micro electron gun manufacturing method
JP3897794B2 (en) Method for manufacturing electron-emitting device, electron source, and image forming apparatus
US6455987B1 (en) Electron multiplier and method of making same
CN105895649A (en) Method of reducing CIS (CMOS Image Sensor) device noise through changing SAB (Salicide Block) membrane

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees